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Ch 4.1: Stochastic bandits introduction

So far in class: passive learning, i.e a learner learns from already available data.

But often, a learner is working towards a goal, and needs to make decisions about
which data to collect, to achieve a goal efficiently.

Sequential/adaptive decision-making:.

I There is a sequence of interactions between a learner and an environment.

I On round t, the learner chooses an action At from a a set of possible actions A.

I The environment reveals an observation Ot , and the learner receives a reward
Xt = Xt(Ot ,At).

I The learner wishes to maximize the sum of rewards over T rounds,
∑T

t=1 Xt .
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Stochastic bandits

- Let A denote a set of actions.

- Let ν = {νa; a ∈ A}, called a bandit model, denote a set of distributions indexed by
actions in A.

- Let P denote a family of bandit models.

- On round t, a learner chooses At ∈ A and observes a reward Xt ∼ νAt .

- Let µa be the expected reward of action a, and µ? be the optimal action,

µa = EX∼νa [X ], µ? = argmax
a∈A

µa.

- Verbiage: choose action a = play arm a = pull arm a
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Learner’s policy

A learner is characterized by a policy π = {πt}t∈N, where, πt maps the history
{(As ,Xs)}t−1

s=1 to an action At :

πt : ([K ]× R)t−1 → A.

If π is a randomized policy, πt maps to a distribution over A, and then an action is
sampled from this distribution.

πt : ([K ]× R)t−1 → ∆(A),

∆(A) =

{
{p ∈ [0, 1]|A|; p>1|A| = 1} if A is finite

{p : A → R+;
∫
A p = 1} more generally

Expl: The algorithms we look at will be deterministic, but when proving

lower bounds, we also need to consider stochastic policies as well.
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Regret

We define the regret as,

RT = RT (π, ν) = Tµ? − E

[
T∑
t=1

Xt

]

Here, the expectation E is with respect to the distribution of actions and rewards
A1,X1,A2,X2, . . . , induced by the interaction between the policy π and the bandit
model ν.

Expl: Also applies for deterministic policies.

We want RT ∈ o(T ), i.e limT→∞
RT
T = 0.
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K -armed bandits

- Stochastic bandits when actions are a finite set, i.e A = [K ].

- Will assume each νi is σ-sub-Gaussian, with σ known.

P = {ν = {νa; a ∈ [K ]}, where νa is σ-sub-Gaussian for all a} .

- Will assume, without loss of generality, that

1 ≥ µ1 ≥ µ2 ≥ · · · ≥ µK ≥ 0.

(the learner does not know the ordering)

- Denote the gap, ∆i = µ1 − µi .
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Ch 4.2: The Explore-then-Commit (ETC) algorithm

I Given: T (time horizon), m (number of exploration rounds per arm). (m < T/K )

I Pull each arm m times in the first mK rounds.

I A← argmaxi∈[K ] µ̂i , where

µ̂i =
1

m

mK∑
s=1

1(As = i)Xs .

I Pull arm A for the remaining (T −mK ) rounds.
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ETC Theoretical properties

Let P be the class of σ-sub-Gaussian K -armed bandit models.

Upper bound: Then for all ν ∈ P, πETC
m satisfies, Recall, ∆i = µ1 − µi .

RT (πETC
m , ν) ≤ m

∑
i ,∆i>0

∆i + (T −mK )
∑

i ,∆i>0

∆i exp

(
−m∆2

i

4σ2

)
.

If we choose m = K−1/3T 1/3, then

sup
ν∈P

RT

(
πETC
K−1/3T 1/3 , ν

)
∈ Õ

(
K 1/3T 2/3

)
.

Lower bound. Cannot be improved (via a tighter analysis and/or better choice of m),

inf
m∈[T ]

sup
ν∈P

RT (πETC
m , ν) ∈ Ω

(
K 1/3T 2/3

)
.

Proof: In homework 3 or 4.
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Ch 4.3: The Upper Confidence Bound (UCB) algorithm

Based on the “optimism under uncertainty principle”:

Pretend that the environment is as nice as statistically possible, given the data, and
then behave myopically.

9/64



UCB Algorithm: designing upper confidence bounds

We will construct the following upper confidence (UCB) bound for the mean µi of
each arm i ∈ [N] after t rounds,

Ni ,t =
t∑

s=1

1(As = i), samples from arm i so far.

µ̂i ,t =
1

Ni ,t

t∑
s=1

1(As = i)Xs , sample mean.

ei ,t = σ

√
2 log(1/δt)

Ni ,t
, where δt = 1/(T 2t).

In our proofs, we will show that µ̂i ,t + ei ,t is a UCB for µi , i.e.,
P(µi < µ̂i ,t + ei ,t) ≥ 1− δt .
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The UCB Algorithm

I Given: time horizon T

I for t = 1, . . . ,K ,

I Pull arm t and observe Xt ∼ νt .

I for t = K + 1, . . . ,T ,

I Pull arm At = argmaxi∈[K ] µ̂i,t−1 + ei,t−1 .

I Observe Xt ∼ νAt .

Expl: Intuitively, the µ̂i,t−1 is encouraging exploitation, while ei,t−1 is

encouraging exploration.
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Theorem: UCB

Let P denote the class of σ-sub-Gaussian bandit models and let ν ∈ P. Then, the
following statements are true:

I Gap-dependent bound: Recall, µ1 < · · · < µK , ∆i = µ1 − µi .

RT (πUCB, ν) ≤ 3K +
∑

i :∆i>0

24σ2 log(T )

∆i

I Worst-case bound:

sup
ν∈P

RT (πUCB, ν) ≤ 3K + σ
√

96KT log(T ).

Recall, we want RT ∈ o(T ). In the worst case, we are guaranteed Õ(
√
KT ).

But, if gaps are large, we have RT ∈ O(log(T )), as it is easier to distinguish between
the arms if gaps are large.
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Proof of UCB Theorem: Regret decomposition

Lemma (Regret decomposition). For any policy π (not just UCB), we have

RT (π, ν) =
∑

i ;∆i>0

∆iE[Ni ,T ]

where, Ni ,T =
∑T

t=1 1(At = i).

Expl: E w.r.t distribution of actions and rewards induced by the interaction

of π with ν. It is an intuitive statement, but we will learn some techniques in

handling the “non-iid” setting here.Proof. Let us first write the regret as follows,

RT =
T∑
t=1

(µ1 − E[Xt ]) =
T∑
t=1

(
µ1 − E

[
K∑
i=1

1(At = i)Xt

])

=
T∑
t=1

K∑
i=1

E [(µ1 − Xt)1(At = i)] =
T∑
t=1

K∑
i=1

E
[
E
[
(µ1 − Xt)1(At = i)

∣∣At

]︸ ︷︷ ︸
(∗)

]
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Proof of UCB Theorem: Regret decomposition (cont’d)

Let us simplify (∗) as follows:

(∗) = 1(At = i)E [(µ1 − Xt)|At ]

= 1(At = i)(µ1 − µAt ) as E[Xt |At = a] = µa

= 1(At = i)(µ1 − µi ) as expression is not 0 only when At = i

= 1(At = i)∆i .

Plugging this back into our expression for RT , we get

RT =
T∑
t=1

K∑
i=1

E
[
1(At = i)∆i

]
=

K∑
i=1

∆iE

[
T∑
t=1

1(At = i)

]
=

K∑
i=1

∆iE [Ni ,T ]
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Proof of UCB Theorem: Good event
Recall, that the UCB is µ̂i,t + ei,t , where

Ni,t =
t∑

s=1

1(As = i), µ̂i,t =
1

Ni,t

t∑
s=1

1(As = i)Xs ,

ei,t = σ

√
2 log(1/δt)

Ni,t
, where δt = 1/(T 2t).

Define the following good events, G1 and Gi for all i such that ∆i > 0,

G1 = {∀ t ≥ K , µ1 < µ̂1,t + e1,t} , Gi = {∀ t ≥ K , µi > µ̂i ,t − ei ,t} .

To bound G c
1 ,G

c
i , we will assume w.l.o.g that each arm i samples rewards {Yi ,r}r≥1

and we observe these samples one by one as we pull each arm. Therefore, we can write,

µ̂i ,t =
1

Ni ,t

t∑
s=1

1(As = i)Xs =
1

Ni ,t

Ni,t∑
r=1

Yi ,r .
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Proof of UCB Theorem: Good event (cont’d)

Claim. For all i , we have P(G c
i ) ≤ 1

T .

Proof. We will show this for G1. The proof for Gi , where ∆i > 0, follows similarly.

P(G c
1 ) = P (∃ t ≥ K such that µ1 > µ̂1,t + e1,t)

≤
∑
t≥K

P (µ1 > µ̂1,t + e1,t) union bound

=
∑
t≥K

P

µ1 >
1

N1,t

N1,t∑
r=1

Y1,r + σ

√
2 log(1/δt)

N1,t


≤
∑
t≥K

P

(
∃ s ∈ [1, 2, . . . , t − K + 1], s.t µ1 >

1

s

s∑
r=1

Y1,r + σ

√
2 log(1/δt)

s

)
︸ ︷︷ ︸

(∗)

Expl: Why can we not apply sub-Gaussian concentration above in step 3? It

is random, and importantly, a RV that depends on observations {Yr}r .
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Proof of UCB Theorem: Good event (cont’d)

Next, we will bound (∗) using the union bound and sub-Gaussian concentration,

(∗) ≤
t−K+1∑
s=1

P

(
µ1 >

1

s

s∑
r=1

Y1,r + σ

√
2 log(1/δt)

s

)
union bound

≤
t−K+1∑
s=1

exp

(
−s
2σ2
× σ2 2 log(1/δt)

s

)
︸ ︷︷ ︸

=δt=
1

T2t

Sub-Gaussian concentration

≤ 1

T 2
. As there are at most t − K + 1 terms in the summation.

Therefore, P(G 1
c ) ≤

∑
t≥K (∗) ≤ 1

T .
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Proof of UCB Theorem: Gap-dependent bound
Recall, G1 = {∀ t ≥ K , µ1 < µ̂1,t + e1,t} , Gi = {∀ t ≥ K , µi > µ̂i,t − ei,t} .

Next, we will show that, under G1 ∩ Gi , for any i such that ∆i > 0, we have

Ni ,T ≤
24σ2 log(T )

∆2
i

+ 1.

Proof. If an arm is never pulled after round K , then the bound holds trivially. Suppose
instead arm i was last pulled on round t + 1 > K . Then,

µi + 2ei ,t ≥︸︷︷︸
under Gi

µ̂i ,t + ei ,t ≥︸︷︷︸
UCB

µ̂1,t + e1,t ≥︸︷︷︸
under G1

µ1

=⇒ µ1 − µi ≤ 2ei ,t = 2σ

√
2 log(T 2t)

Ni ,t
≤ 2σ

√
2 log(T 3)

Ni ,t

=⇒ Ni ,t ≤
8σ2 log(T 3)

∆2
i

=⇒ Ni ,T = Ni ,t + 1 ≤ 24σ2 log(T )

∆2
i

+ 1,

where the last step uses the fact that i was last pulled in rd t + 1. 18/64



Proof of UCB Theorem: Gap-dependent bound (cont’d)
Let us now decompose E[Ni ,T ] as follows,

E[Ni ,T ] = E[Ni ,T |G1 ∩ Gi ]P(G1 ∩ Gi ) + E[Ni ,T |G c
1 ∪ G c

i ]P(G c
1 ∪ G c

i )

Noting that P(G c
1 ∪ G c

i ) ≤ P(G c
1 ) + P(G c

i ) ≤ 2
T , we have

E[Ni ,T ] ≤
(

24σ2 log(T )

∆2
i

+ 1

)
· 1 + T · 2

T

≤ 24σ2 log(T )

∆2
i

+ 3

Therefore,

RT =
∑

i :∆i>0

∆iE[Ni ,T ] regret decomposition.

≤
∑

i :∆i>0

(
∆i ·

24σ2 log(T )

∆2
i

+ 3∆i

)
≤ 3K +

∑
i :∆i>0

24σ2 log(T )

∆i
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Proof of UCB Theorem: Worst-case bound

Recall, RT =
∑

i :∆i>0

∆iE[Ni,T ] E[Ni,T ] ≤ 24σ2 log(T )

∆2
i

+ 3

Letting ∆ be a value to be specified shortly, let us write

RT =
∑

i :∆i≤∆

∆iE[Ni ,T ] +
∑

i ;∆i>∆

∆iE[Ni ,T ]

≤ ∆T +
∑

i ;∆i>∆

∆i

(
24σ2 log(T )

∆2
i

+ 3

)
as
∑
i

E[Ni,T ] ≤ T.

≤ ∆T +
24σ2 log(T )

∆
· K + 3K at most K terms in sum.

Now, choosing ∆ = σ

√
24K log(T )

T , we have

RT ≤ 2σ
√

24KT log(T ) + 3K .
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Alternative proof of worst-case bound

We will now look at an alternative proof of the worst-case bound, as this technique will
also apply beyond K -armed bandits. For this, let us write the regret as follows,

RT = E

[
T∑
t=1

µ1 − Xt

]

= E

[
T∑
t=1

E
[
µ1 − Xt

∣∣At

]]

= E

[
T∑
t=1

µ1 − µAt

]

The quantity
∑T

t=1 µ1 − µAt is referred to as the pseudo-regret.
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Alternative proof of worst-case bound (cont’d)

Define the good event G =
⋂K

i=1 Gi , where

G1 = {∀ t ≥ K , µ1 < µ̂1,t + e1,t} , Gi = {∀ t ≥ K , µi > µ̂i ,t − ei ,t} .

We already showed P(G c
i ) ≤ 1

T so P(G c) ≤ K
T . Now write,

RT = E

[
T∑
t=1

µ1 − µAt

]

= E

[
T∑
t=1

µ1 − µAt

∣∣∣G] · P(G )︸ ︷︷ ︸
≤1

+E

[
T∑
t=1

µ1 − µAt

∣∣∣G c

]
︸ ︷︷ ︸

≤T

·P(G c)︸ ︷︷ ︸
≤K

T

We will now focus on bounding µ1 − µAt under G .
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Alternative proof of worst-case bound (cont’d)
First note that under G we have,

µ1 ≤︸︷︷︸
under G1

µ̂1,t−1 + e1,t−1 ≤︸︷︷︸
UCB

µ̂At ,t−1 + eAt ,t−1 ≤︸︷︷︸
under Gi

µAt + 2eAt ,t−1

Therefore, we have

µ1 − µAt ≤ 2eAt ,t−1 = 2σ

√
2 log(T 2(t − 1))

NAt ,t−1
.

This gives us the following bound for
∑T

t=1 µ1 − µAt under G ,

T∑
t=1

(µ1 − µAt ) =
K∑
t=1

(µ1 − µAt ) +
T∑

t=K+1

(µ1 − µAt )

≤ K +
T∑

t=K+1

2σ

√
2 log(T 2(t − 1))

NAt ,t−1
≤ K + σ

√
24 log(T )

T∑
t=K+1

1√
NAt ,t−1︸ ︷︷ ︸

(∗)

.
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Alternative proof of worst-case bound (cont’d)

Let us bound the term (∗) as follows,

T∑
t=K+1

1√
NAt ,t−1

=
K∑
i=1

Ni,T−1∑
s=1

1√
s

≤ 2
K∑
i=1

√
Ni ,T−1 as

m∑
s=1

1/
√
s ≤ 2

√
m, bounding by integral

= 2K

(
1

K

K∑
i=1

√
Ni ,T−1

)

≤ 2K

√√√√ 1

K

K∑
i=1

Ni ,T−1 Jensen’s inequality.

= 2
√
K (T − 1) ≤ 2

√
KT .
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Alternative proof of worst-case bound (cont’d)

Therefore, under G , we have

T∑
t=1

µ1 − µAt ≤ K + σ
√

24 log(T )
T∑

t=K+1

1√
NAt ,t−1︸ ︷︷ ︸

(∗)

≤ K + σ
√

96KT log(T ).

Therefore,

RT = E

[
T∑
t=1

µ1 − µAt

∣∣∣G] · P(G )︸ ︷︷ ︸
≤1

+E

[
T∑
t=1

µ1 − µAt

∣∣∣G c

]
︸ ︷︷ ︸

≤T

·P(G c)︸ ︷︷ ︸
≤K/T

≤ 2K + σ
√

96KT log(T )
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Ch 4.4: Lower bounds for K -armed bandits

We wish to prove a minimax lower bound of the form,

inf
π

sup
ν∈P

RT (π, ν) ∈ Ω(?).

Reduction to (binary) testing: We will do so by considering two alternatives and
showing that no policy can simultaneously achieve small regret on both alternatives.

For this, recall the Bretagnolle-Huber inequality: for any event A,

P0(A) + P1(Ac) ≥ 1

2
e−KL(P0,P1).

Expl: 1) Previously, it was P0(ψ 6= 0) + P1(ψ 6= 1) ≥ ‖P0 ∧ P1‖ ≥
1
2e
−KL(P0,P1). They are equivalent, as ψ simply picks an event A and outputs

1 if A is true and 0 otherwise. 2) What is the KL between now? That is,

what are the distributions P0 and P1 over now?

26/64



Divergence decomposition lemma

The distributions are now over sequences of actions and rewards A1,X1,A2,X2, . . .
induced by the interaction between a policy and bandit model. The following lemma
will be useful in computing the KL divergence between these distributions.

Lemma. Let ν, ν ′ be two K -armed bandit models. For a fixed (possibly randomized)
policy π, let P,P ′ denote the probability distribution over the sequence of actions and
rewards A1,X1, . . . ,AT ,XT under bandit models ν, ν ′ respectively. Let Eν denote the
expectation under bandit model ν. Then, for all T ≥ 1,

KL(P,P ′) =
K∑
i=1

Eν [Ni ,T ]KL(νi , ν
′
i )

where Ni ,T =
∑T

t=1 1(At = i), and ν = {νi}i∈[K ], ν
′ = {ν ′i}i∈[K ].

Expl: We are fixing π, what is changing is the environment.
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Divergence decomposition lemma: intuition

Suppose you had a static (non-adaptive) policy π which pulled the arms N1, . . . ,NK

times. Then, for two bandit models ν, ν ′,

KL(P,P ′) = Eν
[

log

(
p(A1,X1, . . . ,AT ,XT )

p′(A1,X1, . . . ,AT ,XT

)]
= Eν

[
log

(
p({{Yi ,r}Ni

r=1}Ki=1)

p′({{Yi ,r}Ni
r=1}Ki=1)

)]
as only observations differ

= Eν

[
log

(∏K
i=1

∏Ni
s=1 pνi (Yi ,r )∏K

i=1

∏Ni
s=1 pν′i (Yi ,r )

)]

=
K∑
i=1

KL(νNi
i , ν

′Ni
i ) =

K∑
i=1

NiKL(νi , ν
′
i ). as obs are i.i.d

The divergence decomposition lemma states that a similar result holds in expectation
for adaptive policies (even though observations are not i.i.d).
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Divergence decomposition lemma: proof
Expl: Note lower case, not treating as R.Vs

For a policy π, let π(·|a1, x1, . . . , at−1, xt−1) be probability distribution over the actions
[K ] for round t given the history a1, x1, . . . , at−1, xt−1.

Consider any given sequence a1, x1, . . . , aT , xT of actions and rewards. Let p, p′ denote
the densities (e.g., pdfs, pmfs) of P,P ′ and let ν̃i , ν̃

′
i denote the densities of νi , ν

′
i

respectively. Then,

p(a1, x1, . . . , aT , xT ) =
T∏
t=1

p(at , xt |a1, x1, . . . , at−1, xt−1)

=
T∏
t=1

π(at |a1, x1, . . . , at−1, xt−1)ν̃at (xt)

Similarly, p′(a1, x1, . . . , aT , xT ) =
T∏
t=1

π(at |a1, x1, . . . , at−1, xt−1)ν̃ ′at (xt)
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Divergence decomposition lemma: proof (cont’d)
Therefore, for any given sequence a1, x1, . . . , aT , xT ,

log

(
p(a1, x1, . . . , aT , xT )

p′(a1, x1, . . . , aT , xT )

)
= log

(
ν̃a1(x1)× · · · × ν̃aT (xT )

ν̃ ′a1
(x1)× · · · × ν̃ ′aT (xT )

)
=

T∑
t=1

log

(
ν̃at (xt)

ν̃ ′at (xt)

)
.

Therefore,

KL(P,P ′) = Eν
[

log

(
p(A1,X1, . . . ,AT , xT )

p′(A1, x1, . . . ,AT , xT )

)]
=

T∑
t=1

Eν

[
log

(
ν̃At (Xt)

ν̃ ′At
(Xt)

)]

=
T∑
t=1

Eν

[
log

(
ν̃At (Xt)

ν̃ ′At
(Xt)

)
K∑
i=1

1(At = i)

]

=
K∑
i=1

T∑
t=1

Eν

[
Eν

[
log

(
ν̃At (Xt)

ν̃ ′At
(Xt)

)
1(At = i)

∣∣∣∣At

]
︸ ︷︷ ︸

(∗)

]
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Divergence decomposition lemma: proof (cont’d)

We now observe that (∗) can be expressed as follows,

(∗) = Eν

[
log

(
ν̃At (Xt)

ν̃ ′At
(Xt)

)
1(At = i)

∣∣∣∣At

]
= 1(At = i)Eν

[
log

(
ν̃At (Xt)

ν̃ ′At
(Xt)

)∣∣∣∣At

]

= 1(At = i)Eν
[

log

(
ν̃i (Xt)

ν̃i (Xt)

)]
︸ ︷︷ ︸

=KL(νi ,ν
′
i )

as = 0 when At 6= i

Therefore, noting that there is nothing random in KL(νi , ν
′
i ),

KL(P,P ′) =
K∑
i=1

T∑
t=1

Eν [1(At = i)]KL(νi , ν
′
i ) =

K∑
i=1

KL(νi , ν
′
i )Eν

[
T∑
t=1

1(At = i)

]
︸ ︷︷ ︸

=E[Ni,T ]

.
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Minimax lower bounds for K -armed bandits

Theorem. Let P be the class of σ sub-Gaussian K -armed bandit models, where
K ≥ 2. Then, for some universal constant C ,

inf
π

sup
ν∈P

RT (π, ν) ≥ Cσ
√
T (K − 1) ∈ Ω(σ

√
TK ).

Proof. Let π be given. Then, for any two bandit models ν, ν ′, we have

sup
ν∈P

RT (π, ν) ≥ max
(
RT (ν, π),RT (ν ′, π)

)
≥ 1

2

(
RT (π, ν) + RT (π, ν′)

)
.

We will lower bound (RT (π, ν) + RT (π, ν′)) for any policy π.

32/64



Minimax lower bound proof: designing alternatives

We will choose ν, ν ′, dependent on π to lower bound (RT (π, ν) + RT (π, ν ′)).
Expl: I have fixed my π. And I am picking my alternatives for this π.

Let ν = {νi = N (µi , σ
2)}i∈[K ], where µ1 = δ, µj = 0 for all j 6= 1.

Let Eν denote expectation w.r.t the sequence A1,X1, . . . ,AT ,XT due to π’s
interaction with ν.

Since
∑K

i=1 Eν [Ni ,T ] = T , there exists some j ∈ {2, . . . ,K} such that Eν [Nj ,T ] ≤ T
K−1 .

Let ν ′ = {ν ′i = N (µ′i , σ
2)}i∈[K ] where

µ′i =

{
µi if i 6= j ,

2δ if i = j

Expl: Therefore, means in ν′ = (δ, 0, . . . , 0, 2δ, . . . 0)
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Minimax lower bound proof (cont’d)

Recall, Bretagnolle-Huber inequality. for any event A, P0(A) + P1(Ac) ≥ 1
2e
−KL(P0,P1).

Let P,P ′ denote the probability distribution of the sequence A1,X1, . . . ,AT ,XT due to
π’s interaction with ν and ν ′ respectively. We have,

RT (π, ν) ≥ P

(
N1,T ≤

T

2

)
T δ

2
, RT (π, ν ′) ≥ P ′

(
N1,T >

T

2

)
T δ

2
.

Expl: As arm 1 is optimal in ν and δ-sub-optimal in ν′.

Therefore,

RT (π, ν) + RT (π, ν ′) ≥ T δ

2

(
P

(
N1,T ≤

T

2

)
+ P ′

(
N1,T >

T

2

))
≥ T δ

2
· 1

2
exp

(
−KL(P,P ′)

)
Bretagnolle-Huber ineq
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Minimax lower bound proof (cont’d)

Recall, we have shown sup
ν∈P

RT (π, ν) ≥ 1

2
(RT (π, ν) + RT (π, ν′)) ≥ T δ

8
exp (−KL(P,P ′))

KL(P,P ′) =
K∑
i=1

Eν [Ni,T ]KL(νi , ν
′
i ) Divergence decomposition

In our alternatives, ν, ν ′ only differ in arm j , which, recall, was chosen so that
Eν [Nj ,T ] ≤ T

K−1 . Hence,

KL(P,P ′) =Eν [Nj ,T ]︸ ︷︷ ︸
≤ T

K−1

KL(νj , ν
′
j)︸ ︷︷ ︸

= (2δ)2

2σ2

≤ 2δ2T

(K − 1)σ2
.

Therefore,

sup
ν∈P

RT (π, ν) ≥ T δ

8
exp

(
−2δ2T

(K − 1)σ2

)
≥ σ

√
T (K − 1) · 1

8
e−2 Choosing δ = σ

√
K − 1

T
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Gap-dependent lower bound

Theorem (Theorem 16.4 in LS) Let ν be a K -armed bandit model with Gaussian
rewards of variance σ2. Let µ = µ(ν) ∈ RK be the means of the arms in ν. Let

P =
{
ν ′;µi (ν

′) ∈ [µi , µi + 2∆i ], ν
′
i = N (µi (ν

′), 1)
}

Say that π is a policy such that RT (π, ν′) ≤ cT p for some c > 0 and p ∈ (0, 1) for all
ν ′ ∈ P. Then,

RT (π, ν) ≥ 1

2

∑
i ,∆i>0

(1− p) log(T ) + log(∆i/(8c))

∆i
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Ch 4.5: Stochastic linear bandits

In many practical applications, there could be a very large (potentially infinite) number
of arms, but there is additional structure in the problem.

We will next look at a linear bandit model, where the arms are in a Euclidean space,
and the expected reward is a linear function

Stochastic linear bandits:

I Action space, A ⊂ Rd .

I There exists some unknown true parameter, θ? ∈ Rd .

I When we pull action At ∈ A on round t, we observe

Xt = θ>? At + εt ,

where E[εt ] = 0 and εt is σ-sub-Gaussian.
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Regret

We can define the regret as,

RT = T max
a∈A

θ>? a − E

[
T∑
t=1

Xt

]

= Tθ>? a? − E

[
T∑
t=1

θ>? At

]

Here, E[Xt ] = E[E[Xt |At ]] = E[θ>? At ].

We will assume a?
∆
= argmaxa∈A θ

>
? a exists.
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The LinUCB Algorithm

Similar idea as UCB for K -armed bandits:
Construct upper confidence bounds (UCB) on the expected reward θ>? a of arm a, and
choose the arm which maximizes the UCB.

I Given: time horizon T

I for t = 1, . . . ,T ,

I Pull arm At = argmaxa∈AUCBt−1(a)

I Observe Xt = θ>? At + εt .
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Designing a UCB
Recall the regularized ordinary least squares estimator for linear regression,

θ̂t
∆
= argmin

θ∈Rd

(
λ‖θ‖2

2 +
t∑

s=1

(Xs − θ>As)2

)

You can verify (after some elementary calculus),

θ̂t = V−1
t

t∑
s=1

AsXs , where, Vt = λI +
t∑

s=1

AsA
>
s .

We will use
UCBt−1(a) = θ̂>t−1a + βt−1‖a‖V−1

t−1
.

for an appropriate choice of βt . Here, ‖x‖Q =
√
x>Qx is the Q–norm.

Intuition. θ̂>t−1a is an estimate for θ>? a and encourages exploitation.
‖a‖V−1

t−1
is large for under-explored a and encourages exploration.
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LinUCB: Upper bound on the regret.

Theorem. We will assume ‖θ?‖ ≤ B (with B known) and that the rewards are
bounded 0 ≤ θ>? a ≤ 1 for all a ∈ A. Let L = maxa∈A ‖a‖2 (with L known). Then, if
we choose

βt = max

(
1

2
,
√
λB + σ

√
d log(dT 2)(2 + log(1 + tL2))

)
the regret satisfies

RT ≤ 2 + 2
√

2βT

√
dT log (1 + TL2/(dλ)) ∈ Õ

(
d
√
T
)
.

Expl: You should think of λ as being a constant. If λ is too small,

log
(
1 + TL2/(dλ)

)
is large, but if λ is large, then

√
λB is large in βT .
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LinUCB: Proof outline.

Our strategy (similar to worst case proof for K -armed bandits) is as follows. First,
consider the pseudo-regret,

RT = T max
a∈A

θ>? a − E

[
T∑
t=1

Xt

]
= E

[
T∑
t=1

(θ>? a? − θ>? At)︸ ︷︷ ︸
=RT (pseudo-regret)

]

Define a good event G , and bound the regret via,

RT = E[RT |G ]P(G )︸ ︷︷ ︸
≤1

+E[RT |G c ]︸ ︷︷ ︸
≤T

P(G c)︸ ︷︷ ︸
≤small

.

To bound E[RT |G ],
- Under the good event G : the confidence intervals trap the true means. - Bound the
instantaneous pseudo-regret θ>? a? − θ>? At under G .
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LinUCB Proof: Good event

Expl: |truth− estimate| ≤ uncertainty

Let us consider the good event in which the estimate is close to the true expected
rewards for all arms on all rounds, i.e.,

G =
{∣∣θ>? a− θ̂>t a∣∣ ≤ βt‖a‖V−1

t
, for all a ∈ A, t ∈ [T ]

}
.

where, recall

Vt = λI +
t∑

s=1

AsA
>
s ,

θ̂t = argmin
θ∈Rd

(
λ‖θ‖2

2 +
t∑

s=1

(Xs − θ>As)2

)
= V−1

t

t∑
s=1

AsXs ,

Claim 1: P(G c) ≤ 1
T .

We will prove this later.
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LinUCB Proof: Bounding the instantaneous pseudo-regret under G

Recall, G =
{∣∣θ>? a− θ̂>t a∣∣ ≤ βt‖a‖V−1

t
, for all a ∈ A, t ∈ [T ]

}
.

Claim 2: Under G , we have, for all t ≥ 2,

θ>? a? − θ>? At ≤ 2βt‖At‖Vt−1 .

Proof. We will upper bound the instantaneous pseudo-regret as follows,

θ>? a? − θ>? At

≤
(
θ̂>t−1a? + βt−1‖a?‖V−1

t−1

)
−
(
θ̂>t−1At − βt−1‖At‖V−1

t−1

)
Good event

≤
(
θ̂>t−1At + βT‖At‖V−1

t−1

)
−
(
θ̂>t−1At − βt−1‖At‖V−1

t−1

)
At maximizes UCB

≤ 2βt−1‖At‖V−1
t−1
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LinUCB Proof: Bounding RT under G

Recall: (i) 0 ≤ θ>? a ≤ 1 for all a ∈ A, (ii) βt = max (1/2, . . . )

RT =
T∑
t=1

(
θ>? a? − θ>? At

)
≤ 1 +

T∑
t=2

(
θ>? a? − θ>? At

)
≤ 1 +

T∑
t=2

min
(

1, 2βt−1‖At‖V−1
t−1

)
by (i) and claim 2.

≤ 1 +
T∑
t=2

2βt−1 min
(

1, ‖At‖V−1
t−1

)
by (ii).

≤ 1 + 2βT

T∑
t=1

min
(

1, ‖At‖V−1
t−1

)
as βt is increasing in t.

≤ 1 + 2βT

√√√√T
T∑
t=1

min

(
1, ‖At‖2

V−1
t−1

)
Cauchy-Schwarz ineq.
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LinUCB Proof: Bounding RT under G (cont’d)

Claim 3: We will show,

T∑
t=1

min

(
1, ‖At‖2

V−1
t−1

)
≤ 2d log

(
1 +

TL2

dλ

)
Therefore, under G ,

RT ≤ 1 + 2βT
√
dT
√

2 log (1 + TL2/(dλ))

Hence,

RT = E[RT |G ]P(G )︸ ︷︷ ︸
≤1

+E[RT |G c ]︸ ︷︷ ︸
≤T

P(G c)︸ ︷︷ ︸
≤1/T

.

≤ 2 + 2βT
√
dT
√

2 log (1 + TL2/(dλ))

46/64



LinUCB Proof: Proof of Claim 3

Expl: This is a technical result, so you can check the calculations at home.

Claim 3: We will show,
T∑
t=1

min

(
1, ‖At‖2

V−1
t−1

)
≤ 2d log

(
1 +

TL2

dλ

)
Proof. Recall that Vt = λI +

∑t
s=1 AsA

>
s . Let us first consider,

det(Vt) = det
(
Vt−1 + AtA

>
t

)
= det

(
V

1/2
t−1

(
I + V

−1/2
t−1 AtA

>
t V
−1/2
t−1

)
V

1/2
t−1

)
= det(Vt−1)

(
1 + (V

−1/2
t−1 At)

>(V
−1/2
t−1 At)

)
as det(I + uv>) = 1 + u>v.

= det(Vt−1)(1 + ‖At‖2
V−1
t−1

).
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LinUCB Proof: Proof of Claim 3 (cont’d)

Vt = λI +
t∑

s=1

AsA
>
s , det(Vt) = det(Vt−1)(1 + ‖At‖V−1

t−1
).

Therefore, we obtain

det(VT ) = det(λI )︸ ︷︷ ︸
=λd

T∏
t=1

(1 + ‖At‖2
V−1
t−1

).

Hence,

log

(
det(VT )

λd

)
=

T∑
t=1

log

(
1 + ‖At‖2

V−1
t−1

)
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LinUCB Proof: Proof of Claim 3 (cont’d)

VT = λI +
T∑
s=1

AsA
>
s ,

Now let us consider det(VT ),

det(VT ) =
d∏

i=1

eigi (VT ) ≤

(
1

d

d∑
i=1

eigi (VT )

)d

AM-GM inequality

=
1

dd
trace(VT )d =

1

dd

(
trace(λI ) + trace

(∑T
t=1 AtA

>
t

))d
=

1

dd

(
dλ+

T∑
t=1

‖At‖2
2

)d

≤ 1

dd

(
dλ+ TL2

)d
as max

a∈A
‖a‖2 ≤ L
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LinUCB Proof: Proof of Claim 3 (cont’d)

log

(
det(VT )

λd

)
=

T∑
t=1

log
(

1 + ‖At‖2
Vt−1

)
, det(VT ) ≤

(
dλ+ TL2

d

)d

Putting it altogether,

T∑
t=1

min

(
1, ‖At‖2

V−1
t−1

)
≤ 2

T∑
t=1

log

(
1 + min

(
1, ‖At‖2

V−1
t−1

))
as x ≤ 2 log(1 + x) for x ∈ [0, 2 log(2)]

≤ 2
T∑
t=1

log

(
1 + ‖At‖2

V−1
t−1

)
≤ 2 log

(
1

λd
· (dλ+ TL2)d

dd

)
= 2d log

(
1 +

TL2

dλ

)
.
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Proof of Claim 1: From prediction to estimation error

Claim 1. For G defined as follows, we have P(G c) ≤ 1
T .

G =
{∣∣θ>? a− θ̂>t a∣∣ ≤ βt‖a‖V−1

t
, for all a ∈ A, t ∈ [T ]

}
Expl: We will now prove Claim 1. This will be very technical.

Proof. First write

P(G c) ≤
T∑
t=1

P
(∣∣θ>? a− θ̂>t a∣∣ > βt‖a‖V−1

t
, for some a ∈ A

)
Now, Consider any a ∈ A,∣∣θ>? a− θ̂>t a∣∣ =

∣∣(θ? − θ̂t)>a∣∣ =
∣∣((θ? − θ̂t)V 1/2

t )>(V
−1/2
t a)

∣∣
≤ ‖(θ? − θ̂t)V 1/2

t ‖2 · ‖V−1/2
t a‖2 Cauchy-Schwarz

= ‖θ? − θ̂t‖Vt · ‖a‖V−1
t

as ‖xQ1/2‖2
2 = x>Qx = ‖x‖2

Q for symmetric Q

Therefore, sufficient to show ‖θ? − θ̂t‖Vt ≤ βt with probability ≥ 1− 1/T 2.
Expl: From controlling prediction error to controlling estimation error of θ?.
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Proof of Claim 1 (cont’d)

θ̂t = V−1
t

t∑
s=1

AsXs , where, Vt = λI +
t∑

s=1

AsA
>
s , Xs = θ>? As + εs .

Expl: Here Xs is reward on round s and εs is the σ-SG noise.

Let Wt =
∑t

s=1 AsA
>
s so that Vt = λI + Wt .

Now write,

θ̂t = V−1
t

∑t
s=1 As(A>s θ? + εs) = V−1

t Wtθ? + V−1
t

∑t
s=1 Asεs︸ ︷︷ ︸

∆
=ξt

.

Therefore, θ̂t − θ? = (V−1
t Wt − I )θ? + V−1

t ξt . Hence,

‖θ̂t − θ?‖Vt ≤ ‖(V−1
t Wt − I )θ?‖Vt + ‖V−1

t ξt‖Vt triangle inequality

= ‖(V−1
t Wt − I )θ?‖Vt + ‖ξt‖V−1

t
as ‖V−1

t ξt‖2
Vt

= ξ>t V−1
t VtV

−1
t ξt = ‖ξt‖2

V−1
t
.
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Proof of Claim 1 (cont’d)

‖θ̂t − θ?‖Vt ≤ ‖(V−1
t Wt − I )θ?‖Vt + ‖ξt‖V−1

t
, Wt =

t∑
s=1

AsA
>
s , Vt = λI + Wt .

The following calculations show ‖(V−1
t Wt − I )θ?‖Vt ≤

√
λB, (try at home)

‖(V−1
t Wt − I )θ?‖2

Vt
= θ>? (V−1

t Wt − I )Vt(V
−1
t Wt − I )θ?

= θ>? (V−1
t Wt − I ) (Wt − Vt)︸ ︷︷ ︸

=−λI

θ? = λθ>? (I − V−1
t Wt)︸ ︷︷ ︸
.I

θ? ≤ λθ>? θ? ≤ λB2.

Recall, we need to show, that the following holds with probability ≥ 1− 1/T 2

‖(θ? − θ̂t)‖Vt ≤ βt = max

(
1

2
,
√
λB + σ

√
d log(dT 2)(2 + log(1 + tL2))

)
Sufficient to show, the following holds with probability ≥ 1− 1/T 2

‖ξt‖V−1
t
≤ σ
√
d
√

log(dT 2)(2 + log(1 + tL2))
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Proof of Claim 1: Simplifying ‖ξt‖V−1
t

further

Let us write,
‖ξt‖2

V−1
t

= ξ>t V
−1
t ξt = ξ>t V

−1/2
t · I · V−1/2

t ξt

= ξ>t V
−1/2
t

(
d∑

i=1

eie
>
i

)
V
−1/2
t ξt

=
d∑

i=1

ξ>t V
−1/2
t eie

>
i V
−1/2
t ξt

=
d∑

i=1

(ξ>t V
−1/2
t ei )

2.
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Proof of Claim 1 (cont’d)

We need to show, the following holds with probability ≥ 1− 1/T 2

‖ξt‖2
V−1
t
≤ σ2d log(dT 2)(2 + log(1 + tL2))︸ ︷︷ ︸

(∗)

By a union bound,

P
(
‖ξt‖2

V−1
t

> dσ2(∗)
)

= P

(
d∑

i=1

(ξ>t V
−1/2
t ei )

2 > dσ2(∗)

)

≤
d∑

i=1

P
(

(ξ>t V
−1/2
t ei )

2 > σ2(∗)
)

=
d∑

i=1

P

(
|ξ>t V

−1/2
t ei |
σ

>
√

(∗)

)

Therefore, sufficient to show, for a ∈ {V−1/2
t e1, . . . ,V

−1/2
t ed},

P
(
|ξ>t a|
σ

>
√

(∗)
)
≤ 1

T 2d
.
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Proof of Claim 1: Summary so far
Claim 1. For G defined as follows, we have P(G c) ≤ 1

T .

G =
{∣∣θ>? a− θ̂>t a∣∣ ≤ βt‖a‖V−1

t
, for all a ∈ A, t ∈ [T ]

}
1. (Prediction to estimation error) Sufficient to show, the following holds with

probability ≥ 1− 1/T 2

‖(θ? − θ̂t)‖Vt ≤ βt = max

(
1

2
,
√
λB + σ

√
d log(dT 2)(2 + log(1 + tL2))

)
2. Sufficient to show, the following holds with probability ≥ 1− 1/T 2

‖ξt‖V−1
t
≤ σ
√
d
√

log(dT 2)(2 + log(1 + tL2))

3. Sufficient to show, for a ∈ {V−1/2
t e1, . . . ,V

−1/2
t ed},

P
(
|ξ>t a|
σ

>
√

log(dT 2)(2 + log(1 + tL2))

)
≤ 1

T 2d
.
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Martingale concentration

Recall that ξt =
∑t

s=1 Asεs . We will show, for any a ∈ {V−1/2
t e1, . . . ,V

−1/2
t ed},

P
(
|ξ>t a|
σ

>
√

log(dT 2)(2 + log(1 + tL2))

)
≤ 1

T 2d
.

Key challenge: The actions and observations are not independent!
Otherwise, we can condition on A1, . . . ,At , and use standard sub-Gaussian
concentration.

We will use the fact that ξ>t a is a martingale.
We can use a variety of martingale concentration results to obtain the above result.

Definition (Martingale). An sequence of random variables {Zt}t∈N is a martingale
w.r.t another sequence {Yt}t∈N if, E[Zt |Yt−1] = Zt−1 and E[|Zt |] <∞ for all t ∈ N.

We will present one proof, without formally introducing martingales. See LS Chapter
20, for an alternative technique.

Expl: I don’t want you to think of this as a highly specific proof technique.
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Proof of Claim 1: Martingale concentration

We will show, for any a ∈ {V−1/2
t e1, . . . ,V

−1/2
t ed},

P
(
|ξ>t a|
σ

>
√

log(dT 2)(2 + log(1 + tL2))

)
≤ 1

T 2d
.

Proof technique from Rusmevichientong and Tsitsiklis, 2008.

Lemma (Corollary 2.2 from de La Pena et al 2004). If A,B are random variables

such that E
[
eµA−

µ2B2

2

]
≤ 1 for all µ ∈ R, then for all τ ≥

√
2, and y > 0, we have

P

(
|A| ≥ τ

√
(B2 + y)

(
1 +

1

2
log (1 + B2/y)

))
≤ e−τ

2/2.

Cf. If B is a constant and not a R.V, then the condition says that A is

B-sub-Gaussian, E[eµA] ≤ e
µ2B2

2 . In which case, we know P(A > Bτ) ≤ e
−τ2

2 .
Note that

√
(B2 + y) (1 + log (1 + B2/y)) � B.
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Proof of Claim 1: Martingale concentration (cont’d)
Lemma (Corollary 2.2 from de La Pena et al 2004). If A,B are random variables such that

E
[
eµA−

µ2B2

2

]
≤ 1 for all µ ∈ R, then for all τ ≥

√
2, and y > 0, we have

P
(
|A| ≥ τ

√
(B2 + y) (1 + (1/2) log (1 + B2/y))

)
≤ e−τ

2/2.

We will apply the above result with, A = a>ξt
σ and B = ‖a‖Wt , y = ‖a‖2

2, and

τ =
√

2 log(T 2d).

A =
a>ξt
σ

=
1

σ

t∑
s=1

a>Asεs , B2 = a>Wta =
t∑

s=1

a>AsA
>
s a.

Let us first check that the condition E
[
exp

(
µA− µ2B2

2

)]
≤ 1 holds. Write,

µA− µ2

2
B2 =

t∑
s=1

(
µ

σ
a>Asεs −

µ2

2
(a>As)2︸ ︷︷ ︸

∆
=Qs

)
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Proof of Claim 1: Martingale concentration (cont’d)

We need to show,

E
[

exp

(
µA− µ2

2
B2

)]
= E

[
e
∑t

s=1 Qs

]
≤ 1.

Expl: In martingale language, we can define

Fs = σ(A1,X1, . . . ,As−1,Xs−1,As), where {Ft}t is a filtration.

Denote Fs−1
∆
= (A1, ε1, . . . ,As−1, εs−1). We will first bound, E[eQs |Fs−1],

E[eQs |Fs−1] = exp

(
−µ2

2
(a>As)2

)
E
[
exp

(µ
σ

(a>As)εs
) ∣∣∣Fs−1

]
≤ exp

(
−µ2

2
(a>As)2

)
exp

(
σ2

2
×
(µ
σ

(a>As)
)2
)

= 1

As, given Fs−1 = {A1, ε1, . . . ,As−1, εs−1}, As is fixed and εs is σ-sub-Gaussian.

Try at home: Show that ξ>t a is a martingale w.r.t. F = {Fs}s .
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Proof of Claim 1: Martingale concentration (cont’d)

Therefore,

E
[

exp

(
µA− µ2

2
B2

)]
= E

[
e
∑t

s=1 Qs

]
= E

[[
e
∑t

s=1 Qs
∣∣Ft−1

]]
= E

[
e
∑t−1

s=1 QsE
[
eQt
∣∣Ft−1

]]
as we have fixed A1, ε1, . . . ,At−1, εt−1

≤ E
[
e
∑t−1

s=1 Qs

]
≤ · · · ≤ 1.

This verifies the condition for the lemma.
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Proof of Claim 1: Martingale concentration (cont’d)

Lemma (Corollary 2.2 from de La Pena et al 2004). If A,B are random variables such that

E
[
eµA−

µ2B2

2

]
≤ 1 for all µ ∈ R, then for all τ ≥

√
2, and y > 0, we have

P
(
|A| ≥ τ

√
(B2 + y) (1 + (1/2) log (1 + B2/y))

)
≤ e−τ

2/2.

- We are applying with, A = a>ξt
σ and B = ‖a‖Wt , y = ‖a‖2

2, and τ =
√

2 log(T 2d).

Therefore, we have the following with probability at least 1− 1
T 2d

,

∣∣∣∣a>ξtσ
∣∣∣∣ ≤√2 log(T 2d)

√
(a>Wta + a>a)

(
1 +

1

2
log

(
1 +

a>Wta

‖a‖2
2

))
≤
√

log(T 2d) (2 + log(1 + eig1(Wt))) · ‖a‖Vt

As eig1(A) = maxx
x>Ax
x>x

and a>Wta + a>a = a>(Wt + I )a = a>Vta.
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Proof of Claim 1: Martingale concentration (cont’d)

Step 3 of Claim 1 proof: sufficient to show, for a ∈ {V−1/2
t e1, . . . ,V

−1/2
t ed},

P
(
|ξ>t a|
σ

>
√

log(dT 2)(2 + log(1 + tL2))

)
≤ 1

T 2d
.

We just showed that, for any a ∈ Rd , with probability at least 1− 1/T 2d ,∣∣∣∣a>ξtσ

∣∣∣∣ ≤√log(T 2d) (2 + log(1 + eig1(Wt))) · ‖a‖Vt

The proof is completed by the following observations:

I When a = V
−1/2
t ei , ‖a‖2

Vt
= a>Vta = eiV

−1/2
t VtV

−1/2
t ei = e>i ei = 1.

I eig1(Wt) ≤ trace(Wt) =
∑t

s=1(A>s As) ≤ tL2, as maxa∈A a>a ≤ L2.
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LinUCB: Proof summary.

A general recipe for bounding the regret of UCB (optimistic) in structured bandits (e.g
linear, generalized linear, kernelized (GP) bandits).

1. First, consider the pseudo-regret, RT =
∑T

t=1(θ>? a? − θ>? At).

2. Define a good event G , where the confidence intervals trap the true means. Then,

RT = E[RT |G ]P(G )︸ ︷︷ ︸
≤1

+E[RT |G c ]︸ ︷︷ ︸
≤T

P(G c)︸ ︷︷ ︸
≤small

.

3. Use martingale concentration to bound P(G c).

4. Under G , we can bound the instantaneous pseudo-regret

θ>? a? − θ>? At ≤ 2× eAt ,t−1.

where eAt ,t−1 is the width of the confidence interval of At at round t − 1.

5. Bound the summation
∑T

t=1 eAt ,t−1 (usually requires setting-specific techniques).
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