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Learning with respect to a hypothesis class

Consider the following setting:
» We have a data space Z, and an unknown distribution P over Z.
» We are given a training set S = {Z;}"_; of n points drawn i.i.d from P.
> Let H be a hypothesis class.

» Let £ : H x Z — R be the instance loss, where £(h, z) is the loss of hypothesis h
on instance (data point) z.

Supervised learning. In supervised learning!, the dataspace can be written as
Z =X x ), where X is a set of inputs and ) is a set of labels. The hypothesis class
‘H is a set of predictors from X to ). Here are some examples:

» Binary classification with 0 — 1 loss: Y = {0, 1}, ¢(h, (x,y)) = 1(h(x) # y).
» Regression with squared loss, J C R, £(h, (x,y)) = (h(x) — y)2.

The ideas extend to any learning problem (including unsupervised learning) where we can define a
loss £ on an instance but most common use cases for this framework are in supervised learning. 1/108



Learning with respect to a hypothesis class (cont'd)

v

The loss of a hypothesis h on a distribution P,
L(h) =Ez.p[l(h, Z)].

v

An algorithm h chooses a hypothesis in H based on the dataset S, i.e.,
h: 2" = H.

The risk of an algorithm h,

v

R(R) = Es-pr [L(K(S))| = Es-p [Ez-p [(A(S), 2)]|.

(We will drop the dependence on P if it is clear from context.)

v

The excess risk relative to the hypothesis class H is R(h) — infp ey L(H).
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Outline for this chapter

1. ERM and uniform convergence
Rademacher Complexity

VC dimension and Sauer's lemma
Dudley Entroy Integral

Case study: Two-layer Neural Networks

A T

Approximation error, Estimation error, optimization error
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Ch 3.1: ERM and uniform convergence
A simple algorithm: Empirical risk minimization

For a hypothesis h € H, let us define the empirical loss? as,

L(h) = % anﬁ(h, Z).
i=1

ERM chooses a hypothesis in H which minimizes the empirical loss,

h € argmin Z(h)
heH

~

Note that the quantities L,F, depend on the dataset S, but we have suppressed this
dependence for simplicity.

2To be consistent with the terminology used in this class, we should refer to this as empirical foss
minimization. However, the acronym ERM is more commonly used. 4/108



On ERM

» Many modern ML algorithms are implementations of ERM.

> It is very common to use a regularizer in practice:

h € argmin <Z(h) + )\C(h)) ,
heH

where, C is a measure of complexity of h. Often, this is equivalent to ERM over a
restricted class, i.e., argmin,c4, L(h) subject to C(h) < B.

In the remainder of the chapter, we will analyize ERM.
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Uniform convergence
We will show that we can bound the excess risk of ERM under uniform convergence.
Let us first define uniform convergence.

Uniform convergence. A class H is said to have uniform convergence if there exists
a function N : Ry x (0,1) — N such that, for all ¢ > 0,4 € (0,1), and distributions P
over Z, when n > N(e,d), we have

i <Vh e H, |L(h) — L(h)] < e) >1-4,

Here, recall that L is computed based on n i.i.d samples from P, and the probability P
is with respect to this randomness.

Pointwise convergence. We can contrast this with the (much weaker) pointwise
convergence: Vh € H, P <\Z(h) —L(h)| < e) >1-6.
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Uniform convergence (cont'd)

We have other equivalent ways to state uniform convergence.

1) There exists a function € : N x (0,1) — R4 which satisfies (i) ¢(n,0) — 0 as
n — oo for any fixed §, and (ii) for all n € N, § € (0,1), and distribution P, we have

P (Whe M, [L(h) — L()| < e(n,8)) =16, (1)
2) There exists a function ¢ : N x Ry — (0,1) which satisfies, (i) (n,e) — 0 as
n — oo for any fixed €, and (ii) for all n € N, e > 0, and distribution P, we have

P (Vh e H, |L(h) — L(h)| < e) >1 - §(n,e), (2)
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Bounding the excess risk under uniform convergence

Theorem. Suppose uniform convergence (1) holds and let h be the hypothesis chosen
by ERM. Then, for all § € (0,1), we have

P ( L(h) < inf L(h) +2¢(n, ) ) >1—6.
(L) < jnf 1)+ 26(0.)) =
Moreover, if the instance loss is bounded, i.e., £(h,(x,y) € [0, B] for all h, x,y, then

E {L(ﬁ) ~ jnf. L(h)] < 2¢(n, 8) + BS.
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Proof

Let § be given. Let G denote the good event that the empirical loss Z(h) of all
hypotheses h is within €(n, d) of the true loss L(h). That is,

G = {Vh e H; |L(h) — L(R)| < e(n, 5)}

As uniform convergence holds, we know P(G) > 1 — ¢. It is sufficient to show that

-~

under G we have L(h) — infpey L(h) < 2¢(n,0).

For this, consider any ' € H. Then,

L(h) — L(') = L(h) — L(h) + L(h) — L(K') + L(K) — L(K)
< L(h)— L(h)+ L(K)— L(K) As h minimizes [
< 2sup |L(h) — L(h)| < 2¢(n, 6)
heH

This is true for all i € H. Therefore,

L(h) — inf L(K) < 2¢(n,d).
(h) inf, () < 2¢(n,d)
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Proof (cont'd)

To prove the second statement, we can write

E [L(F) ~ jnf L(h)] —E [L(F) ~ jnf L(h)\G] P(G) +E [L(F) — jnf, L(h)|G¢| P(G®)

< 2€(n,8)+ B -6
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Learnability
In this course, we will say a class H is learnable if there exists an algorithm h such that
E [L(h) —infpeq L(h)| — 0 as n — oo for all distributions P over Z. We will say it is

learnable at rate f(n) if we can achieve E [L(E) —infpey L(h)| € O(f(n)).

The following notion of PAC Learnability is also common in learning theory.

PAC Learnability. A hypothesis class H is (agnostic) PAC-Learnable if there exists a
function N : (0,1)?> — N and a learning algorithm with the following property: for all
€ €(0,1), 6 € (0,1), and for all distributions P over Z, when running the algorithm on
n > N(e,d) i.i.d samples generated from P, the algorithm returns a hypothesis h € H

~

such that with probability at least 1 — §, we have L(h) < infpey L(H) + €,

- Some definitions of PAC learnability also require that N be at most polynomial in 1 /¢
and 1/4, and sometimes additionally that the algorithm run in poly(1/e,1/4) time.

- In this class, we will focus on the first (weaker) definition for simplicity, although in

all examples, we will also have PAC Learnability. -



Bounding excess risk

Recall, theorem. Suppose uniform convergence (1) holds, and let h be the hypothesis chosen
by ERM. Then, for all § € (0,1), we have P <L(E) < infpen L(R) + 2¢(n, 5)) >1-4.

Moreover, if the instance loss is bounded in [0, 1], then E {L(E) —infpen L(h)} < 2¢(n,d) + 9.

We will strive to achieve bounds that look like the following,

E [L(ﬁ) ~inf L(h)] cd <\/Complemym)) .

heH n

For example, this can be achieved if,

s (\%) L dno)ed Q/Wpolybg (;))
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Example 1: Finite hypothesis classes

Assume that the instance loss ¢(h, (x,y)) is bounded in [0, 1] for all h, x,y. Assume a
finite hypothesis class, i.e., |H| < co. Using the union bound, and Hoeffding's
inequality, we can upper bound the probability of the bad event as follows:

P(Hhe?—(, IL(h) — |>e> Z]P’(\L )|>e)
heH
i

> (Uh,Z) —E[e(h, 2)])| =
heH

i=1
< ZZex 2 =2 —2né?
p = 2|H| exp(—2ne”).

Letting § = 2]7—[|e‘2”€2, and solving for ¢, we get,

0= o (220,
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Example 1: Finite hypothesis classes (cont'd)

Recall, Theorem. Suppose uniform convergence (1) holds and let h be the hypothesis chosen
by ERM. If the instance loss is bounded in [0, B], then, for all 6 € (0,1), we have

E {L(E) ~ jnf, L(h)] < 2¢(n, ) + BS.

By this theorem, we have

E [L(E) — inf L(h)] <2 %Iog (2’?') + 6.

heH

By choosing 6 = 1/y/n we get,

B [1) — o L] < /2 o (2 + - € o( 'gﬂHD)

Here, the complexity parameter (for finite ) is log(|#|).
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Example 2: Linear regression
Consider the following hypothesis class for regression,

2 = {hoi ho(x) = 07 ;0 < Ba(By)

Moreover, let us assume that the joint distribution P is such that for all (X, Y) ~ P,
we have || X2 < By, |Y| < By as.
Consider any 0,6 € By(By). We have,
g(hﬁv (va)) - E(h9’7 (X7y)) = (HTX - y)2 - (Q/TX - y)2
=(0"x)>—(0'"x)2 —2y(d"x — 0" x)
=x"(0460)-x"(6—0)—2yx"(0 - 9.
Therefore,
€y, (x,)) = £k, (o)) < (IXIBIIO + 8']l2 + 2lyll1x2) 116 — 0]z
(28284 +2B,B,) 0 — 0’|l

IA A

K
The loss ¢(hg, (x,y)) is K-Lipschitz in 6 for all x, y. 15,108



Example 2: Linear regression (cont'd)

The remainder of this example works for instance losses that are K-Lipschitz, i.e.,
forall z€ Z, |l(hg,z) — U(her,2)| < K|O —0'|]2.
We cannot apply a union bound over all § € By(By). Instead, we will
» Apply the union bound over a finite cover of By(Bp).

> Use the Lipschitz property of the instance loss to show that both the population
loss and empirical loss of hy are smooth, and therefore close to hy's
“representative” in the cover.

» Combining the two results above, we will establish uniform convergence.
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Example 2: Linear regression (cont'd)

Recall the following definitions and theorem from Chapter 0.

Covering number. Let (X, p) be a pseudo-metric space and let A C X. Let e > 0. A set
C C A'is called an e-cover of A if, for all x € A, there exists ¢ € C such that p(x,c) <e.
- The e-covering number N(e, A, p) is the size of the smallest e-cover of A.

Theorem. Let X = RY and let || - || be any norm. Let B = {x € RY; ||x|| < 1} be the unit ball.
Suppose A is a convex set and contains eB. Then,

vol (A+5B) _ (3)" vol(A)

d
(7) S5 = veal-n=mealn< 2 < () =

e) vol(B)

Let Co be a minimal €’-cover of Ba(Bp). For any 0 € By(Bp), let [0] € Co be the
“representative” of 6 such that |0 — [0]|2 < €.

d
We know €. < (3)7 SUpelE) — (38:)”.
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Example 2: Linear regression (cont'd)

Recall, our goal is to show uniform convergence. That is, for all 6 € B2(Bjy), we wish
to bound L(hg) — L(hg).

Let us first decompose,

~

L(hg) — L(hg) = L(hg) — L(hyey) + L(byg)) — L(bygy) + L(hgg) — L(he).
(i) (ii) (iii)

To bound (i) we will use the the Lipschitz property:
. 1
=1 Z (£(ho, Zi) — €(hygy, Zi)
<=z Z |€(ho, Z;) — Uy, Z; ZKHH —[0]l2 < K€

You can similarly show |(iii)| < K¢€'. 18/108



Example 2: Linear regression (cont'd)
We therefore have,

L(hg) — L(he)‘ < | L(hg) — L(hygy) | + | L(hyay) — Lhygy) | + | Lygy) — L(ho) |
M (i) (i)
< 2K¢€ + ‘ Z(h[@]) - L(h[@]) ’
—_—

(i)

Let € > 0. If we set ¢ = ¢/(4K) and show |(ii)| < €/2 via the union bound, we will
have |L(hg) — L(hg)| < e.
Let G be the good event where all hy in the cover have empirical loss close to the true
loss, i.e., G = {V@’ € Co; |L(hy) — L(hg)| < %} By the union bound, Hoeffding's,
and similar calculations to example 1, we have
~ € 2
P(G) < 3 P(|L(hw) — L(hw)| > 5) <|Cu|- 26712,

0'e Ce’
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Example 2: Linear regression (cont'd)
By setting €’ = ¢/(4K), with probability at least 1 — 2]C€/4K\e*”52/2, we have,

V6 € Ba(By), )Z(he) - L(hg)‘ <e

Recall, we wish to achieve E [L(ﬁ) — hm"fa L(h)} ed (\/ Comple’“tym) Let us try the
(S

following € with a, b to be chosen later,

€= ,/% log (an®)

38, \¢
9) , the probability of the bad event is,

Hence, recalling that, |Co| < ( =

d d
320 e <2 (s ) e 2 (T2EL) L
! — \(e/4K) 2log(anP) anb
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Example 2: Linear regression (cont'd)

Recall, Theorem. Suppose uniform convergence holds, i.e., P (Vh € H, [L(h) — L(h)| < e)
> 1—4. Then, if the instance loss is bounded in [0, B], for ERM, we have
E[L(R) — infres L(h)} < 2¢ + BS.
Now, let us choose a = 2(61/2ByK)? and b = (d + 1)/2, we then have
1 1

"= Jogan)

If the instance loss is bounded in [0, B], we have

E [L(F) — inf L(h)] < \/ % log (2(6\@BQK)dn(d+1)/2) B 1

heH v /log(an®)
e (\/§>

N.B. Here, the complexity of the class is the dimensionality d. 21/108



Summary so far

» Uniform convergence implies a hypothesis class H is learnable via ERM, i.e., we
can achieve E | L(h) — infpey L(h)] — 0 as n — oo.

» We can prove uniform convergence using pointwise covers if the loss is smooth.
Recall, for the linear regression example, we showed for all x, y,

[£(he, (x,y)) = £(hor, (x,¥))| < KI[[0 — ']
» However, this approach has limitations:

1. The Lipschitz-constant may be very large for complex models (e.g., multi-layer
neural networks), and it may not be meaningful to treat it as a constant. In practice,
models may perform much better than such bounds would suggest.

2. This approach does not work for “non-smooth” losses, e.g., 0 — 1 loss for
classification. You will explore this in HW2.
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Plan for the next few lectures

» Ch 3.2: Rademacher complexity
> Definition
» Properties: basic properties, Massart's lemma, Contraction lemma
» Bounded Rademacher complexity implies uniform convergence.
» Ch 3.3 onwards: Bounding Rademacher compleixty
» VC dimension and Sauer’s lemma for binary classification.
» Using finite covers

» Dudley entropy integral
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Ch 3.2: Rademacher complexity
Rademacher random variables. o € {+1,—1}, where P(c = +1) =P(c = —1) = 1/2.

Empirical Rademacher complexity of a Euclidean subset. Let AC R". Let 0 =
(01,...,0n) € {—1,+1}" be n independent Rademacher random variables. Denote,

_ 1
R(A) 2 E, [sup UTa} .

acA N

Empirical Rademacher complexity. Let Z be a set and let 7 C RZ. Let
S={z,...,zp} C Z and 0 = (01,...,0,) € {—1,+1}" be n independent
Rademacher random variables. Denote F(S) = {[f(z1),...,f(zn)];f € F} C R".
Then the empirical Rademacher complexity of F for set S is,

qup Za, ]

R(F,S) 2 R(F(S)) =E, sup
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Rademacher Complexity

Intuition: R(F, S) measures how well the functions in F can correlate with random
noise,

R(F,S)=E

1 -
— sup ol Fl.
N FeF(s)

Rademacher complexity. The Rademacher complexity of a function class 7 C R?
with respect to a distribution P with supp (P) C Z s,

su Z, .
v s

Ro(F, P) = Eg.pn [7%(;, 5)] — Espr

If P is clear from context, we may drop it.

25/108



Properties of Rademacher complexity

~

1) Let AC B CR". Then R(A) < R(B).
Hence, if 7 C G C RZ, we have R,(F) < Rn(G).

2) Let « € R, and let a € R". Let A C R". Then, R(aA + a) = |a|R(A).

Hence, for any F C R? and f € R?, we have R,(aF + f) = |a|R.(F).

3) Let A, B C R". Then, R(A+ B) = R(A) + R(B).

Hence, for any F,G C RZ, we have R, (F + G) = Rn(F) + Ra(G).

4) Let ACR". Let |A| = {|a|;a € A}, where |a| = {[a1],...,|an|} is the pointwise
absolute value. Then, R(]A|) < R(A).

Hence, for any F C R?, we have R,(|F|) < Rn(F) where |F| = {|f|; f € F} and
£10x) = [£(x)I.

(Proof: HW2)
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Massart’s lemma

Massart’s Lemma. Let A= {a3,...,any} C R” be a finite subset of R"”. Then,
. 2log(N
R(A) < (maxlal ) - 2125
ac

Hence, for a bounded function class F C [~B, B]? with a finite number of elements,

we have
2 log(|F
Rn(F) < B g,5| D,
Recall, Maximal inequality. Let Z;,..., Zy be zero mean ~-sub-Gaussian random variables

(not necessarily independent). Then, E [max;ein Zi] < v+1/2log(N).
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Massart's lemma (cont'd)

Proof. We know that a Rademacher RV is 1-sub-Gaussian as it is bounded in [—1, 1].
Hence, o " a is ||a||2-sub-Gaussian. Therefore, for every a € A, we have "
(max,ea ||al|2)-sub-Gaussian. Therefore, by the maximal inequality,

R 2log(N
721(/Q) = ‘!iﬂicr max (Tgrra < lw1a)<”g;”2 44444453§§§4442.
acA n

n ac{ai,...,an}

ais

Now let S C Z. We have,

R(F,S) = R(F(S)) < <32}?é) ||a||2> 2e( 7)) g, [2le7])

The last inequality follows from the observation that for any a € F(S) C [-B, B]", we
have ||a||2 < By/n. Moreover, |F(S)| < |F|.
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Contraction lemma

Talagrand’s contraction lemma. Let ¢1,...,¢,, where ¢; : R = R, be n
K-Lipschitz functions, i.e., |¢i(a) — ¢i(a')| < K|a— &'| for all i. For any A C R", let
¢(A) = {[01(a1), .- -, dn(an)l;a € A}. Then, R($(A)) < KR(A).

Corollary. Let F C RZ. For any K-Lipschitz ¢ : R = R, let po F = {¢p o f; f € F}.

Then, Rp(¢ o F) < KRu(F).
Proof. First, we show that the corollary follows immediately from the first result.
Rt 0 F) = Es[R(4(F(S))] < Es[K - R(F(S))] = KRa(F).

In the inequality, we have applied the first result with ¢; = 1.
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Contraction lemma (cont'd)

We will next prove the first result. We have,

R((A) = Ex |supa"o(3)

acA
= E, [sup 0'1(251 ai +Zal¢l aj
acA i—>
1
= —E,,, |sup | ¢1(a1 —l—Za,qﬁ, a;) As o1 is a Rademacher RV.
2 acA i—>
1 n
+ §EU2:n [sup <_¢1 al +Zal¢l(al >
acA i—>
1 n n
= 5Eo, sup ((¢1(31) —o(a)) + > oigi(a) + Y 0i¢i(a§)>]
a,a'e i=2 i=2
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Contraction lemma (cont'd)

Using K-Lipschitzness of ¢ we have,

nR($(A)) < % 2n [ sup (K|31 —ai|+ ) oigiai) + Zﬁiébi(af'))]
i=2 i=2

a,a’€eA

As we are taking the supremum, we can drop the absolute value. Therefore,

-~ 1
R(¢(A)) < EEUQ:n [ sup ( a1 - 31 + ZUI al + ZUI¢I )]
a,a’eA
1
= 2Eg2n sup (Kal + Za,qb, (a; )]
=2

1 n
+ 5Eoz, !SUP (-Kaﬁ + ZG@:‘(#))]
a'eA =2
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Contraction lemma (cont'd)

We can now combine the two summations once again to write,

nR($(A)) < E, [sup <K0131 + Zdﬂbi(ai))]

acA

=2
Repeating this argument for / = 2,..., n results in,
nﬁ(gb(A)) < E; |sup (KZO','Q,'> = nKﬁ,(A).
acA i—1
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Towards uniform convergence: symmetrization

The theorem below will allow us to bound the maximum possible deviation of the
empirical losses from their expected value in terms of the Rademacher complexity.

Theorem. Let F C RZ. Let S = {Z,...,2Z,} C Z be an i.i.d sample from some
distribution P. Then,

Eg.pn [?u-[;: (}1 > f(z) - EZNP[f(Z)]> < 2Ra(F),
€ i=1

Espn [f—u?: (EZNP[’[(Z)] - %Z f(Zi)> < 2Rn(F).
€ i=1

Proof. We will prove the first statement. Letting S’ = {Z1,...,Z,} C Z be (another)
i.i.d sample, we have

LHS = Es.pn [sup ( Z f(Zi) — Egrpn

feF

o>

i=1
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Symmetrization (cont'd)

Using the fact that sup is sub-additive, we have

sup( Zf —;:Zf(Z,’))
i=1

LHS < Es.s
feF

feF

1IES S'o [sup Z (0if(Z;) — 0if (Z)))

In the previous step, we have introduced n Rademacher random variables o =
(01,...,0n). Equality follows from symmetry of the two datasets S,S’: as we are
taking expectation over S and S’, we have equality for every realization of o.
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Symmetrization (cont'd)
Now continuing,

LHS = Es s, |sup oif(Z;) —ai)f(Z;
5.5, [f ;nz ;( )f(Z)
<Esgs o |sup oif(Z;) + sup —oj)f
> [f]—'nz fe}"nz
=Es, |sup 1 ZH:U f(Z)| +Es o |sup = L Zn:(—o-)f(Z-’)
7 \reFn Py ' 7 fer = A
= 2R,(F)

Second statement. The first result implies a bound of 2R ,(—F) on the LHS of the
second inequality. The claim follows from the fact that R,(—F) = Rn(F).
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Uniform convergence via Rademacher complexity

Recall the following definitions. Instance loss ¢ : H x Z — R, where {(h, z) is the loss of
hypothesis h on instance z. For a distribution P, let L(h) = Ezp[¢(h, Z)]. For a dataset
S={Z,....,Z,} let L(h) =137  U(h, Z).

n

Theorem. Let #H be a hypothesis class and assume the loss is bounded in [0, 1]. Let

F& {¢(h,-); h € H} C RZ be the class of real-valued functions induced by applying ¢
to hypotheses h € H. Then, with probability at least 1 — 272" \ve have,

VheH, |L(h)— L(h)| <2R(F)+e.

Corollary. We can equivalently state the above result as the following:

P (v heH, [L(h)— L(h)| < e(n,5),) >1-4,

where €(n, §) = 2Rn(F) + 1/ 5 log (3).
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Uniform convergence via Rademacher complexity (cont'd)

Recall, McDiarmid’s inequality. Let Xi,..., X, be independent random variables with
Xi€ X;. Let f: Xy x--- x X, — R. Suppose there exists {c;}?_; such that for all xq, ..., x;, x/,
ooy Xn, we have, |[f(x1, ..., %, ., %0) — f(x1,....x, ..., x,)| < ¢. Then, for all t >0,

exp| — =— |,
Do €

2
Pr(f(Xy,....Xn) —E[f(Xy,...,Xy)] < —t) < e><p< Z?’_tc2> :

Pr(f(X17...,Xn)—E[f(X17...,X,,)] > t)

IN

Proof. Let us make the dependence of S on L clear and write

L(h,S) = % > (b, Z).
i=1

Now define, g1(S) = suppcs, (Z(h, S) - L(h)), 2(S) = supyey (L(h) — I(h, 5)) .
We will apply McDiarmid'’s inequality to bound g3 and g». For this denote,

S={Z,....Zi,.... 20}, S={Zi,....Zi,.... 72}, SUS={Zi,....Zi,Zi ..., 2y},
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Uniform convergence via Rademacher complexity (cont'd)

Let us verify the bounded difference property for g1(S) = suppcy (Z(h, S) — L(h)).

sup 1(5) ~ &1(5)] = sup sup (£(0.5) ~ L(1)) — sup (£(1.3) - L)

suS SuS |heH heH
< sup sup Z(h, S)— Z(h, g)‘
SughE’H
as |sup fi(a) —sup (a)| < supl|fi(a) — H(a)|.

1 ~
= sup sup |- (E(h, Z;) — {(h, Z,-)) |
7,7, her N
< . As losses are bounded in [0,1].
Applying McDiarmdid's with ¢; = 1/n for all i, with probability at least 1 — e 21 e
have, g1(5) — E[g1(S)] < e.
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Uniform convergence via Rademacher complexity (cont'd)
Recall that g1(S) = suppey (Z(h, S) - L(h)). Therefore, with probability at least
1-— e_2”€2, we have
sup (Z(h, S) - L(h)) < Es [sup (Z(h, S) - L(h))] +e
heH heH

Hence, for any h € H, we have

+ €

L(h,S)— L(h) < Es [sup ( Zz (h, Z;) — Es[e(h, Z)])

heH

Recall, we defined F 2 {f(:) =4(h,-); h € H} in the theorem statement. Hence,

L(h,S) — L(h) < Es sup( Zf —Es[f( )]) +e.

feF
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Uniform convergence via Rademacher complexity (cont'd)

Symmetrization theorem. Let 7 C RZ. Let S = {Z;,...,Z,} C Z be an i.i.d sample from
some distribution P. Then,

Es [fgg (}7 Z f(Z) - Ez[f(z)]>

By applying the symmetrization theorem we have, with probability at least 1 — e

VheH, L(hS)—L(h) <2Rn(F)+e.

By applying McDiarmid's for g», we can also show, with probability at least 1 — e ?

VheH, L(h)—L(hS)<2R(F)+e

2ne2

Hence, with probability at least 1 — 2e7<"", we have

VYhe M, |[L(hS)—L(h)| <2R,(F)+e

< 2R.(F), Es []Ez[f )] - sup < Z f(Z >} < 2R (F).

—2ne?
1

—2ne
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Example: Finite H revisited

Let us revisit an example from before. Assume that the instance loss ¢(h, (x,y)) is
bounded in [0,1] for all h,x,y. Assume a finite hypothesis class, i.e., |H| < co.

We showed, via a union bound, E | L(h) — infpey L(h)] cO (\/ Iog(,LHD>

What does the new bound based on Rademacher complexity give us?

Recall, Theorem (uniform convergence). Suppose uniform convergence (1) holds and let h
be the hypothesis chosen by ERM. If the instance loss is bounded in [0, B], then, for all

5 €(0,1), we have N
E {L(h) — AQL L(h)] < 2¢(n, d) + Bo.

Recall, Theorem (Rademacher complexity). Let 7 = {{(h,-); h € H}. Then,
~ 1 2
P (Vh eH, |L(h) - L(h)| < e(n,5)) >1-4,  where, (n,5) = 2Ro(F) + /5 log ()

]
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Example: Finite H revisited

Recall, Massart’s Lemma. For a bounded function class F C [—B, B]* with a finite number
of elements, we have R,(F) < B 2log7[(1\f\).
From the “"Rademacher complexity theorem”, we know uniform convergence holds with

€(n,8) = 2R4(F) + 1/ 5= log (2). Hence, by the “uniform convergence theorem”,

E [L(Z) — inf L(h)} < 26(n, 8) + 6 < 4R (F) +24] — Iog (2) +6

heH
<4 — 2 |og(|.7-"] 2y / Iog + 4.

As H is finite, F = {{(h,-); h € H} is also finite with |F| < |H|. Hence, choosing
5 =1/y/n, we get
Iog(m))

n

E [L( )~ inf L(h)} <
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From R,(F) to R,(H)

Recall, Theorem. Let 7 be a hypothesis class and assume the loss is bounded in [0,1]. Let

F2 {¢(h,-); h € H} C RZ be the class of real-valued functions induced by applying ¢ to
hypotheses h € H. Then, with probability at least 1 — 2727 e have,

VheH, |L(h)—L(h)| <2R.(F)+e.

This bound is in terms of F = {{(h,-); h € H}. Often, it is convenient to relate this to
the Rademacher complexity of H. This can often be done in supervised learning
problems where Z = X x ), Y C R, and H C Y.

We will consider two common cases:
» 0 — 1 loss for binary classification, £(h, (x,y)) = 1(h(x) # y).

» Lipschitz losses.
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From R,(F) to R,(H): 0-1 loss for binary classification

Consider a setting where Z = X’ x {0,1} and the hypothesis class % C {0,1}* is a
set of binary predictors. We will use the 0-1 loss, ¢(h, (x,y)) = L(h(x) # y).

Theorem. Let F = {{(h,-); h € H}. For any dataset S = {(x1,¥1),.--, (Xn,¥n)}, let
Sx = {x1,...,Xn} denote only the input values. Then, for all S C (X x Y)", we have
R(F,S) = R(H,Sx). Hence, Rp(F) = Rn(H).

Proof. First note that we can write,

{(h, (x,y)) = 1(h(x) # y) = y + h(x) = 2yh(x) = y + (1 = 2y)h(x).

Hence, for a given S = {(x1,¥1),. .., (Xn, ¥n)} we can write,
~ 1 ~ 1 Z
R(F,S) = -E, |sup oif(xi,yi)| = —Es | sup oib(h, (xi,yi
(7.) = ;5 |sup ) ouf )] LB s D ot )

n

sup > i (yi+ (1 - 2Yi)h(Xi))]

1
= -E,
n heH =]
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From R,(F) to R,(H): 0-1 loss for binary classification (cont'd)

We therefore have,

R(F,S) Z yiEloj] + Eq

sup Y oi(1 — 2y;)h(x;)
heH =]
We know E[c;] = 0. Moreover,

1— oy — 1 if yy =0,
Tl ifyi=1

Hence, (1 — 2y;)o; is also a Rademacher random variable (for fixed y;).

Therefore,

R(F,S) = E,

supZa,h(x, ] = ,S).

her .=
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From R,(F) to R,(H): Lipschitz losses
Let Z =X x Y, where ) C R. Suppose the loss takes the form ¢(h,(x,y)) =
'(h(x),y), where ¢/ : Y x ¥ — R is K-Lipschitz in the first argument. That is,
forall yi,y2,y3€ Y, [€(y1,y3) = C'(y2,3)| < Kly1 — yal-

You can verify that this is satisfied by #(y1,y2) = |y1 — y2| and £/(y1,y2) = (y1 — ¥2)?
provided that ) is bounded. However, it is not satisfied by the 0 — 1 loss

El()’h)@) = 1(y1 # y2).

Theorem. Let F = {{(h,-); h € H}. For any dataset S = {(x1,y1),..., (Xn,¥n)}, let
Sx = {x1,...,Xa} denote only the input values. Then, for all S C (X x )", we have
R(F,S) < KR(H, Sx). Hence, Rp(F) < KRn(H).

Proof. Consider any fixed dataset S = {(x;, y;)}"_; of n points. We first have,

F(S) = {lt(h, (x1, 1)) - -, £(h; (xa, yn))I: h € H}
= {[gl(h(xl)a)’1)7 ce ’El(h(xn)ﬁ’n)]; he 7‘[}
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From R,(F) to R,(H): Lipschitz losses (cont'd)

Recall, Contraction lemma Let ¢1,...,¢,, where ¢; : R — R, be n K-Lipschitz functions,
ie., |pi(a) — ¢i(a)| < K|la— a| for all i. For any A C R”, let
o(A) = {[P1(a1), ..., dn(an)]; @ € A}. Then, R(p(A)) < KR(A).

Define ¢;(-) = ¢'(-, y;), which is K-Lipschitz, allowing us to apply the contraction
lemma. Denote ¢ : R” — R" where ¢(a) = [¢1(a1), ..., dn(an)]-

We have, H(Sx) = {[h(x1), ..., h(x,)]; h € H} and hence,
P(H(Sx)) = {[¢'(h(x1), y1). - .. £ (h(xn), yn)]: h € H} = F(S).
We therefore have,

R(F,S) = R(F(S)) = R($(H(5x))) < K - R(H(Sx)) = KR(H, Sx).
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Summary so far
Uniform convergence. There exists € : N x (0,1) — R} such that, for all n € N,
§ € (0,1), and distribution P, we have P (Vh e M, |L(h) — L(h)| < e(n, 5)) >1-4.

If the losses are bounded in [0, B], for ERM h, we have

E L(E) — inf L(h)| < 2¢(n,d)+ Bo ERM under uniform convergence
heH

1 2
<2 (27?,,,(]:) + o log <5>> 4+ Rademacher complexity
n

2 2
<AKRH(H) + 4/ - log (5> + 4.

Where, in the last line K = 1 for binary classification with the 0-1 loss and is the
Lipshcitz constant for Lipschitz losses. Choosing 6 = 1/4/n we get,

£ 1)~ o 100 € 0 (R0 + 22)
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Plan for the next two sub-chapters

In the remainder of the chapter, we will focus on bounding the Rademacher complexity
of a hypothesis class H C Y. We will focus on two cases:

» VC dimension, for binary classification problems

» Dudley entropy integral
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Ch 3.3: VC Dimension and Sauer’s Lemma

Recall the setting for binary classification, where Z = X x {0,1} and the hypothesis
class H C {0,1}% is a set of binary predictors.

Outline for this subchapter:
» Bounding Rademacher complexity via growth function
» Shattering and VC dimension, examples
» Sauer's lemma

» VC dimension-based lower bound.
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Growth function

Growth function. Let n € N and let % C {0,1}* be a hypothesis class. The growth
function is defined as

A
= A
glnH) = max  [H(A),

where, recall H(A) = {{h(a)}.ca; h € H}.

Interpretation: g(n,H) the maximum number of label vectors that can be realized on
a set of n points in X with hypotheses in H.

Note that g(n, H) < 2".
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Example: One-sided threshold classifiers

Let H = {ha(x) = L(x > a); a € R} be all one-sided threshold classifiers. Let us try
computing g(n,H) for different n.

- g(1,H): We have H({x1}) = {[0], [1]}, for any x; € R (see figure below). Hence,
g(l,H)=2=2L

- g(2,H): We have H({x1,x}) ={][0,0], [0, 1], [1,1]}, for any x; € R. Hence,
g(2,H) =3 <22

- You can also verify g(n,’H) < 2" for all n > 2.

A T

B (- ©Y ey foa @ 0

52/108



Example: Two-sided threshold classifiers
Let H = {ha(x) = 1(x > a); a € R} U {hs(x) = 1(x < a); a € R} be all two-sided
threshold classifiers. Let us try computing g(n, M) for different n.
- g(1,H): We have H({x:}) = {[0],[1]}, for any x; € R. Hence, g(1,H) =2 = 2L

- g(2,7—[) We have' %({Xla)@}) = {[070]7 [07 1]7 [170]7 [1’ 1]}1 for any xi, X2 € R.
Hence, g(2,H) = 4 = 22.

- g(3,H1): We have,
H({x.x2,x3}) = {[0.0,0], [0.0,1].[0, 1, 1], [1. 1, 1. [1,0,0]. 1,1, 0]}, for any
x1,X2,x3 € R. Hence, g(3,H) =6 < 22

- You can also verify g(n,H) < 2" for all n > 3.

N.B. In both examples, g(n, H) = 2" whenever n does not exceed the “degrees of
freedom” in H.
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Bounding the Rademacher complexity via the growth function

Theorem. Let A= {Xy,...,X,} C X and let # C {0,1}*. Then,
R, ) < |/ 2oSAAD [2log(a(rn70)

n B n
Hence, Ry(H) < w'

Recall, Massart’s Lemma Let A be a finite subset of R". Then,
= 2log(|A
R(A) < (maxaca [a]l2) - Y2240,

n

Proof. Noting that #(A) C {0,1}" C R”, we can write
) /25 (A
n

R(H,A) = R(H(A)) <
(14.4) = ROUA) < (max. Lol

<vn
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Shattering and VC dimension

We just showed R,(H) < / 2'gle(n)

n

But with the naive bound g(n, H) < 2", we can only get R,(H) € O(1).

For learnability, we want at least g(n, ) € o(2") so that R,(H) € o(1).
Ideally, we should achieve g(n, ) =< poly(n) so that we get the O(n~1/?) rate.

Next, we will introduce the VC dimension. We will see that for classes with finite VC
dimension, we can get R, € O(n~1/?).
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Shattering and VC dimension (cont'd)

Shattering. Let A= {xq,...,x,} C X be a set of n points in X. We say that A is
shattered by a hypothesis class H C {0, 1} if H can realize any label on A. That is, if
[H(A)| =2".

a Q
Example 1. Two-sided  A: —+— [o,0) - Mf
threshold classifiers can T By e
shatter any set of 2 dis- (o] I
tinct points, but no set N
of 3 points. (1o} - L
[1,11 . ,J*
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Shattering and VC dimension (cont'd)

VC dimension. The VC dimension d of a hypothesis class H C {0,1} is the size of
the largest set shattered by #. Equivalently, d = max{n; g(n,H) =2"}.

Example 1. Two-sided threshold classifiers

H ={hi(x) =1(x > a); a€ R}U{hs(x) =1(x < a); a€ R}
- We know it can shatter 2 points, therefore d > 2.

- But it cannot shatter any set of 3 points, therefore d = 2.

- There are two dofs here: a and which direction is class 1.

Example 2. One-sided threshold classifiers H = {h,(x) = 1(x > a); a € R}.
- We know it can shatter 1 point, therefore d > 1.

- But it cannot shatter any set of 2 points, therefore d = 1.

- Only one dof: only a.
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Shattering and VC dimension (cont'd)

Example 3. Linear classifiers when X = R2.

- It can shatter 3 points (see figure below), therefore d > 3.

- But it cannot shatter any set of 4 points (see next slide), therefore d = 3.
- There are three dofs: two parameters for the line and the direction.
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Shattering and VC dimension (cont'd)

Linear classifiers in R? cannot shatter 4 points.

- If three of the four points are co-linear, it cannot be shattered.

- Two cases for four non-co-linear points:

® = ‘
\ize
Cannst c2elize Conngy  £22
[o]
o +
.‘—
+ © o 6

In general, for linear classifiers in RP, we have d = D + 1.

(Proof in HW2)
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Sauer's lemma
Sauer’s Lemma. If the VC dimension of a hypothesis class # is d, then
d
n
< .
g(nH) < ZO <,>
As (") = 0if n < i, this means

' mapd =2 nsd
n7
& < Yio(f) ifn>d.

Before proving Sauer’'s lemma, let us first use it to bound the Rademacher complexity.

Theorem. Let H C {0,1}% be a hypothesis class with VC dimension d. Then, for all

n > d, we have
2d en ~ d
< — —
Rn(H) < - Iog<d>€(’)< n)
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Sauer’s lemma (cont'd)

Proof. Let us first upper bound g(n, #) as follows. Using Sauer’s lemma,

<n> <d>i .
. — as d<nand i<d
] n
0
. — as d <n
i n
0
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Sauer's lemma (cont’d)

Recall: By bounding Rademacher complexity by growth function we showed
Rn(fH) < 2|og(g(n,7{))_

n

binomial expansion of (14 d/n)"

g(n,H) <

Q.

N———
Q.

o —
—

+

S| Q
N———

3

e as (1+x/n)" <€~

INA
/N N /N

Q% s s

N—
Q

We therefore have,

Ro(#) < 1/ 29 108len/d)
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Ch 3.3.1: Proof of Sauer’s lemma

We wish to show g(n, 1) < 37, (7).
Plan: We will prove the lemma via induction on k = n+ d.
» Base case: (i)n=0,anyd, (ii))d=0,anyn.

» Inductive step: Assume true for all n,d with n+ d < k — 1, and prove for
n+d=k.

base  Cage W)
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Proof of Sauer's lemma (cont’d)

Denote ®4(n) = X7, (7).
Recall the definition of the growth function, g(n, H) = maxacx, |aj=n |H(A)|.

Base case.
(i) Let n =0, and consider a hypothesis class # with VC dimension d € N. First note
that g(0,#H) = 1 as we can label 0 points at most one way:

If A={}, then H(A) = {[;he H} ={[I} = [H(A)=1

Moreover, we have (Dd(O) = Z?:O (?) =1, as (8) =1 and (?) =0 for i > 0.
(ii) For any hypothesis class H with VC dimension d = 0, we have |H(A)| = 1 for any
A C X as all hypotheses in H will label the points in A the same way. In particular, if
any point in A can be labeled both 0 and 1 by #, then the VC dimension would be at
least 1.

Moreover, we have ®4(n) = z?:o (”) = (g) = 1.

1
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Proof of Sauer's lemma (cont’d)

Inductive step. Assume the statement is true for all d + n < k — 1. Let d, n be such
that d + n = k.

Let H be a hypothesis class with VC dimension dy = d.
Let A= {x1,...,x,} C X be of size n.

Let G C {g: A— Y} be a class of functions defined only over A as follows: for every
element of #(A), add one element from H to G.
Hence, [G] = [G(A)| = [H(A)|.

We will now partition G into Gy, G as follows: for every
possible labeling of {x1, ..., xp,—1}, add one function from G to G;. Then, let Go = G\Gs.
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Proof of Sauer's lemma (cont’d)

By our construction, H(A) = G(A) = G1(A) U G2(A). Hence,

[ H(A) = |G(A)| = [G1(A)] + |G2(A)]. (3)
Moreover,
do, & dg S dn=d (4)
(1) (2)

(1): as G1 € G, (2): as any set shattered by G is also shattered by .

Claim 1: ]Ql(A)] = ]Ql({xl, e ,Xn_l})’.

Proof. For every labeling {g(x1),...,8(xn—1)} of {x1,...,xp—1} in
Gi({x1,...,xn—1}), we have exactly one of {g(x1),...,8(xn—1),0} or
{g(xa). . 8(xn1). 1} in Go(A) = Ga({x1, ... xa}).

66/108



Proof of Sauer's lemma (cont’d)

Claim 2: ’gg(A)’ = |g2({X1, . 7Xn—1})’-
Proof: Follows a similar argument to Claim 1

To apply the inductive hypothesis, we first note that by (4),
dg, +n—1<dy+n—-1=d+n—1= k— 1. Therefore,

1G1(A)| = |G1({x1, - - -, Xn—1})] By Claim 1
< g(n—1,dg) definition of Growth function
< ¢%@1(n<— 1) by the inductive hypothesis
< Py(n—-1) as ®,(n) is increasing in d’
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Proof of Sauer's lemma (cont’d)

Claim 3. dg, <d - 1.

Proof. Note that for every go € G», there exists g3 € G; which disagrees with g» on x,,.
Therefore, if T C {x1,...,xn_1} is shattered by G, then T U {x,} is shattered by G.
Hence,

TUfx}<dg — |T|<dg—1<dy-1=d—1.

Taking the maximum over all T that is shattered by Go, we get dg, < d — 1.

Continuing with our main proof, we have

1G2(A)| = [Ga({x1, - -+ s Xn—1})| By Claim 2
<g(n—-1,G) definition of Growth function
< q%@2(n——1) by the inductive hypothesis
<®y_1(n—1) as ®4(n) is increasing in d’ and Claim 3.
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Proof of Sauer's lemma (cont’d)

Recall we showed following: (i) [H(A)| = |G(A)| = |G1(A)| + |G2(A)].
(i) |G (A)] < @g(n—1), (i) [G2(A)| < Pg-1(n —1).

We therefore have,

[H(A) = [G1(A)] + [G2(A)] by (4)
<Py(n—1)+dy_1(n—1) by (%) and (%%%)
I /n-1 Ky |
()2 (%)
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Proof of Sauer's lemma (cont’d)

Continuing, we have

|%(A)|§("51)+Z<’I7> as (7)—(”71)+(.

i=1

_ zj; (7) — y(n). s (”; 1) _ (8) 1.

This is true for any A C X such that |A| = n, hence

- A)| < by(n).
glnH) =, max  [HA)] < ®q(n)
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Ch 3.3.2: Lower bounds for binary classification

Let X be any input space and H C {0,1}* be a hypothesis class with VC dimension
d. We have shown that ERM achieves the following upper bound on the excess risk on
all distributions P over X x {0, 1}:

Ry(herat, P) = Esopo [L’H(/HERM(S)a P)}

— Es.pn [L (EERM(S), P)} ~ inf L(h.P)€ O ( d) .

n

We will show that we cannot do significantly better, i.e.,
) ~ d
inf sup Ry (h, P) € Q - 1.
h P n
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Lower bounds for binary classification (cont'd)

We will show this lower bound via Fano's method. Recall the following corollary:

Local Fano method. Let A(P, Q) be the separation as defined below,

AP, Q) =sup{d20; Lyu(hP)<d — Lu(hQ) 20, YheH,
Li(h,Q) <8 = Ly(h,P)>0, YheH, }
Let S be an i.i.d dataset from some distribution P € P. Let {Py,..., Py} C P such that

A(P;, Py) > 6 and KL(P;, Py) < &M for all j # k. Suppose N > 16. Then, R} > 3.
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Step 1: Constructing alternatives

Let Xy = {x1,...,xq} be a set of d points shattered by #H. Let v < 1/4 be a value we
will specify shortly.

For w € {0,1}9, define the distribution P,, with pmf p, as follows:
1 1
pu(x) = EIL{XEXd}, pu(Y = 1]X:x,-):§+(2w,-—1)7,
Let Qg be the Gilbert-Varshamov-pruned d-hypercube. Now define our alternatives as,

P = {Pw;w € Qd}

73/108



Step 1: Constructing alternatives (cont'd)

An example. For two-sided threshold classifiers, pick any x1, x» such that x; # xo
This is shattered by H. For w = (0, 1), the distribution P,, would be,

1
Pu(X = x1) = pu(X = x2) = >
pw(Y21|X:X1):7 Y pw(Y:]-’XZXQ):E‘i"Y
. F(_W'—\IX‘-‘",_
. : = -Ei + ¥
Pl4-l%n) ¢ :
=1 . "
—3-— M
" Uy
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Step 2: Lower bound the separation

Recall, Gilbert-Varshamov bound. In the Gilbert-Varshamov pruned m-hypercube 2, of
{0,1}™, we have, (i) |Qm| > 2™/8, (i) H(w,w') > m/8, Yw,w’ € Qp, (i) 0 € Q.

Claim 1. For any w,w’ € {0,1}9, we have, A(P., P.y) > JH(w,w).
Proof. In HW3.

Then, by the Gilbert-Varshamov bound,

d
5= % 2 the separation §

. y .
A(P,, PL) > = H >
o Bip AP P 2 g iy Hlon) 2

o.\q
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Step 3: Upper bound the KL divergence

For any P, P!,, we can bound

R )

d
:pr(xi) Z Pw(}/|Xi) log (F’w(y|x')>

2 o P (y|xi)

S () (52 () (355)

<16+2

Therefore, maXpw’pLep/ KL(Pw, Pw’) < Cl’y2.
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Step 4: Final bound

log ()

We require the maximum KL (C;7?) to be smaller than
By the Gilbert-Varshamov bound, we know N > 2d/8, Therefore, it is sufficient if

Therefore, choose v = C3\/%.

As the separation is 6 = /8, we have

inf sup RH(E, P) >
h P

N
S
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Ch 3.4: Dudley Entropy Integral

Recall our goal: we wish to bound the Rademacher complexity R,(#) for a hypothesis
class, where Ron(H) = Eszn[ﬁ(’H(S))].
In particular, if we can control R(#(S)) for all datasets S, then we can bound R,(#).

We know that for finite A C R", we have 7€(A) < (maxaea ||all2) M, by
Massart's lemma. However, generally speaking, 7/?\,(3'-[(5)) may be infinite.

An idea: If we can find an € cover C, of H(S), then we can obtain a bound of the
following form, where € is the error due to approximation and the /log(|Cc|)/n term is

from Massart's lemma.
21 C
O (:e + ()fi(‘e‘):)
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A first theorem

The following theorem formalizes this idea. For A C R”, let N,(e, A) denote the €
covering number in the ﬁ” - ||p norm. That is,

1

NP(Ea A) =N <67A7 m” ' HP

) , for p € [1,0), Noo(e, A) = N (&, A, || - [[oo) -

Theorem. Let p € [1,00] and suppose A C [—B, B]". Then,

2log N, (e, A))

T e>0

R(A) < inf <6+ B .

Proof. Recall, in HWO, you showed N, (e, A) < Ny(e, A) for p < q. Therefore, it is
sufficient to prove the above theorem with N (e, A).
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A first theorem (cont'd)

Fix any € > 0. Let C. be a minimal e-cover of A in the %H - |1 norm. For an a € A, let
[a] denote the closest element to a in the cover, satisfying 1[la—[a][; < e.

We therefore have,

. 1. T
R(A) = =E, |sup aTa]

n LacA

= lIE;O. supo ' (a— [a] + [a])}

n LacA

1 [ - 1 -
< =E, |supo'(a—[a])| + =E, |[supo ' [a]

n LacA n acA

We now observe that by Holder's inequality, we have
T
o (a—|[a]) < llofleclla —[a]lls <1 - ne.

Therefore, the first term of the RHS above is at most €.
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A first theorem (cont'd)

2|0g(\A\)_

Massart’s Lemma. Let A be a finite subset of R”. Then, R(A) < (maxaca ||al2)

We will bound the second term using Massart's lemma,

1 1 ~
—E, [sup UT[a]} = -E, [sup O'Tc:| =R(C)
n acA n cele

21 C 21 N A
< <maCXIICH2> V/2log(|Ce]) ! 2log(Ni(e, A))
c €
~—_—
<Bv/n
This gives us,
~ 2log(Ni(e, A
R(A)<e+B 2log(Mi(e,4)).

n

As this bound is true for all €, the claim follows by taking an infimum over e.
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Example: Linear regression in R

Theorem. Let p € [1,00] and A C [-B, B]". Then, R(A) < inf. <e+ B W)

Setting. Let p, g be such that % + % =1. Let H = {hp; ho(x) = 07 x;0 € R,
10]|, < Bg}. Suppose that for all X ~ P, we have X € R? and ||X||; < Bx.

For any x, 8 such that ||x|q < By and ||0||, < By, by Holder's inequality we have

\/)STH\ < B.By. Noting that Rn(H) = Esps[R(H(S))], we will aim to bound
R(H(S)) as follows,

R(H(S)) < inf ( + BXBQ\/ 2 '°g<Noo(e,H(5)))> |

n
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Example: Linear regression (cont'd)

Recall, Theorem. Let X = R? and let || - || be any norm. Let B = {x € RY; ||x|| < 1} be the
unit ball. Suppose A is a convex set and contains €B. Then,

vol (A+£B) 3\ vol(A)
Vol(§B2) = <> vol(B)’

€

d
<<15> zjllgg)) <N(e A -]]) < M(e, A ] -]]) <

Note that as |0 x;| < BBy, we have H(S) C Boo(B«Bg) C R". Naively applying
above theorem with this observation to bound N (e, H(S)) leads to
Noo (€, H(S)) < Noo(€, Boo(BxBy)) = N(€, Boo(BxBp), || - lloo)

< (i> W _ <3B:Bg>n

which only gives a constant bound for R,(H).
Instead, we note that as 6 € R?, H(S) lies in a d-dimensional hyperplane in R".
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Example: Linear regression (cont'd)

Recall, Theorem. Let X = R? and let || - || be any norm. Let B = {x € R?; ||x|| < 1} be the
unit ball. Suppose A is a convex set and contains ¢B. Then,

vol (A+ £B) 3 7 vol(A)
vol (§B) §< ) vol(B)’

€

d
C) XSIIE;\; <N(EA |- ) < M(e, A || - ) <

To use this observation, let us first construct an €’-cover Co of {6;[|0|, < By} in the
| ||, norm. Let Ho = {hg; ho(x) = 0T x;0 € C}. By the above theorem, we know

ol ol < (%)dm _ (3?)".

€

Claim. Let S = {x1,...,x,} C RY, where ||x;||q < Bx. Then, H_< () is an e-cover of

d
H(S) in the || - [[oc norm. Moreover [H < (S)| < (%) .
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Example: Linear regression (cont'd)

Proof of claim. The statement about the size follows via,

d
H e (S) = H[hCa), . h(xa)lih € He H < [He | < <3Bi8x>

To show the coverlng bound, let [0] be the closest element to 6 in Ce. As

10 — [0]ll, < &, we know, for any x € R? such that ||x||q < By, we have
!9TX — [0 x| = 10— [61) " x| < 116 — [A]llpIxlq < e.

Therefore, for any v = [07xq,...,0"x,] € H(S), letting [v] = [[0] " x1, ..., [0] " xa], we
have ||[v — [v]||e < €.

Hence, 1 < (5) is an e-cover of 7(S) in the || [|oc norm.
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Example: Linear regression (cont'd)
So far we have shown,

R(H(S)) < inf <e+ BXBG\/Q"’g(’Voo 6’H(S)))> |

n

€

d
e M) < g (5) < (P22

Therefore,

ROH(S)) < inf ( Bxgefd og <3Bx89>> |
e>0 n €

Choosing € = BXBO\/% we get

Rn(H) = Espn {ﬁ(H(S))] €0 ( %Iog (Z)) :

86/108



Why may our previous theorem be loose?

Theorem. Let p € [1,00] and A C [—B, B]". Then, R(A) < inf.sg <e+ B,/ W).

Recall the following decomposition in the proof, which we have now written in terms of
the empirical Rademacher complexity of a hypothesis class # C RY on a set S C X"

R(H,S) = R(H(S)) = EEU [ sup aTa] = EEU sup o' (a—[a] +[a])

n acH(S) n acH(S)

1 T 1 -
<ZE,| sup o' (a—[a])| + =E, | sup o' [a]

n 2€H(S) n acH(S)

Here, for an a € H(S), [a] denotes the closest element to a in the cover, satisfying
1lla—T[a]ll1 < e. Hence, (a—[a]) is a vector in the L1 ball of radius ne centered at [a].

We bound this term using Holder's inequality o' (a — [a]) < ||o||oclla — [a][l1 < 1+ (ne).
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Why may our previous theorem be loose?

This bound is tight only if we can find an element in the intersection of B([a], ne, || - ||1)
and H(S) that is aligned® with every possible Rademacher random vector
o € {—1,+1}". This may be true, if, say B([a], ne, | - ||1) N H(S) = B([al, ne, || - ||1)-

However, for a given hypothesis class #, B([a], ne, || - |[1) N H(S) may be a much

smaller subset of B([a], ne, || - ||1) which may cause the bound to be loose.

To tighten this bound, we can view the residual term 1E, [supae%(s) ol (a— [a])} as

an empirical Rademacher complexity in and of itself. Hence, we can repeat the
covering argument again with a smaller ¢, and keep repeating for even smaller values of
€ to bound the remaining residuals.

This idea is called “chaining” and leads to the Dudley entropy integral.

3Recall that in Hélder's inequality |x T y| < [Ix|/oo|ly|l1, equality holds when x, y are perfectly
aligned, i.e., for all i € [n], x; = c sgn(y;), for some constant ¢ > 0. 88/108



Dudley Entropy Integral

Theorem. Let A C R".Then, for all p € [2, 0], we have

ﬁ(A)<iQB<4e+/ \/log(N,(t, A)) dt>

Proof. Recall, in HWO, you showed N, (e, A) < Ny(e, A) for p < q. Therefore, it is
sufficient to prove the above theorem with N (e, A).

Let €o = sup,ca Maxie[q |ai|. Note that, for all a € A, we have [|all2 < /neo.

Let ¢ = %60- Let C; be a minimal ¢j-cover of A in the ﬁH - ]2 norm. For a given
a € A, let [a]; € C; be the closest element to a in the cover satisfying

1

Lla—[alfl2 < &

For notational convenience, let [a]o = 0 denote the zero vector.
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Proof: Dudley Entropy Integral (cont’d)
Let € > 0 be given. Let m be such that €;12 < € < €p41. Let us now decompose the
empirical Rademacher complexity as follows:

~ 1
R(A) = =“E, [supo'a
n acA

1 m
= ZE, |supo ' (a —[a]m) + ZUT [al; — [alj-1)
n acA j=1

IN

e [supo (o o) + 3 28 [swpo - | )

n acA j=1 ac

Using the Cauchy-Schwarz inequality, we have
o' (a—[alm) < |lol2 |2 = [almll2 < €mn.
S\/E Semﬁ

Therefore, the first term of the RHS can be bound by ep,. 00/108



Proof: Dudley Entropy Integral (cont’d)

Recall, Massart’s Lemma Let A C R” be finite. Then, ﬁ(A) < (maxaea |all2) -

n

To bound the second term, let us write each term in the sum as

1 1 ~
“E, [supaT([aL-—[aL_l)} =Ea[ sup aT(b—b’)] =R(B),
acA n (b,b")EB;

where,
B ={b-bi(bb) e Gx G

1 1
JacAst ——|b—aa<¢and —||b — all» < ¢j_1 }
n n

v Vi

Therefore, by Massart's lemma,

R(B;) < < max ||b—b’||2> V2'°§(’Bf|)

b,b'eB;

2|Og(\A|)_
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Proof: Dudley Entropy Integral (cont’d)
Let us first bound (maxp pep; ||b— b[|2). For any (b,b') € Bj, letting a be the
element in A satisfying the condition, we have

[6— Bl < lIb—alla + la = Hll2 < Vg + Vg1 = 3v/ne;.
The last step uses the fact that ¢j = €92/, so €j—1 = 2¢;.
Moreover, noting that |C| is non-decreasing in ¢ we have,
2 2
|Bjl <1GIIG-al <[GI" = (Na(ej, A))”.
This gives us,

, 2
26 < vV a1, ) _ sl A

12
= \ﬁ(ﬁj —€j41)/log Na(ej, A),

where, in the last step we have used the fact that €j11 = €;/2.
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Proof: Dudley Entropy Integral (cont’d)
Plugging these back into (5), we obtain,

m

R(A) < %Ea [supaT(a - [a]m)] +) %Eo— [ggg o' ([a]; — [alj-1)

Jj=1

< €m ‘+‘ = :g:: 61-1—1 log N> (ejv /\)

<em+— \/IogNgtA ))dt.

€m+1

The last step uses the fact that log(N>(t, A)) is non-increasing in t so we can bound
the sum by an integral.

Jl.gmlur,«)

'\\\\ N

//, 720

oM
\J"\
N
°
v
o~
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Proof: Dudley Entropy Integral (cont’d)

To complete the proof, we will make the following observations. Recall that we chose

m so that
€m €0

T:W:€m+2§€§€m+l-

By expanding the upper limit of the integral further to co, we get

~ 12 [
R(A) < 4e + ﬁ/ v/ log No(t, A)dt.

This bound holds for any € > 0 so the theorem follows by taking the infimum.

Question: Why does this proof work only for p > 27

94/108



Example: Linear regression revisited

Let us revisit the linear regression example and bound R,(#) via the Dudley integral.

Setting. Let p, g be such that % + % =1. Let H = {hp; ho(x) = 07 x;0 € R,
10]|, < Bg}. Suppose that for all X ~ P, we have X € R? and ||X||; < Bx.

Recall that we have previously showed for any S = {x1,...,xp} with ||xi|]|q < Bx, we

~ d
have H(S) C Boo(ByxBy). Moreover, Noo(e, R(H(S))) < (M) for all e < By By.

Let us apply the Dudley integral with ¢ = 0 and the N, covering number.

~

R(H(S)) < \1; /OOO Vlog Nuo(t, H(S))dt

12 (5% e $))d
== o(t, t
i ) V/log Noo(t, H(S))
where, we have used the fact that Noo(t, Boo(BxBp)) = 1 for all t > By By since
H(S) C Boo(BxBy).
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Example: Linear regression revisited (cont'd)

Therefore,

12 [Bx<Bo 3B, By
S(H) < = |
R(”H)_\/ﬁ/o \/dog( : )dt

3B« By B.B
< 12\/7/ \/log <3 x 9>dt: 18\/EBX59\F.
n 0 t n

The last step uses the fact that [; /log(a/t)dt = ay/7/2 (see footnote®).

This result improves our previous \/%Iog (5) bound by log factors. In HW3, you will
see an example where the improvement will be polynomial.

‘et | = foa Vlog?dt. Let u=log? sot=ae ", dt =—ae “du. Then t:0— a gives u:o00o—0,
hence | = [7\/logZdt = a [ e “udu=al(3) = 2. 96/108



Ch 3.5: Case study: Two-layer Neural Networks Credit: Tengyu Ma

A two-layer neural network with ReLU activation can be characterized as follows:
» An input x € RY.

» A hidden layer with m neurons. Let W € R™*9 be the weight matrix mapping
inputs to the hidden layer.

> A RelU activation function ¢ at each neuron of the hidden layer, where
¢(x) = max(x,0), is applied pointwise.
> A linear layer at the output with parameters g € R™.
Letting @ = (8, W) denote the parameters of the neural network, the output of the
neural network is given by hg(x) = BT ¢(Wx).

We will consider the following hypothesis class,

H = {hoi ho(x) = BT (Wx); ]2 < Bo, lIwgll2 < B ¥ € [m] |

Above w; is the jth row of W. We also assume that for X ~ P, we have || X||2 < Bx.

J
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Two-layer neural networks (cont'd)
We will state two claims which you will prove in HW3.

Claim 1. Let A C R" such that 0 € A. Let o0 € {—1,+1}" denote n independent
Rademacher random variables. Then, E, [sup,c4 o' a|] < 2E; [sup,cqa0'a].

Claim 2. (Data-dependent bounds for linear models under ¢, constraints)

Let H = {hg; ho(x) = 07 x;||0]]2 < Bp}. Let S = {xl, ...y Xn} C RY be given. Then,
R(H,S) < %HXHF, where | X2 =Y0, Jd 1 ,J is the squared Frobenius norm of
the data matrix X.

N.B. Suppose || Xi||2 < By for all X; ~ P. Then, claim 2 may give us a tighter bound
for Rn(H) than the /d/n bound we obtained using the Dudley integral. In particular,
IX]|12 = 2", |Ixi]12 < B2n. Hence, R(H, S) < B\(’/@X which does not grow with d
provided that B, does not grow with d.
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Two-layer neural networks (cont'd)
We will consider the following hypothesis class,
H = {hg; ho(x) = BT (Wx); [|Bll2 < By, ||wjll2 < B Vj € [m]}

Above WJ-T is the jt" row of W. We also assume that for X ~ P, we have || X2 < B.

Consider any S = {xi,...,x,} sampled from P". Then,

R(H,S) = %EU

. 1
sup ZO‘;hg(X,')] = ;EU

heH ‘=

u T - gj WX,'
;V@ﬁ <§ &( ))]

J

where the last step uses the fact that supj,,<z u'v=B|v|>.

s BT (W
Z’?V[l)/§aﬁ &( X)]

1
- °F,
n

> oid(Wxi)

B
= —61510 sup
n A=t
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Two-layer neural networks (cont'd)
Next, noting that ||ul|2 < v/m||ul|s for any u € R™, let us bound the term inside the
expectation as follows:

n n
swp (IS oio(Ws)| < vim  sup  max |3 oo x)
Willw;[2<Bw || =1 5 Wilwjll2< By J€[m] |
n
=vm sup > aig(w'x)
Iwll2<Bw | ;=1

Therefore, by claim 1 (and noting that 0 € {w; ||w|]2 < By} which satisfies the
conditions of the claim)

_ B -
R(H,S) < mEg sup aio(w ' x;) ]
n Iwll2<Bw | i
2/mB ¢ R :
< 20, [ up Za,¢<wa,~>] = 2B5/mR((HL(S)):
wll2=Bw j—1

where, Hin = fh, . h,(x) = w'x, ||w|2 < B,}. 100/108



Two-layer neural networks (cont'd)

Recall, Claim 2. Let H = {hg; hg(x) = 07 x; ||0]]2 < Bg}. Let S = {x1,...,x,} C R? be
given. Then, R(H,S) < %HXHF, where || X||2 =37, Zle X,%j is the squared Frobenius
norm of the data matrix X.

Recall, contraction lemma Let S C Z and F C RZ. For any K-Lipschitz 1) : R — R, let
YoF ={¢of;feF}. Then, R(¢poF(S)) < KR(F(S))
We know that ¢(x) = max(x,0) is 1-Lipschitz. Therefore, by the contraction lemma,

claim 2, and noting that ||xj||2 < By for all x ~ P, we have,

RUGOLNS)) < RIHZ(S) < 22X < 2222

Therefore R(H, S) < 2B3 B, By\/™, and

Rn(/H) < IESNP" [7/?\'(%7 S)} < 2BﬁBWBX\/T
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Two-layer neural networks (cont'd)

In a two-layer neural network with m hidden layer neurons,

00 <55 [R5 £26,5,50

This bound increases with m. But modern neural networks have very large hidden
layers and their performance does not necessarily decrease with m.

In HW3, you will improve this result in two ways:
1. Prove a bound that does not explicitly depend on m.

2. Relax the bound assumption on X to Ep [||X[3] < BZ.
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Ch 3.6: Approximation vs Estimation vs Optimization Error

In supervised learning, we need to predict a label in ) from a given input x € X. In
this chapter, we have framed this as finding a hypothesis h whose performance is
competitive with the best hypothesis in a class H for all distributions P.

That is, we wish to design an algorithm h to minimize,

Es-pr | L(h(S)) — inf L(h)

Sometimes, instead of designing algorithms to optimize over H, we may choose to
optimize over some H C H, which could lead to better generalization guarantees.

Example. If we perform ERM on H instead of H, we know R,(H) < Rn(H).
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Approximation vs Estimation Error
\,x

]
peqi L(h). We can write,

L(h) — L(h*) = L(h) — L(h) + L(h) — L(K*)
estimaggn error  approximation error

Let h* = argmin, 4, L(h) and h = argmin

Typically, if we choose a large H, the estimation error is large but the approximation
error is small. A carefuly choice of H, possiby depending on the amount of data n,
may be necessary to obtain a tight bound.

Example. For ERM, estimation error € O(R,(H) + n~1/?).
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Optimization Error

Sometimes, our optimization algorithm to find h may not always exactly maximize the

given objective. For example, in ERM, let h= argming, L(h) minimize the empirical
loss, and let A be the hypothesis returned by our optimization algorithm. In such

cases, we can decompose the error further as

L(H) = L(h*) = L(K) = L(h) + L(h) = L(h) + L(h)— L(h*)

optimization error  estimation error  approximation error
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Bayes' optimal predictor

Let h* = argmin,c4 L(h) and h = argmin, - L(h). We can write,

het

L(h) — L(h*) = L(h) — L(h) + L(h) — L(h")

estimation error  approximation error

When H = V¥, i.e., H contains all possible predictors, then h* is called the Bayes’
optimal predictor.

Example 1. For binary classification with the 0 — 1 loss, i.e., £(h, (x,y)) =
1(h(x) # y), the Bayes' optimal classifier h* : X — {0,1} is given by

h*(x) = argmaxPx y.p(Y = y|X =x) =

1 ifIP’(Y = l‘X :X) >1/2.
yey

0 ifP(Y =0|X=x)>1/2.
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Bayes' optimal predictor (cont'd)

Proof. Consider any hypothesis h € {0,1}*. Then,

L(h) = Exy [1(h(X) # Y)] = Ex[Ey [L(h(X) # Y)|X]]
= Ex[Ey [L1(h(X) #0) A Y = 0|X] + Ey [1(h(X) # 1) AY =1|X]]
= Ex[Ey [1(h(X) # 0)|Y = 0, X]P(Y = 0|X)

+ Ey[1(h(X) # DY = 1, X]P(Y = 1|X)]

= Ex[L(h(X) # 0)P(Y = 0[X) + 1(h(X) # 1)P(Y = 1|X)]

as h does not depend on Y

- /X (1(h(x) = P(Y = 0]X = x) + 1(h(x) = 0)P(Y = 1|X = x)) dPx(x)
(+)
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Bayes' optimal predictor (cont'd)

We see that (x) is minimized pointwise by choosing

h(x)=1 if P(Y=0X=x)
h(x)=0 if P(Y =0X=x)

(Y =1[X =x) < P(Y =1|X =x) >1/2,

<P
>P(Y =1X =x) <= P(Y =0|X = x) > 1/2,

This is precisely h*. Therefore, L(h) < L(h*).

Example 2 (try at home). For regression problems with the squared loss, i.e.,
¢(h,(x,y)) = (h(x) — y)?, the Bayes’ optimal predictor h* is the regression function..
That is, h*() = Exyy NP[Y‘X = ]
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