CS861: Theoretical Foundations of Machine Learning

Chapter 4: Stochastic Bandits

Kirthevasan Kandasamy UW-Madison

Outline

- 1. Introduction, K-armed bandits
- 2. Explore-then-commit for K-armed bandits
- 3. The upper confidence bound algorithm for K-armed bandits
- 4. Lower bounds for K-armed bandits
- 5. Linear bandits and martingale concentration

Ch 4.1: Stochastic bandits introduction

So far in class: passive learning, i.e a learner learns from already available data.

But often, a learner is working towards a goal, and needs to make decisions about which data to collect, to achieve a goal efficiently.

Sequential/adaptive decision-making:.

- ▶ There is a sequence of interactions between a learner and an environment.
- ▶ On round t, the learner chooses an action A_t from a a set of possible actions A.
- ▶ The environment reveals an observation O_t , and the learner receives a reward $X_t = X_t(O_t, A_t)$.
- ▶ The learner wishes to maximize the sum of rewards over T rounds, $\sum_{t=1}^{T} X_t$.

Stochastic bandits

- Let \mathcal{A} denote a set of actions.
- Let $\nu = {\{\nu_a; a \in A\}}$, called a *bandit model*, denote a set of distributions indexed by actions in A.
- Let \mathcal{P} denote a family of bandit models.
- On round t, a learner chooses $A_t \in \mathcal{A}$ and observes a *reward* $X_t \sim \nu_{A_t}$.
- Let $\mu_{\it a}$ be the expected reward of action $\it a$, and μ^{\star} be the optimal action,

$$\mu_{\mathsf{a}} = \mathbb{E}_{X \sim \nu_{\mathsf{a}}}[X], \qquad \mu^{\star} = \operatorname*{argmax}_{\mathsf{a} \in \mathcal{A}} \mu_{\mathsf{a}}.$$

- **Verbiage:** choose action a = play arm a = pull arm a

Learner's policy

A learner is characterized by a policy $\pi = \{\pi_t\}_{t \in \mathbb{N}}$, where, π_t maps the history $\{(A_s, X_s)\}_{s=1}^{t-1}$ to an action A_t :

$$\pi_t: ([K] \times \mathbb{R})^{t-1} \to \mathcal{A}.$$

If π is a randomized policy, π_t maps to a distribution over \mathcal{A} , and then an action is sampled from this distribution.

$$egin{aligned} \pi_t : ([\mathcal{K}] imes \mathbb{R})^{t-1} &
ightarrow \Delta(\mathcal{A}), \ \Delta(\mathcal{A}) &= egin{cases} \{
ho \in [0,1]^{|\mathcal{A}|}; \;
ho^ op \mathbf{1}_{|\mathcal{A}|} = 1 \} & ext{if } \mathcal{A} ext{ is finite} \ \{
ho : \mathcal{A}
ightarrow \mathbb{R}_+; \; \int_{\mathcal{A}}
ho = 1 \} & ext{more generally} \end{cases}$$

Regret

We define the regret as,

$$R_T = R_T(\pi,
u) = T\mu^* - \mathbb{E}\left[\sum_{t=1}^T X_t\right]$$

Here, the expectation $\mathbb E$ is with respect to the distribution of actions and rewards $A_1, X_1, A_2, X_2, \ldots$, induced by the interaction between the policy π and the bandit model ν .

We want $R_T \in o(T)$, i.e $\lim_{T\to\infty} \frac{R_T}{T} = 0$.

K-armed bandits

- Stochastic bandits when actions are a finite set, i.e $\mathcal{A} = [K]$.
- Will assume each ν_i is σ -sub-Gaussian, with σ known.

$$\mathcal{P} = \{ \nu = \{ \nu_a; a \in [K] \}, \text{ where } \nu_a \text{ is } \sigma\text{-sub-Gaussian for all } a \}.$$

- Will assume, without loss of generality, that

$$1 \ge \mu_1 \ge \mu_2 \ge \cdots \ge \mu_K \ge 0.$$

(the learner does not know the ordering)

- Denote the gap, $\Delta_i = \mu_1 - \mu_i$.

Ch 4.2: The Explore-then-Commit (ETC) algorithm

- ▶ **Given:** T (time horizon), m (number of exploration rounds per arm). (m < T/K)
- ▶ Pull each arm *m* times in the first *mK* rounds.
- ▶ $A \leftarrow \operatorname{argmax}_{i \in [K]} \widehat{\mu}_i$, where

$$\widehat{\mu}_i = \frac{1}{m} \sum_{s=1}^{mK} \mathbb{1}(A_s = i) X_s.$$

▶ Pull arm A for the remaining (T - mK) rounds.

ETC Theoretical properties

Let \mathcal{P} be the class of σ -sub-Gaussian K-armed bandit models.

Upper bound: Then for all $\nu \in \mathcal{P}$, π_m^{ETC} satisfies,

Recall, $\Delta_i = \mu_1 - \mu_i$.

$$R_T(\pi_m^{\mathrm{ETC}},
u) \leq m \sum_{i, \Delta_i > 0} \Delta_i + (T - mK) \sum_{i, \Delta_i > 0} \Delta_i \exp\left(\frac{-m\Delta_i^2}{4\sigma^2}\right).$$

If we choose $m = K^{-1/3}T^{1/3}$, then

$$\sup_{\nu \in \mathcal{P}} R_{\mathcal{T}} \left(\pi_{\mathcal{K}^{-1/3} \mathcal{T}^{1/3}}^{\text{ETC}}, \ \nu \right) \ \in \ \tilde{\mathcal{O}} \left(\mathcal{K}^{1/3} \mathcal{T}^{2/3} \right).$$

Lower bound. Cannot be improved (via a tighter analysis and/or better choice of m),

$$\inf_{m \in [T]} \sup_{\nu \in \mathcal{P}} R_T(\pi_m^{\text{ETC}}, \nu) \in \Omega\left(K^{1/3} T^{2/3}\right).$$

Proof: In homework 3 or 4.

Ch 4.3: The Upper Confidence Bound (UCB) algorithm

Based on the "optimism under uncertainty principle":

Pretend that the environment is as nice as statistically possible, given the data, and then behave myopically.

UCB Algorithm: designing upper confidence bounds

We will construct the following upper confidence (UCB) bound for the mean μ_i of each arm $i \in [N]$ after t rounds,

$$egin{aligned} N_{i,t} &= \sum_{s=1}^t \mathbbm{1}(A_s = i), & ext{samples from arm i so far.} \ & \widehat{\mu}_{i,t} &= rac{1}{N_{i,t}} \sum_{s=1}^t \mathbbm{1}(A_s = i) X_s, & ext{sample mean.} \ & e_{i,t} &= \sigma \sqrt{rac{2 \log(1/\delta_t)}{N_{i,t}}}, & ext{where $\delta_t = 1/(T^2 t)$.} \end{aligned}$$

In our proofs, we will show that $\widehat{\mu}_{i,t} + e_{i,t}$ is a UCB for μ_i , *i.e.*, $\mathbb{P}(\mu_i < \widehat{\mu}_{i,t} + e_{i,t}) \geq 1 - \delta_t$.

The UCB Algorithm

- ▶ **Given:** time horizon *T*
- for $t = 1, \ldots, K$,
 - ▶ Pull arm t and observe $X_t \sim \nu_t$.
- ▶ for t = K + 1, ..., T,
 - ▶ Pull arm $A_t = \operatorname{argmax}_{i \in [K]} \widehat{\mu}_{i,t-1} + e_{i,t-1}$
 - ▶ Observe $X_t \sim \nu_{A_t}$.

Theorem: UCB

Let \mathcal{P} denote the class of σ -sub-Gaussian bandit models and let $\nu \in \mathcal{P}$. Then, the following statements are true:

► Gap-dependent bound:

Recall,
$$\mu_1 < \cdots < \mu_K$$
, $\Delta_i = \mu_1 - \mu_i$.

$$R_{\mathcal{T}}(\pi^{\mathrm{UCB}},
u) \leq 3K + \sum_{i: \Delta_i > 0} \frac{24\sigma^2 \log(\mathcal{T})}{\Delta_i}$$

Worst-case bound:

$$\sup_{\nu \in \mathcal{P}} R_{\mathcal{T}}(\pi^{\text{UCB}}, \nu) \leq 3K + \sigma \sqrt{96KT \log(T)}.$$

Recall, we want $R_T \in o(T)$. In the worst case, we are guaranteed $\tilde{\mathcal{O}}(\sqrt{KT})$.

But, if gaps are large, we have $R_T \in \mathcal{O}(\log(T))$, as it is easier to distinguish between the arms if gaps are large.

Proof of UCB Theorem: Regret decomposition

Lemma (Regret decomposition). For any policy π (not just UCB), we have

$$R_{\mathcal{T}}(\pi, \nu) = \sum_{i; \Delta_i > 0} \Delta_i \mathbb{E}[N_{i, \mathcal{T}}]$$

where, $N_{i,T} = \sum_{t=1}^{T} \mathbb{1}(A_t = i)$.

Proof. Let us first write the regret as follows,

$$R_{T} = \sum_{t=1}^{T} (\mu_{1} - \mathbb{E}[X_{t}]) = \sum_{t=1}^{T} \left(\mu_{1} - \mathbb{E}\left[\sum_{i=1}^{K} \mathbb{1}(A_{t} = i)X_{t}\right]\right)$$

$$= \sum_{t=1}^{T} \sum_{i=1}^{K} \mathbb{E}\left[(\mu_{1} - X_{t})\mathbb{1}(A_{t} = i)\right] = \sum_{t=1}^{T} \sum_{i=1}^{K} \mathbb{E}\left[\underbrace{\mathbb{E}\left[(\mu_{1} - X_{t})\mathbb{1}(A_{t} = i)|A_{t}\right]}_{(*)}\right]$$

Proof of UCB Theorem: Regret decomposition (cont'd)

Let us simplify (*) as follows:

$$\begin{split} (*) &= \mathbb{1}(A_t = i) \mathbb{E}\left[(\mu_1 - X_t)|A_t\right] \\ &= \mathbb{1}(A_t = i)(\mu_1 - \mu_{A_t}) \qquad \text{as } \mathbb{E}[X_t|A_t = a] = \mu_a \\ &= \mathbb{1}(A_t = i)(\mu_1 - \mu_i) \qquad \text{as expression is not 0 only when } A_t = i \\ &= \mathbb{1}(A_t = i)\Delta_i. \end{split}$$

Plugging this back into our expression for R_T , we get

$$R_{T} = \sum_{t=1}^{T} \sum_{i=1}^{K} \mathbb{E} \left[\mathbb{1}(A_{t} = i) \Delta_{i} \right]$$
$$= \sum_{i=1}^{K} \Delta_{i} \mathbb{E} \left[\sum_{t=1}^{T} \mathbb{1}(A_{t} = i) \right] = \sum_{i=1}^{K} \Delta_{i} \mathbb{E} \left[N_{i,T} \right]$$

Proof of UCB Theorem: Good event

Recall, that the UCB is $\widehat{\mu}_{i,t} + e_{i,t}$, where

$$\begin{aligned} N_{i,t} &= \sum_{s=1}^t \mathbb{1}(A_s = i), \qquad \widehat{\mu}_{i,t} = \frac{1}{N_{i,t}} \sum_{s=1}^t \mathbb{1}(A_s = i) X_s, \\ e_{i,t} &= \sigma \sqrt{\frac{2 \log(1/\delta_t)}{N_{i,t}}}, \qquad \text{where } \delta_t = 1/(T^2 t). \end{aligned}$$

Define the following good events, G_1 and G_i for all i such that $\Delta_i > 0$,

$$G_1 = \{ \forall t \geq K, \ \mu_1 < \widehat{\mu}_{1,t} + e_{1,t} \}, \qquad G_i = \{ \forall t \geq K, \ \mu_i > \widehat{\mu}_{i,t} - e_{i,t} \}.$$

To bound G_1^c , G_i^c , we will assume w.l.o.g that each arm i samples rewards $\{Y_{i,r}\}_{r\geq 1}$ and we observe these samples one by one as we pull each arm. Therefore, we can write,

$$\widehat{\mu}_{i,t} = \frac{1}{N_{i,t}} \sum_{s=1}^{t} \mathbb{1}(A_s = i) X_s = \frac{1}{N_{i,t}} \sum_{r=1}^{N_{i,t}} Y_{i,r}.$$

Proof of UCB Theorem: Good event (cont'd)

Claim. For all i, we have $\mathbb{P}(G_i^c) \leq \frac{1}{T}$.

Proof. We will show this for G_1 . The proof for G_i , where $\Delta_i > 0$, follows similarly.

$$\begin{split} \mathbb{P}(G_{1}^{c}) &= \mathbb{P}\left(\exists\ t \geq K \text{ such that } \mu_{1} > \widehat{\mu}_{1,t} + e_{1,t}\right) \\ &\leq \sum_{t \geq K} \mathbb{P}\left(\mu_{1} > \widehat{\mu}_{1,t} + e_{1,t}\right) \quad \text{union bound} \\ &= \sum_{t \geq K} \mathbb{P}\left(\mu_{1} > \frac{1}{N_{1,t}} \sum_{r=1}^{N_{1,t}} Y_{1,r} + \sigma \sqrt{\frac{2\log(1/\delta_{t})}{N_{1,t}}}\right) \\ &\leq \sum_{t \geq K} \mathbb{P}\left(\exists\ s \in [1,2,\ldots,t-K+1], \text{ s.t } \mu_{1} > \frac{1}{s} \sum_{r=1}^{s} Y_{1,r} + \sigma \sqrt{\frac{2\log(1/\delta_{t})}{s}}\right) \\ &\stackrel{(*)}{\underbrace{}} \end{split}$$

Proof of UCB Theorem: Good event (cont'd)

Next, we will bound (*) using the union bound and sub-Gaussian concentration,

$$(*) \leq \sum_{s=1}^{t-K+1} \mathbb{P}\left(\mu_1 > \frac{1}{s} \sum_{r=1}^s Y_{1,r} + \sigma \sqrt{\frac{2\log(1/\delta_t)}{s}}\right) \quad \text{union bound}$$

$$\leq \sum_{s=1}^{t-K+1} \underbrace{\exp\left(\frac{-s}{2\sigma^2} \times \sigma^2 \frac{2\log(1/\delta_t)}{s}\right)}_{=\delta_t = \frac{1}{T^2t}} \quad \text{Sub-Gaussian concentration}$$

$$\leq \frac{1}{T^2}. \quad \text{As there are at most } t-K+1 \text{ terms in the summation.}$$

Therefore, $\mathbb{P}(G_c^1) \leq \sum_{t \geq K} (*) \leq \frac{1}{T}$.

Proof of UCB Theorem: Gap-dependent bound

$$\text{Recall,} \quad \textit{G}_1 = \left\{ \forall \ t \geq \textit{K}, \ \mu_1 < \widehat{\mu}_{1,t} + e_{1,t} \right\}, \qquad \textit{G}_i = \left\{ \forall \ t \geq \textit{K}, \ \mu_i > \widehat{\mu}_{i,t} - e_{i,t} \right\}.$$

Next, we will show that, under $G_1 \cap G_i$, for any i such that $\Delta_i > 0$, we have

$$N_{i,T} \leq \frac{24\sigma^2\log(T)}{\Delta_i^2} + 1.$$

Proof. If an arm is never pulled after round K, then the bound holds trivially. Suppose instead arm i was last pulled on round t + 1 > K. Then,

$$\begin{array}{ll} \mu_{i} + 2e_{i,t} \underbrace{\geq}_{\text{under } G_{i}} \widehat{\mu}_{i,t} + e_{i,t} \underbrace{\geq}_{\text{UCB}} \widehat{\mu}_{1,t} + e_{1,t} \underbrace{\geq}_{\text{under } G_{1}} \mu_{1} \\ \\ \Longrightarrow & \mu_{1} - \mu_{i} \leq 2e_{i,t} = 2\sigma\sqrt{\frac{2\log(T^{2}t)}{N_{i,t}}} \leq 2\sigma\sqrt{\frac{2\log(T^{3})}{N_{i,t}}} \\ \\ \Longrightarrow & N_{i,t} \leq \frac{8\sigma^{2}\log(T^{3})}{\Delta^{2}_{\cdot}} \Longrightarrow & N_{i,T} = N_{i,t} + 1 \leq \frac{24\sigma^{2}\log(T)}{\Delta^{2}_{\cdot}} + 1, \end{array}$$

where the last step uses the fact that i was last pulled in rd t+1.

Proof of UCB Theorem: Gap-dependent bound (cont'd)

Let us now decompose $\mathbb{E}[N_{i,T}]$ as follows,

$$\mathbb{E}[N_{i,T}] = \mathbb{E}[N_{i,T}|G_1 \cap G_i] \, \mathbb{P}(G_1 \cap G_i) + \mathbb{E}[N_{i,T}|G_1^c \cup G_i^c] \, \mathbb{P}(G_1^c \cup G_i^c)$$

Noting that $\mathbb{P}(G_1^c \cup G_i^c) \leq \mathbb{P}(G_1^c) + \mathbb{P}(G_i^c) \leq \frac{2}{T}$, we have

$$\mathbb{E}[N_{i,T}] \leq \left(\frac{24\sigma^2 \log(T)}{\Delta_i^2} + 1\right) \cdot 1 + T \cdot \frac{2}{T}$$

$$\leq \frac{24\sigma^2 \log(T)}{\Delta_i^2} + 3$$

Therefore,

$$\begin{split} R_T &= \sum_{i:\Delta_i > 0} \Delta_i \mathbb{E}[\textit{N}_{i,T}] & \text{regret decomposition.} \\ &\leq \sum_{i:\Delta_i > 0} \left(\Delta_i \cdot \frac{24\sigma^2 \log(T)}{\Delta_i^2} + 3\Delta_i \right) \leq 3K + \sum_{i:\Delta_i > 0} \frac{24\sigma^2 \log(T)}{\Delta_i} \end{split}$$

Proof of UCB Theorem: Worst-case bound

Recall,
$$R_T = \sum_{i:\Delta_i > 0} \Delta_i \mathbb{E}[N_{i,T}]$$
 $\mathbb{E}[N_{i,T}] \leq \frac{24\sigma^2 \log(T)}{\Delta_i^2} + 3$

Letting Δ be a value to be specified shortly, let us write

$$\begin{split} R_T &= \sum_{i:\Delta_i \leq \Delta} \Delta_i \mathbb{E}[N_{i,T}] \; + \; \sum_{i;\Delta_i > \Delta} \Delta_i \mathbb{E}[N_{i,T}] \\ &\leq \Delta T \; + \; \sum_{i;\Delta_i > \Delta} \Delta_i \left(\frac{24\sigma^2 \log(T)}{\Delta_i^2} + 3 \right) \quad \text{as } \sum_i \mathbb{E}[N_{i,T}] \leq T \, . \\ &\leq \Delta T \; + \; \frac{24\sigma^2 \log(T)}{\Delta} \cdot K + 3K \quad \text{at most K terms in sum} \, . \end{split}$$

Now, choosing $\Delta = \sigma \sqrt{\frac{24K \log(T)}{T}}$, we have

$$R_T \le 2\sigma\sqrt{24KT\log(T)} + 3K.$$

Alternative proof of worst-case bound

We will now look at an alternative proof of the worst-case bound, as this technique will also apply beyond K-armed bandits. For this, let us write the regret as follows,

$$R_T = \mathbb{E}\left[\sum_{t=1}^T \mu_1 - X_t\right]$$
$$= \mathbb{E}\left[\sum_{t=1}^T \mathbb{E}\left[\mu_1 - X_t \middle| A_t\right]\right]$$
$$= \mathbb{E}\left[\sum_{t=1}^T \mu_1 - \mu_{A_t}\right]$$

The quantity $\sum_{t=1}^{T} \mu_1 - \mu_{A_t}$ is referred to as the pseudo-regret.

Define the good event $G = \bigcap_{i=1}^K G_i$, where

$$G_1 = \{ \forall t \geq K, \ \mu_1 < \widehat{\mu}_{1,t} + e_{1,t} \}, \qquad G_i = \{ \forall t \geq K, \ \mu_i > \widehat{\mu}_{i,t} - e_{i,t} \}.$$

We already showed $\mathbb{P}(G_i^c) \leq \frac{1}{T}$ so $\mathbb{P}(G^c) \leq \frac{K}{T}$. Now write,

$$R_{T} = \mathbb{E}\left[\sum_{t=1}^{T} \mu_{1} - \mu_{A_{t}}\right]$$

$$= \mathbb{E}\left[\sum_{t=1}^{T} \mu_{1} - \mu_{A_{t}}\middle|G\right] \cdot \underbrace{\mathbb{P}(G)}_{\leq 1} + \underbrace{\mathbb{E}\left[\sum_{t=1}^{T} \mu_{1} - \mu_{A_{t}}\middle|G^{c}\right]}_{\leq T} \cdot \underbrace{\mathbb{P}(G^{c})}_{\leq \frac{K}{T}}$$

We will now focus on bounding $\mu_1 - \mu_{A_t}$ under G.

First note that under G we have,

$$\mu_1 \underbrace{\leq}_{\mathsf{under}\ G_1} \widehat{\mu}_{1,t-1} + e_{1,t-1} \underbrace{\leq}_{\mathsf{UCB}} \widehat{\mu}_{A_t,t-1} + e_{A_t,t-1} \underbrace{\leq}_{\mathsf{under}\ G_i} \mu_{A_t} + 2e_{A_t,t-1}$$

Therefore, we have

$$\mu_1 - \mu_{A_t} \le 2e_{A_t, t-1} = 2\sigma \sqrt{\frac{2\log(T^2(t-1))}{N_{A_t, t-1}}}.$$

This gives us the following bound for $\sum_{t=1}^{T} \mu_1 - \mu_{A_t}$ under G,

$$\sum_{t=1}^{T} (\mu_{1} - \mu_{A_{t}}) = \sum_{t=1}^{K} (\mu_{1} - \mu_{A_{t}}) + \sum_{t=K+1}^{T} (\mu_{1} - \mu_{A_{t}})$$

$$\leq K + \sum_{t=K+1}^{T} 2\sigma \sqrt{\frac{2 \log(T^{2}(t-1))}{N_{A_{t},t-1}}} \leq K + \sigma \sqrt{24 \log(T)} \underbrace{\sum_{t=K+1}^{T} \frac{1}{\sqrt{N_{A_{t},t-1}}}}_{(*)}.$$

Let us bound the term (*) as follows,

$$\begin{split} \sum_{t=K+1}^{T} \frac{1}{\sqrt{N_{A_t,t-1}}} &= \sum_{i=1}^{K} \sum_{s=1}^{N_{i,T-1}} \frac{1}{\sqrt{s}} \\ &\leq 2 \sum_{i=1}^{K} \sqrt{N_{i,T-1}} \quad \text{as } \sum_{s=1}^{m} 1/\sqrt{s} \leq 2\sqrt{m}, \text{ bounding by integral} \\ &= 2K \left(\frac{1}{K} \sum_{i=1}^{K} \sqrt{N_{i,T-1}}\right) \\ &\leq 2K \sqrt{\frac{1}{K} \sum_{i=1}^{K} N_{i,T-1}} \quad \text{Jensen's inequality.} \\ &= 2\sqrt{K(T-1)} \leq 2\sqrt{KT}. \end{split}$$

Therefore, under G, we have

$$\sum_{t=1}^{T} \mu_1 - \mu_{A_t} \leq K + \sigma \sqrt{24 \log(T)} \underbrace{\sum_{t=K+1}^{T} \frac{1}{\sqrt{N_{A_t,t-1}}}}_{(*)} \leq K + \sigma \sqrt{96KT \log(T)}.$$

Therefore,

$$R_{T} = \mathbb{E}\left[\sum_{t=1}^{T} \mu_{1} - \mu_{A_{t}} \middle| G\right] \cdot \underbrace{\mathbb{P}(G)}_{\leq 1} + \underbrace{\mathbb{E}\left[\sum_{t=1}^{T} \mu_{1} - \mu_{A_{t}} \middle| G^{c}\right]}_{\leq T} \cdot \underbrace{\mathbb{P}(G^{c})}_{\leq K/T}$$

$$\leq 2K + \sigma \sqrt{96KT \log(T)}$$

Ch 4.4: Lower bounds for K-armed bandits

We wish to prove a minimax lower bound of the form,

$$\inf_{\pi} \sup_{\nu \in \mathcal{P}} R_{\mathcal{T}}(\pi, \nu) \in \Omega(?).$$

Reduction to (binary) testing: We will do so by considering *two alternatives* and showing that no policy can simultaneously achieve small regret on both alternatives.

For this, recall the Bretagnolle-Huber inequality: for any event A,

$$P_0(A) + P_1(A^c) \ge \frac{1}{2}e^{-\mathrm{KL}(P_0,P_1)}.$$

Divergence decomposition lemma

The distributions are now over sequences of actions and rewards $A_1, X_1, A_2, X_2, \ldots$ induced by the interaction between a policy and bandit model. The following lemma will be useful in computing the KL divergence between these distributions.

Lemma. Let ν, ν' be two K-armed bandit models. For a fixed (possibly randomized) policy π , let P, P' denote the probability distribution over the sequence of actions and rewards $A_1, X_1, \ldots, A_T, X_T$ under bandit models ν, ν' respectively. Let \mathbb{E}_{ν} denote the expectation under bandit model ν . Then, for all $T \geq 1$,

$$\mathrm{KL}(P,P') = \sum_{i=1}^K \mathbb{E}_{\nu}[N_{i,T}] \mathrm{KL}(\nu_i,\nu_i')$$

where
$$N_{i,T} = \sum_{t=1}^{T} \mathbb{1}(A_t = i)$$
, and $\nu = {\{\nu_i\}_{i \in [K]}}$, $\nu' = {\{\nu'_i\}_{i \in [K]}}$.

Divergence decomposition lemma: intuition

Suppose you had a static (non-adaptive) policy π which pulled the arms N_1, \ldots, N_K times. Then, for two bandit models ν , ν' ,

$$\begin{split} \operatorname{KL}(P,P') &= \mathbb{E}_{\nu} \left[\log \left(\frac{p(A_1,X_1,\ldots,A_T,X_T)}{p'(A_1,X_1,\ldots,A_T,X_T)} \right) \right] \\ &= \mathbb{E}_{\nu} \left[\log \left(\frac{p(\left\{\left\{Y_{i,r}\right\}_{r=1}^{N_i}\right\}_{i=1}^K)}{p'(\left\{\left\{Y_{i,r}\right\}_{r=1}^{N_i}\right\}_{i=1}^K)} \right) \right] \quad \text{as only observations differ} \\ &= \mathbb{E}_{\nu} \left[\log \left(\frac{\prod_{i=1}^K \prod_{s=1}^{N_i} p_{\nu_i}(Y_{i,r})}{\prod_{i=1}^K \prod_{s=1}^{N_i} p_{\nu_i'}(Y_{i,r})} \right) \right] \\ &= \sum_{i=1}^K \operatorname{KL}(\nu_i^{N_i}, {\nu'}_i^{N_i}) = \sum_{i=1}^K N_i \operatorname{KL}(\nu_i, \nu_i'). \quad \text{as obs are i.i.d} \end{split}$$

The divergence decomposition lemma states that a similar result holds in expectation for adaptive policies (even though observations are not i.i.d).

Divergence decomposition lemma: proof

For a policy π , let $\pi(\cdot|a_1, x_1, \ldots, a_{t-1}, x_{t-1})$ be probability distribution over the actions [K] for round t given the history $a_1, x_1, \ldots, a_{t-1}, x_{t-1}$.

Consider any given sequence $a_1, x_1, \ldots, a_T, x_T$ of actions and rewards. Let p, p' denote the densities (e.g., pdfs, pmfs) of P, P' and let $\widetilde{\nu}_i, \widetilde{\nu}_i'$ denote the densities of ν_i, ν_i' respectively. Then,

$$\begin{split} \rho(a_1,x_1,\dots,a_T,x_T) &= \prod_{t=1}^T \rho(a_t,x_t|a_1,x_1,\dots,a_{t-1},x_{t-1}) \\ &= \prod_{t=1}^T \pi(a_t|a_1,x_1,\dots,a_{t-1},x_{t-1})\widetilde{\nu}_{a_t}(x_t) \\ \text{Similarly, } \rho'(a_1,x_1,\dots,a_T,x_T) &= \prod_{t=1}^T \pi(a_t|a_1,x_1,\dots,a_{t-1},x_{t-1})\widetilde{\nu}'_{a_t}(x_t) \end{split}$$

Divergence decomposition lemma: proof (cont'd)

Therefore, for any given sequence $a_1, x_1, \dots, a_T, x_T$,

$$\log\left(\frac{p(a_1,x_1,\ldots,a_T,x_T)}{p'(a_1,x_1,\ldots,a_T,x_T)}\right) = \log\left(\frac{\widetilde{\nu}_{a_1}(x_1)\times\cdots\times\widetilde{\nu}_{a_T}(x_T)}{\widetilde{\nu}'_{a_1}(x_1)\times\cdots\times\widetilde{\nu}'_{a_T}(x_T)}\right) = \sum_{t=1}^T \log\left(\frac{\widetilde{\nu}_{a_t}(x_t)}{\widetilde{\nu}'_{a_t}(x_t)}\right).$$

Therefore.

$$KL(P, P') = \mathbb{E}_{\nu} \left[\log \left(\frac{p(A_1, X_1, \dots, A_T, X_T)}{p'(A_1, X_1, \dots, A_T, X_T)} \right) \right] = \sum_{t=1}^{I} \mathbb{E}_{\nu} \left[\log \left(\frac{\widetilde{\nu}_{A_t}(X_t)}{\widetilde{\nu}'_{A_t}(X_t)} \right) \right]$$

$$= \sum_{t=1}^{T} \mathbb{E}_{\nu} \left[\log \left(\frac{\widetilde{\nu}_{A_t}(X_t)}{\widetilde{\nu}'_{A_t}(X_t)} \right) \sum_{i=1}^{K} \mathbb{1}(A_t = i) \right]$$

$$= \sum_{i=1}^{K} \sum_{t=1}^{T} \mathbb{E}_{\nu} \left[\mathbb{E}_{\nu} \left[\log \left(\frac{\widetilde{\nu}_{A_t}(X_t)}{\widetilde{\nu}'_{A_t}(X_t)} \right) \mathbb{1}(A_t = i) \middle| A_t \right] \right]$$

$$(*)$$

Divergence decomposition lemma: proof (cont'd)

We now observe that (*) can be expressed as follows,

$$(*) = \mathbb{E}_{\nu} \left[\log \left(\frac{\widetilde{\nu}_{A_{t}}(X_{t})}{\widetilde{\nu}_{A_{t}}'(X_{t})} \right) \mathbb{1}(A_{t} = i) \, \middle| A_{t} \right] = \mathbb{1}(A_{t} = i) \mathbb{E}_{\nu} \left[\log \left(\frac{\widetilde{\nu}_{A_{t}}(X_{t})}{\widetilde{\nu}_{A_{t}}'(X_{t})} \right) \, \middle| A_{t} \right]$$

$$= \mathbb{1}(A_{t} = i) \underbrace{\mathbb{E}_{\nu} \left[\log \left(\frac{\widetilde{\nu}_{i}(X_{t})}{\widetilde{\nu}_{i}(X_{t})} \right) \right]}_{=\mathrm{KL}(\nu_{i}, \nu_{i}')} \quad \text{as} = 0 \text{ when } A_{t} \neq i$$

Therefore, noting that there is nothing random in $\mathrm{KL}(\nu_i,\nu_i')$,

$$\mathrm{KL}(P,P') = \sum_{i=1}^K \sum_{t=1}^T \mathbb{E}_{\nu}[\mathbb{1}(A_t=i)] \mathrm{KL}(\nu_i,\nu_i') = \sum_{i=1}^K \mathrm{KL}(\nu_i,\nu_i') \underbrace{\mathbb{E}_{\nu}\left[\sum_{t=1}^T \mathbb{1}(A_t=i)\right]}_{=\mathbb{E}[N_{i,T}]}.$$

31/64

Minimax lower bounds for K-armed bandits

Theorem. Let \mathcal{P} be the class of σ sub-Gaussian K-armed bandit models, where $K \geq 2$. Then, for some universal constant C,

$$\inf_{\pi} \sup_{\nu \in \mathcal{P}} R_T(\pi, \nu) \geq C\sigma\sqrt{T(K-1)} \in \Omega(\sigma\sqrt{TK}).$$

Proof. Let π be given. Then, for any two bandit models ν, ν' , we have

$$\sup_{\nu \in \mathcal{P}} R_T(\pi,\nu) \geq \max \left(R_T(\nu,\pi), R_T(\nu',\pi) \right) \geq \frac{1}{2} \left(R_T(\pi,\nu) + R_T(\pi,\nu') \right).$$

We will lower bound $(R_T(\pi, \nu) + R_T(\pi, \nu'))$ for any policy π .

Minimax lower bound proof: designing alternatives

We will choose ν, ν' , dependent on π to lower bound $(R_T(\pi, \nu) + R_T(\pi, \nu'))$.

Let $\nu = {\{\nu_i = \mathcal{N}(\mu_i, \sigma^2)\}_{i \in [K]}}$, where $\mu_1 = \delta$, $\mu_j = 0$ for all $j \neq 1$. Let \mathbb{E}_{ν} denote expectation w.r.t the sequence $A_1, X_1, \ldots, A_T, X_T$ due to π 's interaction with ν .

Since $\sum_{i=1}^K \mathbb{E}_{\nu}[N_{i,T}] = T$, there exists some $j \in \{2, \dots, K\}$ such that $\mathbb{E}_{\nu}[N_{j,T}] \leq \frac{T}{K-1}$.

Let $\nu' = \{\nu'_i = \mathcal{N}(\mu'_i, \sigma^2)\}_{i \in [K]}$ where

$$\mu_i' = \begin{cases} \mu_i & \text{if } i \neq j, \\ 2\delta & \text{if } i = j \end{cases}$$

Minimax lower bound proof (cont'd)

Recall, Bretagnolle-Huber inequality. for any event A, $P_0(A) + P_1(A^c) \ge \frac{1}{2}e^{-\mathrm{KL}(P_0,P_1)}$.

Let P, P' denote the probability distribution of the sequence $A_1, X_1, \ldots, A_T, X_T$ due to π 's interaction with ν and ν' respectively. We have,

$$R_T(\pi,\nu) \geq P\left(N_{1,T} \leq \frac{T}{2}\right) \frac{T\delta}{2}, \qquad R_T(\pi,\nu') \geq P'\left(N_{1,T} > \frac{T}{2}\right) \frac{T\delta}{2}.$$

Therefore,

$$egin{aligned} R_T(\pi,
u) + R_T(\pi,
u') &\geq rac{T\delta}{2} \left(P\left(N_{1,T} \leq rac{T}{2}
ight) + P'\left(N_{1,T} > rac{T}{2}
ight)
ight) \ &\geq rac{T\delta}{2} \cdot rac{1}{2} \exp\left(-\mathrm{KL}(P,P')
ight) \end{aligned}$$
 Bretagnolle-Huber ineq

Minimax lower bound proof (cont'd)

Recall, we have shown
$$\sup_{\nu \in \mathcal{P}} R_T(\pi, \nu) \geq \frac{1}{2} \left(R_T(\pi, \nu) + R_T(\pi, \nu') \right) \geq \frac{T\delta}{8} \exp\left(-\mathrm{KL}(P, P') \right)$$

$$\mathrm{KL}(P, P') = \sum_{i=1}^K \mathbb{E}_{\nu}[N_{i,T}] \mathrm{KL}(\nu_i, \nu_i') \qquad \text{Divergence decomposition}$$

In our alternatives, ν, ν' only differ in arm j, which, recall, was chosen so that $\mathbb{E}_{\nu}[N_{j,T}] \leq \frac{T}{K-1}$. Hence,

$$\mathrm{KL}(P,P') = \underbrace{\mathbb{E}_{\nu}[\mathsf{N}_{j,T}]}_{\leq \frac{T}{K-1}} \underbrace{\mathrm{KL}(\nu_{j},\nu'_{j})}_{=\frac{(2\delta)^{2}}{2\sigma^{2}}} \leq \frac{2\delta^{2}T}{(K-1)\sigma^{2}}.$$

Therefore,
$$\sup_{\nu \in \mathcal{P}} R_T(\pi, \nu) \geq \frac{T\delta}{8} \exp\left(\frac{-2\delta^2 T}{(K-1)\sigma^2}\right)$$

$$\geq \sigma \sqrt{T(K-1)} \cdot \frac{1}{8} e^{-2} \quad \text{Choosing } \delta = \sigma \sqrt{\frac{K-1}{T}}$$

Gap-dependent lower bound

Theorem (Theorem 16.4 in LS) Let ν be a K-armed bandit model with Gaussian rewards of variance σ^2 . Let $\mu = \mu(\nu) \in \mathbb{R}^K$ be the means of the arms in ν . Let

$$\mathcal{P} = \left\{ \nu'; \mu_i(\nu') \in [\mu_i, \mu_i + 2\Delta_i], \ \nu'_i = \mathcal{N}(\mu_i(\nu'), 1) \right\}$$

Say that π is a policy such that $R_T(\pi, \nu') \leq cT^p$ for some c > 0 and $p \in (0,1)$ for all $\nu' \in \mathcal{P}$. Then,

$$R_T(\pi,
u) \geq rac{1}{2} \sum_{i, \Delta_i > 0} rac{(1-
ho) \log(T) + \log(\Delta_i/(8c))}{\Delta_i}$$

Ch 4.5: Stochastic linear bandits

In many practical applications, there could be a very large (potentially infinite) number of arms, but there is additional structure in the problem.

We will next look at a *linear bandit model*, where the arms are in a Euclidean space, and the expected reward is a linear function

Stochastic linear bandits:

- ▶ Action space, $\mathcal{A} \subset \mathbb{R}^d$.
- ▶ There exists some *unknown true parameter*, $\theta_{\star} \in \mathbb{R}^d$.
- ▶ When we pull action $A_t \in A$ on round t, we observe

$$X_t = \theta_{\star}^{\top} A_t + \epsilon_t,$$

where $\mathbb{E}[\epsilon_t] = 0$ and ϵ_t is σ -sub-Gaussian.

Regret

We can define the regret as,

$$R_T = T \max_{a \in \mathcal{A}} \theta_{\star}^{\top} a - \mathbb{E} \left[\sum_{t=1}^T X_t \right]$$

= $T \theta_{\star}^{\top} a_{\star} - \mathbb{E} \left[\sum_{t=1}^T \theta_{\star}^{\top} A_t \right]$

Here,
$$\mathbb{E}[X_t] = \mathbb{E}[\mathbb{E}[X_t|A_t]] = \mathbb{E}[\theta_{\star}^{\top}A_t].$$

We will assume $a_{\star} \stackrel{\Delta}{=} \operatorname{argmax}_{a \in \mathcal{A}} \theta_{\star}^{\top} a$ exists.

The LinUCB Algorithm

Similar idea as UCB for K-armed bandits:

Construct upper confidence bounds (UCB) on the expected reward $\theta_{\star}^{\top}a$ of arm a, and choose the arm which maximizes the UCB.

- ▶ **Given:** time horizon *T*
- ightharpoonup for $t = 1, \ldots, T$,
 - ▶ Pull arm $A_t = \operatorname{argmax}_{a \in \mathcal{A}} \operatorname{UCB}_{t-1}(a)$
 - Observe $X_t = \theta_{\star}^{\top} A_t + \epsilon_t$.

Designing a UCB

Recall the regularized ordinary least squares estimator for linear regression,

$$\widehat{\theta}_t \stackrel{\Delta}{=} \underset{\theta \in \mathbb{R}^d}{\operatorname{argmin}} \left(\lambda \|\theta\|_2^2 + \sum_{s=1}^t (X_s - \theta^\top A_s)^2 \right)$$

You can verify (after some elementary calculus),

$$\widehat{\theta}_t = V_t^{-1} \sum_{s=1}^t A_s X_s, \quad \text{where, } V_t = \lambda I + \sum_{s=1}^t A_s A_s^{\top}.$$

We will use

$$UCB_{t-1}(a) = \widehat{\theta}_{t-1}^{\top} a + \beta_{t-1} \|a\|_{V_{t-1}^{-1}}.$$

for an appropriate choice of β_t . Here, $||x||_Q = \sqrt{x^\top Qx}$ is the Q-norm.

Intuition. $\widehat{\theta}_{t-1}^{\top}a$ is an estimate for $\theta_{\star}^{\top}a$ and encourages exploitation. $\|a\|_{V_{\cdot}^{-1}}$ is large for under-explored a and encourages exploration.

LinUCB: Upper bound on the regret.

Theorem. We will assume $\|\theta_{\star}\| \leq B$ (with B known) and that the rewards are bounded $0 \leq \theta_{\star}^{\top} a \leq 1$ for all $a \in \mathcal{A}$. Let $L = \max_{a \in \mathcal{A}} \|a\|_2$ (with L known). Then, if we choose

$$eta_t = \max\left(rac{1}{2}, \ \sqrt{\lambda}B + \sigma\sqrt{d\log(dT^2)(2+\log(1+tL^2))}
ight)$$

the regret satisfies

$$R_T \leq \ 2 \ + \ 2\sqrt{2}eta_T\sqrt{dT\log\left(1+TL^2/(d\lambda)
ight)} \ \in \ ilde{\mathcal{O}}\left(d\sqrt{T}
ight).$$

LinUCB: Proof outline.

Our strategy (similar to worst case proof for K-armed bandits) is as follows. First, consider the pseudo-regret,

$$R_T = T \max_{a \in \mathcal{A}} \theta_{\star}^{\top} a - \mathbb{E} \left[\sum_{t=1}^T X_t \right] = \mathbb{E} \left[\underbrace{\sum_{t=1}^T (\theta_{\star}^{\top} a_{\star} - \theta_{\star}^{\top} A_t)}_{=\overline{R}_T \text{ (pseudo-regret)}} \right]$$

Define a good event G, and bound the regret via,

$$R_{\mathcal{T}} = \mathbb{E}[\overline{R}_{\mathcal{T}}|G] \underbrace{\mathbb{P}(G)}_{\leq 1} + \underbrace{\mathbb{E}[\overline{R}_{\mathcal{T}}|G^c]}_{\leq \mathcal{T}} \underbrace{\mathbb{P}(G^c)}_{\leq \text{small}}.$$

To bound $\mathbb{E}[\overline{R}_T|G]$,

- Under the good event G: the confidence intervals trap the true means. - Bound the instantaneous pseudo-regret $\theta_{\star}^{\top} a_{\star} - \theta_{\star}^{\top} A_{t}$ under G.

LinUCB Proof: Good event

Let us consider the good event in which the estimate is close to the true expected rewards for all arms on all rounds, *i.e.*,

$$G = \left\{ \left| \theta_{\star}^{\top} a - \widehat{\theta}_{t}^{\top} a \right| \leq \beta_{t} \|a\|_{V_{t}^{-1}}, \quad \text{for all } a \in \mathcal{A}, \ t \in [T] \right\}.$$

where, recall

$$V_t = \lambda I + \sum_{s=1}^t A_s A_s^{\top},$$

$$\widehat{\theta}_t = \operatorname*{argmin}_{\theta \in \mathbb{R}^d} \left(\lambda \|\theta\|_2^2 + \sum_{s=1}^t (X_s - \theta^{\top} A_s)^2 \right) = V_t^{-1} \sum_{s=1}^t A_s X_s,$$

Claim 1: $\mathbb{P}(G^c) \leq \frac{1}{T}$. We will prove this later.

LinUCB Proof: Bounding the instantaneous pseudo-regret under G

$$\text{Recall,} \quad G = \left\{ \left| \theta_{\star}^{\top} a - \widehat{\theta}_{t}^{\top} a \right| \leq \beta_{t} \|a\|_{V_{t}^{-1}}, \quad \text{for all } a \in \mathcal{A}, \ t \in [T] \right\}.$$

Claim 2: Under G, we have, for all t > 2,

$$\theta_{\star}^{\top} a_{\star} - \theta_{\star}^{\top} A_t \leq 2\beta_t \|A_t\|_{V_{t-1}}.$$

Proof. We will upper bound the instantaneous pseudo-regret as follows,

$$\begin{split} \theta_{\star}^{\top} a_{\star} &- \theta_{\star}^{\top} A_{t} \\ &\leq \left(\widehat{\theta}_{t-1}^{\top} a_{\star} + \beta_{t-1} \| a_{\star} \|_{V_{t-1}^{-1}} \right) - \left(\widehat{\theta}_{t-1}^{\top} A_{t} - \beta_{t-1} \| A_{t} \|_{V_{t-1}^{-1}} \right) & \text{Good event} \\ &\leq \left(\widehat{\theta}_{t-1}^{\top} A_{t} + \beta_{T} \| A_{t} \|_{V_{t-1}^{-1}} \right) - \left(\widehat{\theta}_{t-1}^{\top} A_{t} - \beta_{t-1} \| A_{t} \|_{V_{t-1}^{-1}} \right) & A_{t} \text{ maximizes UCB} \\ &\leq 2\beta_{t-1} \| A_{t} \|_{V_{t-1}^{-1}} \end{split}$$

LinUCB Proof: Bounding \overline{R}_T under G

$$\begin{split} & \text{Recall:} \qquad \textit{(i)} \ 0 \leq \boldsymbol{\theta}_{\star}^{\top} \boldsymbol{a} \leq 1 \ \text{for all } \boldsymbol{a} \in \mathcal{A}, \qquad \textit{(ii)} \ \boldsymbol{\beta}_t = \max(1/2, \ \ldots) \\ & \overline{R}_T = \sum_{t=1}^T \left(\boldsymbol{\theta}_{\star}^{\top} \boldsymbol{a}_{\star} - \boldsymbol{\theta}_{\star}^{\top} \boldsymbol{A}_t\right) \leq 1 + \sum_{t=2}^T \left(\boldsymbol{\theta}_{\star}^{\top} \boldsymbol{a}_{\star} - \boldsymbol{\theta}_{\star}^{\top} \boldsymbol{A}_t\right) \\ & \leq 1 + \sum_{t=2}^T \min\left(1, \ 2\boldsymbol{\beta}_{t-1} \|\boldsymbol{A}_t\|_{V_{t-1}^{-1}}\right) \quad \text{by } \textit{(i)} \ \text{and claim 2.} \\ & \leq 1 + \sum_{t=2}^T 2\boldsymbol{\beta}_{t-1} \min\left(1, \ \|\boldsymbol{A}_t\|_{V_{t-1}^{-1}}\right) \quad \text{by } \textit{(ii)}. \\ & \leq 1 + 2\boldsymbol{\beta}_T \sum_{t=1}^T \min\left(1, \ \|\boldsymbol{A}_t\|_{V_{t-1}^{-1}}\right) \quad \text{as } \boldsymbol{\beta}_t \ \text{ is increasing in } t. \\ & \leq 1 + 2\boldsymbol{\beta}_T \sqrt{T \sum_{t=1}^T \min\left(1, \ \|\boldsymbol{A}_t\|_{V_{t-1}^{-1}}\right)} \quad \text{Cauchy-Schwarz ineq.} \end{split}$$

LinUCB Proof: Bounding \overline{R}_T under G (cont'd)

Claim 3: We will show,

$$\sum_{t=1}^{T} \min\left(1, \ \|A_t\|_{V_{t-1}^{-1}}^2\right) \le 2d \log\left(1 + \frac{TL^2}{d\lambda}\right)$$

Therefore, under G,

$$\overline{R}_T \leq 1 + 2\beta_T \sqrt{dT} \sqrt{2\log\left(1 + TL^2/(d\lambda)\right)}$$

Hence,

$$R_{T} = \mathbb{E}[\overline{R}_{T}|G] \underbrace{\mathbb{P}(G)}_{\leq 1} + \underbrace{\mathbb{E}[\overline{R}_{T}|G^{c}]}_{\leq T} \underbrace{\mathbb{P}(G^{c})}_{\leq 1/T}.$$

$$\leq 2 + 2\beta_{T}\sqrt{dT}\sqrt{2\log(1 + TL^{2}/(d\lambda))}$$

LinUCB Proof: Proof of Claim 3

Claim 3: We will show,

$$\sum_{t=1}^{T} \min\left(1, \ \|A_t\|_{V_{t-1}^{-1}}^2\right) \le 2d \log\left(1 + \frac{TL^2}{d\lambda}\right)$$

Proof. Recall that $V_t = \lambda I + \sum_{s=1}^t A_s A_s^{\top}$. Let us first consider,

$$\begin{split} \det(V_t) &= \det\left(V_{t-1} + A_t A_t^\top\right) \\ &= \det\left(V_{t-1}^{1/2} \left(I + V_{t-1}^{-1/2} A_t A_t^\top V_{t-1}^{-1/2}\right) V_{t-1}^{1/2}\right) \\ &= \det(V_{t-1}) \left(1 + (V_{t-1}^{-1/2} A_t)^\top (V_{t-1}^{-1/2} A_t)\right) \quad \text{as } \det(I + uv^\top) = 1 + u^\top v \,. \\ &= \det(V_{t-1}) (1 + \|A_t\|_{V_{t-1}^{-1}}^2). \end{split}$$

LinUCB Proof: Proof of Claim 3 (cont'd)

$$V_t = \lambda I + \sum_{s=1}^t A_s A_s^{ op}, \qquad \det(V_t) = \det(V_{t-1}) (1 + \|A_t\|_{V_{t-1}^{-1}}).$$

Therefore, we obtain

$$\det(V_T) = \underbrace{\det(\lambda I)}_{-\lambda d} \prod_{t=1}^T (1 + \|A_t\|_{V_{t-1}^{-1}}^2).$$

Hence,

$$\log\left(rac{\det(V_T)}{\lambda^d}
ight) = \sum_{t=1}^T \log\left(1 + \left\|A_t
ight\|_{V_{t-1}^{-1}}^2
ight)$$

LinUCB Proof: Proof of Claim 3 (cont'd)

$$V_T = \lambda I + \sum_{s=1}^T A_s A_s^\top,$$

Now let us consider $\det(V_T)$,

$$\begin{split} \det(V_T) &= \prod_{i=1}^d \operatorname{eig}_i(V_T) \leq \left(\frac{1}{d} \sum_{i=1}^d \operatorname{eig}_i(V_T)\right)^d & \text{AM-GM inequality} \\ &= \frac{1}{d^d} \operatorname{trace}(V_T)^d = \frac{1}{d^d} \left(\operatorname{trace}(\lambda I) + \operatorname{trace}\left(\sum_{t=1}^T A_t A_t^\top\right)\right)^d \\ &= \frac{1}{d^d} \left(d\lambda + \sum_{t=1}^T \|A_t\|_2^2\right)^d \\ &\leq \frac{1}{d^d} \left(d\lambda + TL^2\right)^d & \text{as } \max_{a \in \mathcal{A}} \|a\|_2 \leq L \end{split}$$

LinUCB Proof: Proof of Claim 3 (cont'd)

$$\log\left(rac{\det(V_{\mathcal{T}})}{\lambda^d}
ight) = \sum_{t=1}^T \log\left(1 + \|A_t\|_{V_{t-1}}^2
ight), \qquad \det(V_{\mathcal{T}}) \leq \left(rac{d\lambda + TL^2}{d}
ight)^d$$

Putting it altogether,

$$\begin{split} \sum_{t=1}^{T} \min \left(1, \ \|A_t\|_{V_{t-1}^{-1}}^2\right) & \leq 2 \sum_{t=1}^{T} \log \left(1 + \min \left(1, \ \|A_t\|_{V_{t-1}^{-1}}^2\right)\right) \\ & \quad \text{as } x \leq 2 \log (1+x) \ \text{ for } x \in [0, 2 \log (2)] \\ & \leq 2 \sum_{t=1}^{T} \log \left(1 + \|A_t\|_{V_{t-1}^{-1}}^2\right) \\ & \leq 2 \log \left(\frac{1}{\lambda^d} \cdot \frac{(d\lambda + TL^2)^d}{d^d}\right) = 2d \log \left(1 + \frac{TL^2}{d\lambda}\right). \end{split}$$

Proof of Claim 1: From prediction to estimation error

Claim 1. For *G* defined as follows, we have $\mathbb{P}(G^c) \leq \frac{1}{T}$.

$$G = \left\{ \left| \theta_\star^\top a - \widehat{\theta}_t^\top a \right| \leq \beta_t \|a\|_{V_t^{-1}}, \quad \text{for all } a \in \mathcal{A}, \ t \in [T] \right\}$$

Proof. First write

$$\mathbb{P}(G^c) \leq \sum_{t=1}^T \mathbb{P}\left(\left|\theta_{\star}^{\top} a - \widehat{\theta}_t^{\top} a\right| > \beta_t \|a\|_{V_t^{-1}}, \quad \text{for some } a \in \mathcal{A}\right)$$

Now, Consider any $a \in \mathcal{A}$,

$$\begin{split} \left| \theta_\star^\top a - \widehat{\theta}_t^\top a \right| &= \left| (\theta_\star - \widehat{\theta}_t)^\top a \right| = \left| ((\theta_\star - \widehat{\theta}_t) V_t^{1/2})^\top (V_t^{-1/2} a) \right| \\ &\leq \| (\theta_\star - \widehat{\theta}_t) V_t^{1/2} \|_2 \cdot \| V_t^{-1/2} a \|_2 \quad \text{Cauchy-Schwarz} \\ &= \| \theta_\star - \widehat{\theta}_t \|_{V_t} \cdot \| a \|_{V_\star^{-1}} \quad \text{as } \| x Q^{1/2} \|_2^2 = x^\top Q x = \| x \|_Q^2 \quad \text{for symmetric } Q \end{split}$$

Therefore, sufficient to show $\|\theta_{\star} - \widehat{\theta}_{t}\|_{V_{t}} \leq \beta_{t}$ with probability $\geq 1 - 1/T^{2}$.

Proof of Claim 1 (cont'd)

$$\widehat{\theta}_t = V_t^{-1} \sum_{s=1}^t A_s X_s, \quad \text{ where, } \qquad V_t = \lambda I + \sum_{s=1}^t A_s A_s^\top, \quad X_s = \theta_\star^\top A_s + \epsilon_s.$$

Let $W_t = \sum_{s=1}^t A_s A_s^{\top}$ so that $V_t = \lambda I + W_t$.

Now write,

$$\widehat{\theta}_t = V_t^{-1} \sum_{s=1}^t A_s (A_s^\top \theta_\star + \epsilon_s) = V_t^{-1} W_t \theta_\star + V_t^{-1} \underbrace{\sum_{s=1}^t A_s \epsilon_s}_{\triangleq \varepsilon_t}.$$

Therefore, $\widehat{\theta}_t - \theta_\star = (V_t^{-1}W_t - I)\theta_\star + V_t^{-1}\xi_t$. Hence,

$$\begin{split} \|\widehat{\theta}_t - \theta_\star\|_{V_t} &\leq \|(V_t^{-1}W_t - I)\theta_\star\|_{V_t} + \|V_t^{-1}\xi_t\|_{V_t} \quad \text{triangle inequality} \\ &= \|(V_t^{-1}W_t - I)\theta_\star\|_{V_t} + \|\xi_t\|_{V_t^{-1}} \quad \text{as} \ \|V_t^{-1}\xi_t\|_{V_t}^2 = \xi_t^\top V_t^{-1}V_tV_t^{-1}\xi_t = \|\xi_t\|_{V_t^{-1}}^2. \end{split}$$

Proof of Claim 1 (cont'd)

$$\|\widehat{\theta}_t - \theta_\star\|_{V_t} \le \|(V_t^{-1}W_t - I)\theta_\star\|_{V_t} + \|\xi_t\|_{V_t^{-1}}, \qquad W_t = \sum_{s=1}^t A_s A_s^\top, \qquad V_t = \lambda I + W_t.$$
The following calculations show $\|(V_t^{-1}W_t - I)\theta_\star\|_{V_t} \le \sqrt{\lambda}B$, (try at home)

The following calculations show
$$\|(V_t^{-1}W_t - I)\theta_{\star}\|_{V_t} \leq \sqrt{\lambda}B$$
, (try at hom $\|(V_t^{-1}W_t - I)\theta_{\star}\|_{V_t}^2 = \theta_{\star}^{\top}(V_t^{-1}W_t - I)V_t(V_t^{-1}W_t - I)\theta_{\star}$

$$= \theta_{\star}^{\top}(V_t^{-1}W_t - I)\underbrace{(W_t - V_t)}_{=-\lambda I}\theta_{\star} = \lambda\theta_{\star}^{\top}\underbrace{(I - V_t^{-1}W_t)}_{\leq I}\theta_{\star} \leq \lambda\theta_{\star}^{\top}\theta_{\star} \leq \lambda B^2.$$

Recall, we need to show, that the following holds with probability $\geq 1-1/\mathcal{T}^2$

$$\|(\theta_\star - \widehat{\theta}_t)\|_{V_t} \leq \beta_t = \max\left(\frac{1}{2}, \ \sqrt{\lambda}B \ + \ \sigma\sqrt{d\log(dT^2)(2 + \log(1 + tL^2))}\right)$$

Sufficient to show, the following holds with probability $\geq 1 - 1/T^2$

$$\|\xi_t\|_{V_t^{-1}} \le \sigma \sqrt{d} \sqrt{\log(dT^2)(2 + \log(1 + tL^2))}$$

Proof of Claim 1: Simplifying $\|\xi_t\|_{V_t^{-1}}$ further

Let us write,

$$\begin{aligned} \|\xi_{t}\|_{V_{t}^{-1}}^{2} &= \xi_{t}^{\top} V_{t}^{-1} \xi_{t} = \xi_{t}^{\top} V_{t}^{-1/2} \cdot I \cdot V_{t}^{-1/2} \xi_{t} \\ &= \xi_{t}^{\top} V_{t}^{-1/2} \left(\sum_{i=1}^{d} e_{i} e_{i}^{\top} \right) V_{t}^{-1/2} \xi_{t} \\ &= \sum_{i=1}^{d} \xi_{t}^{\top} V_{t}^{-1/2} e_{i} e_{i}^{\top} V_{t}^{-1/2} \xi_{t} \\ &= \sum_{i=1}^{d} (\xi_{t}^{\top} V_{t}^{-1/2} e_{i})^{2}. \end{aligned}$$

Proof of Claim 1 (cont'd)

We need to show, the following holds with probability $\geq 1-1/T^2$

$$\|\xi_t\|_{V_t^{-1}}^2 \le \sigma^2 d \underbrace{\log(dT^2)(2 + \log(1 + tL^2))}_{(*)}$$

By a union bound,

$$egin{aligned} \mathbb{P}\left(\|\xi_{t}\|_{V_{t}^{-1}}^{2} > d\sigma^{2}(*)
ight) &= \mathbb{P}\left(\sum_{i=1}^{d}(\xi_{t}^{ op}V_{t}^{-1/2}e_{i})^{2} > d\sigma^{2}(*)
ight) \ &\leq \sum_{i=1}^{d}\mathbb{P}\left((\xi_{t}^{ op}V_{t}^{-1/2}e_{i})^{2} > \sigma^{2}(*)
ight) &= \sum_{i=1}^{d}\mathbb{P}\left(rac{|\xi_{t}^{ op}V_{t}^{-1/2}e_{i}|}{\sigma} > \sqrt{(*)}
ight) \end{aligned}$$

Therefore, sufficient to show, for $a \in \{V_t^{-1/2}e_1, \dots, V_t^{-1/2}e_d\}$,

$$\mathbb{P}\left(\frac{|\xi_t^\top a|}{\sigma} > \sqrt{(*)}\right) \leq \frac{1}{T^2 d}.$$

Proof of Claim 1: Summary so far

Claim 1. For G defined as follows, we have $\mathbb{P}(G^c) \leq \frac{1}{T}$. $G = \left\{ |\theta_\star^\top a - \widehat{\theta}_t^\top a| \leq \beta_t \|a\|_{V_-^{-1}}, \quad \text{for all } a \in \mathcal{A}, \ t \in [T] \right\}$

1. (Prediction to estimation error) Sufficient to show, the following holds with probability $\geq 1-1/T^2$

$$\|(\theta_{\star} - \widehat{\theta}_t)\|_{V_t} \leq \beta_t = \max\left(\frac{1}{2}, \ \sqrt{\lambda}B \ + \ \sigma\sqrt{d\log(dT^2)(2 + \log(1 + tL^2))}\right)$$

2. Sufficient to show, the following holds with probability $\geq 1-1/T^2$

$$\|\xi_t\|_{V_{\bullet}^{-1}} \le \sigma \sqrt{d} \sqrt{\log(dT^2)(2 + \log(1 + tL^2))}$$

3. Sufficient to show, for $a \in \{V_t^{-1/2}e_1, \dots, V_t^{-1/2}e_d\}$,

$$\mathbb{P}\left(\frac{|\xi_t^\top a|}{\sigma} > \sqrt{\log(dT^2)(2 + \log(1 + tL^2))}\right) \leq \frac{1}{T^2 d}.$$

Martingale concentration

Recall that
$$\xi_t = \sum_{s=1}^t A_s \epsilon_s$$
. We will show, for any $a \in \{V_t^{-1/2} e_1, \dots, V_t^{-1/2} e_d\}$,
$$\mathbb{P}\left(\frac{|\xi_t^\top a|}{\sigma} > \sqrt{\log(dT^2)(2 + \log(1 + tL^2))}\right) \leq \frac{1}{T^2 d}.$$

Key challenge: The actions and observations are not independent! Otherwise, we can condition on A_1, \ldots, A_t , and use standard sub-Gaussian concentration.

We will use the fact that $\xi_t^{\top} a$ is a martingale.

We can use a variety of martingale concentration results to obtain the above result.

Definition (Martingale). An sequence of random variables $\{Z_t\}_{t\in\mathbb{N}}$ is a martingale w.r.t another sequence $\{Y_t\}_{t\in\mathbb{N}}$ if, $\mathbb{E}[Z_t|Y_{t-1}]=Z_{t-1}$ and $\mathbb{E}[|Z_t|]<\infty$ for all $t\in\mathbb{N}$.

We will present one proof, without formally introducing martingales. See LS Chapter 20, for an alternative technique.

We will show, for any $a \in \{V_t^{-1/2}e_1, \dots, V_t^{-1/2}e_d\}$,

$$\mathbb{P}\left(\frac{|\xi_t^\top a|}{\sigma} > \sqrt{\log(dT^2)(2 + \log(1 + tL^2))}\right) \leq \frac{1}{T^2 d}.$$

Proof technique from Rusmevichientong and Tsitsiklis, 2008.

Lemma (Corollary 2.2 from de La Pena et al 2004). If A,B are random variables such that $\mathbb{E}\left[e^{\mu A-\frac{\mu^2B^2}{2}}\right] \leq 1$ for all $\mu \in \mathbb{R}$, then for all $\tau \geq \sqrt{2}$, and y>0, we have $\mathbb{P}\left(|A| \geq \tau \sqrt{(B^2+y)\left(1+\frac{1}{2}\log\left(1+B^2/y\right)\right)}\right) \leq e^{-\tau^2/2}.$

Cf. If B is a constant and not a R.V, then the condition says that A is B-sub-Gaussian, $\mathbb{E}[e^{\mu A}] \leq e^{\frac{\mu^2 B^2}{2}}$. In which case, we know $\mathbb{P}(A > B\tau) \leq e^{\frac{-\tau^2}{2}}$. Note that $\sqrt{(B^2 + y)(1 + \log{(1 + B^2/y)})} \approx B$.

Lemma (Corollary 2.2 from de La Pena et al 2004). If A, B are random variables such that

$$\mathbb{E}\left[e^{\mu A - \frac{\mu^2 B^2}{2}}\right] \leq 1 \text{ for all } \mu \in \mathbb{R} \text{, then for all } \tau \geq \sqrt{2} \text{, and } y > 0 \text{, we have}$$

$$\mathbb{P}\left(|A| \ge \tau \sqrt{(B^2 + y)(1 + (1/2)\log(1 + B^2/y))}\right) \le e^{-\tau^2/2}.$$

We will apply the above result with, $A = \frac{a^{\top} \xi_t}{\sigma}$ and $B = \|a\|_{W_t}$, $y = \|a\|_2^2$, and $\tau = \sqrt{2 \log(T^2 d)}$.

$$A = \frac{a^{\top} \xi_t}{\sigma} = \frac{1}{\sigma} \sum_{s=1}^t a^{\top} A_s \epsilon_s, \qquad B^2 = a^{\top} W_t a = \sum_{s=1}^t a^{\top} A_s A_s^{\top} a.$$

Let us first check that the condition $\mathbb{E}\left[\exp\left(\mu A - rac{\mu^2 B^2}{2}
ight)
ight] \leq 1$ holds. Write,

$$\mu A - \frac{\mu^2}{2} B^2 = \sum_{s=1}^t \left(\underbrace{\frac{\mu}{\sigma} a^\top A_s \epsilon_s - \frac{\mu^2}{2} (a^\top A_s)^2}_{\triangleq O_s} \right)$$

We need to show,

$$\mathbb{E}\left[\exp\left(\mu A - \frac{\mu^2}{2}B^2\right)\right] = \mathbb{E}\left[e^{\sum_{s=1}^t Q_s}\right] \leq 1.$$

Denote $\mathcal{F}_{s-1} \stackrel{\Delta}{=} (A_1, \epsilon_1, \dots, A_{s-1}, \epsilon_{s-1})$. We will first bound, $\mathbb{E}[e^{Q_s} | \mathcal{F}_{s-1}]$,

$$\mathbb{E}[e^{Q_s}|\mathcal{F}_{s-1}] = \exp\left(\frac{-\mu^2}{2}(a^{\top}A_s)^2\right) \mathbb{E}\left[\exp\left(\frac{\mu}{\sigma}(a^{\top}A_s)\epsilon_s\right)\Big|\mathcal{F}_{s-1}\right]$$

$$\leq \exp\left(\frac{-\mu^2}{2}(a^{\top}A_s)^2\right) \exp\left(\frac{\sigma^2}{2} \times \left(\frac{\mu}{\sigma}(a^{\top}A_s)\right)^2\right) = 1$$

As, given $\mathcal{F}_{s-1} = \{A_1, \epsilon_1, \dots, A_{s-1}, \epsilon_{s-1}\}$, A_s is fixed and ϵ_s is σ -sub-Gaussian.

Try at home: Show that $\xi_t^{\top} a$ is a martingale w.r.t. $\mathcal{F} = \{\mathcal{F}_s\}_s$.

Therefore,

$$\begin{split} \mathbb{E}\left[\exp\left(\mu A - \frac{\mu^2}{2}B^2\right)\right] &= \mathbb{E}\left[e^{\sum_{s=1}^t Q_s}\right] \\ &= \mathbb{E}\left[\left[e^{\sum_{s=1}^t Q_s}|\mathcal{F}_{t-1}\right]\right] \\ &= \mathbb{E}\left[e^{\sum_{s=1}^{t-1} Q_s}\mathbb{E}\left[e^{Q_t}|\mathcal{F}_{t-1}\right]\right] \quad \text{as we have fixed } A_1, \epsilon_1, \dots, A_{t-1}, \epsilon_{t-1} \\ &\leq \mathbb{E}\left[e^{\sum_{s=1}^{t-1} Q_s}\right] \leq \dots \leq 1. \end{split}$$

This verifies the condition for the lemma.

Lemma (Corollary 2.2 from de La Pena et al 2004). If A,B are random variables such that $\mathbb{E}\left[e^{\mu A-\frac{\mu^2B^2}{2}}\right] \leq 1$ for all $\mu \in \mathbb{R}$, then for all $\tau \geq \sqrt{2}$, and y>0, we have $\mathbb{P}\left(|A| \geq \tau \sqrt{\left(B^2+y\right)\left(1+\left(1/2\right)\log\left(1+B^2/y\right)\right)}\right) \leq e^{-\tau^2/2}.$

- We are applying with, $A = \frac{a^{\top} \xi_t}{\sigma}$ and $B = \|a\|_{W_t}$, $y = \|a\|_2^2$, and $\tau = \sqrt{2 \log(T^2 d)}$.

Therefore, we have the following with probability at least $1 - \frac{1}{T^2d}$,

$$\begin{split} \left| \frac{\mathsf{a}^\top \xi_t}{\sigma} \right| &\leq \sqrt{2 \log(T^2 d)} \sqrt{ \left(\mathsf{a}^\top W_t \mathsf{a} + \mathsf{a}^\top \mathsf{a} \right) \left(1 + \frac{1}{2} \log \left(1 + \frac{\mathsf{a}^\top W_t \mathsf{a}}{\|\mathsf{a}\|_2^2} \right) \right)} \\ &\leq \sqrt{ \log(T^2 d) \left(2 + \log(1 + \operatorname{eig}_1(W_t)) \right)} \cdot \|\mathsf{a}\|_{V_t} \end{split}$$

As
$$\operatorname{eig}_1(A) = \max_X \frac{x^\top A x}{x^\top x}$$
 and $a^\top W_t a + a^\top a = a^\top (W_t + I) a = a^\top V_t a$.

Step 3 of Claim 1 proof: sufficient to show, for $a \in \{V_t^{-1/2} e_1, \dots, V_t^{-1/2} e_d\}$, $\mathbb{P}\left(\frac{|\xi_t^\top a|}{\sigma} > \sqrt{\log(dT^2)(2 + \log(1 + tL^2))}\right) \leq \frac{1}{T^2 d}.$

We just showed that, for any $a \in \mathbb{R}^d$, with probability at least $1 - 1/T^2d$,

$$\left|\frac{a^{\top}\xi_t}{\sigma}\right| \leq \sqrt{\log(T^2d)\left(2 + \log(1 + \operatorname{eig}_1(W_t))\right)} \cdot \|a\|_{V_t}$$

The proof is completed by the following observations:

- ▶ When $a = V_t^{-1/2} e_i$, $||a||_{V_t}^2 = a^\top V_t a = e_i V_t^{-1/2} V_t V_t^{-1/2} e_i = e_i^\top e_i = 1$.
- lacksquare $\operatorname{eig}_1(W_t) \leq \operatorname{trace}(W_t) = \sum_{s=1}^t (A_s^{\top} A_s) \leq t L^2$, as $\max_{a \in \mathcal{A}} a^{\top} a \leq L^2$.

LinUCB: Proof summary.

A general recipe for bounding the regret of UCB (optimistic) in structured bandits (e.g linear, generalized linear, kernelized (GP) bandits).

- 1. First, consider the pseudo-regret, $\overline{R}_T = \sum_{t=1}^T (\theta_{\star}^{\top} a_{\star} \theta_{\star}^{\top} A_t)$.
- 2. Define a good event G, where the confidence intervals trap the true means. Then,

$$R_T = \mathbb{E}[\overline{R}_T | G] \underbrace{\mathbb{P}(G)}_{\leq 1} + \underbrace{\mathbb{E}[\overline{R}_T | G^c]}_{\leq T} \underbrace{\mathbb{P}(G^c)}_{\leq \text{small}}.$$

- 3. Use martingale concentration to bound $\mathbb{P}(G^c)$.
- 4. Under G, we can bound the instantaneous pseudo-regret

$$\theta_{\star}^{\top} a_{\star} - \theta_{\star}^{\top} A_t \leq 2 \times e_{A_t, t-1}.$$

where $e_{A_t,t-1}$ is the width of the confidence interval of A_t at round t-1.

5. Bound the summation $\sum_{t=1}^{T} e_{A_t,t-1}$ (usually requires setting-specific techniques).