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Ch 4.1: Stochastic bandits introduction

So far in class: passive learning, i.e a learner learns from already available data.

But often, a learner is working towards a goal, and needs to make decisions about
which data to collect, to achieve a goal efficiently.

Sequential /adaptive decision-making:.

v

There is a sequence of interactions between a learner and an environment.

v

On round t, the learner chooses an action A; from a a set of possible actions A.

v

The environment reveals an observation O, and the learner receives a reward
Xt — Xt(Ot, At)

v

The learner wishes to maximize the sum of rewards over T rounds, Z;l Xt.
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Stochastic bandits

- Let A denote a set of actions.

- Let v = {v,; a € A}, called a bandit model, denote a set of distributions indexed by
actions in A.

- Let P denote a family of bandit models.
- On round t, a learner chooses A; € A and observes a reward X; ~ va4,.

- Let u, be the expected reward of action a, and p* be the optimal action,

ta = Exu,[X], p* = argmax fis.
acA

- Verbiage: choose action a = play arm a = pull arm a
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Learner’s policy

A learner is characterized by a policy m = {mt}ten, where, m; maps the history
{(As, Xs)}:Z1 to an action Ay

T ([K] x R — A

If 7 is a randomized policy, m; maps to a distribution over A, and then an action is
sampled from this distribution.

e o ([K] x R)FH = A(A),

Ay = 4 tPED 145 pT1, =1} if Als finite
P A= Ry Jap=1} more generally
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Regret

We define the regret as,

Rt =Ry(mv)=Tu* —E

T
>_Xe
t=1

Here, the expectation E is with respect to the distribution of actions and rewards
A1, X1, A2, X2, ..., induced by the interaction between the policy m and the bandit

model v.

We want Ry € o(T), i.e lim7_ 5T = 0.
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K-armed bandits

- Stochastic bandits when actions are a finite set, i.e A = [K].

- Will assume each v; is o-sub-Gaussian, with o known.
P = {v = {vas; a € [K]}, where v, is o-sub-Gaussian for all a}.
- Will assume, without loss of generality, that
12w >2pp > 2>2px >0

(the learner does not know the ordering)

- Denote the gap, A; = p1 — ;.
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Ch 4.2: The Explore-then-Commit (ETC) algorithm

v

Given: T (time horizon), m (number of exploration rounds per arm). (m < T /K)

Pull each arm m times in the first mK rounds.

v

> A < argmax;c(k) [i, where

1 mK
i = — 21 1(As = ) Xs.
s=

v

Pull arm A for the remaining (T — mK) rounds.
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ETC Theoretical properties

Let P be the class of o-sub-Gaussian K-armed bandit models.

Upper bound: Then for all v € P, 7ETC satisfies, Recall, A; = p1 — pj.
—mA?
RT(WETqy)gm'Z A+ (T—mK).Z A,-exp< 4021>.
i,A;>0 iI,A;>0

If we choose m = K—1/3 T1/3 then

527@ R+ ( 1/37-1/3, 1/) e O (K1/3T2/3) .

Lower bound. Cannot be improved (via a tighter analysis and/or better choice of m),

f sup Ry(nh'% v) e Q(K3T?3).
il sop Frtes ) <@ )

Proof: In homework 3 or 4.
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Ch 4.3: The Upper Confidence Bound (UCB) algorithm

Based on the “optimism under uncertainty principle”:

Pretend that the environment is as nice as statistically possible, given the data, and
then behave myopically.
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UCB Algorithm: designing upper confidence bounds

We will construct the following upper confidence (UCB) bound for the mean p; of
each arm i € [N] after t rounds,

t

N;¢ = Z 1(As = 1), samples from arm / so far.
s=1

1<
fie = NItZﬂ(AS = )X, sample mean.

" os=1

2log(1/d

€t=0 M where 5t:1/(T2t)_

M
N; ¢

In our proofs, we will show that fi; + + € ¢ is a UCB for y;, i.e.,
P(ui < fie +ei¢) >1— 6.
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The UCB Algorithm

» Given: time horizon T
» fort=1,..., K,
» Pull arm t and observe X; ~ v;.
» fort=K+1,..., T,
> Pull arm A; = argmax;¢ 4 Wit—1+ €1

» Observe X; ~ va,.
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Theorem: UCB

Let P denote the class of o-sub-Gaussian bandit models and let v € P. Then, the
following statements are true:

» Gap-dependent bound: Recall, p1 < -+ < pk, Aj = p1 — pj.

2452 log(T)
R UCB <
-,—(7T 7V)—3K+.§: Ai
i:A;>0

» Worst-case bound:

sup RT(7V°B, 1) < 3K + 0/96KT log(T).

vepP

Recall, we want Rt € o(T). In the worst case, we are guaranteed O(v/KT).

But, if gaps are large, we have Rt € O(log(T)), as it is easier to distinguish between
the arms if gaps are large.
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Proof of UCB Theorem: Regret decomposition

Lemma (Regret decomposition). For any policy 7 (not just UCB), we have

Rr(m,v)= Y AE[N; 7]
i;A;>0
where, N; 7 = >, 1(A; = i).

Proof. Let us first write the regret as follows,

T K
(ul—E[Xt])—Z< E Y 1A =i)X,
i=1

Ry =

> )

K T K
> E[(n 1(Ar=0)]=)_) E[E Xe)L(Ae = )| Ad] |

1i=1 t=1 i=1
(%)

N REANG

t
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Proof of UCB Theorem: Regret decomposition (cont'd)

Let us simplify (x) as follows:
(+) = L(Ae = NE (11 — Xt)|Ad]

= 1(Ae = i) (1 :LLAt) as E[X:|A: = a] = p,
= 1(As = ) (p1 — wi) as expression is not 0 only when A; =1
= ]]_(At = I)A,

Plugging this back into our expression for R, we get

RT_ZZE (Ar = )A;]

t=1 i=1

K
= ZA;E
i=1

T

K
Y LA = i)] =Y AE[N; 7]
t=1 i=1
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Proof of UCB Theorem: Good event

Recall, that the UCB is [+ + € ¢, where
t

Ni,t:Z]l(AsZi), ﬁi’t:NltZ]lA —I

s=1

2log(1/3:)

Ne where 6, = 1/(T?t).

e,'7t =0

Define the following good events, G; and G; for all i such that A; > 0,

={Vt>K, pu1 < iyt +ews}, Gi={Vt>K, i > it — €}

To bound Gy, Gf, we will assume w.l.o.g that each arm i samples rewards {Y; ,},>1
and we observe these samples one by one as we pull each arm. Therefore, we can write,

N ¢
1 ,
IU’IT.'_N Z s:Nht;Yi,r‘
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Proof of UCB Theorem: Good event (cont'd)

Claim. For all i, we have P(Gf) < L.

Proof. We will show this for G;. The proof for G;, where A; > 0, follows similarly.

I[D(C.;](.:) = P(El t Z K SUCh that /,Ll > ﬁl,t + el,t)

< Z P(p1 > fi1e + exr) union bound

t>K Ny ¢

N 1 ¢ 2log(1/§
:ZP M1>szl,r+0 ?\[(/t)

t>K Lt 3 1t

13 2log(1/0

§§P<Hs€[1,2,...,t—K+1], s.t,u1>sz;y17r+a gi/r))

> =

(+)
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Proof of UCB Theorem: Good event (cont'd)
Next, we will bound () using the union bound and sub-Gaussian concentration,

t—K+1

Z P (,ul > — Z Yi,r 2|Oggl/5t)) union bound

t—K+1

Z+ =5 »2log(1/4:) . .

exp 552 X o f Sub-Gaussian concentration
g

s=1

IN

===
L

< —. As there are at most t— K+ 1 terms in the summation.

_T2

Therefore, P(G}) < Yk (x) < T
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Proof of UCB Theorem: Gap-dependent bound

Recall, Gy ={Vt>K, u1 <firr+et}, Gi={Vt>K, pi> i+ — e}
Next, we will show that, under G; N G;, for any 7 such that A; > 0, we have
2452 log(T)
Nit < —5—+1L
A7

Proof. If an arm is never pulled after round K, then the bound holds trivially. Suppose
instead arm J was last pulled on round t +1 > K. Then,

pi+2e: > it er > Hirtenr > 1
~~ ~— ~—

under G; uUcB under Gy
2log( T2t 2log(T3
e e < 26 — 20, | H0BUTEY) o [2108(T7)
Ni,t Ni,t
802 log(T3 2452 log(T
— N,’t < Ag2( ) Ni,T = Ni,t +1< A2g() + ].,
i

where the last step uses the fact that / was last pulled in rd t + 1.
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Proof of UCB Theorem: Gap-dependent bound (cont'd)

Let us now decompose E[N; 7] as follows,
E[N; 7] = E[N; 7|G1 N G| P(G1 N G;) + E[N; 1[Gy U G7]P(Gy U Gf)

Noting that P(Gf U Gf) < P(Gf) + P(Gf) < %, we have

2402 log(T) 2

E[N; <|(|—=4+1])-1 T =

[Ni,7] < ( A,? + ) + T

2402 log(T)
s 13
Therefore,
R+ = Z AE[N; 7] regret decomposition.
i:A;>0
2402 log(T) 2402 log(T)
< p; -8 ) 3a ) < 3K o o8l
N i-AZ>0 ( A ’ »s A

i:A;>0
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Proof of UCB Theorem: Worst-case bound

2
Recall,  Rr= Y AE[N;7] E[N; 7] < 240° log(T)

iA;>0 !

+3

Letting A be a value to be specified shortly, let us write

Rt = Z A,‘E[N,'7T] + Z AIE[Nf,T]

PiA<A LA>A
2402 log(T
<aT+ Y A (Af”+3> as SEN ] < T
N> i i
2402 log(T
< AT + Uzg() -K+3K at most K terms in sum.
Now, choosing A = o w, we have

Ry < 20+/24KT log(T) + 3K.
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Alternative proof of worst-case bound

We will now look at an alternative proof of the worst-case bound, as this technique will
also apply beyond K-armed bandits. For this, let us write the regret as follows,

Rr =E

=E

=E

rT
ZMI - Xt
Lt=1
rT

ZE [Ml - Xt‘At]

Lt=1

T
Z H1 — HA;
Lt=1

The quantity 2;1 H1 — pa, is referred to as the pseudo-regret.
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Alternative proof of worst-case bound (cont'd)

Define the good event G = ﬂ,Kzl Gi, where

Gr={Vt>K, pu1 <[ire+ e}, Gi={Vt>K, pi > it — €}

We already showed P(Gf) < % so P(G€) < ? Now write,

.
Rr=E [Zm - MAt]
t=1

T T
=F — 1a|G| -P(G)+E — jia,|GE| - P(GE
[;m A ] (G) ;Hl A ] (G9)
- = - 4?;

<T

We will now focus on bounding p1 — 114, under G.
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Alternative proof of worst-case bound (cont'd)
First note that under G we have,

pr < pri—rten—1 < fage-1t+eat—1 < pA, +2ea -1
t t t t
under G; UCB under G;

Therefore, we have

2log(T?(t — 1))

p1— pa, < 2ep, -1 = 20’\/ N
Ae,t—1

This gives us the following bound for Z;l 11 — pa, under G,

T T
— pa,) Z — 1A,) Z (11 — pa,)
t= 1 t=1 t=K+1
2log(T2(t — 1)) L 1
<K+ Z <K+ o/24log(T) Z e
t=K+1 N e-1 ore1 VNA 1

()
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Alternative proof of worst-case bound (cont'd)

Let us bound the term (x) as follows,

T K NIT 1
) D
t=K+1 V NAtvf 1 -1 s—1 V°

m

K
Z VNiT-1 as Z 1/v/s <2y/m, bounding by integral

<2
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Alternative proof of worst-case bound (cont'd)

Therefore, under G, we have

T T
1
Z,ul — pa, < K+ 0v/2410g(T) Z ———— < K+ 0+/96KT log(T).
t=1 t=K+1 V NAt,t—l
*)
Therefore,
T T
Rr =E —palG| P(G)+E —palGe| P(GE
T Zﬂl 1A ] (G) Zm 1A ] (G)
t=1 pe) t=1 KT

<T

< 2K + 0+/96KT log(T)



Ch 4.4: Lower bounds for K-armed bandits

We wish to prove a minimax lower bound of the form,

inf sup Ry (m,v) € Q(?).
T vepP

Reduction to (binary) testing: We will do so by considering two alternatives and
showing that no policy can simultaneously achieve small regret on both alternatives.

For this, recall the Bretagnolle-Huber inequality: for any event A,

Po(A) + P1(A°) > %efKL(Po:Pﬂ.
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Divergence decomposition lemma

The distributions are now over sequences of actions and rewards Az, X1, Aa, Xo, . ..
induced by the interaction between a policy and bandit model. The following lemma
will be useful in computing the KL divergence between these distributions.

Lemma. Let v,/ be two K-armed bandit models. For a fixed (possibly randomized)
policy , let P, P’ denote the probability distribution over the sequence of actions and
rewards A1, Xi,..., A7, X7 under bandit models v, 1/ respectively. Let E, denote the
expectation under bandit model v. Then, for all T > 1,

K
KL(P, P') = E,[N; r]KL(v;, 1)
i=1

where N,‘7T = 2;1 ]l(At = i), and v = {Vi}ie[K]v V= {V,{}ie[K]-
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Divergence decomposition lemma: intuition

Suppose you had a static (non-adaptive) policy ™ which pulled the arms Ny, ..., Nk
times. Then, for two bandit models v, v/,

[ p(A1, X1,..., AT, XT)
KL(P,P)=E, |l
(P.P) _Og< p'(AL, X1,..., AT, XT

=E, -| g( ({{er}r 1} )>] as only observations differ
(Yt )

= ]EI/ |0g (H;{-l H7V:1 PI/,-(YiJ)>
i [Tz [TsZq P (Yir)

K K
= ZKL(V;V’, V',I-Vi) = Z N;KL(v;,v}). as obs are i.i.d

The divergence decomposition lemma states that a similar result holds in expectation
for adaptive policies (even though observations are not i.i.d).
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Divergence decomposition lemma: proof

For a policy m, let 7(-|a1, x1,...,ar—1, xt—1) be probability distribution over the actions
[K] for round t given the history a1, x1,...,3r—1, Xt—1-
Consider any given sequence ai, x1, ..., ar,xT of actions and rewards. Let p, p’ denote

the densities (e.g., pdfs, pmfs) of P, P’ and let v;, v/ denote the densities of v;, V!
respectively. Then,

I
i

P(ala X17 ceey aTa XT) p(at7 Xt’Ql,Xl, ey at_]_,Xt_]_)
t=1
T
— H W(at’al,X]_, e ey at—l)Xt—l)’ljat(Xt)
t=1
T
Similarly, p'(a1, x1,...,ar,x7) = Hﬂ'(at’alaxh oy ar 1, xe—1)Vh, (Xe)

o
Il
MR
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Divergence decomposition lemma: proof (cont'd)

Therefore, for any given sequence ay, x1,...,aT, XT,
- - T -
og (B AT ) o (I T ) Y og (241,
p (al?X:L? R aT7 XT) Val (X]-) Xoeee X VaT(XT) t=1 Vat(xf)
Therefore,
T ~
A1, X1 AT, xT) va,(Xt)
KL(P, P’ —E,,[| (”( Ao AT —S"E, |log | A
( ) p'(Ar, x1, ..., AT, xT) ; & 7, (Xt)
T - K
=Y"E, |lo fo(Xt) 1(Ae = i)
t=1 a(Xe) ) 5
K T _
X
=> > E,|E, |log ff‘*( t) 1(A: = )| A
i=1 t=1 v (Xe)
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Divergence decomposition lemma: proof (cont'd)

We now observe that () can be expressed as follows,

()= B, [log [ 2 ) y0a, = iy |a,| = 14, = )E, [10g | 220 ‘At
Uy (Xt) v

X
1(Ar=NE { (V’ X) )} as =0 when A; #

=KL(v;,v)

At

Therefore, noting that there is nothing random in KL(v;, /),

K T T
KL(P,P)=> Y E,[1(A = )KL(v;, }) = ZKL vi, ) E, [Z 1(A: = i)] .

i=1 t=1




Minimax lower bounds for K-armed bandits

Theorem. Let P be the class of o sub-Gaussian K-armed bandit models, where
K > 2. Then, for some universal constant C,

inf sup Rr(m,v) > Coy/T(K —1) € Q(oV TK).

T vep
Proof. Let 7w be given. Then, for any two bandit models v, 7/, we have

sup Ry (m,v) > max (Rr(v, ), Rr (v, 7)) >
veP

(RT(W, I/) + RT(7T, 1/,)) .

N~

We will lower bound (R7(m,v) + Rr(m, 1)) for any policy 7.

32/64



Minimax lower bound proof: designing alternatives

We will choose v, ', dependent on m to lower bound (Rt (7, v) + Ry (m,v')).

Let v ={v; = /\/'(,u,-,az)},-e[K], where py =9, pj =0 for all j # 1.
Let E, denote expectation w.r.t the sequence Ay, X1,..., A1, X7 due to 7's
interaction with v.

Since Y1 B, [N; 7] = T, there exists some j € {2,..., K} such that E,[N; 7] < %5
Let v/ = {v} = N (1}, 02)}ie[k) where

r ) M |fl7é./7
Hi = e
26 ifi=j
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Minimax lower bound proof (cont'd)

Recall, Bretagnolle-Huber inequality. for any event A, Po(A) + Py(A°) > Fe KL(Fo.P),

Let P, P’ denote the probability distribution of the sequence A, X1, ..., A7, X7 due to
m's interaction with v and v/ respectively. We have,

T\ T6
Ry(m,v) > P /V1T§I E, Rr(m, ") > P (N7 > = | —.
’ 2 2 ’ 2 2
Therefore,
Té T T
Rr(m,v) 4+ Ry(m, V') > > <P <N1,T < 2> + P’ </V1,T > 2))
T6 1

> -y exp (—KL(P, P')) Bretagnolle-Huber ineq
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Minimax lower bound proof (cont'd)

1
Recall, we have shown  sup Ry(m,v) > =
veP

K
KL(P, P') =Y E,[N; 7]KL(v;, 1)
i=1
In our alternatives, v,/ only differ in arm j, which, recall, was chosen so that
E, [N 7] < % Hence,

(Rr(m,v) + Rl 1)) > =2 exp (-KL(P, P))

N

Divergence decomposition

2
KL(P, P') =, [N; 7] KL(yj, 1) < - 20
——

~(K=1)o?
<z :(25)22
20
Therefore,s Rr(rn) T‘Se ( _o82T >
u V) > —exp| s
= 8 P \(K-1)o?
1 _
>o0y/T(K—1)--e 2 Choosing 6 = 0o %
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Gap-dependent lower bound

Theorem (Theorem 16.4 in LS) Let v be a K-armed bandit model with Gaussian
rewards of variance o2. Let 1 = u(v) € RK be the means of the arms in v. Let

P = {V;ui(v') € [pi, pi + 247, v; = N(i(v'),1)}

Say that 7 is a policy such that Ry(m, ") < ¢TP for some ¢ > 0 and p € (0,1) for all
v € P. Then,

Rr(mv) > 1 3 (L= P)loa(T) + log(4;/(Bc))

. A;
i,A;>0
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Ch 4.5: Stochastic linear bandits

In many practical applications, there could be a very large (potentially infinite) number
of arms, but there is additional structure in the problem.

We will next look at a /inear bandit model, where the arms are in a Euclidean space,
and the expected reward is a linear function
Stochastic linear bandits:

» Action space, A C RY.

» There exists some unknown true parameter, 0, € RY.

» When we pull action A; € A on round t, we observe
Xt = QIAt + €t,

where E[e;] = 0 and ¢; is o-sub-Gaussian.
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Regret

We can define the regret as,

)
>x
t=1

;
> 0 A

t=1

Rr=Tmax0a — E
acA

=T60]a —E

Here, E[X;] = E[E[X:|A:]] = E[0] A,].

, A .
We will assume a, = argmax,. 4 0, a exists.
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The LinUCB Algorithm

Similar idea as UCB for K-armed bandits:
Construct upper confidence bounds (UCB) on the expected reward 6, a of arm a, and
choose the arm which maximizes the UCB.

» Given: time horizon T

> fort=1,..., T,
» Pull arm A, = argmax,c 4 UCB;_1(a)
» Observe X; = 0] A, + ¢;.
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Designing a UCB

Recall the regularized ordinary least squares estimator for linear regression,

0, 2 argmln <)\Hc9||2 + Z - GTA5)2>

s=1

You can verify (after some elementary calculus),

b, = Vi ZAXS, where, V; = /\I+ZAAT

s=1 s=1

We will use
UCB;-1(a) = 0;_1a + Be-1llally, 1

for an appropriate choice of 3;. Here, ||x|l @ = v/xT Qx is the @-norm.

Intuition. 9:[13 is an estimate for 6, a and encourages exploitation.

l|lall,,—1 is large for under-explored a and encourages exploration.
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LinUCB: Upper bound on the regret.

Theorem. We will assume ||0,|| < B (with B known) and that the rewards are
bounded 0 < 0] a <1 forall a € A. Let L = maxae | a2 (with L known). Then, if
we choose

B¢ = max <;, VAB + 0\/dlog(dT2)(2 + log(1 + tL2))>

the regret satisfies

Rr < 2 + 2v287\/dTlog (1+ T12/(d)) € O (dVT).
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LinUCB: Proof outline.

Our strategy (similar to worst case proof for K-armed bandits) is as follows. First,
consider the pseudo-regret,
-

Sox

Rr=Tmaxf/a — E
acA =1

;
=E [Z(eja* — 0] A)

t=1

=R (pseudo-regret)
Define a good event G, and bound the regret via,
Rr = E[R7|G]P(G) +E[RT|GE| P(GF).
e N——— N
<1 <T <small

To bound E[RT|G],
- Under the good event G: the confidence intervals trap the true means. - Bound the
instantaneous pseudo-regret 0 a, — 6, A; under G.
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LinUCB Proof: Good event

Let us consider the good event in which the estimate is close to the true expected
rewards for all arms on all rounds, i.e.,

G = {|9;ra— H:Fa‘ < BfHaHV;I’ forallac A, te [T]}

where, recall

t
Ve= A+ AAL

s=1

t t
0, = argmin ()\9||§ + Z(Xs — QTAS)2> =Vv! ZASXS.,
feRrRd —1

s=1

Claim 1: P(G°) < 1.
We will prove this later.
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LinUCB Proof: Bounding the instantaneous pseudo-regret under G

Recall, G = {yeja—@a| < Bellally-2, forallac A, te [T]}

Claim 2: Under G, we have, for all t > 2,

0] a, — 0] Ar < 28| Atllv,_,-

Proof. We will upper bound the instantaneous pseudo-regret as follows,
0 a, —0] A,
< (IH\tTfla* + /Bt_1||a*HVt:11) - (é\ttl/\t - ,Bt_;[HAtHth) Good event

< (éj_lAt + BrllAdlly ) - (5}_1At - 5t_1yyAt\|V:1) A; maximizes UCB
< 2Be1Aelly
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LinUCB Proof: Bounding Rt under G

Recall: ()0 <6 a<1 for all aGA, (ii) pr = max(1/2, ...)
T
Rr=Y" (91 a, — 07 A ) Z (0*Ta* - GIAt)
t=1 p—t
T
= 1+;m'“ <1> 25t—1\|AtHvtzll) by (i) and claim 2.

.
<1+ 28 1min (1, HAt”V:) by (34).
t=2

< l—i—ZﬂTZmln( | At HV ) as (; is increasing in t.

-
<1+23871 TZ min <1, HAtH%/1> Cauchy-Schwarz ineq.
t—1

t=1
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LinUCB Proof: Bounding R+ under G (cont'd)

Claim 3: We will show,

;
us

in (1, |Ad? ) <2dlog 1+ —~
;mln( N f”m)— og< + dA)

Therefore, under G,

Ry <1+ 267VdTy/2log (1 + TL2/(dN))
Hence,

Rt = E[ﬁﬂG]P;(Q‘FE[ﬁT’GC] P(G).

<1 <T <1/T

<24 267VdT \/2l0g (1 + TL2/(dN))
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LinUCB Proof: Proof of Claim 3

Claim 3: We will show,
T
TL?
2: . 2
2 min (1, HAt”Vt_ll) < 2d |Og <]. + d)\)
Proof. Recall that V; = Al + Zs 1 As A . Let us first consider,

det(V;) = det (Vt_1 + AtAT>
— det (vl/2 (/ +vIYaAT v 1/2) vtl_/f)

:det(vt,l)(1+(v—1/2At) (Vt__11/2At)) as det(/+uv ) =1+uv.

= det( Vt_]_)(]. + HAt”%/t:]_l)
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LinUCB Proof: Proof of Claim 3 (cont'd)

t
Ve= M+ Y AAL det(Ve) = det(Ver)(1+ | Aclly1)-
s=1

Therefore, we obtain

)
det(Vr) = det(\) [T + AdR -

Iog<det( ) Zlog<1+\|AtHV>

Hence,
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LinUCB Proof: Proof of Claim 3 (cont'd)

.
Vi =X+ AA],

s=1

Now let us consider det(V7),

d d
det(V7) Helg, Vr) < ( Z eig;(Vr ) AM-GM inequality
i=1

1 1 d
:Wtrace( Vi) = 7 (trace()\l) -+ trace (Z;l AtAtT)>
1 U ’
== (d)\ +>° IIAr||§>
t=1

1 o\ d
SW (d)\—l- TL ) as Tea}l(“a||2 <L
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LinUCB Proof: Proof of Claim 3 (cont'd)

det( VT) T dr -+ TL2 d
log ( \ ) = Z log (1 + ||AtH%/H> ) det(Vr) < —
t=1

Putting it altogether,

T T
in (1, 1A:]12.. ) <2) I 1 in (1, ||A:]%_
;m|n< | tHVt11> = ; og( —I—m|n< » |l tHVt11>>

as x < 2log(l+ x) for x € [0,2log(2)]

)
<23 tog (14 1A%,

t=1

1 (d\+ TL%) TL?
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Proof of Claim 1: From prediction to estimation error
Claim 1. For G defined as follows, we have P(G€) < +.
G = {|0*Ta— é\ja‘ < ﬁtHaHV;l’ forallace A, te [T]}

Proof. First write
-

P(G°) < ZIP’ (’913 - era| > ﬂtHaHV;l, for some a € A)

t=1
Now, Consider any a € A,
0] a— 07 al = | (0. — 00)"a| = |((0x — )V T (v, a))|
< |16, — 0V - |V Y232 cauchy-Schwarz
= [16. = Gellvi - lally—1  as [IXQY?[3 = xT @x = ||x|[3 for symmetric Q

Therefore, sufficient to show |6, — 9At||\/t < B with probability > 1 —1/T2.
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Proof of Claim 1 (cont'd)

t t
0:=VPY AX,,  where, Ve =M+ Y AALL Xo=0] A +e..
s=1

s=1
Let Wi =St A;A! so that V, = A + W,.

s=1

Now write,
0= Vit AJ(AL G, +e) = Vi WL, + VI Aces
—_——

2¢,

Therefore, (/9} —0, = (Vt_1 Wi — 10, + Vt_lft. Hence,

Ak—- x| Ve S Wi — 104 v, . &l riangle inequality
16 — Oullve < (Ve We = N0ullvi + Ve ellv: triangl lit

= (VT We = Dlv, + lEellyr as Ve, = € Vit VeV e = [l

52/64



Proof of Claim 1 (cont'd)

t
16 = Oullve < NIV We = DOy, + [1€elly, -, We=) AAl,  Vi=X+ W,
s=1
The following calculations show ||(V; 1 W; — 1)0,]|v, < VAB, (try at home)

IVt We = DOLR, = 6 (Vi We — DV(VTWe — 16,
=0 (V7 IWe — 1) (Wi — V) 0, = N0] (1 — Vi IWL) 6, < M\O[ 6, < \B2.
— —

=\ <l

Recall, we need to show, that the following holds with probability > 1 — 1/T?2

16 = 82)||v, < Be = max (;, VAB + J\/d log(dT?)(2 + log(1 + tL2)))

Sufficient to show, the following holds with probability > 1 —1/T?

||£t||vt71 < a\/g\/log(dT2)(2 + log(1 + tL2))
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Proof of Claim 1: Simplifying |||\ further

Let us write, B _
l&ell} o= & Vitee =&l Va2 v

d
=& v, 2 <Z eie; ) v, %,

d

Z —1/2 TV_1/25

jg:: 1/2 i 2

=1
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Proof of Claim 1 (cont'd)

We need to show, the following holds with probability > 1 —1/T2
€112 -1 < 02d log(dT?)(2 + log(1 + tL?))
(*)

By a union bound,

P (Jl&el2 1 > do(+)) = (Z(a e > da2(*)>

d _12 l |£ 1/2 |
SZ (gt 12632 5 52 *)) ZP( t Ci (*))

Therefore, sufficient to show, for a € {Vt_1/2e1, cee Vt_l/zed},

P <‘§ia| > \/@> < %
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Proof of Claim 1: Summary so far
Claim 1. For G defined as follows, we have P(G€) < +.
G = {|0*Ta— é:ra‘ < Bt”"’Hv;l’ forallace A, te [T]}

1. (Prediction to estimation error) Sufficient to show, the following holds with

probability > 1 —1/T?

(6, — 62)||v, < Be = max < VAB + O'\/d log(dT?)(2 + log(1 + tL2))>

2. Sufficient to show, the following holds with probability > 1 —1/T?2

I€elly1 < ovd/log(dT2)(2 + log(1 + 112))

3. Sufficient to show, for a € {V_l/2 Tyeons Vt_l/2 ed},

<|ftT al > \/Iog dT2)(2 + log(1 + sz)))

< L
T2d’
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Martingale concentration

Recall that & = >_L_, Ases. We will show, for any a € {Vt_l/zel, e Vt_l/zed},
& al 2 2 1
IP’( . \/10g(dT2)(2 + log(1 + tL2)) ) < =

Key challenge: The actions and observations are not independent!
Otherwise, we can condition on Aj, ..., A;:, and use standard sub-Gaussian
concentration.

We will use the fact that ftTa is a martingale.
We can use a variety of martingale concentration results to obtain the above result.

Definition (Martingale). An sequence of random variables {Z;}+cy is a martingale
w.r.t another sequence {Y;}een if, E[Z¢| Yi—1] = Zi—1 and E[|Z;|] < oo for all t € N.

We will present one proof, without formally introducing martingales. See LS Chapter
20, for an alternative technique.
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Proof of Claim 1: Martingale concentration

We will show, for any a € {Vt_l/Qel, e Vt_l/zed},

(

Proof technique from Rusmevichientong and Tsitsiklis, 2008.

|fga| > \/Iog(dT2)(2 + log(1 + tL2))> <

= T2d

Lemma (Corollary 2.2 from de La Pena et al 2004). If A, B are random variables

22

such that E [e“A_uz} <1 for all 4 € R, then for all 7 > V2, and y > 0, we have
1
P <|A| > 7'\/(82 +) (1 +5 log (1 + BQ/y)>> <e T2

Cf. If B is a constant and not a R.V, then the condition says that A is

22 _.2
B-sub-Gaussian, E[e#A] < "2 In which case, we know P(A>Br)<e=.
Note that /(B2 +y) (1 + log (1 + B2/y)) < B.
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Proof of Claim 1: Martingale concentration (cont'd)
Lemma (Corollary 2.2 from de La Pena et al 2004). If A, B are random variables such that
IE[ }<1fora|l,ue]Rthenforall7>ﬁandy>0wehave

P (142 7V/(B2+y) (1 + (1/2)log (1 + B?/y))) < e /2.

We will apply the above result with, A = % and B = ||a|lw,, y = ||al|3, and
2log(T2d).

T t
A= ft = Z a' Ages, B>=aWia=)» a AAla

s=1
Let us first check that the condition E [exp (,uA — @)} < 1 holds. Write,

t

2 2
pA — %32 => (ZaTAses - ‘;(aTAs)2>

s=1

~~

E¥e)
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Proof of Claim 1: Martingale concentration (cont'd)

IS ‘
E {exp <MA - 232>] ~E [eZszl Qs} <1

We need to show,

Denote Fe_1 2 (A1, €1, ..., As_1,€s_1). We will first bound, E[e@|F,_1],
12
E[eQS\}"S 1] —exp( 5 (a TA s) )IE [exp( (a TA )‘]—"5 1}
g
1% T o Ko T
<exp 7(3 As)” ) exp - X (;(a AS)) =1
As, given Fs_1 = {A1,€1,...,As_1,€6s_1}, As is fixed and ¢, is o-sub-Gaussian.

Try at home: Show that ¢/ a is a martingale w.r.t. F = {Fs}s.
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Proof of Claim 1: Martingale concentration (cont'd)

Therefore,
 fow (na- 87 )| =B [0
)
=K [ pDp, QR [eot‘ft_ln as we have fixed Aq,e1,..., A 1,61
SE[e E%Qs} <<

This verifies the condition for the lemma.
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Proof of Claim 1: Martingale concentration (cont'd)

Lemma (Corollary 2.2 from de La Pena et al 2004). If A, B are random variables such that
E{e“A e } <1forall peR, then for all 7 > /2, and y > 0, we have

P (IAI > 7/ (B2 +y) (1+ (1/2) log (1 + Bz/y))) <e /2,

- We are applying with, A = 2% and B = lallw,, y = ||al|3, and 7 = /2 log(T2d).

a

1
T2d°

W,
< y/2log(T2d \/aTWta+aT )<1—|—Iog (1—1— a|| ||ta>)
2

< \/log(T2d) (2 + log(1 + cigy (W) - all e

Therefore, we have the following with probability at least 1 —

TEt

As eigq(A) = max, =X X A and a' Wia+a'a=a (Wt +1a= a' V,a.
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Proof of Claim 1: Martingale concentration (cont'd)

Step 3 of Claim 1 proof: sufficient to show, for a € {V,~ 1/24 1y V;l/2ed},
I€; al 1
P (0 > /log(dT2)(2 + log(1 + tL2)) | < =g

We just showed that, for any a € R9, with probability at least 1 — 1/T?2d,

ant
o

< V/log(T?2d) (2 + log(1 + eigy (WA))) - [lallv,

The proof is completed by the following observations:

» When a = Vt_1/2e,-, lall}, =a' Via= eV, 1/2VtV 1V2g e e =1

> eigy (W) < trace(W;) = SOL_ (AT As) < tL2, as maxaeqa' a < L2,

63/64



LinUCB: Proof summary.

A general recipe for bounding the regret of UCB (optimistic) in structured bandits (e.g
linear, generalized linear, kernelized (GP) bandits).

1. First, consider the pseudo-regret, RT = 23—21(913* — 0] Ap).
2. Define a good event G, where the confidence intervals trap the true means. Then,
R = E[§T|G] ]P’(G)+]E[§7-|GC] P(G°).
—— ——
<1 <T <small

3. Use martingale concentration to bound P(G¢).

4. Under G, we can bound the instantaneous pseudo-regret

0] a, —0]Ar <2 x ep s 1.

where e, 1 is the width of the confidence interval of A; at round t — 1.

5. Bound the summation 3/ ea, ;1 (usually requires setting-specific techniques).
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