
CS861: Theoretical Foundations of Machine Learning

Chapter 5: Online learning:
Learning with expert advice & Adversarial Bandits

Kirthevasan Kandasamy

UW-Madison

Outline

1. Learning from experts

2. Adversarial bandits

3. Lower bounds for adversarial bandits

4. Contextual bandits

1/52

Ch 5.1: Learning with expert advice

Example 1. Spam prediction. Given a hypothesis class H, consider the following game
over T rounds:

I A learner receives an email xt on round t.

I The learner chooses some ht ∈ H and predicts ht(xt) ∈ {spam, not-spam}.

I The learner then sees the true label yt and incurs loss 1(ht(xt) 6= yt).

Note that the learner can compute the loss for all h ∈ H after observing the label.

Example 2. Weather forecasting. Given a set of models H,

I The learner chooses some ht ∈ H and outputs a prediction ŷt .

I The learner then observes the true weather yt and incurs loss `(ŷt , yt).

Learner knows the loss incurred by all models h ∈ H after observing the weather.

2/52

Learning with expert advice, a.k.a the “Experts problem”

Problem set up:
- There are a set of K experts, denoted [K].

- On round t, the learner chooses an expert (action) At ∈ [K].

- An adversary (environment) simultaneously, i.e without knowledge of At , picks a loss
vector `t ∈ [0, 1]K , where `t(i) is the loss for expert i .

- The learner incurs loss `t(At).

- The learner observes the entire loss vector `t , i.e the losses for all experts.

Expl: We will not assume that losses are drawn from a distribution. They

may be, but our policies should be robust to arbitrary loss sequences.

The learner observes the losses for all actions. This is known as full information.
C.f. In bandit feedback, we observe the losses only for the action At we took.

Expl: Note, rewards → losses.

3/52

Learner’s policy

A learner is characterized by a policy π = {πt}t∈N.

Here, πt maps the history {(As , `s)}t−1
s=1 to a distribution over [K], and then an action

is sampled from this distribution.

πt :
{

[K]× [0, 1]K
}t−1

→ ∆([K]),

where, ∆([K]) = {p ∈ [0, 1]K ; p>1K = 1}

The algorithm(s) we will study will be randomized (unlike UCB). In fact, deterministic
policies will fail spectacularly in the adversarial setting.

4/52

Regret in the adversarial setting

Question: How do you define regret in the adversarial (nonstochastic) setting?

I Recall, in the stochastic bandit setting, we competed with a? = argmina EX∼νi [X]
(we can define it similarly for stochastic full information settings).

I But in the adversarial setting, the losses could be arbitrary.

Ans: We will compete against the best fixed action in hindsight.

5/52

Regret in the adversarial setting (cont’d)
We will compete against the best fixed action in hindsight.

For a sequence of losses ` = (`1, . . . , `T) ∈ [0, 1]K×T and a sequence of actions
A = (A1, . . . ,AT) ∈ [K]T , define the regret as,

R ′T (A, `) =
T∑
t=1

`t(At) − min
a∈[K]

T∑
t=1

`t(a).

For a randomized policy π, we will define the regret as

RT (π, `) = E
[
R ′T (A, `)

]
= E

[
T∑
t=1

`t(At)

]
− min

a∈[K]

T∑
t=1

`t(a).

where E is with respect to the randomness of the policy, i.e
At ∼ π(·|A1, `1, . . . ,At−1, `t−1).

Expl: Note that there is nothing stochastic about the environment/losses.
6/52

Regret in the adversarial setting

Regret: RT (π, `) = E

[
T∑
t=1

`t(At)

]
− min

a∈[K]

T∑
t=1

`t(a).

For now, let us assume that the adversary chooses the entire loss sequence
` = (`1, . . . , `T) ahead of time, possibly with knowledge of the learner’s policy π. This
is called an oblivious adversary (We will revisit this assumption later).

We wish to achieve small regret RT (π, `) for all loss sequences ` ∈ [0, 1]K×T .
That is, we are interested in designing π to minimize sup`∈[0,1]K RT (π, `).

7/52

Designing a policy for the experts problem

- On round t, the learner chooses an expert (action) At ∈ [K].

- The learner incurs loss `t(At), but observes the entire loss vector `t , i.e losses for all experts.

Expl: What is a natural algorithm for this problem?

Most straightforward idea: Follow the leader (FTL):

Choose At = argmin
a∈[K]

t−1∑
s=1

`s(a).

E.g. For binary classification, FTL is simply ERM as we will choose
ht = argminh∈H

∑t−1
s=1 1(h(Xt) 6= Yt).

8/52

Failure cases for FTL

Consider K = 2 actions, with the following losses:

`t =


(0.5, 0) if t = 1,

(1, 0) if t is odd,

(0, 1) if t is even.

Then, FTL will choose At = 1 on even t and At = 2 on odd t ≥ 1.
Expl: Even if we pretend that the loss was 0 on round 1.

Total loss of FTL is at least T − 1.
The best loss in hindsight will have loss at most T/2.
Therefore, the regret is least T/2− 1.

Try at home: Extend this example to show that any deterministic policy will fail.
Recall, we wish to bound sup` RT (π, `), so we only need to find one bad loss vector.

9/52

The Hedge algorithm

Main idea: Replace the minimum in FTL with a randomized “soft” minimum.

Algorithm: Hedge (a.k.a multiplicative weights, exponential weights)

I Given: time horizon T , learning rate η. # Will specify η later.

I Let L0 = 0K . # Lt ∈ RK
+ will maintain cumulative losses.

I for t = 1, . . . ,T ,

I Construct pt ∈ ∆([K]) as follows,

pt(a)← e−ηLt−1(a)∑K
j=1 e

−ηLt−1(j)

I Sample At ∼ pt and execute At . # π(·|history) = pt(·).

I Observe `t . Update Lt(a)← Lt−1(a) + `t(a) for all a ∈ [K].

Expl: If an arm has large losses, it gets discounted more in Lt and has a

smaller probability of getting selected in the future.
10/52

Regret analysis for the experts problem: preparation

Let pt(·) = π(·|{As , `s}t−1
s=1) be the probability distribution over [K] from which action

At is sampled. Then,
E[`t(At)|pt] = p>t `t .

Expl: True for any policy π, not just Hedge.

For a given sequence of probability distributions p = (p1, . . . , pT), define the
pseudo-regret relative to an action a ∈ [K],

RT (p, `, a)
∆
=

T∑
t=1

p>t `t −
T∑
t=1

`t(a),

Expl: We can define this for any policy.

11/52

Regret analysis for the experts problem: preparation (cont’d)

E[`t(At)|pt] = p>t `t , RT (p, `, a)
∆
=

T∑
t=1

p>t `t −
T∑
t=1

`t(a),

We now have, for any policy π,

RT (π, `) = E

[
T∑
t=1

`t(At)

]
− min

a∈[K]

T∑
t=1

`t(a)

= E

[
T∑
t=1

E[`t(At)|pt]

]
−

T∑
t=1

`t(a?(`)) where, a?(`) = argmin
a∈[K]

∑
t

`t(a)

= E
[
RT (p, `, a?(`))

]
Hence, if we can bound RT (p, `, a) for any action a ∈ [K], and any p chosen by π, we
can bound RT (π, `).

12/52

Regret analysis of Hedge: main technical lemma

For a given `t ∈ RK
+, define `2

t so that `2
t (i) = (`t(i))2.

Lemma.Let p = (p1, . . . , pT) be the sequence of probability vectors chosen by Hedge
with learning rate η ∈ [0, 1]. Then, for any set of loss vectors ` = (`1, . . . , `T), where
`t ∈ RK

+ and any a ∈ [K], if p>t `t ≤ 1 for all t, we have

RT (p, `, a) ≤ log(K)

η
+ η

T∑
t=1

p>t `
2
t .

We are presenting a more general (than immediately necessary) version of this lemma,
since we will build on Hedge when studying adversarial bandits.

Expl: We will also generalize these ideas to OCO.

We will first bound the regret of Hedge using this lemma, and then prove this lemma.

13/52

Regret bound of Hedge (using previous lemma)

Theorem. Suppose `t ∈ [0, 1]K for all t, and we choose η =
√

log(K)
T . Then for all

T ≥ log(K), the regret of Hedge satisfies,

RT (πHedge, `) ≤ 2
√

T log(K).

Proof. Let us first check the conditions,

T ≥ log(K) =⇒ η ≤ 1, `t ∈ [0, 1]K =⇒ p>t `t ≤ 1.

Then, as `2
t (a) ≤ 1 for all a, we have p>t `

2
t ≤ 1. Therefore, for any p = (p1, . . . , pT)

chosen by Hedge,

RT (p, `, a) ≤ log(K)

η
+ ηT = 2

√
T log(K).

Then, RT (πHedge, `) = E[RT (p, `, a?)] ≤ 2
√
T log(K).

14/52

Proof of Hedge lemma
Recall, Hedge Lemma. Let p = (p1, . . . , pT) be the sequence of probability vectors chosen by
Hedge with learning rate η ∈ [0, 1]. Then, for any set of loss vectors ` = (`1, . . . , `T), where
`t ∈ RK

+ and any a ∈ [K], if p>t `t ≤ 1 for all t, we have

RT (p, `, a) ≤ log(K)

η
+ η

T∑
t=1

p>t `
2
t .

Proof.Define Φt
∆
= 1

η log
(∑K

i=1 e
−ηLt(i)

)
. Now consider,

Φt − Φt−1 =
1

η
log

(∑K
i=1 e

−ηLt(i)∑K
i=1 e

−ηLt−1(i)

)

=
1

η
log

(∑K
i=1 e

−ηLt−1(i) · e−η`t(i)∑K
j=1 e

−ηLt−1(j)

)
As Lt(i) =

t∑
s=1

`s(i).

=
1

η
log

(
K∑
i=1

pt(i)e
−η`t(i)

)
As pt(i) =

e−ηLt−1(i)∑K
j=1 e

−ηLt−1(j)
.

15/52

Proof of Hedge lemma (cont’d)

Φt − Φt−1=
1

η
log

(
K∑
i=1

pt(i)e
−η`t(i)

)

≤ 1

η
log

(
K∑
i=1

pt(i)
(
1− η`t(i) + η2`2

t (i)
))

See (i) below.

=
1

η
log
(

1− ηp>t `t + η2p>t `
2
t

)
≤ −p>t `t + ηp>t `

2
t See (ii) below.

(i) Using e−y ≤ 1− y + y2 for y ≥ −1. Applied with y = η`t(i) ≥ 0.
(ii) Using log(1 + y) ≤ y for all y > −1. Applied with

y = η2p>t `
2
t − ηp>t `t > − η︸︷︷︸

≤1

p>t `t︸︷︷︸
≤1

≥ −1.

16/52

Proof of Hedge lemma (cont’d)

LT (i) =
T∑
t=1

`t(i), Φt
∆
=

1

η
log

(
K∑
i=1

e−ηLt(i)

)
, Φt − Φt−1 ≤ −p>t `t + ηp>t `

2
t

Summing from t = 1, . . . ,T , we have

ΦT − Φ0 ≤ −
T∑
t=1

p>t `t + η

T∑
t=1

p>t `
2
t .

Now note that, for any a ∈ [K],

Φ0 =
1

η
log

(
K∑
i=1

e−ηL0(i)

)
=

log(K)

η
as L0 = 0.

ΦT =
1

η
log

(
K∑
i=1

e−ηLT (i)

)
≥ 1

η
log
(
e−ηLT (a)

)
= −LT (a) = −

T∑
t=1

`t(a).

17/52

Proof of Hedge lemma (cont’d)

This gives us,

−
T∑
t=1

`t(a)− log(K)

η
≤ ΦT − Φ0 ≤ −

T∑
t=1

p>t `t + η

T∑
t=1

p>t `
2
t .

Therefore,

RT (p, `, a)=
T∑
t=1

p>t `t −
T∑
t=1

`t(a) ≤ log(K)

η
+ η

T∑
t=1

p>t `
2
t

18/52

Oblivious vs adaptive adversaries
We designed a policy π to minimize sup` RT (π, `) where,

RT (π, `) = E

[
T∑
t=1

`t(At)

]
− min

a∈[K]

T∑
t=1

`t(a).

We may have two types of adversaries:

1. Oblivious adversary: Adversary chooses the entire loss sequence ` = (`1, . . . , `T)
ahead of time, possibly with knowledge of the learner’s policy. That is, `t(·) is
only a function of the action, i.e `t(i). Expl: i.e adversary chooses loss vectors.

2. Adaptive adversary: Adversary chooses the loss on round t, after having witnessed
the history A1, `1, . . . ,At−1, `t−1. That is, the adversary chooses loss functions
`t(·;A1, `1, . . . ,At−1, `t−1).

Question: If we have an adaptive instead of an oblivious adversary:
1. Does our proof of Hedge still carry through?
2. How do you interpret the regret defined above?

Expl: Regret is a bit strange (one exception learning in games).
19/52

Ch 3.2: Adversarial bandits
The adversarial bandit problem is a variant of the experts problem where the learner
only observes the loss for the action she took (called bandit feedback).

I There are a set of K actions, denoted [K].

I On round t, the learner chooses an action At ∈ [K].

I An adversary (environment) simultaneously picks a loss vector `t ∈ [0, 1]K , where
`t(i) is the loss for action i .

I The learner incurs loss `t(At).

I The learner observes only `t(At).

Regret. (Defined exactly as for the experts problem) For a randomized policy π,
define the regret as

RT (π, `) = E

[
T∑
t=1

`t(At)

]
− min

a∈[K]

T∑
t=1

`t(a),

where E is w.r.t the randomness of π.
20/52

The EXP3 algorithm

Key idea: We will build on Hedge, but estimate the loss vector on round t by only
observing `t(At).

We will use the following estimate:

̂̀
t(a) =

`t(a)

pt(a)
1(At = a) =

{
`t(a)
pt(a) if a = At ,

0 otherwise

Here, pt(a) is the probability of choosing action a on round t in Hedge.

We will show that ̂̀t is an unbiased estimator of `t , i.e E[̂̀t |pt] = `t .

21/52

EXP3 (exponential weights for exploration and exploitation)

Algorithm: EXP3
I Given: time horizon T , learning rate η. # Will specify η later.

I Let L0 = 0K . # Lt ∈ RK
+ will maintain cumulative losses.

I for t = 1, . . . ,T ,

I Construct pt ∈ ∆([K]) as follows,

pt(a)← e−ηLt−1(a)∑K
j=1 e

−ηLt−1(j)

I Sample At ∼ pt and execute At . # π(·|history) = pt(·).
I Observe `t(At). Update, Lt(a)← Lt−1(a) + ̂̀t(a) for all a ∈ [K]. That is,

Lt(At)← Lt−1(At) +
`t(At)

pt(At)
, Lt(a)← Lt−1(a) for all a 6= At .

Question: How does EXP3 manage the exploration–exploitation trade-off?

22/52

Analysis of EXP3

Lemma. Let ̂̀t(a) = `t(a)
pt(a)1(At = a) and ̂̀2

t ∈ RK
+ be such that ̂̀2

t (a) = (̂̀t(a))2.

Then, for all a ∈ [K],

1. E[̂̀t(a)|pt] = `t(a).

2. E[̂̀2
t (a)|pt] = `2

t (a)
pt(a) . Expl: Here, E with respect to

the randomness of the algorithm.

Proof. 1. For any a ∈ [K]

E[̂̀t(a)|pt] = pt(a) · `t(a)

pt(a)
+ (1− pt(a)) · 0 = `t(a).

2. Similarly, for any a ∈ [K],

E[̂̀2
t (a)|pt] = pt(a) · `

2
t (a)

p2
t (a)

+ (1− pt(a)) · 0 =
`2
t (a)

pt(a)
.

23/52

Regret bound for EXP3

RT (π, `) = E

[
T∑
t=1

`t(At)

]
− min

a∈[K]

T∑
t=1

`t(a).

Theorem. Suppose `t ∈ [0, 1]K for all t, and we choose η =
√

log(K)
KT . Then for all T ,

the regret of EXP3 satisfies,

RT (πEXP3, `) ≤ 2
√

KT log(K).

Remark. The regret of Hedge is O(
√

T log(K)), whereas for EXP3, it is
O(
√

KT log(K)). The additional
√
K factor is due to reduced (limited) feedback.

24/52

Proof of regret bound for EXP3
Expl: I am using λ instead of `.

Recall, Hedge Lemma. Let λ = (λ1, . . . , λT) ∈ RK
+ be a sequence of losses. Let

p = (p1, . . . , pT) be the sequence of probability vectors chosen by Hedge with learning rate
η ∈ [0, 1]. For any a ∈ [K], if p>t λt ≤ 1 for all t, we have

RT (p, λ, a)
∆
=

T∑
t=1

p>t λt −
T∑
t=1

λt(a) ≤ log(K)

η
+ η

T∑
t=1

p>t λ
2
t .

Proof. Let a? = argmina∈[K]

∑T
t=1 `t(a) be the best fixed arm in hindsight.

We will apply the above lemma with λt ← ̂̀
t and a← a?.

Let us first verify the conditions,

η =

√
log(K)

KT
≤ 1 as K ≥ 2 and T ≥ 1.

p>t
̂̀
t =

K∑
a=1

pt(a) · `t(a)

pt(a)
1(At = a) = pt(At) ·

`t(At)

pt(At)
= `t(At) ≤ 1.

25/52

Proof of regret bound for EXP3 (cont’d)

Recall ∀ a, (i) E[̂̀t(a)|pt] = `t(a), (ii) E[̂̀2
t (a)|pt] =

`2
t (a)

pt(a)
.

Therefore we have,

T∑
t=1

p>t
̂̀
t −

T∑
t=1

̂̀
t(a?) ≤ log(K)

η
+ η

T∑
t=1

p>t
̂̀2
t .

Now, let us take expectations on both sides,

E[LHS] = E
[T∑

t=1

E[p>t
̂̀
t |pt]−

T∑
t=1

E[̂̀t(a?)|pt]︸ ︷︷ ︸
=`t(a?) by (i)

]

Further by (i) again

E[p>t
̂̀
t |pt] = p>t E[̂̀t |pt] = p>t `t = E[`t(At)|pt]

26/52

Proof of regret bound for EXP3 (cont’d)

Recall ∀ a, (i) E[̂̀t(a)|pt] = `t(a), (ii) E[̂̀2
t (a)|pt] =

`2
t (a)

pt(a)
.

Therefore,

E[LHS] = E

[
T∑
t=1

E[`t(At)|pt]−
T∑
t=1

`t(a?)

]
= E

[
T∑
t=1

`t(At)

]
−

T∑
t=1

`t(a?) = RT (π, `).

Now consider the RHS,

E[RHS] =
log(K)

η
+ ηE

[
T∑
t=1

E[p>t
̂̀2
t |pt]

]
.

By (ii) and as losses are bounded in [0, 1],

E[p>t
̂̀2
t |pt] = p>t E[̂̀2

t |pt] =
K∑

a=1

pt(a) · `
2
t (a)

pt(a)
=

K∑
a=1

`2
t (a) ≤ K .

27/52

Proof of regret bound for EXP3 (cont’d)

Therefore,

E[RHS] ≤ log(K)

η
+ ηKT .

Hence,

RT (π, `) ≤ log(K)

η
+ ηKT

≤ 2
√
KT log(K) as η =

√
log(K)

KT
.

Expl: We proved the Hedge technical lemma for all a ∈ [K] since the

minimizer of the ̂̀t sequence may not be the minimizer of the `t sequence.

28/52

Full information vs bandit feedback

I Full information feedback: Learner observes the losses for all actions.

I Bandit feedback: learner observes the loss only for the action At she took.

Full information feedback bandit feedback

Stochastic ? Stochastic bandits (UCB)

Adversarial Experts problem (Hedge) Adversarial bandits (EXP3)

Expl: Why did we not study stochastic FI setting?

The setting is ’easy’, e.g. FTL will work quite well here since there is no

exploration and the rewards are not adversarial.

29/52

Ch 3.3: Lower bounds for adversarial bandits

Theorem. For the adversarial multi-armed bandit problem, the minimax regret satisfies

inf
π

sup
`∈[0,1]K×T

RT (π, `) ∈ Ω(
√
KT).

I Recall the lower bound for sub-Gaussian stochastic multi-armed bandits,
infπ supν RT (π, ν) ∈ Ω(

√
KT).

I The regret definitions are different (best action in hindsight vs expectation), but
the same rate!

Expl: Stochastic bandits is generally easier, but the hardest stochastic bandit

problem is nearly as hard as the hardest adversarial bandit problem.

30/52

Lower bound for adversarial bandits (cont’d)

Proof strategy. Let π be given. Our strategy will be as follows:

1. Consider a distribution over losses in [0, 1]K×T and show that the expected regret
of π over this distribution is large.

2. Then, there should be at least one sequence of losses (drawn from this
distribution) which should have large regret.

Proof.Consider two stochastic bandit models ν(1), ν(2) where ν(j) = (ν
(j)
1 , . . . , ν

(j)
K)

and each ν
(j)
i has Bernoulli losses. We will choose ν(1), ν(2) based on π.

Let P(1),P(2) denote the probability law of the action-loss sequence A1, `1(A1), . . . ,
At , `t(At), . . . ,AT , `T (AT) due to π’s interaction with ν(1), ν(2) respectively.

Let E(1),E(2) denote the corresponding expectations.

31/52

Lower bound for adversarial bandits: lower bounding adversarial regret
with stochastic regret

Expl: There are two sources of randomness in the (stochastic) construction.

One with respect to the policy and one with respect to the losses.
Let Eπ denote the expectation with respect to the randomness in the policy. For a
fixed sequence of actions A = (A1, . . . ,AT) and losses ` = (`1, . . . , `T), define

R ′T (A, `)
∆
=

T∑
t=1

`t(At)− min
a∈[K]

T∑
t=1

`t(a),

so that RT (π, `) = Eπ[R ′T (A, `)].

We can now lower bound the worst case regret for π as follows,

sup
`∈[0,1]K×T

RT (π, `) = sup
`∈[0,1]K×T

Eπ
[
R ′T (A, `)

]
≥ Ej∼Unif ({1,2})E`∼ν(j)Eπ

[
R ′T (A, `)

]
The last step uses max ≥ avg, noting that j ∼ Unif ({1, 2}) and then ` ∼ ν(j) defines
a distribution over [0, 1]K×T .

32/52

Lower bound for adversarial bandits: lower bounding adversarial regret
with stochastic regret (cont’d)

Continuing

sup
`∈[0,1]K×T

RT (π, `)≥ Ej∼Unif ({1,2})E`∼ν(j)Eπ
[
R ′T (π, `)

]
=

1

2
Eπ
[
E`∼ν(1)

[
R ′T (A, `)

]]
+

1

2
Eπ
[
E`∼ν(2)

[
R ′T (A, `)

]]
.

Let µ?j = mina∈[K] EX∼ν(j)
i

[X] denote the minimum mean value in ν(j). By Jensen’s

inequality, and the fact that the pointwise minimum is concave, we have
E[mini zi] ≤ mini E[zi]. Using this we can write,

E`∼ν(j)

[
R ′T (A, `)

]
= E`∼ν(j)

[
T∑
t=1

`t(At)− min
a∈[K]

T∑
t=1

`t(a)

]

≥ E`∼ν(j)

[
T∑
t=1

`t(At)

]
− min

a∈[K]
E`∼ν(j)

[
T∑
t=1

`t(a)

]
= E`∼ν(j)

[
T∑
t=1

`t(At)

]
− Tµ?j .

33/52

Lower bound for adversarial bandits: lower bounding adversarial regret
with stochastic regret (cont’d)

(i) sup
`∈[0,1]K×T

RT (π, `) ≥ 1

2
Eπ [E`∼ν(1) [R ′T (A, `)]] +

1

2
Eπ [E`∼ν(2) [R ′T (A, `)]] .

(ii) E`∼ν(j) [R ′T (A, `)] ≥ E`∼ν(j)

[
T∑
t=1

`t(At)

]
− Tµ?j .

Now, taking Eπ on both sides of (ii),

Eπ
[
E`∼ν(j)

[
R ′T (A, `)

]] (a)

≥ E(j)

[
T∑
t=1

`(At)

]
− Tµ?j

(b)
= Rstoc

T (π, ν(j)).

(a): E(j) is expectation under π’s interaction with ν(j).
(b): “stochastic bandit regret” of policy π on the stochastic bandit model ν(j).

Combining this with (i), we have

sup
`∈[0,1]K×T

RT (π, `) ≥ 1

2
Rstoc
T (π, ν(1)) +

1

2
Rstoc
T (π, ν(2)).

34/52

Lower bound for adversarial bandits: construction

Denote Na,T =
∑T

t=1 1(At = a).

Let ν(1) be defined as,

ν
(1)
1 = Bern (1/2− δ), ν

(1)
i = Bern (1/2) for all i ∈ {2, . . . ,K}

Here, we will specify δ (≤ 1/8) shortly.

As
∑K

a=1 E(1)[Na,T] = T , there exists some a′ ∈ {2, . . . ,K} such that
E(1)[Na′,T] ≤ T/(K − 1). Define ν(2) so that,

ν
(2)
a′ = Bern (1/2− 2δ), ν

(2)
i = ν

(1)
i for all i 6= a′.

Expl: Means are (1/2− δ, 1/2, . . . , 1/2) and

(1/2− δ, 1/2, . . . , 1/2− 2δ, . . . , 1/2).

35/52

Lower bound for adversarial bandits: lower bounding stochastic regret

sup
`∈[0,1]K×T

RT (π, `) ≥ 1

2

(
Rstoc
T (π, ν(1)) + Rstoc

T (π, ν(2))
)
.

Expl: Bernoulli losses instead of Gaussian rewards,

Use KL(Bern (p),Bern (q)) � (p − q)2.

From here, the proof is very similar to our lower bound proof for stochastic bandits.
From our construction,

Rstoc
T (π, ν(1)) ≥ P(1) (N1,T ≤ T/2)

T δ

2
, Rstoc

T (π, ν(2)) ≥ P(2) (N1,T > T/2)
T δ

2
.

Therefore,

sup
`∈[0,1]K×T

RT (π, `) ≥ T δ

4

(
P(1) (N1,T ≤ T/2) + P(2) (N1,T > T/2)

)

36/52

Lower bound for adversarial bandits: lower bounding stochastic regret
Bretagnolle-Huber inequality. Let P0,P1 be any two distributions. For any event A,

P0(A) + P1(Ac) ≥ 1

2
e−KL(P0,P1).

Therefore,

sup
`∈[0,1]K×T

RT (π, `)≥ T δ

4

(
P(1) (N1,T ≤ T/2) + P(2) (N1,T > T/2)

)
≥ T δ

8
exp

(
−KL

(
P(1),P(2)

))
.

Noting that E(1)[Na′,T] ≤ T/(K − 1) by our construction, we have

KL
(
P(1),P(2)

)
=

K∑
i=1

E(1)[Na,T]KL(ν
(1)
i , ν

(2)
i) = E(1)[Na′,T]KL(ν

(1)
a′ , ν

(2)
a′)

≤ T

K − 1
· C1(2δ)2 = C2

T δ2

K − 1
.

37/52

Lower bound for adversarial bandits: lower bounding stochastic regret

Therefore,

sup
`∈[0,1]K×T

RT (π, `) ≥ T δ

8
exp

(
C2

T δ2

K − 1

)

Choosing δ =
√

(K − 1)/T , we have

sup
`∈[0,1]K×T

RT (π, `) ≥ C3

√
T (K − 1).

38/52

Ch 3.4: Contextual bandits

So far, we have looked at K arms (actions) and competed against the single best
action in hindsight. But the best action may depend on contextual information, which
may be available to the learner.

Example. Advertising (bandits): find the best ad.
Targeted advertising (contextual bandits): find the best ad for a given query/user
(context).

A policy which has good regular bandit regret may have poor performance in a
real-world application.

39/52

The contextual bandit problem

I There are a set of K actions, denoted [K].

I At the beginning of each round t, an adversary picks a context xt ∈ X . The
learner observes xt .

I The learner then chooses an action At ∈ [K].

I The adversary simultaneously (i.e without knowledge of At) picks a loss vector
`t ∈ [0, 1]K , where `t(i) is the loss for action i .

I The learner incurs loss `t(At).

I The learner observes only `t(At).

Expl: You can think of this as a loss vector being chosen for every context x

and action a, but only the loss of context xt on round t matters.

40/52

Defining regret for contextual bandits

One option is to compete against the best action for the given context,

RT (π, `, x) = E

[
T∑
t=1

`t(At)

]
− min

e∈[K]X

T∑
t=1

`t(e(xt)).

This is challenging if the number of possible contexts is large (possibly infinite), but
also unnecessary if there are relationships between contexts. (e.g querying ‘frying pan’
vs ‘non-stick skillet’ in targeted advertising).

- You may see some contexts only once (or just a few times) so impossible to do well.

Expl: This is like running separate bandit algorithms for each context.

41/52

Defining regret for contextual bandits (cont’d)

Instead, we will look at a set of N “experts” who map the contexts to actions, and
compete against the best expert in hindsight.

e.g. The experts could be ML models.
Expl: Think of experts as good at making these connections.

We are using experts slightly differently. Don’t think experts=actions.
If the experts are {e1, . . . , eN}, where ej ∈ [K]X for all j , then write

RT (π, `, x) = E

[
T∑
t=1

`t(At)

]
− min

j∈[N]

T∑
t=1

`t(ej(xt)).

We wish to design π to minimize sup`,x RT (π, `, x).

Expl: If our experts contain all possible maps, we retrieve the definition from
the previous slide, so this is w.l.o.g.

But if we have domain expertise and can narrow down the maps, we may be

able to do better.

42/52

A simple proposition

RT (π, `, x) = E

[
T∑
t=1

`t(At)

]
− min

j∈[N]

T∑
t=1

`t(ej(xt)).

Can we run EXP-3 by treating the experts as actions?

I Yes, as we can define a loss vector ˜̀t ∈ [0, 1]N , where ˜̀t(j) = `t(ej(xt)).

I But, this will achieve regret
√
TN log(N).

I However, we are usually interested in cases where N � K .

I N could be as large as K |X | (if X is finite).

I If the experts are neural network models, N could be covers of the NN weights.

I We wish to reduce from poly(N) to polylog(N).

The EXP4 algorithm: Build on EXP3, but use the fact that when we observe
feedback, we can discount all experts who would have chosen the same action.

43/52

The EXP4 algorithm (exponential weights for exploration and exploitation with experts)

I Given: time horizon T , learning rate η. # Will specify η later.

I Let L̃0 = 0N . # Lt ∈ RN
+ will maintain losses for each expert.

I for t = 1, . . . ,T ,

I Observe context xt .

I Construct p̃t ∈ ∆([N]) as follows,

p̃t(i)←
e−ηLt−1(i)∑N
j=1 e

−ηLt−1(j)
for all experts i ∈ [N].

I Construct pt ∈ ∆([K]) via, pt(a)←
∑N

j=1 p̃t(j)1(ej(xt) = a).

I Sample At ∼ pt and execute At . Observe `t(At).

I Compute action losses, ̂̀t(a)← `t(a)
pt(a)1(At = a). for all a ∈ [K].

I Compute expert losses, ˜̀(j)← ̂̀
t(ej(xt)).

I Update cumulative losses, L̃t(j)← L̃t−1(j) + ˜̀t(j) for all j ∈ [N].

44/52

The EXP4 algorithm: some observations

I Instead of explicitly constructing pt , we can sample an expert Et from p̃t and then
choose At = Et(xt).

Expl: So this part of the algorithm is not very different from applying EXP-3

by treating the experts as actions.

I We can write the loss update as

L̃t(j)← L̃t−1(j) + 1(ej(xt) = At)
`t(At)

pt(At)
.

We are using the probability of choosing At (via pt), and not just the probability
of choosing the relevant expert Et .

Expl: This is different from applying EXP-3 as otherwise we would have p̃(j)

in the denominator.

45/52

EXP4 Regret bound

RT (π, `, x) = E

[
T∑
t=1

`t(At)

]
− min

j∈[N]

T∑
t=1

`t(ej(xt)).

Theorem. Suppose `t ∈ [0, 1]K for all t, and we choose η =
√

log(N)
KT . Then for all

T ≥ log(N)/K , and all ` ∈ [0, 1]K×T and x ∈ XT , the regret of EXP4 satisfies,

RT (πEXP4, `, x) ≤ 2
√
KT log(N).

We wil use the Hedge lemma to prove this result.

Hedge Lemma. Let λ = (λ1, . . . , λT) ∈ RN
+ be a sequence of losses. Let p̃ be the sequence of

probability vectors chosen by Hedge with learning rate η ∈ [0, 1]. For any j ∈ [N], if p̃>t λt ≤ 1
for all t, we have

RT (p̃, λ, j)
∆
=

T∑
t=1

p̃>t λt −
T∑
t=1

λt(ej) ≤
log(N)

η
+ η

T∑
t=1

p̃>t λ
2
t .

46/52

EXP4 Regret bound proof

Proof. Let j? = argminj∈[N]

∑T
t=1 `t(ej(xt)), be the best fixed expert in hindsight. We

will apply the lemma with j ← j?, and λt ← ˜̀
t . Let us first verify the conditions,

η =
√

log(N)/(KT) ≤ 1 as T ≥ log(N)/K.

To verify p̃>t
˜̀
t ≤ 1, recall that ˜̀(j)← ̂̀

t(ej(xt)) =
`t(ej (xt))
pt(ej (xt))1(At = ej(xt)).

Therefore,

p̃>t
˜̀
t =

N∑
j=1

p̃t(j)
`t(ej(xt))

pt(ej(xt))
1(At = ej(xt)) =

`t(At)

pt(At)

N∑
j=1

p̃t(j)1(At = ej(xt))

=
`t(At)

pt(At)
× pt(At) = `t(At) ≤ 1.

Expl: inner sum is not zero only when At = ej(xt)

47/52

EXP4 Regret bound: Proof (cont’d)

Recall loss update: ˜̀(j)← ̂̀
t(ej(xt)) =

`t(ej(xt))

pt(ej(xt))
1(At = ej(xt)).

Now consider,

E[˜̀t(j)|p̃t] = pt(ej(xt)) ·
`t(ej(xt))

pt(ej(xt))
+ (1− pt(ej(xt))) · 0 = `t(ej(xt)).

Expl: Note that, ˜̀t(j) is the loss for an expert j , while pt(ej(xt)) is the

probability of choosing action ej(xt). Recall, we are updating not just expert

j , but every expert who would have chosen the same action as j.Similarly,

E[˜̀2
t (j)|p̃t] = pt(ej(xt)) ·

`2
t (ej(xt))

p2
t (ej(xt))

+ (1− pt(ej(xt))) · 0 =
`2
t (ej(xt))

pt(ej(xt))

Remark: Here, we have pt(ej(xt)) =
∑

k p̃t(k)1(ek(xt) = ej(xt)) in the denominator.
Naively applying EXP3 we will get p̃t(j) < pt(ej(xt)) in the denominator. The

estimate for the loss in EXP4 has lower variance since E[˜̀2
t |p̃t] is smaller.

48/52

EXP4 Regret bound: Proof (cont’d)

Recall, (i) E[˜̀t(j)|p̃t] = `t(ej(xt)) (ii) E[˜̀2
t (j)|p̃t] =

`2
t (ej(xt))

pt(ej(xt))

Applying the Hedge lemma with j ← j?, we get

T∑
t=1

p̃>t
˜̀
t −

T∑
t=1

˜̀
t(j?) ≤ log(N)

η
+ η

T∑
t=1

p̃>t
˜̀2
t .

Let us take expectations on both sides.

E[LHS] = E
[T∑

t=1

E[p̃>t
˜̀
t |p̃t]−

T∑
t=1

E[˜̀t(j?)|p̃t]︸ ︷︷ ︸
=`t(ej? (xt)) by (i)

]

49/52

EXP4 Regret bound: Proof (cont’d)

Recall, (i) E[˜̀t(j)|p̃t] = `t(ej(xt)) (ii) E[˜̀2
t (j)|p̃t] =

`2
t (ej(xt))

pt(ej(xt))

By (i) again, we have

E[p̃>t
˜̀
t |p̃t] = p̃>t E[˜̀t |p̃t] =

N∑
j=1

p̃t(j)`t(ej(xt)) =
N∑
j=1

p̃t(j)
K∑

a=1

`t(a)1(a = ej(xt))

=
K∑

a=1

`t(a)
N∑
j=1

p̃t(j)1(a = ej(xt))

︸ ︷︷ ︸
=pt(a)

= p>t `t = E[`t(At)|pt].

Therefore,

E[LHS] = E

[
T∑
t=1

E[`t(At)|p̃t]−
T∑
t=1

`t(ej?(xt))

]

= E

[
T∑
t=1

`t(At)

]
− min

j∈[N]

T∑
t=1

`t(ej(xt)) = RT (πEXP4, `, x).

50/52

EXP4 Regret bound: Proof (cont’d)

Recall, (i) E[˜̀t(j)|p̃t] = `t(ej(xt)) (ii) E[˜̀2
t (j)|p̃t] =

`2
t (ej(xt))

pt(ej(xt))

(iii)
T∑
t=1

p̃>t
˜̀
t −

T∑
t=1

˜̀
t(e?) ≤ log(N)

η
+ η

T∑
t=1

p̃>t
˜̀2
t . (Hedge inequality)

Now consider the RHS of (iii),

E[RHS] =
log(N)

η
+ ηE

[
T∑
t=1

E[p̃>t
˜̀2
t |p̃t]

]
.

By (ii) and as losses are bounded in [0, 1], we have

E[p̃>t
˜̀2
t |p̃t] =

N∑
j=1

p̃t(j)
`2
t (ej(xt))

pt(ej(xt))
=

N∑
j=1

p̃t(j)
K∑

a=1

`2
t (a)

pt(a)
1(ej(xt) = a)

=
K∑

a=1

`2
t (a)

pt(a)

N∑
j=1

p̃(j)1(ej(xt) = a) =
K∑

a=1

`2
t (a)

pt(a)
pt(a) ≤ K .

Expl: Had we used EXP3, this would have been N. 51/52

EXP4 Regret bound: Proof (cont’d)

T∑
t=1

p̃>t
˜̀
t −

T∑
t=1

˜̀
t(e?) ≤ log(N)

η
+ η

T∑
t=1

p̃>t
˜̀2
t . (Hedge inequality)

Therefore,

E[RHS] ≤ log(N)

η
+ ηKT .

We have,

RT (πEXP4, `, x) ≤ log(N)

η
+ ηKT

≤ 2
√

KT log(N) as η =
√

log(N)/(KT).

52/52

