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Ch 6.1: Online Convex Optimization

Example 1. Online linear classification. We are given a parameter space
O ={0cR% |02 < 1}.

» On each round t, a learner chooses 8; € ©.

» Simultaneously, the environment picks (x;, y;) € RY x {—1,+1}.
» The learner incurs the hinge loss f;(0;) = max(0,1 — y:0] x;).

» The learner observes (x¢, y¢), and therefore the loss for all § € ©.

We can define the regret for a policy 7 as,
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Online Convex Optimization (cont'd)

Example 2. The experts problem. There are K experts.

» On each round t, a learner chooses a probability vector
pr € A([K]) = {p e RE; pT 1k = 1}.

» Simultaneously, the environment picks a loss vector /; € [0, 1]¥.
» Learner incurs loss E;rpt (in expectation, when an expert is sampled from p;).
» Learner observes ¢, and therefore the losses for all p; € A([K]).

We can define the regret for a policy 7 as,

T T T
r (7?, {zt}le) - ; plly — min tz::lzt(a) - ; plle — L min Z 7L
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Online Convex Optimization

Consider the following framework for online learning:

- Let Q Cc RY.

- On each round t, a learner chooses weight vector w; € €.

- Simultaneously, the environment picks a loss function f; : Q — R.

- The player incurs loss fi(w;), but observes f; (losses for all w € Q).

Online convex optimization: When Q is a convex set and f = (f1,..., fT) are
convex functions, this framework is called online convex optimization.
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Regret

Let f = (f1,...,fr), be an arbitrary sequence of loss functions. We define regret
relative to the best fixed weight vector in hindsight.

T T
Rr(m f)=E [Z ft(wt)] — min > flw).
t=1 t=1

Here, the expection is with respect to any randomization in the policy.

We wish to design 7 to achieve small sups Ry (7, f).
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Examples revisited

Example 1. Online linear classification. Given a parameter space © = {0 € RY; ||0],» < 1}.
» Learner chooses f; € ©. Simultaneously, the environment picks (x:, y:) € RY x R.
» Learner incurs hinge loss f;(6;) = max(0,1 — y:0, x;).

> The learner observes (x:, yt).

Here © is convex, and the hinge loss is convex in 6.

Example 2. The experts problem (with minor adjustments). There are K experts.

> Learner chooses a probability vector p; € A([K]) = {p € Rf;pT1x = 1}.
Simultaneously, the environment picks a loss vector £; € [0, 1],

» Learner incurs loss Ejpt and observes /.

Here A([K]) is convex, and p/ ¢; is linear (convex).
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Follow the (regularized) leader, FTL/FTRL

What is the most straightforward approach?
t—1

Choose we € argmin Z fs(w)

weN s—1

- This is called follow the leader (FTL).

- But this often fails as the chosen weights could fluctuate from round to round (we
will see examples shortly).

Follow the regularized leader (FTRL). Stabilize FTL by adding a regularizer A(w),

t—1
wt € argmin (Z fo(w) + /\(w)) .
s=1

weN
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Follow the (regularized) leader

Follow the regularized leader (FTRL).

t—1
w; € argmin <Z fs(w) + /\(w)) .

we —1

Theorem (FTRL). For any u € Q, FTRL satisfies

-
th(wt Z e(u) Z f(we) — fr(weta)) + Au) — min A(w).

o weN

N.B. Note that FTRL is a deterministic policy. Moreover, this result does not assume
convexity of €, f; or A.
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Proof of FTRL Lemma
FTRL: w; € argmin_q (Z;i fo(w) + /\(w)) .
Denote Fi(w) = > L, fi(w) + A(w). Therefore, wyi1 € argmin,, Fr(w).
Let d)t e minwEQ Ft((.U) = Ft(wt+1). NOW Consider,
br 1 — O = Fra(we) — Fe(wet1)
= Fr—1(wr) — (Fe—1(we+1) + fe(wet1))

< —fi(wey1) As w; € argmin F;_1(w)
weN
Therefore,
1 — Pp + fr(wr) < fir(we) — fr(werr)-
Summing from t =1,..., T gives,

T T
O — O+ > filwe) D (Felwr) — Ai(wera)).
t=1 t=1
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Proof of FTRL Lemma (cont’d)
Recall: (i) @ = min Fy(w), (ii) Fe(w) = (Z fs(w)+/\(w)> :

We also have,

®p = min Fy(w) = min A(w).
we we

O7 =min Fr(w) < Fr(u) =Y fi(u) + A(v).

we po
This yields, ; .
g‘elgl\ Z fe(u ; f(we) < t§:1 (fe(we) — fe(wey1))
The theorem follows by rearranging the terms,
T T
; th S ; fe(we) — fe(wer1)) + Au) Brgg/\(w).
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FTRL vs FTL

Theorem (FTRL). For all v € Q, FTRL satisfies

Z wy) Z u) < Z (fe(we) — fe(wer1)) + A(u) — min A(w).

we
t=1

This means, for FTL the regret satisfies

.
T ) <) (lwr) = filwesn)) -
t=1

» This bound suggests that if w; fluctuates frequently, the regret will be bad.
> The purpose behind the regularizer is to stabilize w;.

To motivate how a regularizer will be chosen, we will consider 3 examples for FTL with
Q = [0,1] and when the losses are bounded, f; : [0,1] — [0, 1].
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Example 1: FTL with linear losses

Jw o ift=1,
Example 1: Q=10,1], fi(w) = w if tisodd, t > 1,
1—w iftiseven.
We have

T 1 t—1 i
Lo+ if t is odd
Fi(w) = fo(w) = 2 ? ,
t(w) ; (w) {—%w—i—é if tis even,

Therefore,

w = argmin Fr_1(w) =

1 if tis odd,
we[0,1]

0 iftiseven

Total loss of FTL is at least T — 1.

Best action w € [0, 1] in hindsight will have regret at most T /2.
Therefore, regret is at least T /2 — 1.

Bound from the theorem: E;l (fi(we) = f(wer)) = >, 1=T.
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Example 2: FTL with quadratic losses

w? if tis odd,

Frample 2 2=l )= {(1 —w)? if tis even.

We have
T 1 2 =10y N2 i g
Filw) =3 f(w) = {f o RUon s edd
t=1 S+ (1-w)) if tis even,
Therefore,
3 if ¢ is odd
Wt = argmin Ft—l(w) = % 1 I !S odd,
we(0,1] 5 —a; If tiseven,

In this example, there is not much fluctuation.
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Example 2: FTL with quadratic losses (cont’'d)

if tis odd,

1

wy = argmin F,_1(w) = £
— 5 if tis even,

Example 2: () w? if tis odd,
X c fR(w) =
P ‘ (1 —w)? iftiseven. wel0,1]

NI N

We have the following bound on the regret,

T

Rt < Z (fe(we) — fr(wey1))
+ 2

—;!0 G-x5) | 263 -)]

_Z[ 4(ti1)2}+z [21t+41t2]

odd t even t

< ; <0 <1> Lo <t12>> € O(log(T)).
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Example 2: FTL with quadratic losses (cont'd)

w o ift=1,
Example 1: Q=10,1], filw)=qw if tisodd, t > 1,

1—w iftiseven.

w? if ¢ is odd,

Fxample 2 2=l olw) = {(1 —w)? if tis even

Like in Example 1, the best action for a given round i.e argmin, f;(w) fluctuates from
0 to 1. However, the regret is not large since argmin , F;(w) does not fluctuate.

Question: Let us consider linear losses again, but with FTRL. What type of
regularizer should we use?
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Example 3: FTRL with linear losses and a quadratic regularizer

FTRL: wy € argmin <Z fs(w ) .

weQ
Let us revisit Example 1,

1 if t =1,
= [0, 1], fr(w) = w if tisodd, t >1,,
1 if t is even.
but use FTRL with a quadratic regularizer A(w) =

We have

T 1 t-1 it
Liw—1/2)2+ w+— if tis odd,
Z 5(w—1/2) —§w+§ if tis even,

%(w —1/2)2. Will specify 7 later.
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Example 3: FTRL with linear losses and a quadratic regularizer (cont'd)

‘ %(u;4—1/2) +tw+ 5L if tis odd,
= %(u,—-1/2) Tw+ if t is even,
Therefore, for odd t, we have,

1 1 t—1 1
wy = argmin F;_;(w) = argmin ( (w—1/2)% — Zw + ) = -+
wel0,1] wel0,1] 2 2 2

A similar calculation for even t reveals,

+
IS A

if tis odd,

we = argmin F (w) if tis even

we(0,1]

I
——

NI NI

3
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Example 3: FTRL with linear losses and a quadratic regularizer (cont'd)

w if tisodd, t > 1,
ﬂ(w>={ | wt:{

+ 7 if tis odd,
1—w iftiseven. 7

if tis even

We have the following bound on the regret,
T

RT< D (filwe) — flwein)) + A(u) — min A(w). FTRL lemma.
t=1

<Y G) 20308 -(-2-9)

/A L
=X 5t =5 *
If we choose n = 1/+/T, then Rt € O(V'T).
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Take-aways from the three examples

> Linear losses have bad behavior in FTL due to the instability of w; selected.

» We should add a “nice” regularizer to stabilize the fluctuations.
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Ch 6.2: FTRL with convex losses and strongly convex regularizers

t—1
FTRL: w; € argmin (Z fo(w) + /\(w)) .

weN

Theorem. Suppose f; is convex for all t and let A(w) = 1 \(w) where )\ is 1-strongly
convex with respect to some norm || - ||. Let || - ||« be the dual norm and let

Wy € argmingcq Zthl ft(w). Then, the following bound holds for any sequence
(g1,--.,871) where g € 0fi(w;) for all ¢,

Ry(m, f) < 717 <)\(w*) — m|n AMw ) + TIZ ”gtH*
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Proof: FTRL with a strongly convex regularizer

Recall the following bound for FTRL. For all u € €,

T

T T
> felw: Z (u) = min A@w) + > (f(we) = i(wei1).-
t=1 t=1

t=1

We will apply this theorem with u + w, € argmingcq 3., fi(w). We have,

T

)2 flwe) = Y fulw)
t=1 t=1

1 .
< ; (/\(w*) — min )\(w)> + Z (fe(we) — fe(wet1))

t=1

It is sufficient to show (fi(w;) — fe(wer1)) < llgell?.
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Proof: FTRL with a strongly convex regularizer (cont'd)

1 _ T
Rr(n.f) < & (M)~ mip @) + 3~ ((w0)  flexr)
By convexity, as g; € 0f;(w;), we have fi(wii1) > fe(we) + g (W1 — we).

Hence, by Holder's inequality, we have

fe(we) — fe(wert) < &8¢ (we — wer1) < [lwerr — we [l gel«-

Now, denote Fi(w) = St fi(w) + %)\(w). We have that F; is %—strongly convex, as
A is 1-strongly convex and f;'s are convex.
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Proof: FTRL with a strongly convex regularizer (cont'd)

(i) Fiis %}—strongly convex.

i) If w, = argmin f(w), where f is a—strongly convex, then f(w) > f(wy) + $|jw — wy 2
we g 2 2

Recall, in FTRL, we have w; = argmin,, Fr_1(w).
Therefore, wy1 minimizes F; and w; minimizes F;_1. Using (i), (ii) we have,

1
Fe—1(wes1) — Fe—1(we) > %Hwt - Wt+1H2a

1
Fi(wt) — Fr(werr) > %Hwt — we |

Summing both sides we have, fi(w:) — fi(wet1) > %Hwt — w12
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Proof: FTRL with a strongly convex regularizer (cont'd)

(i) fe(we) = fi(werr) < flwes — wellllgells-
(ﬁ) ft(wf) - ft(wt+1) Z %Hwt — Wt+1||2-

Therefore,

(i), (i) = llwr — wesl® < 0 (fe(we) = fr(wer1)) < Mllwess — wellllgell«
= lwe —weta |l < nllgell« (iii)

(), (i) = fo(we) — felwerr) < nllge)?
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A useful corollary

FTRL bound with convex losses and strongly-convex regularizers,

T T
Re(r ) =3 flw) — 3 fw,) < % (M) = min A(w)) + nZ g2,

Corollary. If (max, A(w) — min, A(w)) < B and ||g¢||x < G for all t, then choosing
B/(TG?), we have

R € O(GVBT).

Here, ||gt|l« < G simply means that f; is G—-Lipschitz in norm || - ||4.
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Example 1: Linear losses

Let Q = {w; ||w|l2 < 1} and fi(w:) = w' £, where [|£¢]|]2 < 1.
We will apply FTRL with A(w) = 3||w||3 which is 1-strongly convex in || - ||2.
FTRL update on round ¢,

t—1 t—1
1
T T 2
wp = argmin w' ls +—|wH —argmm w ls| + —|wl|
=g (5 Bl ) =ormin | @2 6]+ 5 Il
— 2
= argmin Hw”% +277wT [Z ls| +n? 265] completing the square.
weQ s=1
t—1
= argmin ||w + nZﬁt
weN o—1 5

That is, choose w; to be the projection of —n Zthl l¢ onto Q in the Ly-norm.
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Example 1: Linear losses (cont'd)

- FTRL regret bound: Ry (m, f) < (/\(vu*) — Mwy)) + ZtT 1 lge ]«
- FTRL with linear losses: w; = argmin,cq Hu + 7725 1/t

This can be implemented via,

: 2
Up <— Ur—1 +nlr_1, Wi — argmin ||w — uel|3. (%)
we
Therefore, the regret satisfies,

1 1/1
Rr < - (Gl - mig i) + 0 I < (21 -0) T
t=1

€O (ﬁ) if we choose n=1/VT.

Remark. The update (x) only takes O(1) computation per round.
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Example 2: Online gradient descent

Let f; be differentiable on all rounds, and let 2 be a compact convex set.
We can apply FTRL with some A(w) which is 1-strongly convex in some norm || - ||.

FTRL update rule

t—1 1
wy = argmin (Z fs(w) + )\(w))

weR o—1 n

However, the complexity of this update is O(t).
Ideally, we would like it to be O(1).
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Example 2: Online gradient descent (cont'd)

Let us take a slightly different perspective,

T T
™ {f}i1) Z fe(we) — 22“ Z fe(w) = = max (Z fe(we) — Z ﬂ(w))
t=1

t=1

< max E V ft(wt)T (W —w)  fi(w) > fi(ws) + VFi(w:)" (w—w;) by convexity
we
t=

T T
= ;Vft(wt)th — Eeig;Vﬂ(wt)Tw.

=Rt (7[', {Vft(wt)—r(-)}z—:1> Linear losses with (; = Vfi(w;) !
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Example 2: Online gradient descent (cont'd)

We can now apply FTRL on the linear losses Vf;(w:) " (-) with M(w) = 3 ||w||3 which is

1-strongly convex in || - [|2.
. T — 1 2
we argé?zln (w sZ;st(ws) + 2n||w||2)
t—1
= argmin ||w + nZst(ws) completing the square.
we o—1 5

This is the projection of —n Z;l £; onto Q in the Ly-norm. Can be implemented as
follows in O(1) time,

u < ur—1 — nVf_1(wi-1), Wi argrrflzin l|lw — utH%.
we

Regret: If ||V£:(-)|l2 < G and max, A(w) — min, A(w) < B, then

Rr (m.{fibies) < Rr (m (V)T ONoa) < 2 +0TG? € O(GVET)
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Example 2: Connections to projected /stochastic gradient descent:

ug < ur—1 — nVf_1(we-1), Wy argnéin llow — we)3. (%)
we
1. Suppose we are interested in finding the minimum w, of a fixed function f, i.e
wy = argming cq f(w). If we take fy = f, we obtain the standard projected

gradient descent update,

up < ur—1 — nVf(we—1), Wt 4— argmin ||w — Ur”%-
we

We also obtain the following guarantee for projected gradient descent,

-
mlnf(wt)—f(w* ST; (we) — f(wy)) = R_IT €O<G\/\/>TE>'

2. In ML, (x) is similar to the (projected) SGD update, where f; is the loss on the
current data point.
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Example 3: The experts problem revisited

Here, Q = A([K]), losses f;(p) = ¢; p, where ¢, € [0,1]K.

Let us try A(w) = %||w||3. We have the following bound on the regret,  (You can try
the update rule at home)

1
Rr < (m‘?x/\( ) — min Aw )+Z lgelle < 2 KT as | < VK

€O (\/ﬁ) Choosing 7 = 1/VKT

But, we saw that Hedge achieved O(+/ T log(K)). This is because (|| - ||2, || - ||2) does
not capture the geometry of the problem.

Instead, let us try (|| - |1, ]| - [|oo)-
- We know that [|¢¢]|c < 1 (does not scale with K).
- And A([K]) is a subset of the Li-ball of radius 1.
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Example 3: The experts problem revisited (cont'd)
Experts problem: Q = A([K]), f:(p) = ¢ p, where ¢, € [0,1]K.

Let us try the negative entropy for regularization,
K
A(p) = —H(p) = > _ p(i) log(p(i))
i=1

Recall, from Chapter 0, that A(p) is 1-strongly convex in || - ||1.

We have the following bound on the regret,

T
1 .
R < 5 (mfx Mw) — mwln )\(w)) + Z l| g«

=1
1 T
= 5 < max H(w) — mwin H(w)> + Z 1€¢]loo <
<log(K) =

e < T |Og(K)) Choosing n = +/log(K)/T
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Example 3: The experts problem revisited (cont'd)
Let us now derive the update rule,

pr = argmin (Z £T + - Ep log(p )

PeA([K])
We can write this as the following optimization problem,
t—1 1 K
minimize, Zﬁjp%— — Zp(i) log(p(i)). sub. to 1Tp=1, p>0
— n-=

We will write out the Lagrangian for the 17 p = 1 constraint and then verify that the
solution is non-negative.

L= ZKTP+ Zp i) log(p(i)) + u(p'1 - 1).
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Example 3: The experts problem revisited (cont'd)

t—1 K
1 . .
L=) tlp+ g > p(i)log(p(i)) + p(pT1 - 1).
s=1 i=1
Taking derivatives and setting to 0,

oL | . A
() = ;ES(/) +, L+ loa(p(D)) + 41 =0

t—1
= pe(i) = e Mexp (—nZ&(O)
s=1
As >, p(i) =1, we obtain,
o (—n 1 6s()
S exe (-1 60))

This is precisely the Hedge algorithm!

pe(i) =
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Ch 6.3: Follow the Perturbed Leader

Follow the perturbed leader (FTPL)
» Given: time horizon T, a distribution D.
» Sample fy ~ D
> fort=1,..., T

t—1

» Choose w; = argminz fs(w)
weQ T

We will assume an oblivious adversary for simplicity. With an adaptive adversary, you
just need to sample fy ~ D on every round.
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FTPL vs FTRL

FTPL
FTRL. . _ - Given: horizon T, distribution D.
- Given: horizon T, regularizer A. _ Sample fy ~ D
fort=1,....7T ~fort=1,....T
Wt 4 argmin fo(w) + A(w .
t e SZ:; s(W) +A(w) Wi arfé?)ln; fs(w)

» FTRL is deterministic, while FTPL is stochastic.

» In FTPL, we replace the regularizer A with an fy sampled from a distribution D.

Why FTPL over FTRL?

> In some usecases, if fy “looks like" f;'s, the optimization may be simpler.

On the flipside,
» Choice of D is not always straightforward.

» Analysis techniques differ from use case to use case.
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Example: online linear optimization in a convex polytope

Let f;(w) = ¢; w be linear and Q = {w : Aw < b} where A € RN*9 pc R".

Say we run FTRL with a quadratic regularizer A(w) = %Hw”% Then, from a previous

example,
t—1 t—1
wy = argmin Zw ls + —||w||2 = argmln w + nZZt
we o—1 5
This can be implemented via,
. 2
U <= U1 + nle—1, we <= argmin [|w — ue[|3.

weN

This projection operation, while still a convex optimization problem, can still be
computationally expensive in a polytope.
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Example: online linear optimization in a convex polytope (cont'd)

Let f;(w) = £] w be linear and Q = {w : Aw < b} where A € RN*9 pc R".

Let us try FTPL. We will sample ¢y ~ D (for some appropriately chosen D), and then

on each round
t—1

wy — argmin g 01w
wen 5—0

This can be implemented via the following linear program, which is computationally
cheaper than a projection

w
s=0

t—1
minw ' [Z 65] subject to Aw < b.
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A preliminary bound for FTPL

Lemma (FTPL). Let f = (f1,..., fT) be a sequence of losses. Then FTPL satisfies,
T T
FTPL :
Ry (" TPL f) [Z wt] - weﬂ;mw)

-
ZE[ft wt) — fe(wer1)] + E [maé fo(w) — min fo(w)

weN

where the expectation is with respect to fy ~ D.

N.B. Does not assume convexity of Q, f; or A.
Recall we are assuming an oblivious adversary.
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Proof of FTPL lemma

Recall the following bound for FTRL. For all u € €,

T

T T
ST Aw) = 3 Alu) < Aw) — minAw) + D (flw) — filwe)).

t=1

For a given fy, let us apply the above lemma with A = fy and
U= w, = argmin,cq Zthl fr(w).

T T T
Z fi(w Z wy) < folwe) — mln fo(w) + Z (fe(we) — fr(wegr)) -
t=1 t=1 t=1

The claim follows by noting that fy(w,) < max, fo(w) and then taking expectation.
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The experts problem revisited
We will apply FTPL with fo(-) = ¢4 (-), and where £5(a) ~ D(n) for all a € [K].

On round t we will choose p; € argming,e A (k1) Z;;(l) p'¢:, which is equivalent to
choosing A € argmin ¢k Z;;(l) l:(a).

This gives rise to the following algorithm

FTPL for the experts problem
» Given: time horizon T, parameter 7
» Sample {o(a) ~ D(n) foraec [K]. {lo~D
» fort=1,..., T,

> Ay < argmin,gq Z;;é ls(a). wy = argming, cq ZZ;(I) fs(w)
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FTPL for experts: negative geometric perturbation

For all a, we will sample ¢p(a) = —Z(a) where Z(a) ~ Geom (7).

The Geom (n) distribution: the distribution of the number Z of Bern (n) coin flips to
get the first 1.

pmf: for k € {1,2,...} p(k)=P(Z =k)=(1-n)1n

Some useful properties:
P(Z>k+1,Z>k) _ P(Z>k+1) _ (1-m)k
1L P(Z> k+11Z > k)= 2220l 220 _ Hamlen) _ Goaf, gy

2. Let Z(a) ~ Geom (n) for a € [K]. Then (try at home)

H 1 1
E[[|Z]|s0] = E [ggﬁ(x] Z(a)} <1+ 7" where, Hx =1+ 5+ + .
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FTPL for experts: negative geometric perturbation (cont'd)
Lemma (FTPL). Let f = (fl, ..., fr) be a sequence of losses. Then FTPL satisfies,
Ry (x" TP f) ZE[)‘} (wi) = fe(wep1)] + E {m{z;]x fo(w) — mggn fb(u):|

Note that for the experts problem w € A([K]) is such that w(a) = 1(A; = a).

Moreover,
fc = 0w = Y4 i = 0
oeAT O = R fow = e fola) | iR, L) = i fola):
we have,

Rr(x¥ TPl £) ZIE[KO(A ) — lo(Ars1)] + E max lo(a) — min £o(a)
ot a€[K] ac[K]
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FTPL for experts: negative geometric perturbation (cont'd)

Ry (x"TPL, F) ZE[KO —ly(Ary1)] + E {rgﬁz(] lo(a) — ang[ilﬁ] fo(a)}

Let us first bound the second term. Recall that ¢g(a) = —Z(a) where
Z(a) ~ Geom (n). As Z(a) > 1, we have

max{o(a) = max—Z(a) < —1.
a a

—min{p(a) = maxZ(a) = ||Z]|x
a a

Therefore,

E | max o(a) — min {p(a)| < —14+E[||Z]|e] < -1+1+ Ar _ .

ac[K] a€[K] n n
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FTPL for experts: negative geometric perturbation (cont'd)

Rr(xFTPL £) < SR )~ lo(A E 0o(3) — min ¢
Z [lo(A o(Arr1)] + max o(a) arg[l}rg]Fo(a)

<Hx/n

Let us now bound the first term. Shortly, we will prove the following claim.
Claim. P(A;11 = a|A; = a) > 1 — q for all a € [K], where PP is with respect to /.
Then, we can write
E[le(Ar) — le(Ae1)] = Ello(Ae) — lo(Aet1) [Ae = Aea]P(Ar = Arpr)+
=0
E[lo(Ar) — Co(Att1) At # Arra]P(Ar # Arra)

<1 as £:€[0,1]K

P(Ae # Att1) ZP(AtH # alAr = a) P(A:r = a) <),
<77
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FTPL for experts: negative geometric perturbation (cont'd)

;
Rr(m¥TFL £) <N "E[lo(Ar) — Lo(A +E[ lo(a) — ! }
,; [£o(A 0(Asr1)] max o(a) ang[lzﬁ] o(a)

<n
<Hk/n

Therefore,
H
Rr <nT + &
n

THx By choosing 1= /Hk/T

€ O(/Tlog(K)).
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FTPL for experts: negative geometric perturbation (cont'd)
We will now prove the claim.

Claim. P(A;y1 = a|Ar = a) > 1 — 1 for all a € [K], where P is with respect to 4.

Proof. Recall that ¢p(a) = —Z(a) where Z(a) ~ Geom (7).

Let a be given. We will show that for every realization of {Z(j)};£a., we have

]P)(At+1 = 3|At = a, {Z(,/)}_[yéa) 2 1-— n = P(At+1 = a|A1_- = a) Z 1-— n.

Fix the values of {Z(j)}.a. First observe,

t—1 t—1 t—1

Ar=a = Y Us(a) =) ls(a)—Z(a) <D 4:()) - 2() Vi#a

s=0 s=1 s=1
Now define Ly_1(j) £ Y021 6.(j) and Je_1 2 minj, (Le_1(j) — Z(j)). Therefore,

At =a < Z(a) > Ltfl(a) — thl.
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FTPL for experts: negative geometric perturbation (cont'd)

Lea() = Zfs Jeea & minLe-a(f) = Z0).

Now let us consider A;y1 = j. We can write,

Aci=a < > ()= l(a)—2Z(a) <> L))~ Z() Vi#a
=1 s=1

s=0

> Z(a) > Lea(a) + 4e(a) (Zﬁ U) +6:0) - (j)> Vj#a

— Z(3) 2 Lia(a (Zeo ) +1la) — ) i #

<1 as ¢:€[0,1]

>Jr1
— Z(a)> Li—1(a) — -1+ 1
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FTPL for experts: negative geometric perturbation (cont'd)

Ar=a < Z(a) > Li_1(a) — Ji_1. Arpi=a <— Z(@)>Li1(a)— 1 +1
For Z ~ Geom (n), P(Z > k+1|Z > k) =1—n.

We therefore have,
P(Aty1 = alA: = a, {Z(j)}jyéa)
>P(Z(a) > Le—1(a) — Je—1 + 1] Z(a) > Le—1(a) — Je—1,{Z(j)}ja)

Hence, P(Ary1 = alAr=a) > 1 —n.
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FTPL for experts: Laplace perturbation

FTPL for the experts problem
» Given: time horizon T, parameter n
» Sample {y(a) ~ D(n) for ac [K]. oy~ D
> fort=1,..., T,

> Ap < argmin,ex Z;;é ls(a). we = argming cq Zz;é fs(w)

We will now try D(n) = Lap (1/7).
The Lap (1/n) distribution has pdf ¢:

(z) = g,
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FTPL for experts: Laplace perturbation (cont'd)
Maximum of K i.i.d Laplace RVs. Let Z = (Z(1),...,Z(K)) where Z(i) ~ Lap (1/n),

(o]
E[Z|c0] :/O P(||Z]|cc > t)dt by identity below.

a oo
:/ ([ Z]| > t)dt—i—/ (|| Z]| > £)dt <a—|—Z/ P(|Z())| > t)dt
0 ——m>n—" a _f_/

<1 =P(31,|Z(i)|>t)

We have that,

o0 —t
P(Z(i)| > t) = /"e—”2+/ gz _ gt
. 2 2

—0o0

Therefore, choosing a = og(K)' Ve have

* K 1
E[|Z]|cc] < a+ K/ e "dt < a+ ge_”"’ p —(1+ log(K)).
a

%For Z >0, E[Z] = [, zp(z)dz = [° p(2) [ dvdz = [ [ p(z)dzdv = [[°P(Z > v)dv. 52/66



FTPL for experts: Laplace perturbation (cont'd)
Lemma (FTPL). Let f = (fl, ..., fr) be a sequence of losses. Then FTPL satisfies,
Rr(rFTPL £ ZE[ft (wi) = fi(wes1)] + B {mé]x fo(w) — min fo(w)}

Using a similar argument as before (i.e for geometric perturbation), we have

T
Ry (nFTPL £) < ZE[EO(A ) — lo(Ae+1)] + E [;2?&(] lo(a) — anQ[i!?] Eo(a)]
t=1

Let us first bound the second term. By symmetry of the Laplace distribution,

2
E [;232(]60( ) — mEE]EO(a)] =2E {;’2% lo(a )} < %(1 + log(K)).
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FTPL for experts: Laplace perturbation (cont'd)

Ry (xFTPL £) < E ) — Lo(A " ’ Cin £
Z [lo(A o(Aty1)] + max o(a) arg[l}rg]fo(a)

<2 (1+l0g(K)).
To bound the first term, we will use the following claim.

Claim. P(A; = a) < €"P(A¢+1 = a) for all a € [K], where P is w.r.t £.

We therefore have, p

K
E[le(Ae) = €e(Arr1)] = D L(a)P(Ar = a) = Y £e(a)P(Ars1 = a)
a=1

a=1

I
M=

le(a) (P(Ar = a) — P(Ar1 = a))

Y
Il
N

M=

le(a) (1—e ) P(Ar =a) <.
va,—/
<1 <n

9
Il
._.
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FTPL for experts: Laplace perturbation (cont'd)

T

FTPL
Rr (T 0) < DO EIGA) —lo(A)] + B |mafo(a) — i fo(a)

<n

<2 (1+log(K)).

Therefore,
2
Rr <nT + = (1+ log(K))

= 3W By choosing 1 = /(1+log(K))/T
€ O(+/ T log(K)).
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FTPL for experts: Laplace perturbation (cont'd)

We will now prove the following claim.
Claim. P(A; = a) < e"P(A¢41 = a) for all a € [K], where P is w.r.t £p.
Let a be given. Let ) be the pdf of £y3. Therefore,

H”e ol = T g=nltoll,

We can write,

P(A: = a) = /RK 1 <a = argmanE () ) (4o)dtp.

JE[K] s=0

Let £3 € [0,1]% such that ¢2(j) = 1(j = a)¢¢(a). Thatis £7 = [0,...,4(j),...0].
Now, let us use the substitution fo = fo — ¢. We have,

P(At:a):/K]l<a—argmln€o )+ 30 —I—Zﬁ ) €0+€f)d20-
R

JE[K]
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FTPL for experts: Laplace perturbation (cont'd)

J€lK]

K
V() = Z*Ke*”wo”l. P(A; = a) :/K 1 (a = argmin {o(j) + £2(j) + Zé ) (Lo + £2)dlg.
R

Now we will upper bound (o + £2) as follows,
K G402
W(ly + 03) = 2K e~ Méo+E1h
< fe—n\%llwvyllfilll As ”Z 1 < ”Z +6+ | -2
=~ 2K 0|1 > 0 1 tll1

K ~ ~
< el = 1y(fo). s (63 = t(a) < 1.

Therefore,
t—1
P(A; = a) < e"/ 1 (a = argmin (o(j) + £3(J) + Z&(D) ¥ (bo)do.
RK JE[K] s=1
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FTPL for experts: Laplace perturbation (cont'd)

P(A; = a) < e”/ 1 (a = argminfo )+ 60 +Zf ) P( /0 dlo.
RK

Jj€lK]

Recall £2(j) = 1(j = a)l¢(a). Therefore, ¢3(a) = ¢+(a) and £2(j) < £¢(j) for all j # a.

Hence,
t—1
1 (a = argmin {o(j) + £2(j) + ZE ) <a = argmlnﬁo( )+ Ce(j) + Z&U))
JelK] JelK] s—1
Therefore,

t—1
P(A; = a) < " /RK 1 (a = argmin lo(j) + £¢(j) + Zes(j)> Y(lo)dly

JG[K] s=1
e”/

IN
=

. 1 (a = argmmZB (])) Y(lo)dly = e"P(Ary1 = a)
5=0
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FTPL Summary

» Proof strategy:

-
FTPL lemma: Rr(n"TPE £) <Y E[f(we) — fi(werr)] + E {mélx fo(w) — min fo(w)
t=1
1. Choose D(n) so that E[maxgq fo(w) — ming fo(w)] < O (%)

2. Show that w; and w; 1 have similar distributions.
Hence argue that E [f;(w;) — fi(wer1)] < O(n™).

Proof technique for step 2 can depend on D and the problem instance.
> Although high-level intuitions are similar across all FTPL instances, we do not

usually have a unified analysis (like FTRL). However, the computational
advantages can sometimes make FTPL worthwhile.

» FTPL also does not assume convexity of Q, f;.
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Ch 6.4: Case study: Online shortest paths

We have a graph with M edges. There are fixed source and and destination vertices.

» There are K possible paths A = {a1,...,ak} from the source to the destination.
We will represent each path as a; € {0,1}M where a;(i) = 1 means that edge i is
on a;. Say that the maximum path length is m, i.e aj—-rlM < m.

» On each round a learner chooses a path A; € A from source to destination.
» Simultaneously, the adversary chooses losses ¢; € [0,1]™ for each edge.

» The learner incurs loss A/ £;, but observes /; (losses on all edges).
Application: packet routing in a network.

We can write the regret as,

T T
Ry (m,0) = ZAI& — Q“E'Q\Z aj—-rﬁt.
t=1 ST =1
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Attempt 1: Applying Hedge

» Treat each path in A ={a1,...,ak} as an expert, and scale the losses by %

» The regret for the scaled losses will be O(y/ T log(K)). Hence,

Rr € 0 (my/T10g(K)) € O (my/mTlog(M/m)) ks K < (M) - (M)
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Attempt 1: Applying Hedge

» Treat each path in A ={a1,...,ak} as an expert, and scale the losses by %

» The regret for the scaled losses will be O(y/ T log(K)). Hence,

Rr € O (my/TIog(K)) € O (m/mTIog(M/m)) e K < (M) ~ (M)

» Per-iteration run time is O(K), which can be large.
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Attempt 2: Applying FTPL
FTPL for online shortest paths
» Given: time horizon T, parameter n
» Sample {o(e) ~ D(n) for each edge e.
> fort=1,...,T,

» Choose path t—1

A < argmin Z ] aj.
ajEA s=0

Run time per iteration:
- Updating losses on each edge (incrementally): O(M)
- Computing shortest path via Dijkstra's: O(M). (not convex, but still efficient)

- Much cheaper than O(K) where K could be as large as (M).

In fact, you do not even need to construct A explicitly.
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Bounding the regret of FTPL for online shortest paths

Recall FTPL lemma,

Ry (x" TP £) ZE [fe(we) — fe(wer1)] + E {mﬁx fo(w) — inn fo(w)}

We will try Laplace perturbations, i.e ¢p(e) ~ Lap (1/n) for each edge e.
Applying the FTPL lemma we obtain

.
R (#¥TPL f) < ZE[HgAt lo (A1)l + E [maxﬂo a— ”é'j)leo a}

Let us first bound the second term. By symmetry of the Laplace distribution,

2m
E 0l a— E =2E ! < 2mE l < — (1 + log(M)).
3~ 1 3e] = 28 maria] <20k | g (0] < 51+ 1)
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FTPL for OSP: Laplace perturbation (cont'd)

.
Rr(zF TPl £) gz [0g Ae — 09 (Aesr)] +1E[

lga— b
max{, a arg[l}rg] 0a

<22(14log(M)).
To bound the first term, we will use the following claim

Claim. P(A; = a) < e™P(A¢1+1 = a) for all a € [K], where P is w.r.t {g
We therefore have,

Ellg Ac — Lo Acra] = Y £/ aj (B(Ar = 3)) = (A1 = 3))
ajG.A
Z ETaj 1—e™ ™ )P(At =aj) < nmz.
ey %’—’

<mx1 <mm
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FTPL for OSP: Laplace perturbation (cont'd)

.
Rr(x"TPL £) < ;E[EOTAr — Ly (A1) + E {Tgega — arg[i% (g a

<nm?
<2 (1-+log(M)).

Therefore,

2m
R < m’nT + o (1 + log(M))

=3my/mT(1 +log(K) By choosing 1 = +/(1 + log(M))/(mT)

€ O(my/mT log(M)).

C.f. For Hedge, RT € O (m«/mTIog(l\/l/m)). While the regret is similar, FTPL has
O(M) computation per round, while Hedge has O(K), where K could be as large as

()
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FTPL for OSP: Laplace perturbation (cont'd)

Claim. P(A; = a) < e™P(A¢4+1 = a) for all a € [K], where P is w.r.t {p.
Proof sketch. The proof is similar to Laplace perturbations for Hedge.

Let a path aj € A be given. Then, we can write We can write,
t—1

P(A: = aj) = /]RK 1 <a = argminZEj@) P (Lo)dlp.

ajE.A s=0

Next define ¢ € [0,1]M so that £7 (i) = £¢(i) x a;(i). Use the substitution
Lo = fo — {7 and proceed in a similar fashion.
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