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Ch 5.1: Learning with expert advice

Example 1. Spam prediction. Given a hypothesis class H, consider the following game
over T rounds:

» A learner receives an email x; on round t.
» The learner chooses some h; € H and predicts h¢(x;) € {spam, not-spam}.
» The learner then sees the true label y; and incurs loss 1(h:(x:) # yt)-

Note that the learner can compute the loss for all h € H after observing the label.

Example 2. Weather forecasting. Given a set of models H,
» The learner chooses some h; € H and outputs a prediction y;.
» The learner then observes the true weather y; and incurs loss £(t, yt).

Learner knows the loss incurred by all models h € H after observing the weather.
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Learning with expert advice, a.k.a the “Experts problem”

Problem set up:
- There are a set of K experts, denoted [K].

- On round t, the learner chooses an expert (action) A; € [K].

- An adversary (environment) simultaneously, i.e without knowledge of A;, picks a loss
vector /; € [0,1]K, where ¢;(i) is the loss for expert i.

- The learner incurs loss ¢;(A¢).

- The learner observes the entire loss vector /4, i.e the losses for all experts.

The learner observes the losses for all actions. This is known as full information.
C.f. In bandit feedback, we observe the losses only for the action A; we took.
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Learner’s policy

A learner is characterized by a policy m = {7 }ten.

Here, ; maps the history {(As, £s)}!Z] to a distribution over [K], and then an action
is sampled from this distribution.

me {[K] % [0 1]’<}"“_1 = A(IK]),
where, A([K]) = {p € [0,1]%; p'1x =1}

The algorithm(s) we will study will be randomized (unlike UCB). In fact, deterministic
policies will fail spectacularly in the adversarial setting.
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Regret in the adversarial setting

Question: How do you define regret in the adversarial (nonstochastic) setting?

» Recall, in the stochastic bandit setting, we competed with a, = argmin, Ex.,,[X]
(we can define it similarly for stochastic full information settings).

» But in the adversarial setting, the losses could be arbitrary.

Ans: We will compete against the best fixed action in hindsight.
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Regret in the adversarial setting (cont'd)

We will compete against the best fixed action in hindsight.

For a sequence of losses ¢ = (¢1,...,¢7) € [0,1]¥*T and a sequence of actions
A= (A1,...,A7) € [K]T, define the regret as,

R (A, 0) = Z&(At — m|n Zﬁ
For a randomized policy 7, we will define the regret as

-
Zﬁt ] - arg[i,rg]gﬁt(a).

where E is with respect to the randomness of the policy, i.e
At ~ 7T('|A17€17 e ,At—laft—l)-

Rr(r,€) = E [Ry(A,0)]
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Regret in the adversarial setting

T

Zét(At)] - arg[i% ;a(a).

t=1

Regret: Ry(m,¢) =E

For now, let us assume that the adversary chooses the entire loss sequence
¢ = (l1,...,01) ahead of time, possibly with knowledge of the learner's policy m. This
is called an oblivious adversary (We will revisit this assumption later).

We wish to achieve small regret Ry(m, /) for all loss sequences ¢ € [0,1]K*T.
That is, we are interested in designing 7 to minimize sup,cjo 1« R7(, £).
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Designing a policy for the experts problem

- On round t, the learner chooses an expert (action) A; € [K].
- The learner incurs loss £¢(At), but observes the entire loss vector ¢;, i.e losses for all experts.

Most straightforward idea: Follow the leader (FTL):

t—1
Choose A; = argminZES(a).
aG[K] s=1

E.g. For binary classification, FTL is simply ERM as we will choose
he = argmingey, 3221 1(h(Xe) # Vo).
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Failure cases for FTL
Consider K = 2 actions, with the following losses:

(0.5,0) if t =1,
l: =< (1,0) if tis odd,
(0,1)  if tis even.

Then, FTL will choose At =1 on even t and Ay =2onodd t > 1.

Total loss of FTL is at least T — 1.
The best loss in hindsight will have loss at most T /2.
Therefore, the regret is least T /2 — 1.

Try at home: Extend this example to show that any deterministic policy will fail.
Recall, we wish to bound sup, R(,¢), so we only need to find one bad loss vector.
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The Hedge algorithm

Main idea: Replace the minimum in FTL with a randomized “soft” minimum.

Algorithm: Hedge (a.k.a multiplicative weights, exponential weights)
» Given: time horizon T, learning rate 7. # Will specify 7 later.
> let Lo = 0k. # LtE}Rf will maintain cumulative losses.
> fort=1,...,T,

» Construct p; € A([K]) as follows,
ef”]l-t—l(a)
¢ —————
pl’( ) ZJK:]_ e—nLe—1(j)
» Sample A; ~ p; and execute A;. # 7w(-|history) = pi(-).

» Observe ¢;. Update L;(a) «+ L;—1(a) + £¢(a) for all a € [K].
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Regret analysis for the experts problem: preparation

Let pe(-) = m(-|{As, €s}E2]) be the probability distribution over [K] from which action
A; is sampled. Then,
E[te(Ae)|pe] = p L.

For a given sequence of probability distributions p = (p1,..., p7), define the
pseudo-regret relative to an action a € [K],

r(p.¢.2) me Ze
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Regret analysis for the experts problem: preparation (cont’'d)

E[:(As)|pe] = p; e, 7(p, ¢, a) Zp:kt ZE

We now have, for any policy ,

-
=E ;Et(At)] — arg[ll?] th

T
=E [ZE[& |pt]] Zﬁ a. (¢ where, a.({) = argmiant(a)
t=1

a€[K] t

=K [ﬁr(p,f, a*(f))]

Hence, if we can bound R1(p, ¢, a) for any action a € [K], and any p chosen by 7, we
can bound Ry(m, /).
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Regret analysis of Hedge: main technical lemma

For a given ¢, € R, define (2 so that £2(i) = (£4(i))>.

Lemma.Let p = (p1,...,pr) be the sequence of probability vectors chosen by Hedge
with learning rate n € [0,1]. Then, for any set of loss vectors ¢ = ({1, ...,¢1), where
¢ € R and any a € [K], if p/ £ <1 for all t, we have

5 log(K) :

t=1

We are presenting a more general (than immediately necessary) version of this lemma,
since we will build on Hedge when studying adversarial bandits.

We will first bound the regret of Hedge using this lemma, and then prove this lemma.
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Regret bound of Hedge (using previous lemma)

Theorem. Suppose ¢; € [0,1]K for all t, and we choose 1 = M. Then for all

T > log(K), the regret of Hedge satisfies,
Ry(wedee ¢) < 2,/T log(K

Proof. Let us first check the conditions,

T>log(K) = n<1, ([0, = ple, <1

Then, as ¢2(a) < 1 for all a, we have p,/ /2 < 1. Therefore, for any p = (py, ...

chosen by Hedge,

Rt(p,t,a) < Iog7(7K) +nT =24/Tlog(K).

Then, Ry (mHedee ¢) = E[R1(p, ¥, ax)] < 24/ T log(K).

,PT)
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Proof of Hedge lemma

Recall, Hedge Lemma. Let p = (ps,..., p7) be the sequence of probability vectors chosen by

Hedge with learning rate n € [0,1]. Then, for any set of loss vectors ¢ = ({1,...,¢1), where
l, € RX and any a € [K], if p/ ¢; <1 for all t, we have

- log(K) a
Rr(p,¢,a) < B ‘*‘UZPIK%-
t=1

=

K a—nL:(i)
O, — b, g = llog %
>y et ()
K a=nLe—1(i) . g=nt:(i) t
e e . .
(2'1 —— ) As L(i) =Y ts(i).
n Zj:le nli—1

s=1
i —nLe—1(7)
ARG o e
ZPt(I)e > As pi(i) = ZjK:l g

Proof. Define &, 2 % log (ZK 1 e"’Lf(i)). Now consider,
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Proof of Hedge lemma (cont’d)

K
b — b= 1 log <Z Pt(")enet(i)>
n

i=1

K
1
< = ; log <Z pe(i) (1 — (i) + 77%%(/))) See (i) below.
1 2
= Hlog<1—npt e+ ptﬁt)
< —p; gt*‘ﬁPtEQ See (ii) below.

(i) Using e <1—y +y? for y > —1. Applied with y = nf,(i) > 0.
(i) Using log(1 4+ y) <y for all y > —1. Applied with
y=n0p i —nplle>— n pll>—
~— "~
<1 <1
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Proof of Hedge lemma (cont’d)

T K
. . al —nL(i
Lr(i) = ;,1 £:(1), b, = p log (gl ekl )> ; &y — b g < —p b +npl 02
Summing from t =1,..., T, we have

T T
b1 — Dy < —Zpﬂt +772th%-
t=1 t=1
Now note that, for any a € [K],

K
1 : log(K
(DO = — |Og einLo(’) = Og( ) as Lo =0.
1 Z,.Zl 1
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Proof of Hedge lemma (cont’d)

This gives us,

_th Iog )<d> — Py < — Zp?ﬁﬂrnZPsz

t=1 t=1

Therefore,

7(p. ¢, a)= Zpﬂt Zﬁt log +anT€2
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Oblivious vs adaptive adversaries
We designed a policy 7 to minimize sup, R7 (7, £) where,

T T
Ry(m,0) =E (A — min li(a).
) =B 36| = min 52 6()
We may have two types of adversaries:
1. Oblivious adversary: Adversary chooses the entire loss sequence ¢ = (¢1,...,¢T)

ahead of time, possibly with knowledge of the learner's policy. That is, £¢(-) is
only a function of the action, i.e £;(/).

2. Adaptive adversary: Adversary chooses the loss on round t, after having witnessed
the history Az, f1,...,As_1,€:—1. That is, the adversary chooses loss functions

ft('; A1,€1> .. ’At—laft—l)-

Question: If we have an adaptive instead of an oblivious adversary:
1. Does our proof of Hedge still carry through?
2. How do you interpret the regret defined above?
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Ch 3.2: Adversarial bandits

The adversarial bandit problem is a variant of the experts problem where the learner
only observes the loss for the action she took (called bandit feedback).

» There are a set of K actions, denoted [K].
» On round t, the learner chooses an action A; € [K].

» An adversary (environment) simultaneously picks a loss vector £; € [0,1]%, where
24(i) is the loss for action i.

> The learner incurs loss (¢(A¢).

» The learner observes only /;(A;).

Regret. (Defined exactly as for the experts problem) For a randomized policy ,
define the regret as
T

> Le(Ar)

t=1

T

— min l(a),

Rr(m, ) =E
r(m,0) min D

where E is w.r.t the randomness of 7.
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The EXP3 algorithm

Key idea: We will build on Hedge, but estimate the loss vector on round t by only
observing £+(A¢).

We will use the following estimate:

Kt(a) H _
~ Et(a) |f a = At,
li(a) = 1(A; = 3) = { Pt(a)
+(2) pt(a) (As ) {O otherwise

Here, p:(a) is the probability of choosing action a on round t in Hedge.

We will show that Zt is an unbiased estimator of ¢;, i.e E[Zﬂpt] = /;.
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EXP3 (exponential weights for exploration and exploitation)

Algorithm: EXP3
> Given: time horizon T, learning rate 7. # Will specify n later.

> Let Lo = 0k. # L, € Rf will maintain cumulative losses.
» fort=1,..., T,

» Construct p; € A([K]) as follows,

p(a) 0
‘ YK el

» Sample A; ~ p; and execute Ay. # 7(-|history) = p:(+).

> Observe +(A;). Update, Ly(a) < Le_1(a) + (+(a) for all a € [K]. That is,
C:(As)
pt(At)7

Question: How does EXP3 manage the exploration—exploitation trade-off?

Le(Ar) <+ Li—1(Ap) + Li(a) < Li—1(a) for all a # A;.
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Analysis of EXP3

Lemma. Let (;(a) = Et(z))]l(At — a) and £2 € RK be such that £2(a) = (£+(a))>2.

Pt(
Then, for all a € [K],

L E[6(a)lp] = £e(a).

£(a)
pe(a)”

2. E[t2(a)lp] =

Proof. 1. For any a € [K]

E[Zt(a)]pt] = pt(a) -

2. Similarly, for any a € [K],

B @led = pi(a) - 52+ (1= pe(2) -0 -
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Regret bound for EXP3

T T
\,' E (A — mi 4 )
(m, ) ; ¢(Ar) ;&'El - t:(a)
Theorem. Suppose /; € [0,1]K for all t, and we choose 1 = Iog( ) Then for all T,

the regret of EXP3 satisfies,

Ry (7™XP3 1) < 24/KT log(K).

Remark. The regret of Hedge is O(+/ T log(K)), whereas for EXP3, it is
O(\/KT log(K)). The additional v/K factor is due to reduced (limited) feedback.
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Proof of regret bound for EXP3

Recall, Hedge Lemma. Let A = (A1,..., A7) € R be a sequence of losses. Let
p=(p1,-...,pT) be the sequence of probability vectors chosen by Hedge with learning rate
n € [0, 1] For any a € [K], if p, )\t <1 for all t, we have

Hp. A, a) 2 ijxt Z)\ 'Og +anT)\2

Proof. Let a, = argmin, ¢k Z;l l+(a) be the best fixed arm in hindsight.

We will apply the above lemma with A; < Zt and a + a,.
Let us first verify the conditions,

|Of((7l_() <1 as K>2and T >1.
K
Hi=3po) 0 u(a = a) = p(ag - SO — A <1
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Proof of regret bound for EXP3 (cont'd)

. n ) .. 72 Ef(a)
Recall Va, (i) E[Zu(a)lpd] = fe(a),  (il) E[02(a)lpe] =

Therefore we have,

L —~ L —~ |Qg(K) L —~
> pile— li(a) < +nY pile
t=1 t=1

N t=1
Now, let us take expectations on both sides,

E[LHS] = [ZE[pIetrpt] S Bfi (o) |pt1}

=1 —p(an) by ()

Further by (i) again

E[Pt €t|Pt] = P: E[Et\pt] = P = E[l:(A¢)|pt]

pe(a)
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Proof of regret bound for EXP3 (cont'd)

e 2(5
Recal Yo, () Bl (a)lpd = ((a), () B2 (a)lp] = 2.
Therefore,
T T T T
E[LHS] = E | Y Elfe(Ad)lpd - 3 te(a)| = B th(At)] S b(a) = Rr(m ).
t=1 t=1 =1 —1

Now consider the RHS,

Iog

E[RHS] = ), nE

Z E[P € ‘Pt]]

By (ii) and as losses are bounded in [0, 1],

Elp, 02|pe] = p E[(Z|p] = Zpt(a (2) ZEQ

a
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Proof of regret bound for EXP3 (cont'd)

Therefore,
log(K
E[RHS] < ng]) +nKT.

Hence,

log(K
Ry(m,0) < °g7(7 ) 4 KT

<2\ /KTlog(K) as y— 1/ 8

KT
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Full information vs bandit feedback

» Full information feedback: Learner observes the losses for all actions.

» Bandit feedback: learner observes the loss only for the action A; she took.

Full information feedback

bandit feedback

Stochastic

>

Stochastic bandits (UCB)

Adversarial

Experts problem (Hedge)

Adversarial bandits (EXP3)
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Ch 3.3: Lower bounds for adversarial bandits

Theorem. For the adversarial multi-armed bandit problem, the minimax regret satisfies

inf sup  Ry(m () € QWVKT).

T e[0,1]KxT

» Recall the lower bound for sub-Gaussian stochastic multi-armed bandits,
infrsup, Rr(m,v) € Q(VKT).

» The regret definitions are different (best action in hindsight vs expectation), but
the same rate!
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Lower bound for adversarial bandits (cont'd)

Proof strategy. Let 7 be given. Our strategy will be as follows:
1. Consider a distribution over losses in [0,1]%*T and show that the expected regret
of 7 over this distribution is large.

2. Then, there should be at least one sequence of losses (drawn from this
distribution) which should have large regret.
Proof. Consider two stochastic bandit models v(1), (2 where vU) = (1/{*"), .. ,1/,({))
and each I/I(J) has Bernoulli losses. We will choose v(1), 1(2) based on 7.
Let P(M), P(2) denote the probability law of the action-loss sequence A1, ¢1(A1), ...,
At li(At)y ..., AT, L1(AT) due to 7's interaction with v 12 respectively.

Let E®), E® denote the corresponding expectations.
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Lower bound for adversarial bandits: lower bounding adversarial regret
with stochastic regret

Let £, denote the expectation with respect to the randomness in the policy. For a

fixed sequence of actions A = (A1,..., A7) and losses £ = (¢1,...,¢7), define
T T
Rr(A D) 2D t(A) — min 3 (a),
t=1 t=1

so that Rr (7, ¢) = E-[R%(A, 1)].
We can now lower bound the worst case regret for 7 as follows,

sup RT(T(’ 6) = sup E; [R{I'(Av 6)] 2 EjNUnif({1,2})E£~uU)]E7T [R{I'(A? €)]
Lef0,1]KxT £e[0,1]K*T
The last step uses max > avg, noting that j ~ Unif ({1,2}) and then ¢ ~ vU) defines
a distribution over [0, 1]%*T.

32/52



Lower bound for adversarial bandits: lower bounding adversarial regret

with stochastic regret (cont'd)
Continuing
sup  Rr(m, £)> Ejunit ({120 Epetn Ex [RT (7, £)]
£e[0,1]KXT
1

= 2Ex [Epouw [RY(A O] + 5Ex [Bupio [RE(A.D)]]

Let pf = minaei) Ey  )[X] denote the minimum mean value in vU). By Jensen’s

inequality, and the fact that the pointwise minimum is concave, we have
E[min; z]] < min;E[z]. Using this we can write,

T
EKNVU) [R%—(A,f)] = EENVU) [Zﬁ )— m|n Zﬁ ]

ac[K]§
T
— m|n EIZ L) lzﬁt =E; 0 [Zet(At)
t=1

T

>E, 0 [Zﬁt( t)

t=1

— Ty}
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Lower bound for adversarial bandits: lower bounding adversarial regret
with stochastic regret (cont'd)

. 1 1
(I) sup RT(TFﬂ /) > 7]Eﬂ' [EZNV(U [R{f(A /)]] + 7E7T [ngl,m) [R{I'(A7 [)]] .
[6[0-1]K><T 2 2

.
(I'I') ]E@Ny(/) [Rfr(A*/)] Z ]EENVU) [Z /t(At)] - T,U/J*
=1
Now, taking E; on both sides of (ii),
-
Ze(At)] — T @ R (m,L0).

t=1

Er [Epo0 [RT(A0)]] 20

(a): EU) is expectation under 7's interaction with U,
(b): “stochastic bandit regret” of policy 7 on the stochastic bandit model ).

Combining this with (i), we have

1 1
sup  Rr(m,0) > SRE(m, M) + Ry (r, @),
£e[0,1]KxT 2 2
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Lower bound for adversarial bandits: construction

Denote N, 7= 320, 1(A; = a).

Let (1) be defined as,
1/{1) = Bern (1/2 —9), 1/,.(1) = Bern(1/2) for all i € {2,...,K}

Here, we will specify ¢ (< 1/8) shortly.

As Zle EM[N, 1] = T, there exists some & € {2,..., K} such that
EM[Ny 7] < T/(K — 1). Define v(2) so that,

1/_5,,2) = Bern (1/2 — 29), 1/,.(2) = 1/,.(1) for all i # 4.
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Lower bound for adversarial bandits: lower bounding stochastic regret

sup  Ry(m, l) >

Ce[0,1]Kx T (Rioc(m’/(l))*‘R?“(Ws’/w))'
c0.1]<~

N =

From here, the proof is very similar to our lower bound proof for stochastic bandits.
From our construction,

s Té
Ry (m /W) 2 PO (Nyr < T/2) = Ry (m, /@) 2 PO (Ny 7 > T/2) =

Therefore,

sup RT(’R—?E) > L)

- (PY (N7 < T/2) + P (N7 > T/2) )
ZE[O,I]KXT 4
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Lower bound for adversarial bandits: lower bounding stochastic regret
Bretagnolle-Huber inequality. Let Py, P; be any two distributions. For any event A,
1
Po(A) + P1(A°) > §e—KL“’OvPﬂ.

Therefore,

Ts
sup Rr(m, ()= -~ (PN (Ny,r < T/2) + PO (Ny 7 > T/2))
£ef0,1]K=T

> %‘5 exp (—KL (P(l), IP<2)>> .

Noting that EM[N, 7] < T/(K — 1) by our construction, we have

K
KL (PM,P@) = 3~ EO[N, 1KLY, 1) = ED[Ny 7KL, 1)
i=1
.
K-1

T 62
K—-1

< - G1(20)% = G
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Lower bound for adversarial bandits: lower bounding stochastic regret

Therefore,

TS 752
sp  Rr(m0) > 2 e (Cz )
ZG[O,I]KXT 8 K - 1

Choosing § = /(K — 1)/ T, we have

sup  Ry(m0) > G/ T(K—1).
¢e0,1]KxT
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Ch 3.4: Contextual bandits

So far, we have looked at K arms (actions) and competed against the single best
action in hindsight. But the best action may depend on contextual information, which
may be available to the learner.

Example. Advertising (bandits): find the best ad.
Targeted advertising (contextual bandits): find the best ad for a given query/user
(context).

A policy which has good regular bandit regret may have poor performance in a
real-world application.
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The contextual bandit problem

» There are a set of K actions, denoted [K].

> At the beginning of each round t, an adversary picks a context x; € X. The
learner observes x;.

» The learner then chooses an action A; € [K].

» The adversary simultaneously (i.e without knowledge of A;) picks a loss vector
l: € [0,1]%, where £.(i) is the loss for action i.

» The learner incurs loss £¢(A¢).

» The learner observes only (+(A¢).
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Defining regret for contextual bandits

One option is to compete against the best action for the given context,
Rr(m, £, x) [Zﬁt ] — Er?IL?XZEt(e(Xt

This is challenging if the number of possible contexts is large (possibly infinite), but
also unnecessary if there are relationships between contexts. (e.g querying ‘frying pan’
vs ‘non-stick skillet' in targeted advertising).

- You may see some contexts only once (or just a few times) so impossible to do well.
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Defining regret for contextual bandits (cont'd)

Instead, we will look at a set of N “experts” who map the contexts to actions, and
compete against the best expert in hindsight.
e.g. The experts could be ML models.

If the experts are {e1, ..., ey}, where ¢ € [K]? for all j, then write
Ry (m, ¢, 2 ( — min li(e
(1 =2 340 = i 3™ o)

We wish to design 7 to minimize sup, , R7 (7, ¢, x).
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A simple proposition

Rr(m,t,x) =E

T T
th(At)] — min > Lli(e(xt))

=1
Can we run EXP-3 by treating the experts as actions?
> Yes, as we can define a loss vector £; € [0, 1]V, where £4(j) = l(ej(xt)).

» But, this will achieve regret / TN log(N).

» However, we are usually interested in cases where N > K.

» N could be as large as KI¥I (if X' is finite).

» If the experts are neural network models, N could be covers of the NN weights.
» We wish to reduce from poly(N) to polylog(N).

The EXP4 algorithm: Build on EXP3, but use the fact that when we observe
feedback, we can discount all experts who would have chosen the same action.
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The EXP4 algorithm (exponential weights for exploration and exploitation with experts)

» Given: time horizon T, learning rate 7. # Will specify n later.

> Let Zo =0y. # L, € Ri’ will maintain losses for each expert.
» fort=1,..., T,

» Observe context x;.

» Construct p; € A([N]) as follows,

- e k() ,

Pt(/) — W for all eXpertS NS [N]
» Construct p; € A([K]) via, p:(a) + jN:1 pe(f)L(ej(xe) = a).
» Sample A; ~ p; and execute A;. Observe £;(A;).

ﬁ;ggﬂ(At = a). for all a € [K].

» Compute action losses, /;(a)
» Compute expert losses, £(j) « Zt(ej(xt)).

» Update cumulative losses, L(j) < Le_1(j) + £+(j) for all j € [N].
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The EXP4 algorithm: some observations

» Instead of explicitly constructing p;, we can sample an expert E; from p; and then
choose A; = E¢(xt).

» We can write the loss update as

C:(Ae)
pt(At)'

We are using the probability of choosing A; (via p;), and not just the probability
of choosing the relevant expert E;.

Le(j) ¢ Le—1(j) + Lej(xe) = Ar)
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EXP4 Regret bound

T T
Rr(m ,x) =E | Y Le(A)| — min Y~ li(ei(xe)).
t=1 JeNH
Theorem. Suppose ¢; € [0,1]K for all t, and we choose 1 = Io}g((;.v). Then for all

T > log(N)/K, and all £ € [0,1]%*7 and x € X' T, the regret of EXP4 satisfies,

R (7™XP4 0, x) < 24/KT log(N).

We wil use the Hedge lemma to prove this result.

Hedge Lemma. Let A = (\,..., A7) € RY be a sequence of losses. Let p be the sequence of
probability vectors chosen by Hedge with Iearnmg rate n € [0,1]. For any j € [N], if p/ A\; < 1
for all t, we have

W) ZPTAt ZA &) Slog +anT>\2-
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EXP4 Regret bound proof

Proof. Let j, = argminjcy ZtT:1 l+(ej(xt)), be the best fixed expert in hindsight. We
will apply the lemma with j < j,, and A\; < lr. Let us first verify the conditions,

n=+/log(N)/(KT)<1 as T >log(N)/K.

To verify By £¢ < 1, recall that £(j) < Zt(ej(xt)) = ii((z((ig))l(’qf = ej(x¢)).
Therefore,
7= 350 D 30, — ) = ) S5 1, = )
t tt J:1 t pt(ej(Xt)) t ) t pt(At) J:1 t t ) t
Ce(Ae)
= x pe(Ar) = 4:(Ar) <1
pe(Ar) pt(At) t(Ar) <
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EXP4 Regret bound: Proof (cont'd)

Recall loss update: £(j) Zt(ej(xt)) = filei(xt)) 1(A: = ej(xt))-

Now consider,

BB = pley)) - S5 + (1= pulgx) -0 = (g x)

Similarly,

o 2(ei(xt)) 3 (ei(x))
E[£2()|p] = pe(ei(xt)) - —+--2 + (1= pe(ei(xr))) -0 = -2
[ G)IPe] = pe(ej(xt)) p2(e(x0)) (1 = pe(ej(xt))) p(ei(x0))
Remark: Here, we have p:(ej(x¢)) = >, pe(k)1(ex(xt) = €j(x¢)) in the denominator.
Naively applying EXP3 we will get p:(j) < pt(ej(xt)) in the denominator. The
estimate for the loss in EXP4 has lower variance since E[/2|p;] is smaller.
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EXP4 Regret bound: Proof (cont'd)

(3 (ei(xt))

Recall, () BILG)IB = tlelx)) (i) EF2G)pd = S 20

Applying the Hedge lemma with j + j,, we get

T N T log(N) T N
D B le=) i) < +n Y B L2
t=1 t=1 N t=1
Let us take expectations on both sides.

T T
E[LHS] — E [ SEET R - Y EGG)IF
=1 =1 ti(e, (x0)) by ()
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EXP4 Regret bound: Proof (cont'd)
Recall, (i) E[l:())|P] = te(ej(x)) (i) EILA()|Be] = p

By (i) again, we have

N N
E[p{ Ce|pe] = B E[Ce|Be] = > Beli)le(ej(xt)) Z Z (a=ej(xt))
j=1 j=1 a=1
K N
= th(a) Z pe(j)1(a = ej(x)) = p; fl = E[¢:(At)|pt]-
a=1 j=1
=p:(a)
Therefore, - -
E[LHS] = E | Y E[£:(Ad)[pe] — Y te(e (xt))
t=1 t=1

T T
=F th(At)] - @[iAr}]th(ej(xt)) = Ry (xPXP4 ¢ x).
t=1 J t=1
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EXP4 Regret bound: Proof (cont'd)

Recall, (i) BIF.()) 17 = (i) (i) EIF2G)[Bi] = L2

pe(ej(xt))
|
(iii) ijﬁt Z/ &) < og(N +I}ZpT£2 (Hedge inequality)

Now consider the RHS of (///),

E[RHS] =

log(N
ogé )JrnIE

T o~
ZE[Eﬂflﬁt]] :
t=1

By (ii) and as losses are bounded in [0, 1], we have

2(e N K 2(a
E[p, |pt]—zpt(1 ) HSD 5 5i) Y. D 1) = 2)

ple(x0) ~ 25" 25 0(a)
K 2(a) N B K 2(a)
—; a;P e.IXt 3)—2“(3) t(a) <K
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EXP4 Regret bound: Proof (cont'd)

|
ZpTét ZE (en) < og(N —|—7]Zp (Hedge inequality)

Therefore,

log(N
E[RHS] < Ogé ) 4 KT,
We have,
log(N
RT(T['EXP4,A€,X) g( )+ KT
n

< 2v/KTlog(N) as n=+/log(N)/(KT).
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