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Ch 6.1: Online Convex Optimization

Example 1. Online linear classification. We are given a parameter space
Θ = {θ ∈ Rd ; ‖θ‖2 ≤ 1}.

I On each round t, a learner chooses θt ∈ Θ.

I Simultaneously, the environment picks (xt , yt) ∈ Rd × {−1,+1}.

I The learner incurs the hinge loss ft(θt) = max(0, 1− ytθ
>
t xt).

I The learner observes (xt , yt), and therefore the loss for all θ ∈ Θ.

We can define the regret for a policy π as,

RT

(
π, {(xt , yt)}Tt=1

)
=

T∑
t=1

ft(θt)−min
θ∈Θ

T∑
t=1

ft(θ)

Expl: Single-best parameter in hindsight.

Hinge loss: penalize small margins, but not large margins
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Online Convex Optimization (cont’d)

Example 2. The experts problem. There are K experts.

I On each round t, a learner chooses a probability vector
pt ∈ ∆([K ]) = {p ∈ RK

+; p>1K = 1}.

I Simultaneously, the environment picks a loss vector `t ∈ [0, 1]K .

I Learner incurs loss `>t pt (in expectation, when an expert is sampled from pt).

I Learner observes `t , and therefore the losses for all pt ∈ ∆([K ]).

We can define the regret for a policy π as,

RT

(
π, {`t}Tt=1

)
=

T∑
t=1

p>t `t − min
a∈[K ]

T∑
t=1

`t(a) =
T∑
t=1

p>t `t − min
p∈∆([K ])

T∑
t=1

p>`t .
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Online Convex Optimization

Consider the following framework for online learning:

- Let Ω ⊂ Rd .

- On each round t, a learner chooses weight vector ωt ∈ Ω.

- Simultaneously, the environment picks a loss function ft : Ω→ R.

- The player incurs loss ft(ωt), but observes ft (losses for all ω ∈ Ω).

Online convex optimization: When Ω is a convex set and f = (f1, . . . , fT ) are
convex functions, this framework is called online convex optimization.

Expl: Why convexity? Many problems are convex, computational efficiency,

provable guarantees.
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Regret

Let f = (f1, . . . , fT ), be an arbitrary sequence of loss functions. We define regret
relative to the best fixed weight vector in hindsight.

RT (π, f ) = E

[
T∑
t=1

ft(ωt)

]
− min
ω∈Ω

T∑
t=1

ft(ω).

Here, the expection is with respect to any randomization in the policy.

We wish to design π to achieve small supf RT (π, f ).

Expl: Think of an oblivious adversary.
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Examples revisited

Example 1. Online linear classification. Given a parameter space Θ = {θ ∈ Rd ; ‖θ‖2 ≤ 1}.
I Learner chooses θt ∈ Θ. Simultaneously, the environment picks (xt , yt) ∈ Rd × R.

I Learner incurs hinge loss ft(θt) = max(0, 1− ytθ
>
t xt).

I The learner observes (xt , yt).

Here Θ is convex, and the hinge loss is convex in θ.

Example 2. The experts problem (with minor adjustments). There are K experts.

I Learner chooses a probability vector pt ∈ ∆([K ]) = {p ∈ RK
+; p>1K = 1}.

Simultaneously, the environment picks a loss vector `t ∈ [0, 1]K .

I Learner incurs loss `>t pt and observes `t .

Here ∆([K ]) is convex, and p>t `t is linear (convex).
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Follow the (regularized) leader, FTL/FTRL

What is the most straightforward approach?

Choose ωt ∈ argmin
ω∈Ω

t−1∑
s=1

fs(ω)

- This is called follow the leader (FTL).

- But this often fails as the chosen weights could fluctuate from round to round (we
will see examples shortly).

Follow the regularized leader (FTRL). Stabilize FTL by adding a regularizer Λ(ω),

ωt ∈ argmin
ω∈Ω

(
t−1∑
s=1

fs(ω) + Λ(ω)

)
.
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Follow the (regularized) leader

Follow the regularized leader (FTRL).

ωt ∈ argmin
ω∈Ω

(
t−1∑
s=1

fs(ω) + Λ(ω)

)
.

Theorem (FTRL). For any u ∈ Ω, FTRL satisfies

T∑
t=1

ft(ωt)−
T∑
t=1

ft(u) ≤
T∑
t=1

(ft(ωt)− ft(ωt+1)) + Λ(u)− min
ω∈Ω

Λ(ω).

N.B. Note that FTRL is a deterministic policy. Moreover, this result does not assume
convexity of Ω, ft or Λ.

Expl: We will use this lemma to study FTL, FTRL, and also FTPL.
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Proof of FTRL Lemma
FTRL: ωt ∈ argminω∈Ω

(∑t−1
s=1 fs(ω) + Λ(ω)

)
.

Denote Ft(ω) =
∑t

s=1 fs(ω) + Λ(ω). Therefore, ωt+1 ∈ argminω Ft(ω).

Let Φt = minω∈Ω Ft(ω) = Ft(ωt+1). Now consider,

Φt−1 − Φt = Ft−1(ωt)− Ft(ωt+1)

= Ft−1(ωt)− (Ft−1(ωt+1) + ft(ωt+1))

≤ −ft(ωt+1) As ωt ∈ argmin
ω∈Ω

Ft−1(ω)

Therefore,
Φt−1 − Φt + ft(ωt) ≤ ft(ωt)− ft(ωt+1).

Summing from t = 1, . . . ,T gives,

Φ0 − ΦT +
T∑
t=1

ft(ωt) ≤
T∑
t=1

(ft(ωt)− ft(ωt+1)) .
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Proof of FTRL Lemma (cont’d)

Recall: (i) Φt = min
ω

Ft(ω), (ii) Ft(ω) =

(
t∑

s=1

fs(ω) + Λ(ω)

)
,

We also have,

Φ0 = min
ω∈Ω

F0(ω) = min
ω∈Ω

Λ(ω).

ΦT = min
ω∈Ω

FT (ω) ≤ FT (u) =
T∑
t=1

ft(u) + Λ(u).

This yields,

min
ω∈Ω

Λ(ω) −
T∑
t=1

ft(u)− Λ(u) +
T∑
t=1

ft(ωt) ≤
T∑
t=1

(ft(ωt)− ft(ωt+1))

The theorem follows by rearranging the terms,

T∑
t=1

ft(ωt) −
T∑
t=1

ft(u) ≤
T∑
t=1

(ft(ωt)− ft(ωt+1)) + Λ(u) − min
ω∈Ω

Λ(ω).

Expl: Think about how Φt−1 is related to the Hedge proof. 10/66



FTRL vs FTL

Theorem (FTRL). For all u ∈ Ω, FTRL satisfies

T∑
t=1

ft(ωt)−
T∑
t=1

ft(u) ≤
T∑
t=1

(ft(ωt)− ft(ωt+1)) + Λ(u)− min
ω∈Ω

Λ(ω).

This means, for FTL the regret satisfies

RT (πFTL, f ) ≤
T∑
t=1

(ft(ωt)− ft(ωt+1)) .

I This bound suggests that if ωt fluctuates frequently, the regret will be bad.

I The purpose behind the regularizer is to stabilize ωt .

To motivate how a regularizer will be chosen, we will consider 3 examples for FTL with
Ω = [0, 1] and when the losses are bounded, ft : [0, 1]→ [0, 1].
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Example 1: FTL with linear losses

Example 1: Ω = [0, 1], ft(ω) =


1
2ω if t = 1,

ω if t is odd, t > 1,

1− ω if t is even.

We have

Ft(ω) =
T∑
t=1

fs(ω) =

{
1
2ω + t−1

2 if t is odd,

−1
2ω + t

2 if t is even,

Therefore,

ωt = argmin
ω∈[0,1]

Ft−1(ω) =

{
1 if t is odd,

0 if t is even

Total loss of FTL is at least T − 1.
Best action ω ∈ [0, 1] in hindsight will have regret at most T/2.
Therefore, regret is at least T/2− 1.

Bound from the theorem:
∑T

t=1 (ft(ωt)− ft(ωt+1)) ≈
∑

t 1 = T .
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Example 2: FTL with quadratic losses

Example 2: Ω = [0, 1], ft(ω) =

{
ω2 if t is odd,

(1− ω)2 if t is even.

We have

Ft(ω) =
T∑
t=1

fs(ω) =

{
t+1

2 ω2 + t−1
2 (1− ω)2 if t is odd,

t
2

(
ω2 + (1− ω)2

)
if t is even,

Therefore,

ωt = argmin
ω∈[0,1]

Ft−1(ω) =

{
1
2 if t is odd,
1
2 −

1
2t if t is even,

In this example, there is not much fluctuation.
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Example 2: FTL with quadratic losses (cont’d)

Example 2: ft(ω) =

{
ω2 if t is odd,

(1− ω)2 if t is even.
ωt = argmin

ω∈[0,1]

Ft−1(ω) =

{
1
2 if t is odd,
1
2 −

1
2t if t is even,

We have the following bound on the regret,

RT ≤
T∑
t=1

(ft(ωt)− ft(ωt+1))

=
∑
odd t

[(
1

2

)2

−
(

1

2
− 1

2(t + 1)

)2
]

+
∑

even t

[(
1

2
+

1

2t

)2

−
(

1

2

)2
]

=
∑
odd t

[
1

2(t + 1)
− 1

4(t + 1)2

]
+
∑

even t

[
1

2t
+

1

4t2

]

≤
T∑
t=1

(
O
(

1

t

)
+O

(
1

t2

))
∈ O(log(T )).
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Example 2: FTL with quadratic losses (cont’d)

Example 1: Ω = [0, 1], ft(ω) =


1
2ω if t = 1,

ω if t is odd, t > 1,

1− ω if t is even.

Example 2: Ω = [0, 1], ft(ω) =

{
ω2 if t is odd,

(1− ω)2 if t is even.

Like in Example 1, the best action for a given round i.e argminω ft(ω) fluctuates from
0 to 1. However, the regret is not large since argminω Ft(ω) does not fluctuate.

Expl: The regret is not large since the best action for a given round does not

fluctuate.

Question: Let us consider linear losses again, but with FTRL. What type of
regularizer should we use?

Expl: Quadratic functions are strongly convex.
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Example 3: FTRL with linear losses and a quadratic regularizer

FTRL: ωt ∈ argmin
ω∈Ω

(
t−1∑
s=1

fs(ω) + Λ(ω)

)
.

Let us revisit Example 1,

Ω = [0, 1], ft(ω) =


1
2ω if t = 1,

ω if t is odd, t > 1,

1− ω if t is even.

,

but use FTRL with a quadratic regularizer Λ(ω) = 1
η (ω − 1/2)2. Will specify η later.

We have

Ft(ω) =
T∑
t=1

fs(ω) =

{
1
η (ω − 1/2)2 + 1

2ω + t−1
2 if t is odd,

1
η (ω − 1/2)2 − 1

2ω + t
2 if t is even,
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Example 3: FTRL with linear losses and a quadratic regularizer (cont’d)

Ft(ω) =
t∑

t=1

fs(ω) =

{
1
η (ω − 1/2)2 + 1

2ω + t−1
2 if t is odd,

1
η (ω − 1/2)2 − 1

2ω + t
2 if t is even,

Therefore, for odd t, we have,

ωt = argmin
ω∈[0,1]

Ft−1(ω) = argmin
ω∈[0,1]

(
1

η
(ω − 1/2)2 − 1

2
ω +

t − 1

2

)
=

1

2
+
η

4
.

A similar calculation for even t reveals,

ωt = argmin
ω∈[0,1]

Ft−1(ω) =

{
1
2 + η

4 if t is odd,
1
2 −

η
4 if t is even
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Example 3: FTRL with linear losses and a quadratic regularizer (cont’d)

ft(ω) =

{
ω if t is odd, t > 1,

1− ω if t is even.
, ωt =

{
1
2 + η

4 if t is odd,
1
2 −

η
4 if t is even

We have the following bound on the regret,

RT ≤
T∑
t=1

(ft(ωt)− ft(ωt+1)) + Λ(u)− min
ω∈Ω

Λ(ω). FTRL lemma.

≤
∑
odd t

(
1

2
+
η

4
−
(

1

2
− η

4

))
+
∑

even t

((
1− 1

2
+
η

4

)
−
(

1− 1

2
− η

4

))
+

1

η

(
1

4
− 0

)
=
∑
t

η

2
+

1

4η
=
ηT

2
+

1

4η
.

If we choose η = 1/
√
T , then RT ∈ O(

√
T ).
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Take-aways from the three examples

I Linear losses have bad behavior in FTL due to the instability of ωt selected.

I We should add a “nice” regularizer to stabilize the fluctuations.

Expl: By nice we mean strong convexity.
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Ch 6.2: FTRL with convex losses and strongly convex regularizers

FTRL: ωt ∈ argmin
ω∈Ω

(
t−1∑
s=1

fs(ω) + Λ(ω)

)
.

Theorem. Suppose ft is convex for all t and let Λ(ω) = 1
ηλ(ω) where λ is 1–strongly

convex with respect to some norm ‖ · ‖. Let ‖ · ‖? be the dual norm and let
ω? ∈ argminω∈Ω

∑T
t=1 ft(ω). Then, the following bound holds for any sequence

(g1, . . . , gT ) where gt ∈ ∂ft(ωt) for all t,

RT (π, f ) ≤ 1

η

(
λ(ω?)− min

ω∈Ω
λ(ω)

)
+ η

T∑
t=1

‖gt‖2
?.
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Proof: FTRL with a strongly convex regularizer

Recall the following bound for FTRL. For all u ∈ Ω,

T∑
t=1

ft(ωt)−
T∑
t=1

ft(u) ≤ Λ(u)− min
ω∈Ω

Λ(ω) +
T∑
t=1

(ft(ωt)− ft(ωt+1)) .

We will apply this theorem with u ← ω? ∈ argminω∈Ω

∑T
t=1 ft(ω). We have,

RT (π, f )
∆
=

T∑
t=1

ft(ωt)−
T∑
t=1

ft(ω?)

≤ 1

η

(
λ(ω?)− min

ω∈Ω
λ(ω)

)
+

T∑
t=1

(ft(ωt)− ft(ωt+1))

It is sufficient to show (ft(ωt)− ft(ωt+1)) ≤ η‖gt‖2
?.
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Proof: FTRL with a strongly convex regularizer (cont’d)

RT (π, f ) ≤ 1

η

(
λ(ω?)− min

ω∈Ω
λ(ω)

)
+

T∑
t=1

(ft(ωt)− ft(ωt+1))

By convexity, as gt ∈ ∂ft(ωt), we have ft(ωt+1) ≥ ft(ωt) + g>t (ωt+1 − ωt).

Hence, by Hölder’s inequality, we have

ft(ωt)− ft(ωt+1) ≤ g>t (ωt − ωt+1) ≤ ‖ωt+1 − ωt‖‖gt‖?.

Now, denote Ft(ω) =
∑t

s=1 ft(ω) + 1
ηλ(ω). We have that Ft is 1

η -strongly convex, as
λ is 1–strongly convex and ft ’s are convex.
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Proof: FTRL with a strongly convex regularizer (cont’d)

(i) Ft is 1
η–strongly convex.

(ii) If ω? = argminω∈Ω f (ω), where f is α–strongly convex, then f (ω) ≥ f (ω?) + α
2 ‖ω − ω?‖

2
2.

Recall, in FTRL, we have ωt = argminω Ft−1(ω).
Therefore, ωt+1 minimizes Ft and ωt minimizes Ft−1. Using (i), (ii) we have,

Ft−1(ωt+1)− Ft−1(ωt) ≥
1

2η
‖ωt − ωt+1‖2,

Ft(ωt)− Ft(ωt+1) ≥ 1

2η
‖ωt − ωt+1‖2.

Summing both sides we have, ft(ωt)− ft(ωt+1) ≥ 1
η‖ωt − ωt+1‖2.

23/66



Proof: FTRL with a strongly convex regularizer (cont’d)

(i) ft(ωt)− ft(ωt+1) ≤ ‖ωt+1 − ωt‖‖gt‖?.

(ii) ft(ωt)− ft(ωt+1) ≥ 1
η‖ωt − ωt+1‖2.

Therefore,

(i), (ii) =⇒ ‖ωt − ωt+1‖2 ≤ η (ft(ωt)− ft(ωt+1)) ≤ η‖ωt+1 − ωt‖‖gt‖?
=⇒ ‖ωt − ωt+1‖ ≤ η‖gt‖? (iii)

(i), (iii) =⇒ ft(ωt)− ft(ωt+1) ≤ η‖gt‖2
?.
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A useful corollary

FTRL bound with convex losses and strongly-convex regularizers,

RT (π, f ) =
T∑
t=1

ft(ωt)−
T∑
t=1

ft(ω?) ≤ 1

η

(
λ(ω?)−min

ω
λ(ω)

)
+ η

T∑
t=1

‖gt‖2
?.

Corollary. If (maxω λ(ω)−minω λ(ω)) ≤ B and ‖gt‖? ≤ G for all t, then choosing
η =

√
B/(TG 2), we have

RT ∈ O(G
√
BT ).

Here, ‖gt‖? ≤ G simply means that ft is G–Lipschitz in norm ‖ · ‖?.
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Example 1: Linear losses

Let Ω = {ω; ‖ω‖2 ≤ 1} and ft(ωt) = ω>`t where ‖`t‖2 ≤ 1.

We will apply FTRL with λ(ω) = 1
2‖ω‖

2
2 which is 1–strongly convex in ‖ · ‖2.

FTRL update on round t,

ωt = argmin
ω∈Ω

(
t−1∑
s=1

ω>`s +
1

2η
‖ω‖2

2

)
= argmin

ω∈Ω

(
ω>

[
t−1∑
s=1

`s

]
+

1

2η
‖ω‖2

2

)

= argmin
ω∈Ω

‖ω‖2
2 + 2ηω>

[
t−1∑
s=1

`s

]
+ η2

[
t−1∑
s=1

`s

]2
 completing the square.

= argmin
ω∈Ω

∥∥∥∥∥ω + η

t−1∑
s=1

`t

∥∥∥∥∥
2

That is, choose ωt to be the projection of −η
∑T

t=1 `t onto Ω in the L2-norm.
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Example 1: Linear losses (cont’d)

- FTRL regret bound: RT (π, f ) ≤ 1
η (λ(ω?)− λ(ωt)) +

∑T
t=1 ‖gt‖?.

- FTRL with linear losses: ωt = argminω∈Ω

∥∥∥ω + η
∑t−1

s=1 `t

∥∥∥
2
.

This can be implemented via,

ut ← ut−1 + η`t−1, ωt ← argmin
ω∈Ω

‖ω − ut‖2
2. (?)

Therefore, the regret satisfies,

RT ≤
1

η

(
1

2
‖ω?‖2

2 − min
ω∈Ω
‖ω‖2

2

)
+ η

T∑
t=1

‖`t‖2 ≤ 1

η

(
1

2
· 1 − 0

)
+ ηT

∈ O
(√

T
)

if we choose η = 1/
√
T.

Remark. The update (?) only takes O(1) computation per round.
Expl: Will come back to this later.

27/66



Example 2: Online gradient descent

Let ft be differentiable on all rounds, and let Ω be a compact convex set.

We can apply FTRL with some λ(ω) which is 1–strongly convex in some norm ‖ · ‖.

FTRL update rule

ωt = argmin
ω∈Ω

(
t−1∑
s=1

fs(ω) +
1

η
λ(ω)

)

However, the complexity of this update is O(t).
Ideally, we would like it to be O(1).

Expl: You may have seen problems like this in offline optimization, but there

you just perform the minimization once. Here, we need to do it in each round.
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Example 2: Online gradient descent (cont’d)

Let us take a slightly different perspective,

RT

(
π, {ft}tt=1

)
=

T∑
t=1

ft(ωt)− min
ω∈Ω

T∑
t=1

ft(ω) = max
ω∈Ω

(
T∑
t=1

ft(ωt)−
T∑
t=1

ft(ω)

)

≤ max
ω∈Ω

T∑
t=1

∇ft(ωt)
> (ωt − ω) ft(ω) ≥ ft(ωt) +∇ft(ωt)

> (ω − ωt) by convexity

=
T∑
t=1

∇ft(ωt)
>ωt − min

ω∈Ω

T∑
t=1

∇ft(ωt)
>ω.

= RT

(
π, {∇ft(ωt)

>(·)}Tt=1

)
Linear losses with `t = ∇ft(ωt) !
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Example 2: Online gradient descent (cont’d)
We can now apply FTRL on the linear losses ∇ft(ωt)

>(·) with λ(ω) = 1
2‖ω‖

2
2 which is

1–strongly convex in ‖ · ‖2.

ωt = argmin
ω∈Ω

(
ω>

[
t−1∑
s=1

∇fs(ωs)

]
+

1

2η
‖ω‖2

2

)

= argmin
ω∈Ω

∥∥∥∥∥ω + η

t−1∑
s=1

∇fs(ωs)

∥∥∥∥∥
2

completing the square.

This is the projection of −η
∑T

t=1 `t onto Ω in the L2-norm. Can be implemented as
follows in O(1) time,

ut ← ut−1 − η∇ft−1(ωt−1), ωt ← argmin
ω∈Ω

‖ω − ut‖2
2.

Regret: If ‖∇ft(·)‖2 ≤ G and maxω λ(ω)−minω λ(ω) ≤ B, then

RT

(
π, {ft}tt=1

)
≤ RT

(
π, {∇ft(ωt)

>(·)}Tt=1

)
≤ B

η
+ ηTG 2 ∈ O(G

√
BT ).
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Example 2: Connections to projected/stochastic gradient descent:

ut ← ut−1 − η∇ft−1(ωt−1), ωt ← argmin
ω∈Ω

‖ω − ut‖2
2. (∗)

1. Suppose we are interested in finding the minimum ω? of a fixed function f , i.e
ω? = argminω∈Ω f (ω). If we take ft = f , we obtain the standard projected
gradient descent update,

ut ← ut−1 − η∇f (ωt−1), ωt ← argmin
ω∈Ω

‖ω − ut‖2
2.

We also obtain the following guarantee for projected gradient descent,

min
ωt

f (ωt)− f (ω?) ≤ 1

T

T∑
t=1

(f (ωt)− f (ω?)) =
RT

T
∈ O

(
G
√
B√
T

)
.

2. In ML, (∗) is similar to the (projected) SGD update, where ft is the loss on the
current data point.
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Example 3: The experts problem revisited

Here, Ω = ∆([K ]), losses ft(p) = `>t p, where `t ∈ [0, 1]K .

Let us try λ(ω) = 1
2‖ω‖

2
2. We have the following bound on the regret, (You can try

the update rule at home)

RT ≤
1

η

(
max
ω
λ(ω)−min

ω
λ(ω)

)
︸ ︷︷ ︸

= 1
2
·1− 1

2
· 1
K
≤ 1

2

+
T∑
t=1

‖gt‖? ≤
1

2η
+ ηKT As ‖`t‖2 ≤

√
K

∈ O
(√

KT
)

Choosing η = 1/
√
KT

But, we saw that Hedge achieved O(
√

T log(K )). This is because (‖ · ‖2, ‖ · ‖2) does
not capture the geometry of the problem.

Instead, let us try (‖ · ‖1, ‖ · ‖∞).
- We know that ‖`t‖∞ ≤ 1 (does not scale with K ).
- And ∆([K ]) is a subset of the L1-ball of radius 1.
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Example 3: The experts problem revisited (cont’d)
Experts problem: Ω = ∆([K ]), ft(p) = `>t p, where `t ∈ [0, 1]K .

Let us try the negative entropy for regularization,

λ(p) = −H(p) =
K∑
i=1

p(i) log(p(i))

Recall, from Chapter 0, that λ(p) is 1–strongly convex in ‖ · ‖1.

We have the following bound on the regret,

RT ≤
1

η

(
max
ω
λ(ω)−min

ω
λ(ω)

)
+

T∑
t=1

‖gt‖?

=
1

η

(
max
ω

H(ω)︸ ︷︷ ︸
≤log(K)

−min
ω

H(ω)

)
+

T∑
t=1

‖`t‖∞︸ ︷︷ ︸
≤1

≤ log(K )

η
+ ηT

∈ O
(√

T log(K )
)

Choosing η =
√

log(K )/T
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Example 3: The experts problem revisited (cont’d)
Let us now derive the update rule,

pt = argmin
p∈∆([K ])

(
t−1∑
s=1

`>s p +
1

η

K∑
i=1

p(i) log(p(i)).

)

We can write this as the following optimization problem,

minimizep

t−1∑
s=1

`>s p +
1

η

K∑
i=1

p(i) log(p(i)). sub. to 1>p = 1, p ≥ 0

We will write out the Lagrangian for the 1>p = 1 constraint and then verify that the
solution is non-negative.

L =
t−1∑
s=1

`>s p +
1

η

K∑
i=1

p(i) log(p(i)) + µ(p>1− 1).
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Example 3: The experts problem revisited (cont’d)

L =
t−1∑
s=1

`>s p +
1

η

K∑
i=1

p(i) log(p(i)) + µ(p>1− 1).

Taking derivatives and setting to 0,

∂L
∂p(i)

=
t−1∑
s=1

`s(i) +
1

η
(1 + log(p(i))) + µ

∆
= 0

=⇒ pt(i) = e−ηµ exp

(
−η

t−1∑
s=1

`s(i)

)
As
∑

i p(i) = 1, we obtain,

pt(i) =
exp

(
−η
∑t−1

s=1 `s(i)
)

∑K
j=1 exp

(
−η
∑t−1

s=1 `s(j)
)

This is precisely the Hedge algorithm!
Expl: By using Lt ← Lt−1 + η`t , we obtain an O(1) update.
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Ch 6.3: Follow the Perturbed Leader

Follow the perturbed leader (FTPL)

I Given: time horizon T , a distribution D.

I Sample f0 ∼ D

I for t = 1, . . . ,T

I Choose ωt = argmin
ω∈Ω

t−1∑
s=0

fs(ω)

We will assume an oblivious adversary for simplicity. With an adaptive adversary, you
just need to sample f0 ∼ D on every round.
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FTPL vs FTRL

FTRL
- Given: horizon T , regularizer Λ.
- for t = 1, . . . ,T

ωt ← argmin
ω∈Ω

t−1∑
s=1

fs(ω) + Λ(ω)

FTPL
- Given: horizon T , distribution D.
- Sample f0 ∼ D
- for t = 1, . . . ,T

ωt ← argmin
ω∈Ω

t−1∑
s=0

fs(ω)

I FTRL is deterministic, while FTPL is stochastic.

I In FTPL, we replace the regularizer Λ with an f0 sampled from a distribution D.

Why FTPL over FTRL?

I In some usecases, if f0 “looks like” ft ’s, the optimization may be simpler.
Expl: Also, DP

On the flipside,

I Choice of D is not always straightforward.

I Analysis techniques differ from use case to use case.
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Example: online linear optimization in a convex polytope

Let ft(ω) = `>t ω be linear and Ω = {ω : Aω ≤ b} where A ∈ RN×d , b ∈ Rn.

Say we run FTRL with a quadratic regularizer Λ(ω) = 1
2η‖ω‖

2
2. Then, from a previous

example,

ωt = argmin
ω∈Ω

(
t−1∑
s=1

ω>`s +
1

2η
‖ω‖2

2

)
= argmin

ω∈Ω

∥∥∥∥∥ω + η

t−1∑
s=1

`t

∥∥∥∥∥
2

This can be implemented via,

ut ← ut−1 + η`t−1, ωt ← argmin
ω∈Ω

‖ω − ut‖2
2.

This projection operation, while still a convex optimization problem, can still be
computationally expensive in a polytope.

Expl: although it is simpler in the L2 ball.
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Example: online linear optimization in a convex polytope (cont’d)

Let ft(ω) = `>t ω be linear and Ω = {ω : Aω ≤ b} where A ∈ RN×d , b ∈ Rn.

Let us try FTPL. We will sample `0 ∼ D (for some appropriately chosen D), and then
on each round

ωt ← argmin
ω∈Ω

t−1∑
s=0

`>s ω

This can be implemented via the following linear program, which is computationally
cheaper than a projection

min
ω
ω>

[
t−1∑
s=0

`s

]
subject toAω ≤ b.

Expl: Why does `0 have to be random here?

Needs to be sufficiently random, so often (not always) need thick tails.
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A preliminary bound for FTPL

Lemma (FTPL). Let f = (f1, . . . , fT ) be a sequence of losses. Then FTPL satisfies,

RT (πFTPL, f )
∆
= E

[
T∑
t=1

ft(ωt)

]
− min

ω∈Ω

T∑
t=1

ft(ω)

≤
T∑
t=1

E [ft(ωt)− ft(ωt+1)] + E
[

max
ω∈Ω

f0(ω)− min
ω∈Ω

f0(ω)

]
where the expectation is with respect to f0 ∼ D.

N.B. Does not assume convexity of Ω, ft or Λ.
Recall we are assuming an oblivious adversary.

Expl: The proof is a straightforward consequence of the FTRL lemma.
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Proof of FTPL lemma

Recall the following bound for FTRL. For all u ∈ Ω,

T∑
t=1

ft(ωt)−
T∑
t=1

ft(u) ≤ Λ(u)− min
ω∈Ω

Λ(ω) +
T∑
t=1

(ft(ωt)− ft(ωt+1)) .

For a given f0, let us apply the above lemma with Λ = f0 and
u = ω? = argminω∈Ω

∑T
t=1 ft(ω).

T∑
t=1

ft(ωt)−
T∑
t=1

ft(ω?) ≤ f0(ω?)− min
ω∈Ω

f0(ω) +
T∑
t=1

(ft(ωt)− ft(ωt+1)) .

The claim follows by noting that f0(ω?) ≤ maxω f0(ω) and then taking expectation.
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The experts problem revisited
We will apply FTPL with f0(·) = `>0 (·), and where `0(a) ∼ D(η) for all a ∈ [K ].

On round t we will choose pt ∈ argminp∈∆([K ])

∑t−1
s=0 p

>`t , which is equivalent to

choosing At ∈ argmina∈[K ]

∑t−1
s=0 `t(a).

This gives rise to the following algorithm

FTPL for the experts problem

I Given: time horizon T , parameter η

I Sample `0(a) ∼ D(η) for a ∈ [K ]. `0 ∼ D

I for t = 1, . . . ,T ,

I At ← argmina∈[K ]

∑t−1
s=0 `s(a). ωt = argminω∈Ω

∑t−1
s=0 fs(ω)

Expl: How do you choose D(η)? We will look at 2 methods.

It is common to pick independent noise vectors for each `0(a).
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FTPL for experts: negative geometric perturbation

For all a, we will sample `0(a) = −Z (a) where Z (a) ∼ Geom (η).

The Geom (η) distribution: the distribution of the number Z of Bern (η) coin flips to
get the first 1.

pmf: for k ∈ {1, 2, . . . } p(k) = P(Z = k) = (1− η)k−1η.

Some useful properties:

1. P(Z ≥ k + 1|Z ≥ k) = P(Z≥k+1, Z≥k)
P(Z≥k) = P(Z≥k+1)

P(Z≥k) = (1−η)k

(1−η)k−1 = 1− η.

2. Let Z (a) ∼ Geom (η) for a ∈ [K ]. Then (try at home)

E[‖Z‖∞] = E
[

max
a∈[K ]

Z (a)

]
≤ 1 +

HK

η
, where, HK = 1 +

1

2
+ · · ·+ 1

K
.
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FTPL for experts: negative geometric perturbation (cont’d)

Lemma (FTPL). Let f = (f1, . . . , fT ) be a sequence of losses. Then FTPL satisfies,

RT (πFTPL, f ) ≤
T∑
t=1

E [ft(ωt)− ft(ωt+1)] + E
[

max
Ω

f0(ω)−min
Ω

f0(ω)

]
Note that for the experts problem ω ∈ ∆([K ]) is such that ωt(a) = 1(At = a).
Moreover,

max
ω∈∆([K ])

f0(ω) = max
ω∈∆([K ])

`>0 ω = max
a∈[K ]

`0(a), min
ω∈∆([K ])

f0(ω) = min
a∈[K ]

`0(a),

we have,

RT (πFTPL, f ) ≤
T∑
t=1

E[`0(At)− `0(At+1)] + E
[

max
a∈[K ]

`0(a)− min
a∈[K ]

`0(a)

]
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FTPL for experts: negative geometric perturbation (cont’d)

RT (πFTPL, f ) ≤
T∑
t=1

E[`0(At)− `0(At+1)] + E
[

max
a∈[K ]

`0(a)− min
a∈[K ]

`0(a)

]

Let us first bound the second term. Recall that `0(a) = −Z (a) where
Z (a) ∼ Geom (η). As Z (a) ≥ 1, we have

max
a
`0(a) = max

a
−Z (a) ≤ −1.

−min
a
`0(a) = max

a
Z (a) = ‖Z‖∞

Therefore,

E
[

max
a∈[K ]

`0(a)− min
a∈[K ]

`0(a)

]
≤ −1 + E[‖Z‖∞] ≤ −1 + 1 +

HK

η
=

HK

η
.
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FTPL for experts: negative geometric perturbation (cont’d)

RT (πFTPL, f ) ≤
T∑
t=1

E[`0(At)− `0(At+1)] + E
[

max
a∈[K ]

`0(a)− min
a∈[K ]

`0(a)

]
︸ ︷︷ ︸

≤HK/η

Let us now bound the first term. Shortly, we will prove the following claim.

Claim. P(At+1 = a|At = a) ≥ 1− η for all a ∈ [K ], where P is with respect to `0.

Then, we can write

E[`t(At)− `t(At+1)] = E[`0(At)− `0(At+1)︸ ︷︷ ︸
=0

|At = At+1]P(At = At+1)+

E[`0(At)− `0(At+1)︸ ︷︷ ︸
≤1 as `t∈[0,1]K

|At 6= At+1]P(At 6= At+1)

≤ P(At 6= At+1) =
K∑

a=1

P(At+1 6= a|At = a)︸ ︷︷ ︸
≤η

P(At = a) ≤ η.
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FTPL for experts: negative geometric perturbation (cont’d)

RT (πFTPL, f ) ≤
T∑
t=1

E[`0(At)− `0(At+1)]︸ ︷︷ ︸
≤η

+ E
[

max
a∈[K ]

`0(a)− min
a∈[K ]

`0(a)

]
︸ ︷︷ ︸

≤HK/η

Therefore,

RT ≤ ηT +
HK

η

= 2
√
THK By choosing η =

√
HK/T

∈ O(
√

T log(K )).
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FTPL for experts: negative geometric perturbation (cont’d)
We will now prove the claim. Expl: How do you interpret this result? Stability.

A common theme in FTPL proofs.
Claim. P(At+1 = a|At = a) ≥ 1− η for all a ∈ [K ], where P is with respect to `0.

Proof. Recall that `0(a) = −Z (a) where Z (a) ∼ Geom (η).

Let a be given. We will show that for every realization of {Z (j)}j 6=a, we have

P(At+1 = a|At = a, {Z (j)}j 6=a) ≥ 1− η =⇒ P(At+1 = a|At = a) ≥ 1− η.

Fix the values of {Z (j)}j 6=a. First observe,

At = a ⇐⇒
t−1∑
s=0

`s(a) =
t−1∑
s=1

`s(a)− Z (a) ≤
t−1∑
s=1

`s(j)− Z (j) ∀ j 6= a

Now define Lt−1(j)
∆
=
∑t−1

s=1 `s(j) and Jt−1
∆
= minj 6=a (Lt−1(j)− Z (j)). Therefore,

At = a ⇐⇒ Z (a) ≥ Lt−1(a)− Jt−1.
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FTPL for experts: negative geometric perturbation (cont’d)

Lt−1(j)
∆
=

t−1∑
s=1

`s(j), Jt−1
∆
= min

j 6=a
Lt−1(j)− Z (j).

Now let us consider At+1 = j . We can write,

At+1 = a ⇐⇒
t∑

s=0

`s(a) =
t∑

s=1

`s(a)− Z (a) ≤
t∑

s=1

`s(j)− Z (j) ∀ j 6= a

⇐⇒ Z (a) ≥ Lt−1(a) + `t(a)−

(
t−1∑
s=1

`s(j) + `t(j)− Z (j)

)
∀ j 6= a

⇐⇒ Z (a) ≥ Lt−1(a)−
( t−1∑

s=1

`s(j)− Z (j)

)
︸ ︷︷ ︸

≥Jt−1

+ `t(a)− `t(j)︸ ︷︷ ︸
≤1 as `t∈[0,1]

∀ j 6= a

⇐= Z (a) ≥ Lt−1(a)− Jt−1 + 1
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FTPL for experts: negative geometric perturbation (cont’d)

At = a ⇐⇒ Z (a) ≥ Lt−1(a)− Jt−1. At+1 = a ⇐= Z (a) ≥ Lt−1(a)− Jt−1 + 1

For Z ∼ Geom (η), P(Z ≥ k + 1|Z ≥ k) = 1− η.

We therefore have,

P(At+1 = a|At = a, {Z (j)}j 6=a)

≥ P
(
Z (a) ≥ Lt−1(a)− Jt−1 + 1

∣∣Z (a) ≥ Lt−1(a)− Jt−1, {Z (j)}j 6=a

)
= 1− η

Hence, P(At+1 = a|At = a) ≥ 1− η.

Expl: We conditioned on {Z (j)}j 6=a so that we only need to deal with the

randomness of Z (a).
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FTPL for experts: Laplace perturbation

FTPL for the experts problem

I Given: time horizon T , parameter η

I Sample `0(a) ∼ D(η) for a ∈ [K ]. `0 ∼ D

I for t = 1, . . . ,T ,
I At ← argmina∈[K ]

∑t−1
s=0 `s(a). ωt = argminω∈Ω

∑t−1
s=0 fs(ω)

We will now try D(η) = Lap (1/η).

The Lap (1/η) distribution has pdf ψ:

ψ(z) =
η

2
e−η|z|,
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FTPL for experts: Laplace perturbation (cont’d)

Maximum of K i.i.d Laplace RVs. Let Z = (Z (1), . . . ,Z (K )) where Z (i) ∼ Lap (1/η),

E[‖Z‖∞] =

∫ ∞
0

P(‖Z‖∞ ≥ t)dt by identity below.

=

∫ a

0
P(‖Z‖∞ ≥ t)︸ ︷︷ ︸

≤1

dt +

∫ ∞
a

P(‖Z‖∞ ≥ t)︸ ︷︷ ︸
=P(∃ i ,|Z(i)|≥t)

dt ≤ a +
K∑
i=1

∫ ∞
a

P(|Z (i)| ≥ t)dt

We have that,

P(|Z (i)| ≥ t) =

∫ ∞
t

η

2
e−ηz +

∫ −t
−∞

η

2
eηz = e−ηt .

Therefore, choosing a = 1
log(K) , we have

E[‖Z‖∞] ≤ a + K

∫ ∞
a

e−ηtdt ≤ a +
K

η
e−ηa ≤ 1

η
(1 + log(K )) .

0For Z ≥ 0, E[Z ] =
∫∞

0
zp(z)dz =

∫∞
0

p(z)
∫ z

0
dvdz =

∫∞
0

∫∞
v

p(z)dzdv =
∫∞

0
P(Z ≥ v)dv . 52/66



FTPL for experts: Laplace perturbation (cont’d)

Lemma (FTPL). Let f = (f1, . . . , fT ) be a sequence of losses. Then FTPL satisfies,

RT (πFTPL, f ) ≤
T∑
t=1

E [ft(ωt)− ft(ωt+1)] + E
[

max
Ω

f0(ω)−min
Ω

f0(ω)

]
Using a similar argument as before (i.e for geometric perturbation), we have

RT (πFTPL, f ) ≤
T∑
t=1

E[`0(At)− `0(At+1)] + E
[

max
a∈[K ]

`0(a)− min
a∈[K ]

`0(a)

]
Expl: We showed this exact same step for Geometric perturbation

Let us first bound the second term. By symmetry of the Laplace distribution,

E
[

max
a∈[K ]

`0(a)− min
a∈[K ]

`0(a)

]
= 2E

[
max
a∈[K ]

`0(a)

]
≤ 2

η
(1 + log(K )) .
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FTPL for experts: Laplace perturbation (cont’d)

RT (πFTPL, f ) ≤
T∑
t=1

E[`0(At)− `0(At+1)] + E
[

max
a∈[K ]

`0(a)− min
a∈[K ]

`0(a)

]
︸ ︷︷ ︸

≤ 2
η (1+log(K)).

To bound the first term, we will use the following claim.

Claim. P(At = a) ≤ eηP(At+1 = a) for all a ∈ [K ], where P is w.r.t `0.
Expl: η > 0, so RHS is bigger. But, η will also be small, so it says that your

distribution round t + 1 does not change from t. FLUCTUATIONSWe therefore have,

E[`t(At)− `t(At+1)] =
K∑

a=1

`t(a)P(At = a)−
K∑

a=1

`t(a)P(At+1 = a)

=
K∑

a=1

`t(a) (P(At = a)− P(At+1 = a))

≤
K∑

a=1

`t(a)︸︷︷︸
≤1

(
1− e−η

)︸ ︷︷ ︸
≤η

P(At = a) ≤ η.
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FTPL for experts: Laplace perturbation (cont’d)

RT (πFTPL, f ) ≤
T∑
t=1

E[`0(At)− `0(At+1)]︸ ︷︷ ︸
≤η

+ E
[

max
a∈[K ]

`0(a)− min
a∈[K ]

`0(a)

]
︸ ︷︷ ︸

≤ 2
η (1+log(K)).

Therefore,

RT ≤ ηT +
2

η
(1 + log(K ))

= 3
√

T (1 + log(K ) By choosing η =
√

(1 + log(K ))/T

∈ O(
√

T log(K )).
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FTPL for experts: Laplace perturbation (cont’d)
We will now prove the following claim.

Claim. P(At = a) ≤ eηP(At+1 = a) for all a ∈ [K ], where P is w.r.t `0.

Let a be given. Let ψ be the pdf of `0. Therefore,

ψ(`0) =
K∏
j=1

η

2
e−η|`0(j)| =

ηK

2K
e−η‖`0‖1 .

We can write,

P(At = a) =

∫
RK

1

(
a = argmin

j∈[K ]

t−1∑
s=0

`s(j)

)
ψ(`0)d`0.

Let `at ∈ [0, 1]K such that `at (j) = 1(j = a)`t(a). That is `at = [0, . . . , `t(j), . . . 0].
Now, let us use the substitution ˜̀0 = `0 − `at . We have,

P(At = a) =

∫
RK

1

(
a = argmin

j∈[K ]

˜̀
0(j) + `at (j) +

t−1∑
s=1

`s(j)

)
ψ(˜̀0 + `at )d˜̀0.
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FTPL for experts: Laplace perturbation (cont’d)

ψ(`0) =
ηK

2K
e−η‖`0‖1 . P(At = a) =

∫
RK

1

(
a = argmin

j∈[K ]

˜̀
0(j) + `at (j) +

t−1∑
s=1

`s(j)

)
ψ(˜̀0 + `at )d˜̀0.

Now we will upper bound ψ(˜̀0 + `at ) as follows,

ψ(˜̀0 + `at ) =
ηK

2K
e−η‖

˜̀
0+`at ‖1

≤ ηK

2K
e−η‖

˜̀
0‖1+η‖`at ‖1 As ‖˜̀0‖1 ≤ ‖˜̀0 + `at‖1 + ‖ − `at‖1

≤ eη
ηK

2K
e−η‖

˜̀
0‖1 = eηψ(˜̀0). As ‖`at‖1 = `t(a) ≤ 1.

Therefore,

P(At = a) ≤ eη
∫
RK

1

(
a = argmin

j∈[K ]

˜̀
0(j) + `at (j) +

t−1∑
s=1

`s(j)

)
ψ(˜̀0)d˜̀0.
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FTPL for experts: Laplace perturbation (cont’d)

P(At = a) ≤ eη
∫
RK

1

(
a = argmin

j∈[K ]

˜̀
0(j) + `at (j) +

t−1∑
s=1

`s(j)

)
ψ(˜̀0)d˜̀0.

Recall `at (j) = 1(j = a)`t(a). Therefore, `at (a) = `t(a) and `at (j) ≤ `t(j) for all j 6= a.
Hence,

1

(
a = argmin

j∈[K ]

˜̀
0(j) + `at (j) +

t−1∑
s=1

`s(j)

)
≤ 1

(
a = argmin

j∈[K ]

˜̀
0(j) + `t(j) +

t−1∑
s=1

`s(j)

)
Expl: If a is the minimizer when you add `at , it has to be the case that it

minimizes with `t as the other indices are increasing.Therefore,

P(At = a) ≤ eη
∫
RK

1

(
a = argmin

j∈[K ]

˜̀
0(j) + `t(j) +

t−1∑
s=1

`s(j)

)
ψ(˜̀0)d˜̀0

≤ eη
∫
RK

1

(
a = argmin

j∈[K ]

t−1∑
s=0

`s(j)

)
ψ(`0)d`0 = eηP(At+1 = a)
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FTPL Summary

I Proof strategy:

FTPL lemma: RT (πFTPL, f ) ≤
T∑
t=1

E [ft(ωt)− ft(ωt+1)] + E
[

max
Ω

f0(ω)−min
Ω

f0(ω)

]
1. Choose D(η) so that E [maxΩ f0(ω)−minΩ f0(ω)] ≤ O

(
1
η

)
.

2. Show that ωt and ωt+1 have similar distributions.
Hence argue that E [ft(ωt)− ft(ωt+1)] ≤ O(ηm).

Proof technique for step 2 can depend on D and the problem instance.

I Although high-level intuitions are similar across all FTPL instances, we do not
usually have a unified analysis (like FTRL). However, the computational
advantages can sometimes make FTPL worthwhile.

I FTPL also does not assume convexity of Ω, ft .
Expl: Hedge is FTPL with Gumbel perturbation.
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Ch 6.4: Case study: Online shortest paths

We have a graph with M edges. There are fixed source and and destination vertices.

I There are K possible paths A = {a1, . . . , aK} from the source to the destination.
We will represent each path as aj ∈ {0, 1}M where aj(i) = 1 means that edge i is
on aj . Say that the maximum path length is m, i.e a>j 1M ≤ m.

I On each round a learner chooses a path At ∈ A from source to destination.

I Simultaneously, the adversary chooses losses `t ∈ [0, 1]M for each edge.

I The learner incurs loss A>t `t , but observes `t (losses on all edges).

Application: packet routing in a network.

We can write the regret as,

RT (π, `) =
T∑
t=1

A>t `t − min
aj∈A

T∑
t=1

a>j `t .
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Attempt 1: Applying Hedge

I Treat each path in A = {a1, . . . , aK} as an expert, and scale the losses by 1
m .

I The regret for the scaled losses will be O(
√
T log(K )). Hence,

RT ∈ O
(
m
√
T log(K )

)
∈ O

(
m
√
mT log(M/m)

)
As K ≤

(
M

m

)
�
(
M

m

)m

.

I Per-iteration run time is O(K ), which can be large.
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Attempt 2: Applying FTPL

FTPL for online shortest paths

I Given: time horizon T , parameter η

I Sample `0(e) ∼ D(η) for each edge e.

I for t = 1, . . . ,T ,
I Choose path

At ← argmin
aj∈A

t−1∑
s=0

`>s aj .

Run time per iteration:
- Updating losses on each edge (incrementally): O(M)
- Computing shortest path via Dijkstra’s: O(M). (not convex, but still efficient)
- Much cheaper than O(K ) where K could be as large as

(M
m

)
.

In fact, you do not even need to construct A explicitly.

Expl: I will now skim over the proof ideas, but it is similar to Hedge with

Laplace, so you can try them out at home.
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Bounding the regret of FTPL for online shortest paths

Recall FTPL lemma,

RT (πFTPL, f ) ≤
T∑
t=1

E [ft(ωt)− ft(ωt+1)] + E
[

max
Ω

f0(ω)−min
Ω

f0(ω)

]
We will try Laplace perturbations, i.e `0(e) ∼ Lap (1/η) for each edge e.

Applying the FTPL lemma we obtain

RT (πFTPL, f ) ≤
T∑
t=1

E[`>0 At − `>0 (At+1)] + E
[

max
a∈A

`>0 a−min
a∈A

`>0 a

]
Let us first bound the second term. By symmetry of the Laplace distribution,

E
[

max
a∈A

`>0 a−min
a∈A

`>0 a

]
= 2E

[
max
a∈A

`>0 a

]
≤ 2mE

[
max

e∈Edges
`0(e)

]
≤ 2m

η
(1 + log(M)) .
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FTPL for OSP: Laplace perturbation (cont’d)

RT (πFTPL, f ) ≤
T∑
t=1

E[`>0 At − `>0 (At+1)] + E
[

max
a∈A

`>0 a− min
a∈[K ]

`>0 a

]
︸ ︷︷ ︸

≤ 2m
η (1+log(M)).

To bound the first term, we will use the following claim.

Claim. P(At = a) ≤ emηP(At+1 = a) for all a ∈ [K ], where P is w.r.t `0.

We therefore have,

E[`>0 At − `>0 At+1] =
∑
aj∈A

`>t aj (P(At = aj)− P(At+1 = aj))

≤
∑
aj∈A

`>t aj︸︷︷︸
≤m×1

(
1− e−mη

)︸ ︷︷ ︸
≤mη

P(At = aj) ≤ ηm2.
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FTPL for OSP: Laplace perturbation (cont’d)

RT (πFTPL, f ) ≤
T∑
t=1

E[`>0 At − `>0 (At+1)]︸ ︷︷ ︸
≤ηm2

+ E
[

max
a∈A

`>0 a− min
a∈[K ]

`>0 a

]
︸ ︷︷ ︸

≤ 2m
η (1+log(M)).

Therefore,

RT ≤ m2ηT +
2m

η
(1 + log(M))

= 3m
√

mT (1 + log(K ) By choosing η =
√

(1 + log(M))/(mT )

∈ O(m
√

mT log(M)).

C.f. For Hedge, RT ∈ O
(
m
√
mT log(M/m)

)
. While the regret is similar, FTPL has

O(M) computation per round, while Hedge has O(K ), where K could be as large as(M
m

)
.
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FTPL for OSP: Laplace perturbation (cont’d)

Claim. P(At = a) ≤ emηP(At+1 = a) for all a ∈ [K ], where P is w.r.t `0.

Proof sketch. The proof is similar to Laplace perturbations for Hedge.

Let a path aj ∈ A be given. Then, we can write We can write,

P(At = aj) =

∫
RK

1

(
a = argmin

aj∈A

t−1∑
s=0

`>s aj

)
ψ(`0)d`0.

Next define `
aj
t ∈ [0, 1]M so that `

aj
t (i) = `t(i)× aj(i). Use the substitution˜̀

0 = `0 − `at and proceed in a similar fashion.
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