CS861: Theoretical Foundations of Machine Learning

Chapter 6: Online Convex Optimization

Kirthevasan Kandasamy UW-Madison

Outline

- 1. Set up
- 2. Follow the regularized leader
- 3. Follow the perturbed leader
- 4. Online Shortest Paths

Ch 6.1: Online Convex Optimization

Example 1. Online linear classification. We are given a parameter space $\Theta = \{\theta \in \mathbb{R}^d; \|\theta\|_2 \leq 1\}.$

- ▶ On each round t, a learner chooses $\theta_t \in \Theta$.
- ▶ Simultaneously, the environment picks $(x_t, y_t) \in \mathbb{R}^d \times \{-1, +1\}$.
- ▶ The learner incurs the hinge loss $f_t(\theta_t) = \max(0, 1 y_t \theta_t^\top x_t)$.
- ▶ The learner observes (x_t, y_t) , and therefore the loss for all $\theta \in \Theta$.

We can define the regret for a policy π as,

$$R_T\left(\pi, \{(x_t, y_t)\}_{t=1}^T\right) = \sum_{t=1}^T f_t(\theta_t) - \min_{\theta \in \Theta} \sum_{t=1}^T f_t(\theta)$$

Online Convex Optimization (cont'd)

Example 2. The experts problem. There are K experts.

- ▶ On each round t, a learner chooses a probability vector $p_t \in \Delta([K]) = \{p \in \mathbb{R}_+^K; p^\top \mathbf{1}_K = 1\}.$
- ▶ Simultaneously, the environment picks a loss vector $\ell_t \in [0,1]^K$.
- ▶ Learner incurs loss $\ell_t^\top p_t$ (in expectation, when an expert is sampled from p_t).
- ▶ Learner observes ℓ_t , and therefore the losses for all $p_t \in \Delta([K])$.

We can define the regret for a policy π as,

$$R_T\left(\pi, \{\ell_t\}_{t=1}^T\right) = \sum_{t=1}^T p_t^\top \ell_t - \min_{a \in [K]} \sum_{t=1}^T \ell_t(a) = \sum_{t=1}^T p_t^\top \ell_t - \min_{p \in \Delta([K])} \sum_{t=1}^T p^\top \ell_t.$$

Online Convex Optimization

Consider the following framework for online learning:

- Let $\Omega \subset \mathbb{R}^d$.
- On each round t, a learner chooses weight vector $\omega_t \in \Omega$.
- Simultaneously, the environment picks a loss function $f_t:\Omega\to\mathbb{R}$.
- The player incurs loss $f_t(\omega_t)$, but observes f_t (losses for all $\omega \in \Omega$).

Online convex optimization: When Ω is a convex set and $f = (f_1, \dots, f_T)$ are convex functions, this framework is called online convex optimization.

Regret

Let $f = (f_1, ..., f_T)$, be an arbitrary sequence of loss functions. We define regret relative to the best fixed weight vector in hindsight.

$$R_T(\pi, f) = \mathbb{E}\left[\sum_{t=1}^T f_t(\omega_t)
ight] - \min_{\omega \in \Omega} \sum_{t=1}^T f_t(\omega).$$

Here, the expection is with respect to any randomization in the policy.

We wish to design π to achieve small $\sup_f R_T(\pi, f)$.

Examples revisited

Example 1. Online linear classification. Given a parameter space $\Theta = \{\theta \in \mathbb{R}^d ; \|\theta\|_2 \leq 1\}$.

- ▶ Learner chooses $\theta_t \in \Theta$. Simultaneously, the environment picks $(x_t, y_t) \in \mathbb{R}^d \times \mathbb{R}$.
- ▶ Learner incurs hinge loss $f_t(\theta_t) = \max(0, 1 y_t \theta_t^\top x_t)$.
- ▶ The learner observes (x_t, y_t) .

Here Θ is convex, and the hinge loss is convex in θ .

Example 2. The experts problem (with minor adjustments). There are K experts.

- Learner chooses a probability vector $p_t \in \Delta([K]) = \{p \in \mathbb{R}_+^K; p^\top \mathbf{1}_K = 1\}$. Simultaneously, the environment picks a loss vector $\ell_t \in [0, 1]^K$.
- ▶ Learner incurs loss $\ell_t^\top p_t$ and observes ℓ_t .

Here $\Delta([K])$ is convex, and $p_t^{\top} \ell_t$ is linear (convex).

Follow the (regularized) leader, FTL/FTRL

What is the most straightforward approach?

Choose
$$\omega_t \in \operatorname*{argmin}_{\omega \in \Omega} \sum_{s=1}^{t-1} f_s(\omega)$$

- This is called *follow the leader* (FTL).
- But this often fails as the chosen weights could fluctuate from round to round (we will see examples shortly).

Follow the regularized leader (FTRL). Stabilize FTL by adding a regularizer $\Lambda(\omega)$,

$$\omega_t \in \underset{\omega \in \Omega}{\operatorname{argmin}} \left(\sum_{s=1}^{t-1} f_s(\omega) + \Lambda(\omega) \right).$$

Follow the (regularized) leader

Follow the regularized leader (FTRL).

$$\omega_t \in \underset{\omega \in \Omega}{\operatorname{argmin}} \left(\sum_{s=1}^{t-1} f_s(\omega) + \Lambda(\omega) \right).$$

Theorem (FTRL). For any $u \in \Omega$, FTRL satisfies

$$\sum_{t=1}^T f_t(\omega_t) - \sum_{t=1}^T f_t(u) \leq \sum_{t=1}^T (f_t(\omega_t) - f_t(\omega_{t+1})) + \Lambda(u) - \min_{\omega \in \Omega} \Lambda(\omega).$$

N.B. Note that FTRL is a deterministic policy. Moreover, this result does not assume convexity of Ω , f_t or Λ .

Proof of FTRL Lemma

FTRL:
$$\omega_t \in \operatorname{argmin}_{\omega \in \Omega} \left(\sum_{s=1}^{t-1} f_s(\omega) + \Lambda(\omega) \right)$$
.

Denote
$$F_t(\omega) = \sum_{s=1}^t f_s(\omega) + \Lambda(\omega)$$
. Therefore, $\omega_{t+1} \in \operatorname{argmin}_{\omega} F_t(\omega)$.

Let $\Phi_t = \min_{\omega \in \Omega} F_t(\omega) = F_t(\omega_{t+1})$. Now consider,

$$\begin{aligned} \Phi_{t-1} - \Phi_t &= F_{t-1}(\omega_t) - F_t(\omega_{t+1}) \\ &= F_{t-1}(\omega_t) - (F_{t-1}(\omega_{t+1}) + f_t(\omega_{t+1})) \\ &\leq -f_t(\omega_{t+1}) & \text{As } \omega_t \in \operatornamewithlimits{argmin}_{\omega \in \Omega} F_{t-1}(\omega) \end{aligned}$$

Therefore,

$$\Phi_{t-1} - \Phi_t + f_t(\omega_t) \leq f_t(\omega_t) - f_t(\omega_{t+1}).$$

Summing from t = 1, ..., T gives,

$$\Phi_0 - \Phi_T + \sum_{t=1}^T f_t(\omega_t) \leq \sum_{t=1}^T \left(f_t(\omega_t) - f_t(\omega_{t+1}) \right).$$

Proof of FTRL Lemma (cont'd)

Recall: (i)
$$\Phi_t = \min_{\omega} F_t(\omega)$$
, (ii) $F_t(\omega) = \left(\sum_{s=1}^t f_s(\omega) + \Lambda(\omega)\right)$,

We also have,

$$\Phi_0 = \min_{\omega \in \Omega} F_0(\omega) = \min_{\omega \in \Omega} \Lambda(\omega).$$

$$\Phi_T = \min_{\omega \in \Omega} F_T(\omega) \leq F_T(u) = \sum_{t=1}^T f_t(u) + \Lambda(u).$$

This yields,

$$\min_{\omega \in \Omega} \Lambda(\omega) - \sum_{t=1}^{T} f_t(u) - \Lambda(u) + \sum_{t=1}^{T} f_t(\omega_t) \leq \sum_{t=1}^{T} (f_t(\omega_t) - f_t(\omega_{t+1}))$$

The theorem follows by rearranging the terms,

$$\sum_{t=1}^T f_t(\omega_t) - \sum_{t=1}^T f_t(u) \leq \sum_{t=1}^T (f_t(\omega_t) - f_t(\omega_{t+1})) + \Lambda(u) - \min_{\omega \in \Omega} \Lambda(\omega).$$

FTRL vs FTL

Theorem (FTRL). For all $u \in \Omega$, FTRL satisfies

$$\sum_{t=1}^T f_t(\omega_t) - \sum_{t=1}^T f_t(u) \, \leq \, \sum_{t=1}^T \left(f_t(\omega_t) - f_t(\omega_{t+1}) \right) \, + \, \Lambda(u) - \min_{\omega \in \Omega} \Lambda(\omega).$$

This means, for FTL the regret satisfies

$$R_T(\pi^{ ext{FTL}}, f) \leq \sum_{t=1}^T \left(f_t(\omega_t) - f_t(\omega_{t+1}) \right).$$

- \blacktriangleright This bound suggests that if ω_t fluctuates frequently, the regret will be bad.
- ▶ The purpose behind the regularizer is to stabilize ω_t .

To motivate how a regularizer will be chosen, we will consider 3 examples for FTL with $\Omega = [0,1]$ and when the losses are bounded, $f_t : [0,1] \to [0,1]$.

Example 1: FTL with linear losses

Example 1:
$$\Omega = [0,1], \qquad f_t(\omega) = \begin{cases} \frac{1}{2}\omega & \text{if } t=1, \\ \omega & \text{if } t \text{ is odd, } t>1, \\ 1-\omega & \text{if } t \text{ is even.} \end{cases}$$

We have

$$F_t(\omega) = \sum_{t=1}^T f_s(\omega) = \begin{cases} \frac{1}{2}\omega + \frac{t-1}{2} & \text{if } t \text{ is odd,} \\ -\frac{1}{2}\omega + \frac{t}{2} & \text{if } t \text{ is even,} \end{cases}$$

Therefore,

$$\omega_t = \operatorname*{argmin}_{\omega \in [0,1]} \mathcal{F}_{t-1}(\omega) = \begin{cases} 1 & \text{if } t \text{ is odd,} \\ 0 & \text{if } t \text{ is even} \end{cases}$$

Total loss of FTL is at least T-1.

Best action $\omega \in [0,1]$ in hindsight will have regret at most T/2.

Therefore, regret is at least T/2 - 1.

Bound from the theorem: $\sum_{t=1}^{T} (f_t(\omega_t) - f_t(\omega_{t+1})) \approx \sum_t 1 = T$.

Example 2: FTL with quadratic losses

Example 2:
$$\Omega = [0,1], \qquad f_t(\omega) = \begin{cases} \omega^2 & \text{if } t \text{ is odd}, \\ (1-\omega)^2 & \text{if } t \text{ is even}. \end{cases}$$

We have

$$F_t(\omega) = \sum_{t=1}^T f_s(\omega) = \begin{cases} \frac{t+1}{2}\omega^2 + \frac{t-1}{2}(1-\omega)^2 & \text{if } t \text{ is odd,} \\ \frac{t}{2}\left(\omega^2 + (1-\omega)^2\right) & \text{if } t \text{ is even,} \end{cases}$$

Therefore,

$$\omega_t = \operatorname*{argmin}_{\omega \in [0,1]} F_{t-1}(\omega) = \begin{cases} \frac{1}{2} & \text{if } t \text{ is odd,} \\ \frac{1}{2} - \frac{1}{2t} & \text{if } t \text{ is even,} \end{cases}$$

In this example, there is not much fluctuation.

Example 2: FTL with quadratic losses (cont'd)

Example 2:
$$f_t(\omega) = \begin{cases} \omega^2 & \text{if } t \text{ is odd,} \\ (1-\omega)^2 & \text{if } t \text{ is even.} \end{cases}$$
 $\omega_t = \operatorname*{argmin}_{\omega \in [0,1]} F_{t-1}(\omega) = \begin{cases} \frac{1}{2} & \text{if } t \text{ is odd,} \\ \frac{1}{2} - \frac{1}{2t} & \text{if } t \text{ is even,} \end{cases}$

We have the following bound on the regret.

$$\begin{split} R_T &\leq \sum_{t=1}^T \left(f_t(\omega_t) - f_t(\omega_{t+1}) \right) \\ &= \sum_{\text{odd } t} \left[\left(\frac{1}{2} \right)^2 - \left(\frac{1}{2} - \frac{1}{2(t+1)} \right)^2 \right] + \sum_{\text{even } t} \left[\left(\frac{1}{2} + \frac{1}{2t} \right)^2 - \left(\frac{1}{2} \right)^2 \right] \\ &= \sum_{\text{odd } t} \left[\frac{1}{2(t+1)} - \frac{1}{4(t+1)^2} \right] + \sum_{\text{even } t} \left[\frac{1}{2t} + \frac{1}{4t^2} \right] \\ &\leq \sum_{t=1}^T \left(\mathcal{O}\left(\frac{1}{t} \right) + \mathcal{O}\left(\frac{1}{t^2} \right) \right) \in \mathcal{O}(\log(T)). \end{split}$$

Example 2: FTL with quadratic losses (cont'd)

Example 1:
$$\Omega = [0,1], \qquad f_t(\omega) = \begin{cases} \frac{1}{2}\omega & \text{if } t=1,\\ \omega & \text{if } t \text{ is odd, } t>1,\\ 1-\omega & \text{if } t \text{ is even.} \end{cases}$$
 Example 2:
$$\Omega = [0,1], \qquad f_t(\omega) = \begin{cases} \omega^2 & \text{if } t \text{ is odd,}\\ (1-\omega)^2 & \text{if } t \text{ is even.} \end{cases}$$

Like in Example 1, the best action for a given round i.e $\operatorname{argmin}_{\omega} f_t(\omega)$ fluctuates from 0 to 1. However, the regret is not large since $\operatorname{argmin}_{\omega} F_t(\omega)$ does not fluctuate.

Question: Let us consider linear losses again, but with FTRL. What type of regularizer should we use?

Example 3: FTRL with linear losses and a quadratic regularizer

FTRL:
$$\omega_t \in \underset{\omega \in \Omega}{\operatorname{argmin}} \left(\sum_{s=1}^{t-1} f_s(\omega) + \Lambda(\omega) \right).$$

Let us revisit Example 1,

$$\Omega = [0,1], \qquad f_t(\omega) = egin{cases} rac{1}{2}\omega & ext{if } t=1, \ \omega & ext{if } t ext{ is odd, } t>1, \ 1-\omega & ext{if } t ext{ is even.} \end{cases}$$

but use FTRL with a quadratic regularizer $\Lambda(\omega)=\frac{1}{\eta}(\omega-1/2)^2$. Will specify η later.

We have

$$F_t(\omega) = \sum_{t=1}^{I} f_s(\omega) = \begin{cases} \frac{1}{\eta} (\omega - 1/2)^2 + \frac{1}{2}\omega + \frac{t-1}{2} & \text{if } t \text{ is odd,} \\ \frac{1}{\eta} (\omega - 1/2)^2 - \frac{1}{2}\omega + \frac{t}{2} & \text{if } t \text{ is even,} \end{cases}$$

Example 3: FTRL with linear losses and a quadratic regularizer (cont'd)

$$F_t(\omega) = \sum_{t=1}^t f_s(\omega) = \begin{cases} \frac{1}{\eta} (\omega - 1/2)^2 + \frac{1}{2}\omega + \frac{t-1}{2} & \text{if } t \text{ is odd,} \\ \frac{1}{\eta} (\omega - 1/2)^2 - \frac{1}{2}\omega + \frac{t}{2} & \text{if } t \text{ is even,} \end{cases}$$

Therefore, for odd t, we have,

$$\omega_t = \operatorname*{argmin}_{\omega \in [0,1]} F_{t-1}(\omega) = \operatorname*{argmin}_{\omega \in [0,1]} \left(\frac{1}{\eta} (\omega - 1/2)^2 - \frac{1}{2} \omega + \frac{t-1}{2} \right) = \frac{1}{2} + \frac{\eta}{4}.$$

A similar calculation for even t reveals.

$$\omega_t = \operatorname*{argmin}_{\omega \in [0,1]} F_{t-1}(\omega) = \begin{cases} \frac{1}{2} + \frac{\eta}{4} & \text{if } t \text{ is odd,} \\ \frac{1}{2} - \frac{\eta}{4} & \text{if } t \text{ is even} \end{cases}$$

Example 3: FTRL with linear losses and a quadratic regularizer (cont'd)

$$f_t(\omega) = egin{cases} \omega & ext{if t is odd, $t>1$,} \ 1-\omega & ext{if t is even.} \end{cases}, \qquad \omega_t = egin{cases} rac{1}{2} + rac{\eta}{4} & ext{if t is odd,} \ rac{1}{2} - rac{\eta}{4} & ext{if t is even.} \end{cases}$$

We have the following bound on the regret,

$$R_T \leq \sum_{t=1}^I \left(f_t(\omega_t) - f_t(\omega_{t+1}) \right) \ + \ \Lambda(u) - \min_{\omega \in \Omega} \Lambda(\omega). \qquad \text{FTRL lemma.}$$

$$\leq \sum_{\text{odd } t} \left(\frac{1}{2} + \frac{\eta}{4} - \left(\frac{1}{2} - \frac{\eta}{4} \right) \right) \ + \sum_{\text{even } t} \left(\left(1 - \frac{1}{2} + \frac{\eta}{4} \right) - \left(1 - \frac{1}{2} - \frac{\eta}{4} \right) \right)$$

$$+ \frac{1}{\eta} \left(\frac{1}{4} - 0 \right)$$

$$= \sum_{t} \frac{\eta}{2} \ + \frac{1}{4\eta} = \frac{\eta T}{2} + \frac{1}{4\eta}.$$
 If we choose $\eta = 1/\sqrt{T}$, then $R_T \in \mathcal{O}(\sqrt{T})$.

Take-aways from the three examples

- ▶ Linear losses have bad behavior in FTL due to the instability of ω_t selected.
- ▶ We should add a "nice" regularizer to stabilize the fluctuations.

Ch 6.2: FTRL with convex losses and strongly convex regularizers

FTRL:
$$\omega_t \in \underset{\omega \in \Omega}{\operatorname{argmin}} \left(\sum_{s=1}^{t-1} f_s(\omega) + \Lambda(\omega) \right).$$

Theorem. Suppose f_t is convex for all t and let $\Lambda(\omega) = \frac{1}{\eta}\lambda(\omega)$ where λ is 1-strongly convex with respect to some norm $\|\cdot\|$. Let $\|\cdot\|_{\star}$ be the dual norm and let $\omega_{\star} \in \operatorname{argmin}_{\omega \in \Omega} \sum_{t=1}^{T} f_t(\omega)$. Then, the following bound holds for any sequence (g_1, \ldots, g_T) where $g_t \in \partial f_t(\omega_t)$ for all t,

$$R_T(\pi, f) \leq rac{1}{\eta} \left(\lambda(\omega_\star) - \min_{\omega \in \Omega} \lambda(\omega)
ight) + \eta \sum_{t=1}^T \| g_t \|_\star^2.$$

Proof: FTRL with a strongly convex regularizer

Recall the following bound for FTRL. For all $u \in \Omega$,

$$\sum_{t=1}^T f_t(\omega_t) - \sum_{t=1}^T f_t(u) \leq \Lambda(u) - \min_{\omega \in \Omega} \Lambda(\omega) + \sum_{t=1}^T (f_t(\omega_t) - f_t(\omega_{t+1})).$$

We will apply this theorem with $u \leftarrow \omega_{\star} \in \operatorname{argmin}_{\omega \in \Omega} \sum_{t=1}^{T} f_{t}(\omega)$. We have,

$$R_{T}(\pi, f) \stackrel{\Delta}{=} \sum_{t=1}^{T} f_{t}(\omega_{t}) - \sum_{t=1}^{T} f_{t}(\omega_{\star})$$

$$\leq \frac{1}{\eta} \left(\lambda(\omega_{\star}) - \min_{\omega \in \Omega} \lambda(\omega) \right) + \sum_{t=1}^{T} \left(f_{t}(\omega_{t}) - f_{t}(\omega_{t+1}) \right)$$

It is sufficient to show $(f_t(\omega_t) - f_t(\omega_{t+1})) \leq \eta \|g_t\|_{\star}^2$.

Proof: FTRL with a strongly convex regularizer (cont'd)

$$R_{\mathcal{T}}(\pi, f) \leq \frac{1}{\eta} \left(\lambda(\omega_{\star}) - \min_{\omega \in \Omega} \lambda(\omega) \right) + \sum_{t=1}^{T} \left(f_{t}(\omega_{t}) - f_{t}(\omega_{t+1}) \right)$$

By convexity, as $g_t \in \partial f_t(\omega_t)$, we have $f_t(\omega_{t+1}) \geq f_t(\omega_t) + g_t^\top (\omega_{t+1} - \omega_t)$.

Hence, by Hölder's inequality, we have

$$f_t(\omega_t) - f_t(\omega_{t+1}) \leq g_t^{\top}(\omega_t - \omega_{t+1}) \leq \|\omega_{t+1} - \omega_t\| \|g_t\|_{\star}.$$

Now, denote $F_t(\omega) = \sum_{s=1}^t f_t(\omega) + \frac{1}{\eta}\lambda(\omega)$. We have that F_t is $\frac{1}{\eta}$ -strongly convex, as λ is 1-strongly convex and f_t 's are convex.

Proof: FTRL with a strongly convex regularizer (cont'd)

- (i) F_t is $\frac{1}{\eta}$ -strongly convex.
- (ii) If $\omega_{\star} = \operatorname{argmin}_{\omega \in \Omega} f(\omega)$, where f is α -strongly convex, then $f(\omega) \geq f(\omega_{\star}) + \frac{\alpha}{2} \|\omega \omega_{\star}\|_{2}^{2}$.

Recall, in FTRL, we have $\omega_t = \operatorname{argmin}_{\omega} F_{t-1}(\omega)$.

Therefore, ω_{t+1} minimizes F_t and ω_t minimizes F_{t-1} . Using (i), (ii) we have,

$$F_{t-1}(\omega_{t+1}) - F_{t-1}(\omega_t) \ge \frac{1}{2\eta} \|\omega_t - \omega_{t+1}\|^2,$$

 $F_t(\omega_t) - F_t(\omega_{t+1}) \ge \frac{1}{2\eta} \|\omega_t - \omega_{t+1}\|^2.$

Summing both sides we have, $f_t(\omega_t) - f_t(\omega_{t+1}) \ge \frac{1}{\eta} \|\omega_t - \omega_{t+1}\|^2$.

Proof: FTRL with a strongly convex regularizer (cont'd)

(i)
$$f_t(\omega_t) - f_t(\omega_{t+1}) \le \|\omega_{t+1} - \omega_t\| \|g_t\|_{\star}$$
.

(ii)
$$f_t(\omega_t) - f_t(\omega_{t+1}) \ge \frac{1}{\eta} \|\omega_t - \omega_{t+1}\|^2$$
.

Therefore,

(i), (ii)
$$\Longrightarrow \|\omega_t - \omega_{t+1}\|^2 \le \eta \left(f_t(\omega_t) - f_t(\omega_{t+1}) \right) \le \eta \|\omega_{t+1} - \omega_t\| \|g_t\|_{\star}$$

 $\Longrightarrow \|\omega_t - \omega_{t+1}\| \le \eta \|g_t\|_{\star}$ (iii)

(i), (iii)
$$\implies f_t(\omega_t) - f_t(\omega_{t+1}) \leq \eta \|g_t\|_{\star}^2$$
.

24/66

A useful corollary

FTRL bound with convex losses and strongly-convex regularizers,

$$R_T(\pi, f) = \sum_{t=1}^T f_t(\omega_t) - \sum_{t=1}^T f_t(\omega_\star) \le \frac{1}{\eta} \left(\lambda(\omega_\star) - \min_{\omega} \lambda(\omega) \right) + \eta \sum_{t=1}^T \|g_t\|_\star^2.$$

Corollary. If
$$(\max_{\omega} \lambda(\omega) - \min_{\omega} \lambda(\omega)) \leq B$$
 and $\|g_t\|_{\star} \leq G$ for all t , then choosing $\eta = \sqrt{B/(TG^2)}$, we have $R_T \in \mathcal{O}(G\sqrt{BT})$.

Here, $\|g_t\|_{\star} \leq G$ simply means that f_t is G-Lipschitz in norm $\|\cdot\|_{\star}$.

Example 1: Linear losses

Let $\Omega = \{\omega; \|\omega\|_2 \le 1\}$ and $f_t(\omega_t) = \omega^\top \ell_t$ where $\|\ell_t\|_2 \le 1$.

We will apply FTRL with $\lambda(\omega) = \frac{1}{2} \|\omega\|_2^2$ which is 1-strongly convex in $\|\cdot\|_2$.

FTRL update on round t,

$$\begin{split} \omega_t &= \operatorname*{argmin}_{\omega \in \Omega} \left(\sum_{s=1}^{t-1} \omega^\top \ell_s + \frac{1}{2\eta} \|\omega\|_2^2 \right) = \operatorname*{argmin}_{\omega \in \Omega} \left(\omega^\top \left[\sum_{s=1}^{t-1} \ell_s \right] + \frac{1}{2\eta} \|\omega\|_2^2 \right) \\ &= \operatorname*{argmin}_{\omega \in \Omega} \left(\|\omega\|_2^2 + 2\eta\omega^\top \left[\sum_{s=1}^{t-1} \ell_s \right] + \eta^2 \left[\sum_{s=1}^{t-1} \ell_s \right]^2 \right) \quad \text{completing the square.} \\ &= \operatorname*{argmin}_{\omega \in \Omega} \left\| \omega + \eta \sum_{s=1}^{t-1} \ell_t \right\|_2 \end{split}$$

That is, choose ω_t to be the projection of $-\eta \sum_{t=1}^T \ell_t$ onto Ω in the L_2 -norm.

Example 1: Linear losses (cont'd)

- FTRL regret bound: $R_T(\pi, f) \leq \frac{1}{\eta} (\lambda(\omega_*) \lambda(\omega_t)) + \sum_{t=1}^T \|g_t\|_*$.
- FTRL with linear losses: $\omega_t = \operatorname{argmin}_{\omega \in \Omega} \left\| \omega + \eta \sum_{s=1}^{t-1} \ell_t \right\|_2$.

This can be implemented via,

$$u_t \leftarrow u_{t-1} + \eta \ell_{t-1}, \qquad \omega_t \leftarrow \underset{\omega \in \Omega}{\operatorname{argmin}} \|\omega - u_t\|_2^2.$$
 (*)

Therefore, the regret satisfies,

$$\begin{split} R_T & \leq \frac{1}{\eta} \left(\frac{1}{2} \|\omega_\star\|_2^2 - \min_{\omega \in \Omega} \|\omega\|_2^2 \right) \, + \, \eta \sum_{t=1}^T \|\ell_t\|^2 \, \leq \, \frac{1}{\eta} \left(\frac{1}{2} \cdot 1 \, - \, 0 \right) + \eta \, T \\ & \in \mathcal{O} \left(\sqrt{T} \right) \quad \text{if we choose } \eta = 1/\sqrt{T} \, . \end{split}$$

Remark. The update (\star) only takes O(1) computation per round.

Example 2: Online gradient descent

Let f_t be differentiable on all rounds, and let Ω be a compact convex set.

We can apply FTRL with some $\lambda(\omega)$ which is 1–strongly convex in some norm $\|\cdot\|$.

FTRL update rule

$$\omega_t = \operatorname*{argmin}_{\omega \in \Omega} \left(\sum_{s=1}^{t-1} f_s(\omega) + \frac{1}{\eta} \lambda(\omega) \right)$$

However, the complexity of this update is O(t). Ideally, we would like it to be O(1).

Example 2: Online gradient descent (cont'd)

Let us take a slightly different perspective,

$$R_{T}\left(\pi, \{f_{t}\}_{t=1}^{t}\right) = \sum_{t=1}^{T} f_{t}(\omega_{t}) - \min_{\omega \in \Omega} \sum_{t=1}^{T} f_{t}(\omega) = \max_{\omega \in \Omega} \left(\sum_{t=1}^{T} f_{t}(\omega_{t}) - \sum_{t=1}^{T} f_{t}(\omega)\right)$$

$$\leq \max_{\omega \in \Omega} \sum_{t=1}^{T} \nabla f_{t}(\omega_{t})^{\top} (\omega_{t} - \omega) \qquad f_{t}(\omega) \geq f_{t}(\omega_{t}) + \nabla f_{t}(\omega_{t})^{\top} (\omega - \omega_{t}) \text{ by convexity}$$

$$= \sum_{t=1}^{T} \nabla f_{t}(\omega_{t})^{\top} \omega_{t} - \min_{\omega \in \Omega} \sum_{t=1}^{T} \nabla f_{t}(\omega_{t})^{\top} \omega.$$

$$= R_{T}\left(\pi, \{\nabla f_{t}(\omega_{t})^{\top}(\cdot)\}_{t=1}^{T}\right) \quad \text{Linear losses with } \ell_{t} = \nabla f_{t}(\omega_{t}) !$$

Example 2: Online gradient descent (cont'd)

We can now apply FTRL on the linear losses $\nabla f_t(\omega_t)^{\top}(\cdot)$ with $\lambda(\omega) = \frac{1}{2} \|\omega\|_2^2$ which is 1-strongly convex in $\|\cdot\|_2$.

$$egin{aligned} \omega_t &= rgmin_{\omega \in \Omega} \left(\omega^\top \left[\sum_{s=1}^{t-1}
abla f_s(\omega_s)
ight] + rac{1}{2\eta} \|\omega\|_2^2
ight) \ &= rgmin_{\omega \in \Omega} \left\| \omega + \eta \sum_{s=1}^{t-1}
abla f_s(\omega_s)
ight\|_2 \quad & ext{completing the square.} \end{aligned}$$

This is the projection of $-\eta \sum_{t=1}^{T} \ell_t$ onto Ω in the L_2 -norm. Can be implemented as follows in $\mathcal{O}(1)$ time,

$$u_t \leftarrow u_{t-1} - \eta \nabla f_{t-1}(\omega_{t-1}), \qquad \omega_t \leftarrow \underset{\omega \in \Omega}{\operatorname{argmin}} \|\omega - u_t\|_2^2.$$

Regret: If $\|\nabla f_t(\cdot)\|_2 \leq G$ and $\max_{\omega} \lambda(\omega) - \min_{\omega} \lambda(\omega) \leq B$, then

$$R_T\left(\pi, \{f_t\}_{t=1}^t\right) \leq R_T\left(\pi, \{\nabla f_t(\omega_t)^\top(\cdot)\}_{t=1}^T\right) \leq \frac{B}{n} + \eta TG^2 \in \mathcal{O}(G\sqrt{BT}).$$

Example 2: Connections to projected/stochastic gradient descent:

$$u_t \leftarrow u_{t-1} - \eta \nabla f_{t-1}(\omega_{t-1}), \qquad \omega_t \leftarrow \underset{\omega \in \Omega}{\operatorname{argmin}} \|\omega - u_t\|_2^2.$$
 (*)

1. Suppose we are interested in finding the minimum ω_{\star} of a fixed function f, i.e $\omega_{\star} = \operatorname{argmin}_{\omega \in \Omega} f(\omega)$. If we take $f_t = f$, we obtain the standard projected gradient descent update,

$$u_t \leftarrow u_{t-1} - \eta \nabla f(\omega_{t-1}), \qquad \omega_t \leftarrow \underset{\omega \in \Omega}{\operatorname{argmin}} \|\omega - u_t\|_2^2.$$

We also obtain the following guarantee for projected gradient descent,

$$\min_{\omega_t} f(\omega_t) - f(\omega_\star) \leq \frac{1}{T} \sum_{t=1}^T \left(f(\omega_t) - f(\omega_\star) \right) = \frac{R_T}{T} \in \mathcal{O}\left(\frac{G\sqrt{B}}{\sqrt{T}} \right).$$

2. In ML, (*) is similar to the (projected) SGD update, where f_t is the loss on the current data point.

Example 3: The experts problem revisited

Here, $\Omega = \Delta([K])$, losses $f_t(p) = \ell_t^\top p$, where $\ell_t \in [0, 1]^K$.

Let us try $\lambda(\omega) = \frac{1}{2} ||\omega||_2^2$. We have the following bound on the regret, (You can try the update rule at home)

$$\begin{split} R_T & \leq \frac{1}{\eta} \underbrace{\left(\max_{\omega} \lambda(\omega) - \min_{\omega} \lambda(\omega) \right)}_{=\frac{1}{2} \cdot 1 - \frac{1}{2} \cdot \frac{1}{K} \leq \frac{1}{2}} + \eta KT \quad \text{ As } \|\ell_t\|_2 \leq \sqrt{K} \\ & \in \mathcal{O}\left(\sqrt{KT}\right) \quad \text{Choosing } \eta = 1/\sqrt{KT} \end{split}$$

But, we saw that Hedge achieved $\mathcal{O}(\sqrt{T \log(K)})$. This is because $(\|\cdot\|_2, \|\cdot\|_2)$ does not capture the geometry of the problem.

Instead, let us try $(\|\cdot\|_1, \|\cdot\|_{\infty})$.

- We know that $\|\ell_t\|_{\infty} \leq 1$ (does not scale with K).
- And $\Delta([K])$ is a subset of the L_1 -ball of radius 1.

Example 3: The experts problem revisited (cont'd)

Experts problem: $\Omega = \Delta([K]), f_t(p) = \ell_t^\top p$, where $\ell_t \in [0, 1]^K$.

Let us try the negative entropy for regularization,

$$\lambda(p) = -H(p) = \sum_{i=1}^{K} p(i) \log(p(i))$$

Recall, from Chapter 0, that $\lambda(p)$ is 1–strongly convex in $\|\cdot\|_1$.

We have the following bound on the regret,

$$\begin{split} R_T &\leq \frac{1}{\eta} \left(\max_{\omega} \lambda(\omega) - \min_{\omega} \lambda(\omega) \right) + \sum_{t=1}^{T} \|g_t\|_{\star} \\ &= \frac{1}{\eta} \left(\underbrace{\max_{\omega} \mathrm{H}(\omega) - \min_{\omega} \mathrm{H}(\omega)}_{\leq \log(K)} \right) + \sum_{t=1}^{T} \underbrace{\|\ell_t\|_{\infty}}_{\leq 1} \leq \frac{\log(K)}{\eta} + \eta T \\ &\in \mathcal{O}\left(\sqrt{T\log(K)}\right) \quad \text{Choosing } \eta = \sqrt{\log(K)/T} \end{split}$$

Example 3: The experts problem revisited (cont'd)

Let us now derive the update rule,

$$p_t = \operatorname*{argmin}_{p \in \Delta([K])} \left(\sum_{s=1}^{t-1} \ell_s^\top p + \frac{1}{\eta} \sum_{i=1}^K p(i) \log(p(i)). \right)$$

We can write this as the following optimization problem,

$$\mathsf{minimize}_{p} \ \sum_{s=1}^{t-1} \ell_{s}^{\top} p + \frac{1}{\eta} \sum_{i=1}^{K} p(i) \log(p(i)). \qquad \mathsf{sub. to } \ \mathbf{1}^{\top} p = 1, \ p \geq 0$$

We will write out the Lagrangian for the $\mathbf{1}^{\top}p=1$ constraint and then verify that the solution is non-negative.

$$\mathcal{L} = \sum_{s=1}^{t-1} \ell_s^{\top} p + \frac{1}{\eta} \sum_{i=1}^K p(i) \log(p(i)) + \mu(p^{\top} \mathbf{1} - 1).$$

Example 3: The experts problem revisited (cont'd)

$$\mathcal{L} = \sum_{s=1}^{t-1} \ell_s^\top p + \frac{1}{\eta} \sum_{i=1}^K p(i) \log(p(i)) + \mu(p^\top \mathbf{1} - 1).$$

Taking derivatives and setting to 0,

$$\frac{\partial \mathcal{L}}{\partial p(i)} = \sum_{s=1}^{t-1} \ell_s(i) + \frac{1}{\eta} \left(1 + \log(p(i)) \right) + \mu \stackrel{\triangle}{=} 0$$

$$\implies p_t(i) = e^{-\eta \mu} \exp\left(-\eta \sum_{s=1}^{t-1} \ell_s(i) \right)$$

As $\sum_{i} p(i) = 1$, we obtain,

$$p_t(i) = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \ell_s(i)\right)}{\sum_{j=1}^{K} \exp\left(-\eta \sum_{s=1}^{t-1} \ell_s(j)\right)}$$

This is precisely the Hedge algorithm!

Ch 6.3: Follow the Perturbed Leader

Follow the perturbed leader (FTPL)

- ▶ Given: time horizon T, a distribution D.
- ▶ Sample $f_0 \sim D$
- ▶ for t = 1, ..., T▶ Choose $\omega_t = \operatorname*{argmin}_{\omega \in \Omega} \sum_{s=0}^{t-1} f_s(\omega)$

We will assume an oblivious adversary for simplicity. With an adaptive adversary, you just need to sample $f_0 \sim D$ on every round.

FTPL vs FTRL

FTRL

- Given: horizon T, regularizer Λ .
- for $t = 1, \dots, T$ $\omega_t \leftarrow \operatorname*{argmin}_{\omega \in \Omega} \sum_{s=1}^{t-1} f_s(\omega) + \Lambda(\omega)$

FTPL

- Given: horizon T, distribution D.
- Sample $f_0 \sim D$
- for $t = 1, \ldots, T$ $\omega_t \leftarrow \operatorname*{argmin}_{\omega \in \Omega} \sum_{s=0}^{t-1} f_s(\omega)$
- FTRL is deterministic, while FTPL is stochastic.
- ▶ In FTPL, we replace the regularizer Λ with an f_0 sampled from a distribution D.

Why FTPL over FTRL?

▶ In some usecases, if f_0 "looks like" f_t 's, the optimization may be simpler.

On the flipside,

- Choice of D is not always straightforward.
- ▶ Analysis techniques differ from use case to use case.

Example: online linear optimization in a convex polytope

Let $f_t(\omega) = \ell_t^{\top} \omega$ be linear and $\Omega = \{\omega : A\omega \leq b\}$ where $A \in \mathbb{R}^{N \times d}, b \in \mathbb{R}^n$.

Say we run FTRL with a quadratic regularizer $\Lambda(\omega) = \frac{1}{2\eta} ||\omega||_2^2$. Then, from a previous example,

$$\omega_t = \operatorname*{argmin}_{\omega \in \Omega} \left(\sum_{s=1}^{t-1} \omega^\top \ell_s + \frac{1}{2\eta} \|\omega\|_2^2 \right) = \operatorname*{argmin}_{\omega \in \Omega} \left\| \omega + \eta \sum_{s=1}^{t-1} \ell_t \right\|_2$$

This can be implemented via,

$$u_t \leftarrow u_{t-1} + \eta \ell_{t-1}, \qquad \qquad \omega_t \leftarrow \operatorname*{argmin}_{\omega \in \Omega} \|\omega - u_t\|_2^2.$$

This projection operation, while still a convex optimization problem, can still be computationally expensive in a polytope.

Example: online linear optimization in a convex polytope (cont'd)

Let $f_t(\omega) = \ell_t^{\top} \omega$ be linear and $\Omega = \{\omega : A\omega \leq b\}$ where $A \in \mathbb{R}^{N \times d}, b \in \mathbb{R}^n$.

Let us try FTPL. We will sample $\ell_0 \sim D$ (for some appropriately chosen D), and then on each round

$$\omega_t \leftarrow \operatorname*{argmin}_{\omega \in \Omega} \sum_{s=0}^{t-1} \ell_s^\top \omega$$

This can be implemented via the following linear program, which is computationally cheaper than a projection

$$\min_{\omega} \omega^{\top} \left[\sum_{s=0}^{t-1} \ell_s \right] \qquad \text{subject to } A\omega \leq b.$$

A preliminary bound for FTPL

Lemma (FTPL). Let $f = (f_1, \dots, f_T)$ be a sequence of losses. Then FTPL satisfies,

$$R_{T}(\pi^{\text{FTPL}}, f) \stackrel{\Delta}{=} \mathbb{E}\left[\sum_{t=1}^{T} f_{t}(\omega_{t})\right] - \min_{\omega \in \Omega} \sum_{t=1}^{T} f_{t}(\omega)$$

$$\leq \sum_{t=1}^{T} \mathbb{E}\left[f_{t}(\omega_{t}) - f_{t}(\omega_{t+1})\right] + \mathbb{E}\left[\max_{\omega \in \Omega} f_{0}(\omega) - \min_{\omega \in \Omega} f_{0}(\omega)\right]$$

where the expectation is with respect to $f_0 \sim D$.

N.B. Does not assume convexity of Ω , f_t or Λ . Recall we are assuming an oblivious adversary.

Proof of FTPL lemma

Recall the following bound for FTRL. For all $u \in \Omega$,

$$\sum_{t=1}^T f_t(\omega_t) - \sum_{t=1}^T f_t(u) \leq \Lambda(u) - \min_{\omega \in \Omega} \Lambda(\omega) + \sum_{t=1}^T (f_t(\omega_t) - f_t(\omega_{t+1})).$$

For a given f_0 , let us apply the above lemma with $\Lambda = f_0$ and $u = \omega_{\star} = \operatorname{argmin}_{\omega \in \Omega} \sum_{t=1}^{T} f_t(\omega)$.

$$\sum_{t=1}^T f_t(\omega_t) - \sum_{t=1}^T f_t(\omega_\star) \leq f_0(\omega_\star) - \min_{\omega \in \Omega} f_0(\omega) + \sum_{t=1}^T (f_t(\omega_t) - f_t(\omega_{t+1})).$$

The claim follows by noting that $f_0(\omega_*) \leq \max_{\omega} f_0(\omega)$ and then taking expectation.

41/66

The experts problem revisited

We will apply FTPL with $f_0(\cdot) = \ell_0^\top(\cdot)$, and where $\ell_0(a) \sim D(\eta)$ for all $a \in [K]$.

On round t we will choose $p_t \in \operatorname{argmin}_{p \in \Delta([K])} \sum_{s=0}^{t-1} p^\top \ell_t$, which is equivalent to choosing $A_t \in \operatorname{argmin}_{a \in [K]} \sum_{s=0}^{t-1} \ell_t(a)$.

This gives rise to the following algorithm

FTPL for the experts problem

- ▶ Given: time horizon T, parameter η
- ► Sample $\ell_0(a) \sim D(\eta)$ for $a \in [K]$. $\ell_0 \sim D$
- ightharpoonup for $t=1,\ldots,T$,
 - $A_t \leftarrow \operatorname{argmin}_{a \in [K]} \sum_{s=0}^{t-1} \ell_s(a). \qquad \omega_t = \operatorname{argmin}_{\omega \in \Omega} \sum_{s=0}^{t-1} f_s(\omega)$

For all a, we will sample $\ell_0(a) = -Z(a)$ where $Z(a) \sim \operatorname{Geom}(\eta)$.

The $\operatorname{Geom}(\eta)$ distribution: the distribution of the number Z of $\operatorname{Bern}(\eta)$ coin flips to get the first 1.

pmf: for
$$k \in \{1, 2, ...\}$$
 $p(k) = \mathbb{P}(Z = k) = (1 - \eta)^{k-1} \eta$.

Some useful properties:

1.
$$\mathbb{P}(Z \ge k + 1 | Z \ge k) = \frac{\mathbb{P}(Z \ge k + 1, Z \ge k)}{\mathbb{P}(Z \ge k)} = \frac{\mathbb{P}(Z \ge k + 1)}{\mathbb{P}(Z \ge k)} = \frac{(1 - \eta)^k}{(1 - \eta)^{k - 1}} = 1 - \eta.$$

2. Let $Z(a) \sim \operatorname{Geom}(\eta)$ for $a \in [K]$. Then (try at home)

$$\mathbb{E}[\|Z\|_{\infty}] = \mathbb{E}\left[\max_{a \in [K]} Z(a)\right] \leq 1 + \frac{H_K}{\eta}, \qquad \text{where, } H_K = 1 + \frac{1}{2} + \dots + \frac{1}{K}.$$

Lemma (FTPL). Let $f = (f_1, \dots, f_T)$ be a sequence of losses. Then FTPL satisfies,

$$R_T(\pi^{ ext{FTPL}}, f) \leq \sum_{t=1}^T \mathbb{E}\left[f_t(\omega_t) - f_t(\omega_{t+1})
ight] + \mathbb{E}\left[\max_{\Omega} f_0(\omega) - \min_{\Omega} f_0(\omega)
ight]$$

Note that for the experts problem $\omega \in \Delta([K])$ is such that $\omega_t(a) = \mathbb{1}(A_t = a)$. Moreover,

$$\max_{\omega \in \Delta([K])} f_0(\omega) = \max_{\omega \in \Delta([K])} \ell_0^\top \omega = \max_{a \in [K]} \ell_0(a), \qquad \min_{\omega \in \Delta([K])} f_0(\omega) = \min_{a \in [K]} \ell_0(a),$$

we have,

$$R_T(\pi^{\text{FTPL}}, f) \leq \sum_{t=1}^T \mathbb{E}[\ell_0(A_t) - \ell_0(A_{t+1})] + \mathbb{E}\left[\max_{a \in [K]} \ell_0(a) - \min_{a \in [K]} \ell_0(a)\right]$$

$$R_T(\pi^{\mathrm{FTPL}}, f) \leq \sum_{t=1}^T \mathbb{E}[\ell_0(A_t) - \ell_0(A_{t+1})] \, + \, \mathbb{E}\left[\max_{a \in [K]} \ell_0(a) - \min_{a \in [K]} \ell_0(a)\right]$$

Let us first bound the second term. Recall that $\ell_0(a) = -Z(a)$ where $Z(a) \sim \operatorname{Geom}(\eta)$. As $Z(a) \geq 1$, we have

$$\max_{a} \ell_0(a) = \max_{a} -Z(a) \leq -1.$$
 $-\min_{a} \ell_0(a) = \max_{a} Z(a) = \|Z\|_{\infty}$

Therefore,

$$\mathbb{E}\left[\max_{a\in[K]}\ell_0(a)-\min_{a\in[K]}\ell_0(a)\right]\leq -1+\mathbb{E}[\|Z\|_{\infty}]\leq -1+1+\frac{H_K}{\eta}=\frac{H_K}{\eta}.$$

$$R_{\mathcal{T}}(\pi^{\mathrm{FTPL}}, f) \leq \sum_{t=1}^{\mathcal{T}} \mathbb{E}[\ell_0(A_t) - \ell_0(A_{t+1})] + \underbrace{\mathbb{E}\left[\max_{a \in [K]} \ell_0(a) - \min_{a \in [K]} \ell_0(a)\right]}_{\leq H_{\mathcal{K}}/\eta}$$

Let us now bound the first term. Shortly, we will prove the following claim.

Claim. $\mathbb{P}(A_{t+1} = a | A_t = a) \ge 1 - \eta$ for all $a \in [K]$, where \mathbb{P} is with respect to ℓ_0 .

Then, we can write

$$\begin{split} \mathbb{E}[\ell_t(A_t) - \ell_t(A_{t+1})] &= \mathbb{E}\underbrace{[\ell_0(A_t) - \ell_0(A_{t+1})}_{=0} |A_t = A_{t+1}] \mathbb{P}(A_t = A_{t+1}) + \\ &\qquad \mathbb{E}\underbrace{[\ell_0(A_t) - \ell_0(A_{t+1})}_{\leq 1 \text{ as } \ell_t \in [0,1]^K} |A_t \neq A_{t+1}] \mathbb{P}(A_t \neq A_{t+1}) \\ &\leq \mathbb{P}(A_t \neq A_{t+1}) = \sum_{a=1}^K \underbrace{\mathbb{P}(A_{t+1} \neq a | A_t = a)}_{\leq \eta} \mathbb{P}(A_t = a) \leq \eta. \end{split}$$

$$R_{T}(\pi^{\text{FTPL}}, f) \leq \sum_{t=1}^{T} \underbrace{\mathbb{E}[\ell_{0}(A_{t}) - \ell_{0}(A_{t+1})]}_{\leq \eta} + \underbrace{\mathbb{E}\left[\max_{a \in [K]} \ell_{0}(a) - \min_{a \in [K]} \ell_{0}(a)\right]}_{\leq H_{K}/\eta}$$

Therefore,

$$egin{aligned} R_T & \leq \eta \, T \, + \, rac{H_{\mathcal{K}}}{\eta} \ & = 2 \sqrt{T H_{\mathcal{K}}} \quad ext{By choosing } \eta = \sqrt{H_{\mathcal{K}}/T} \ & \in \mathcal{O}(\sqrt{T \log(\mathcal{K})}). \end{aligned}$$

We will now prove the claim.

Claim. $\mathbb{P}(A_{t+1} = a | A_t = a) \ge 1 - \eta$ for all $a \in [K]$, where \mathbb{P} is with respect to ℓ_0 .

Proof. Recall that $\ell_0(a) = -Z(a)$ where $Z(a) \sim \text{Geom}(\eta)$.

Let a be given. We will show that for every realization of $\{Z(j)\}_{j\neq a}$, we have

$$\mathbb{P}(A_{t+1}=a|A_t=a,\{Z(j)\}_{j\neq a})\geq 1-\eta \implies \mathbb{P}(A_{t+1}=a|A_t=a)\geq 1-\eta.$$

Fix the values of $\{Z(j)\}_{j\neq a}$. First observe,

$$A_t = a \iff \sum_{s=0}^{t-1} \ell_s(a) = \sum_{s=1}^{t-1} \ell_s(a) - Z(a) \le \sum_{s=1}^{t-1} \ell_s(j) - Z(j) \quad \forall j \ne a$$

Now define $L_{t-1}(j) \stackrel{\Delta}{=} \sum_{s=1}^{t-1} \ell_s(j)$ and $J_{t-1} \stackrel{\Delta}{=} \min_{j \neq a} (L_{t-1}(j) - Z(j))$. Therefore,

$$A_t = a \iff Z(a) \geq L_{t-1}(a) - J_{t-1}.$$

$$L_{t-1}(j) \stackrel{\Delta}{=} \sum_{s=1}^{t-1} \ell_s(j), \qquad J_{t-1} \stackrel{\Delta}{=} \min_{j \neq a} L_{t-1}(j) - Z(j).$$

Now let us consider $A_{t+1} = i$. We can write,

$$A_{t+1} = a \iff \sum_{s=0}^{t} \ell_s(a) = \sum_{s=1}^{t} \ell_s(a) - Z(a) \le \sum_{s=1}^{t} \ell_s(j) - Z(j) \quad \forall j \ne a$$

$$\iff Z(a) \ge L_{t-1}(a) + \ell_t(a) - \left(\sum_{s=1}^{t-1} \ell_s(j) + \ell_t(j) - Z(j)\right) \quad \forall j \ne a$$

$$\iff Z(a) \ge L_{t-1}(a) - \left(\sum_{s=1}^{t-1} \ell_s(j) - Z(j)\right) + \underbrace{\ell_t(a) - \ell_t(j)}_{\le 1 \text{ as } \ell_t \in [0,1]} \quad \forall j \ne a$$

$$\iff Z(a) \ge L_{t-1}(a) - J_{t-1} + 1$$

$$A_t = a \iff Z(a) \ge L_{t-1}(a) - J_{t-1}.$$
 $A_{t+1} = a \iff Z(a) \ge L_{t-1}(a) - J_{t-1} + 1$
For $Z \sim \operatorname{Geom}(\eta)$, $\mathbb{P}(Z \ge k + 1 | Z \ge k) = 1 - \eta$.

We therefore have,

$$\mathbb{P}(A_{t+1} = a | A_t = a, \{Z(j)\}_{j \neq a})$$

 $\geq \mathbb{P}\left(Z(a) \geq L_{t-1}(a) - J_{t-1} + 1 \mid Z(a) \geq L_{t-1}(a) - J_{t-1}, \{Z(j)\}_{j \neq a}\right)$
 $= 1 - \eta$

Hence,
$$\mathbb{P}(A_{t+1} = a | A_t = a) \ge 1 - \eta$$
.

FTPL for experts: Laplace perturbation

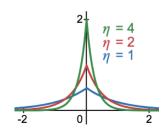
FTPL for the experts problem

- ▶ Given: time horizon T, parameter η
- ▶ Sample $\ell_0(a) \sim D(\eta)$ for $a \in [K]$. $\ell_0 \sim D$
- ▶ for t = 1, ..., T,
 - $\blacktriangleright A_t \leftarrow \operatorname{argmin}_{a \in [K]} \sum_{s=0}^{t-1} \ell_s(a). \qquad \omega_t = \operatorname{argmin}_{\omega \in \Omega} \sum_{s=0}^{t-1} f_s(\omega)$

We will now try $D(\eta) = \text{Lap}(1/\eta)$.

The Lap $(1/\eta)$ distribution has pdf ψ :

$$\psi(z) = \frac{\eta}{2} e^{-\eta|z|},$$



Maximum of K i.i.d Laplace RVs. Let $Z = (Z(1), \dots, Z(K))$ where $Z(i) \sim \text{Lap}(1/\eta)$,

$$\mathbb{E}[\|Z\|_{\infty}] = \int_0^{\infty} \mathbb{P}(\|Z\|_{\infty} \geq t) \mathrm{d}t$$
 by identity below.

$$= \int_0^a \underbrace{\mathbb{P}(\|Z\|_{\infty} \geq t)}_{\leq 1} dt + \int_a^\infty \underbrace{\mathbb{P}(\|Z\|_{\infty} \geq t)}_{=\mathbb{P}(\exists i, |Z(i)| \geq t)} dt \leq a + \sum_{i=1}^K \int_a^\infty \mathbb{P}(|Z(i)| \geq t) dt$$

We have that,

$$\mathbb{P}(|Z(i)| \geq t) = \int_t^\infty \frac{\eta}{2} e^{-\eta z} + \int_{-\infty}^{-t} \frac{\eta}{2} e^{\eta z} = e^{-\eta t}.$$

Therefore, choosing
$$a = \frac{1}{\log(K)}$$
, we have

 $\mathbb{E}[\|Z\|_{\infty}] \leq a + K \int_{-\infty}^{\infty} e^{-\eta t} dt \leq a + \frac{K}{n} e^{-\eta a} \leq \frac{1}{n} (1 + \log(K)).$

Lemma (FTPL). Let $f = (f_1, \dots, f_T)$ be a sequence of losses. Then FTPL satisfies,

$$R_T(\pi^{ ext{FTPL}}, f) \leq \sum_{t=1}^T \mathbb{E}\left[f_t(\omega_t) - f_t(\omega_{t+1})\right] + \mathbb{E}\left[\max_{\Omega} f_0(\omega) - \min_{\Omega} f_0(\omega)\right]$$

Using a similar argument as before (i.e for geometric perturbation), we have

$$R_T(\pi^{\text{FTPL}}, f) \leq \sum_{t=1}^T \mathbb{E}[\ell_0(A_t) - \ell_0(A_{t+1})] + \mathbb{E}\left[\max_{a \in [K]} \ell_0(a) - \min_{a \in [K]} \ell_0(a)\right]$$

Let us first bound the second term. By symmetry of the Laplace distribution,

$$\mathbb{E}\left[\max_{a\in[K]}\ell_0(a)-\min_{a\in[K]}\ell_0(a)\right]=2\mathbb{E}\left[\max_{a\in[K]}\ell_0(a)\right]\leq \frac{2}{\eta}\left(1+\log(K)\right).$$

$$R_T(\pi^{\text{FTPL}}, f) \leq \sum_{t=1}^T \mathbb{E}[\ell_0(A_t) - \ell_0(A_{t+1})] + \underbrace{\mathbb{E}\left[\max_{a \in [K]} \ell_0(a) - \min_{a \in [K]} \ell_0(a)\right]}_{\leq \frac{2}{\pi}(1 + \log(K))}$$

To bound the first term, we will use the following claim.

Claim.
$$\mathbb{P}(A_t = a) \leq e^{\eta} \mathbb{P}(A_{t+1} = a)$$
 for all $a \in [K]$, where \mathbb{P} is w.r.t ℓ_0 .

We therefore have.

$$\mathbb{E}[\ell_t(A_t) - \ell_t(A_{t+1})] = \sum_{a=1}^K \ell_t(a) \mathbb{P}(A_t = a) - \sum_{a=1}^K \ell_t(a) \mathbb{P}(A_{t+1} = a)$$

$$= \sum_{a=1}^K \ell_t(a) \left(\mathbb{P}(A_t = a) - \mathbb{P}(A_{t+1} = a) \right)$$

$$\leq \sum_{a=1}^K \ell_t(a) \underbrace{\left(1 - e^{-\eta} \right)}_{\leq 1} \mathbb{P}(A_t = a) \leq \eta.$$

$$R_T(\pi^{\text{FTPL}}, f) \leq \sum_{t=1}^T \underbrace{\mathbb{E}[\ell_0(A_t) - \ell_0(A_{t+1})]}_{\leq \eta} + \underbrace{\mathbb{E}\left[\max_{a \in [K]} \ell_0(a) - \min_{a \in [K]} \ell_0(a)\right]}_{\leq \frac{2}{\eta}(1 + \log(K)).}$$

Therefore,

$$egin{aligned} R_T &\leq \eta \, T \, + \, rac{2}{\eta} \, (1 + \log(K)) \ &= 3 \sqrt{T (1 + \log(K))} \quad ext{By choosing } \eta = \sqrt{(1 + \log(K))/T} \ &\in \mathcal{O}(\sqrt{T \log(K)}). \end{aligned}$$

We will now prove the following claim.

Claim.
$$\mathbb{P}(A_t = a) \leq e^{\eta} \mathbb{P}(A_{t+1} = a)$$
 for all $a \in [K]$, where \mathbb{P} is w.r.t ℓ_0 .

Let a be given. Let ψ be the pdf of ℓ_0 . Therefore,

$$\psi(\ell_0) = \prod_{i=1}^K \frac{\eta}{2} e^{-\eta|\ell_0(j)|} = \frac{\eta^K}{2^K} e^{-\eta||\ell_0||_1}.$$

We can write,

$$\mathbb{P}(A_t = a) = \int_{\mathbb{R}^K} \mathbb{1}\left(a = \operatorname*{argmin}_{j \in [K]} \sum_{s=0}^{t-1} \ell_s(j)\right) \psi(\ell_0) \mathrm{d}\ell_0.$$

Let $\ell_t^a \in [0,1]^K$ such that $\ell_t^a(j) = \mathbb{1}(j=a)\ell_t(a)$. That is $\ell_t^a = [0,\ldots,\ell_t(j),\ldots 0]$.

Now, let us use the substitution $\ell_0 = \ell_0 - \ell_t^a$. We have,

$$\mathbb{P}(A_t = a) = \int_{\mathbb{R}^K} \mathbb{1}\left(a = \operatorname*{argmin}_{j \in [K]} \widetilde{\ell}_0(j) + \ell_t^{\mathfrak{s}}(j) + \sum_{s=1}^{t-1} \ell_s(j)\right) \psi(\widetilde{\ell}_0 + \ell_t^{\mathfrak{s}}) \mathrm{d}\widetilde{\ell}_0.$$

$$\psi(\ell_0) = \frac{\eta^K}{2^K} e^{-\eta \|\ell_0\|_1}. \quad \mathbb{P}(A_t = a) = \int_{\mathbb{R}^K} \mathbb{1}\left(a = \operatorname*{argmin}_{j \in [K]} \widetilde{\ell}_0(j) + \ell_t^a(j) + \sum_{s=1}^{t-1} \ell_s(j)\right) \psi(\widetilde{\ell}_0 + \ell_t^a) d\widetilde{\ell}_0.$$

Now we will upper bound $\psi(\widetilde{\ell}_0 + \ell_t^a)$ as follows,

$$\begin{split} \psi(\widetilde{\ell}_0 + \ell_t^{\mathfrak{s}}) &= \frac{\eta^K}{2^K} e^{-\eta \|\widetilde{\ell}_0 + \ell_t^{\mathfrak{s}}\|_1} \\ &\leq \frac{\eta^K}{2^K} e^{-\eta \|\widetilde{\ell}_0\|_1 + \eta \|\ell_t^{\mathfrak{s}}\|_1} \quad \text{As } \|\widetilde{\ell}_0\|_1 \leq \|\widetilde{\ell}_0 + \ell_t^{\mathfrak{s}}\|_1 + \| - \ell_t^{\mathfrak{s}}\|_1 \\ &\leq e^{\eta} \frac{\eta^K}{2^K} e^{-\eta \|\widetilde{\ell}_0\|_1} = e^{\eta} \psi(\widetilde{\ell}_0). \quad \text{As } \|\ell_t^{\mathfrak{s}}\|_1 = \ell_t(\mathfrak{s}) \leq 1. \end{split}$$

Therefore.

$$\mathbb{P}(A_t = a) \leq e^{\eta} \int_{\mathbb{R}^K} \mathbb{1}\left(a = \operatorname*{argmin}_{j \in [K]} \widetilde{\ell}_0(j) + \ell_t^a(j) + \sum_{s=1}^{t-1} \ell_s(j)\right) \psi(\widetilde{\ell}_0) \mathrm{d}\widetilde{\ell}_0.$$

$$\mathbb{P}(A_t = a) \leq e^{\eta} \int_{\mathbb{R}^K} \mathbb{1}\left(a = \operatorname*{argmin}_{j \in [K]} \widetilde{\ell}_0(j) + \ell_t^a(j) + \sum_{s=1}^{t-1} \ell_s(j)\right) \psi(\widetilde{\ell}_0) \mathrm{d}\widetilde{\ell}_0.$$

Recall $\ell_t^a(j) = \mathbb{1}(j=a)\ell_t(a)$. Therefore, $\ell_t^a(a) = \ell_t(a)$ and $\ell_t^a(j) \leq \ell_t(j)$ for all $j \neq a$. Hence.

$$\mathbb{I}\left(a = \operatorname*{argmin}_{j \in [K]} \widetilde{\ell}_0(j) + \ell_t^a(j) + \sum_{s=1}^{t-1} \ell_s(j)\right) \leq \mathbb{I}\left(a = \operatorname*{argmin}_{j \in [K]} \widetilde{\ell}_0(j) + \ell_t(j) + \sum_{s=1}^{t-1} \ell_s(j)\right)$$

Therefore,

$$\mathbb{P}(A_t = a) \leq e^{\eta} \int_{\mathbb{R}^K} \mathbb{1}\left(a = \operatorname*{argmin}_{j \in [K]} \widetilde{\ell}_0(j) + \ell_t(j) + \sum_{s=1}^{t-1} \ell_s(j)\right) \psi(\widetilde{\ell}_0) d\widetilde{\ell}_0$$

$$\leq e^{\eta} \int_{\mathbb{R}^K} \mathbb{1}\left(a = \operatorname*{argmin}_{j \in [K]} \sum_{s=0}^{t-1} \ell_s(j)\right) \psi(\ell_0) d\ell_0 = e^{\eta} \mathbb{P}(A_{t+1} = a)$$

FTPL Summary

Proof strategy:

FTPL lemma:
$$R_T(\pi^{\text{FTPL}}, f) \leq \sum_{t=1}^T \mathbb{E}\left[f_t(\omega_t) - f_t(\omega_{t+1})\right] + \mathbb{E}\left[\max_{\Omega} f_0(\omega) - \min_{\Omega} f_0(\omega)\right]$$

- 1. Choose $D(\eta)$ so that $\mathbb{E}\left[\max_{\Omega}f_0(\omega)-\min_{\Omega}f_0(\omega)\right]\leq \mathcal{O}\left(\frac{1}{\eta}\right)$.
- 2. Show that ω_t and ω_{t+1} have similar distributions. Hence argue that $\mathbb{E}\left[f_t(\omega_t) f_t(\omega_{t+1})\right] \leq \mathcal{O}(\eta^m)$.

Proof technique for step 2 can depend on D and the problem instance.

- ▶ Although high-level intuitions are similar across all FTPL instances, we do not usually have a unified analysis (like FTRL). However, the computational advantages can sometimes make FTPL worthwhile.
- ▶ FTPL also does not assume convexity of Ω , f_t .

Ch 6.4: Case study: Online shortest paths

We have a graph with M edges. There are fixed source and and destination vertices.

- ▶ There are K possible paths $\mathcal{A} = \{a_1, \dots, a_K\}$ from the source to the destination. We will represent each path as $a_j \in \{0,1\}^M$ where $a_j(i) = 1$ means that edge i is on a_j . Say that the maximum path length is m, i.e $a_j^{\top} \mathbf{1}_M \leq m$.
- ▶ On each round a learner chooses a path $A_t \in A$ from source to destination.
- ▶ Simultaneously, the adversary chooses losses $\ell_t \in [0,1]^M$ for each edge.
- ▶ The learner incurs loss $A_t^{\top} \ell_t$, but observes ℓ_t (losses on all edges).

Application: packet routing in a network.

We can write the regret as,

$$R_T(\pi,\ell) = \sum_{t=1}^T A_t^\top \ell_t - \min_{a_j \in \mathcal{A}} \sum_{t=1}^T a_j^\top \ell_t.$$

Attempt 1: Applying Hedge

- ▶ Treat each path in $\mathcal{A} = \{a_1, \dots, a_K\}$ as an expert, and scale the losses by $\frac{1}{m}$.
- ▶ The regret for the scaled losses will be $\mathcal{O}(\sqrt{T \log(K)})$. Hence,

$$R_T \in \mathcal{O}\left(m\sqrt{T\log(K)}
ight) \in \mathcal{O}\left(m\sqrt{mT\log(M/m)}
ight) \qquad ext{As } K \leq {M \choose m} symp \left(rac{M}{m}
ight)^m.$$

Attempt 1: Applying Hedge

- ▶ Treat each path in $\mathcal{A} = \{a_1, \dots, a_K\}$ as an expert, and scale the losses by $\frac{1}{m}$.
- ▶ The regret for the scaled losses will be $\mathcal{O}(\sqrt{T \log(K)})$. Hence,

$$R_T \in \mathcal{O}\left(m\sqrt{T\log(K)}
ight) \in \mathcal{O}\left(m\sqrt{mT\log(M/m)}
ight) \qquad ext{As } K \leq {M \choose m} symp \left(rac{M}{m}
ight)^m.$$

▶ Per-iteration run time is $\mathcal{O}(K)$, which can be large.

Attempt 2: Applying FTPL

FTPL for online shortest paths

- ▶ Given: time horizon T, parameter η
- ▶ Sample $\ell_0(e) \sim D(\eta)$ for each *edge e*.
- ightharpoonup for $t=1,\ldots,T$,
 - Choose path

$$A_t \leftarrow \operatorname*{argmin}_{a_j \in \mathcal{A}} \sum_{s=0}^{t-1} \ell_s^{\top} a_j.$$

Run time per iteration:

- Updating losses on each edge (incrementally): O(M)
- Computing shortest path via Dijkstra's: O(M). (not convex, but still efficient)
- Much cheaper than O(K) where K could be as large as $\binom{M}{m}$.

In fact, you do not even need to construct ${\cal A}$ explicitly.

Bounding the regret of FTPL for online shortest paths

Recall FTPL lemma,

$$R_T(\pi^{ ext{FTPL}},f) \leq \sum_{t=1}^T \mathbb{E}\left[f_t(\omega_t) - f_t(\omega_{t+1})
ight] + \mathbb{E}\left[\max_{\Omega} f_0(\omega) - \min_{\Omega} f_0(\omega)
ight]$$

We will try Laplace perturbations, i.e $\ell_0(e) \sim \operatorname{Lap}(1/\eta)$ for each edge e.

Applying the FTPL lemma we obtain

$$R_T(\pi^{\text{FTPL}}, f) \leq \sum_{t=1}^T \mathbb{E}[\ell_0^\top A_t - \ell_0^\top (A_{t+1})] + \mathbb{E}\left[\max_{a \in \mathcal{A}} \ell_0^\top a - \min_{a \in \mathcal{A}} \ell_0^\top a\right]$$

Let us first bound the second term. By symmetry of the Laplace distribution,

$$\mathbb{E}\left[\max_{a\in\mathcal{A}}\ell_0^\top a - \min_{a\in\mathcal{A}}\ell_0^\top a\right] = 2\mathbb{E}\left[\max_{a\in\mathcal{A}}\ell_0^\top a\right] \leq 2m\mathbb{E}\left[\max_{e\in\mathsf{Edges}}\ell_0(e)\right] \leq \frac{2m}{\eta}\left(1 + \log(M)\right).$$

FTPL for OSP: Laplace perturbation (cont'd)

$$R_{T}(\pi^{\text{FTPL}}, f) \leq \sum_{t=1}^{T} \mathbb{E}[\ell_{0}^{\top} A_{t} - \ell_{0}^{\top} (A_{t+1})] + \underbrace{\mathbb{E}\left[\max_{a \in \mathcal{A}} \ell_{0}^{\top} a - \min_{a \in [K]} \ell_{0}^{\top} a\right]}_{\leq \frac{2m}{n} (1 + \log(M)).}$$

To bound the first term, we will use the following claim.

Claim.
$$\mathbb{P}(A_t = a) \leq e^{m\eta} \mathbb{P}(A_{t+1} = a)$$
 for all $a \in [K]$, where \mathbb{P} is w.r.t ℓ_0 .

We therefore have,

$$\begin{split} \mathbb{E}[\ell_0^\top A_t - \ell_0^\top A_{t+1}] &= \sum_{a_j \in \mathcal{A}} \ell_t^\top a_j \left(\mathbb{P}(A_t = a_j) - \mathbb{P}(A_{t+1} = a_j) \right) \\ &\leq \sum_{a_j \in \mathcal{A}} \underbrace{\ell_t^\top a_j}_{\leq m \times 1} \underbrace{\left(1 - e^{-m\eta}\right)}_{\leq m\eta} \mathbb{P}(A_t = a_j) \leq \eta m^2. \end{split}$$

FTPL for OSP: Laplace perturbation (cont'd)

$$R_{\mathcal{T}}(\pi^{\text{FTPL}}, f) \leq \sum_{t=1}^{\mathcal{T}} \underbrace{\mathbb{E}[\ell_0^{\top} A_t - \ell_0^{\top} (A_{t+1})]}_{\leq \eta m^2} + \underbrace{\mathbb{E}\left[\max_{a \in \mathcal{A}} \ell_0^{\top} a - \min_{a \in [K]} \ell_0^{\top} a\right]}_{\leq \frac{2m}{\eta} (1 + \log(M)).}$$

Therefore,

$$R_T \leq m^2 \eta T + rac{2m}{\eta} (1 + \log(M))$$

$$= 3m \sqrt{mT(1 + \log(K))} \quad ext{By choosing } \eta = \sqrt{(1 + \log(M))/(mT)}$$

$$\in \mathcal{O}(m \sqrt{mT \log(M)}).$$

C.f. For Hedge, $R_T \in \mathcal{O}\left(m\sqrt{mT\log(M/m)}\right)$. While the regret is similar, FTPL has $\mathcal{O}(M)$ computation per round, while Hedge has $\mathcal{O}(K)$, where K could be as large as $\binom{M}{m}$.

FTPL for OSP: Laplace perturbation (cont'd)

Claim. $\mathbb{P}(A_t = a) \leq e^{m\eta} \mathbb{P}(A_{t+1} = a)$ for all $a \in [K]$, where \mathbb{P} is w.r.t ℓ_0 .

Proof sketch. The proof is similar to Laplace perturbations for Hedge.

Let a path $a_j \in \mathcal{A}$ be given. Then, we can write We can write,

$$\mathbb{P}(A_t = a_j) = \int_{\mathbb{R}^K} \mathbb{1}\left(a = \operatorname*{argmin}_{a_j \in \mathcal{A}} \sum_{s=0}^{t-1} \ell_s^\top a_j\right) \psi(\ell_0) \mathrm{d}\ell_0.$$

Next define $\ell_t^{a_j} \in [0,1]^M$ so that $\ell_t^{a_j}(i) = \ell_t(i) \times a_j(i)$. Use the substitution $\widetilde{\ell}_0 = \ell_0 - \ell_t^a$ and proceed in a similar fashion.