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Ch 1.1: Basic definitions
Example 1: Prisoner’s dilemma. Two suspects in a robbery are questioned
separately. Each must individually choose to Remain Loyal (L) or Betray (B) their
partner. Their sentences depend on both decisions:
▶ If both remain loyal: both receive light sentences (1 year).
▶ If both betray: both receive moderate sentences (3 years).
▶ If one betrays while the other remains loyal: betrayer goes free, the loyal prisoner

receives a heavy sentence (5 years).

P1
P2

B L

B (−3,−3) (0,−5)
L (−5, 0) (−1,−1)

Both prisoners are better off if they both remain loyal. But individually, betraying is
better regardless of what the other chooses.
This is called a dominant strategy.
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Example 2: Driver vs Inspector
A driver (P1) must choose between parking in an illegal spot (I) or a legal but less
convenient spot (L). Simultaneously, an inspector (P2) should decide whether to
inspect (In) or not (N). If the driver parks illegally and an inspection occurs, the driver
pays a substantial fine. The city bears a cost when drivers park illegally, though this is
partially offset by the revenue from the fine.

P1
P2

N (Not inspect) In (Inspect)

L (Legal) (0, 0) (0,−1)
I (Illegal) (10,−10) (−90,−6)

Question: Does either player have a dominant strategy?
Ans: No. If P1 chooses L, P2 should choose N. If P1 chooses I, P2 should choose In.
Similarly for P1.

Question: What are “safe” strategies for P1 and P2?
Ans: P1 should choose L and P2 should choose In.
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Example 3: Stag hunt
Two hunters can (individually) choose to chase either a stag (S) or hare (H). Both
hunters are needed to successfully hunt the stag, but one is sufficient to catch the
hare. If they both chase the same animal, they share the catch. The stag (8) is worth
four times the hare (2).

P1
P2

S H

S (4, 4) (0, 2)
H (2, 0) (1, 1)

1. Neither player has a dominant strategy in this game. If P1 chooses S , P2 should
choose S (and vice versa). If P1 chooses H, P2 should choose H.

2. The safe strategy for both players is to choose H.

3. The action profiles (S ,S) and (H,H) are called Nash equilibria (NE), meaning that
no agent benefits from deviating (we will define it formally soon).
We also see that (S ,H) and (H, S) are not NE.
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Example 3: Stag hunt (cont’d)
In this example, (S , S) and (H,H) are examples of pure NE with,

u1(S , S) = u2(S , S) = 4, u1(H,H) = u2(H,H) = 1.

Suppose we allow agents to randomly choose either action with some probability.
- Say P1 follows s1 = (x , 1− x), meaning P1 chooses S with probability x and H with
probability H.
- Say P2 follows s2 = (y , 1− y).

Then, the expected utility of player 1 is,

u1(s1, s2) = Ea1∼s1,a2∼s2 [u1(a1, a2)]

= xy · 4 + x(1− y) · 0 + (1− x)y · 2 + (1− x)(1− y) · 1
= 1− x + y + 3xy .

Similarly, you can show u2(s1, s2) = 1− y + x + 3xy .
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Example 3: Stag hunt (cont’d)

Suppose P2 follows (1/2, 1/2). What is the best strategy for P1?

u1(s1, (1/2, 1/2)) = 1− x +
1

2
+

3x

2
=

3

2
+

x

2
.

Therefore, argmaxx∈[0,1]
3
2 + x

2 = 1, i.e., P1 should chase the stag.

Suppose P2 follows (1/4, 3/4). Then P1 should chase the hare (try at home).

Suppose P2 follows (1/3, 2/3). Then, u1(s1, (1/3, 2/3)) = 1− x + 1
3 + x = 4

3 . P1 can
choose either S or H and will receive the same utility!

The same can be said about P2 if P1 follows (1/3, 2/3).

As neither player has incentive to devaiate, s1 = s2 = (1/3, 2/3) is a NE.

Next, we will rigorously define a ‘game’, and formalize these ideas.
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Normal form games
A normal form game is an interaction between n players, denoted [n] = {1, . . . , n}.

Each player i ∈ [n], separately and simultaneously chooses an action ai ∈ Ai , where Ai

is the set of available actions for player i .

Let a = (a1, . . . , an) denote the action profile chosen by all players. Let
A = A1 × · · · × An denote the action space of all players.

Each player i receives utility ui (a), where ui : A → R. A player’s utility is her degree of
satisfaction (higher utility is better for player i), and it depends on the actions of all
players.

A normal form game is finite if |A| <∞.

We will frequently refer to players as agents and actions as pure strategies.

0In this class, for any integer N ∈ N, [N] will denote the set {1, 2, . . . ,N}.
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Pure and mixed strategies
A pure strategy for player i is an action ai ∈ Ai . A mixed strategy, or simply a strategy,
for player i is a distribution over actions, i.e., si ∈ Si = ∆(Ai ). If player i employs a
mixed strategy si , it means they will choose an action randomly sampled from si .

Let s = (s1, . . . , sn) denote the strategy profile chosen by all players. Similarly, let
S = S1 × · · · × Sn denote the strategy space of all players.

Let s = {sj}j ̸=i denote the strategy profile of all players except i . Let S−i =×j ̸=i Sj
denote the strategy space everyone except i .

We will overload notation to denote the expected utility ui : S → R as follows:

ui (s) = Ea∼s [ui (a)] = Eai∼si ∀ i [ui (a1, . . . , an)].

In particular, if the action set is finite, we have

ui (s) =
∑
a∈A

s(a)ui (a) =
∑
a∈A

(s1(a1)× · · · × sn(an)) · ui (a).

0In this class, ∆(A) will denote all distributions over a set A. When A is finite, this will refer to the
set ∆(A) = {s : A → [0, 1];

∑
a∈A s(a) = 1}.
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Solution concepts

How should players choose their strategies in a game?

Driver vs Inspector

P1
P2

N In

L (0, 0) (0,−1)
I (10,−10) (−90,−6)

Stag hunt

P1
P2

S H

S (4, 4) (0, 2)
H (2, 0) (1, 1)

We will now look at three solution concepts (and two more later in Ch 1.5):

1. Dominant strategies

2. Safe (maximin) strategies

3. Nash equilibria
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Dominant strategies and Dominant Strategy Equilibria

Recall that s−i and S−i denote the strategy profile and strategy space of all players
except i .

Definition (Dominant strategy). A strategy si ∈ Si is a dominant strategy for
player i if it maximizes player i ’s utility regardless of other’s strategies, i.e.,

ui (si , s−i ) ≥ ui (s
′
i , s−i ) for all s ′i ∈ Si , s−i ∈ S−i .

Definition (Dominant strategy equilibrium). A strategy profile s = (s1, . . . , sn) is a
dominant strategy equilibrium if si is a dominant strategy for each player i .
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Dominant strategy equilibria (cont’d)

Prisoner’s dilemma

P1
P2

B L

B (−3,−3) (0,−5)
L (−5, 0) (−1,−1)

(B,B) is a DSE.

Stag hunt

P1
P2

S H

S (4, 4) (0, 2)
H (2, 0) (1, 1)

No DSEs in this game.
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Safe strategies
Definition (Safe strategies, a.k.a maximin strategies). Consider an n player
normal form game. Let gi (si ) denote the lowest possible utility agent i could achieve
over the strategies of the others, i.e., gi (si ) = mins−i∈S−i

ui (si , s−i ).
A strategy s̃i is a safe strategy for agent i if gi (s̃i ) ≥ gi (si ) for all si ∈ Si .

Intuitively, a safe strategy maximizes a player’s utility among the worst possible case of
other players’ strategies.
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Safe strategies: Example 1
Recall the driver vs inspector game.

P1
P2

N (Not inspect) In (Inspect)

L (Legal) (0, 0) (0,−1)
I (Illegal) (10,−10) (−90,−6)

Suppose that the driver and inspectors strategies are respectively s1 = (x , 1− x) and
s2 = (y , 1− y). Then, the driver’s utility is:

u1(s1, s2) = xy · 0 + x(1− y) · 0 + (1− x)y · 10 + (1− x)(1− y) · (−90)
= 10y − 10xy − 90 + 90x + 90y − 90xy

= 90x − 90 + 100y(1− x)
Therefore,

g1(s1) = min
s2

u1(s1, s2) = min
y

(90x − 90 + 100y(1− x)) = 90x − 90.

Hence, the driver’s safe strategy is, argmaxs1 g1(s1) = argmaxx∈[0,1] 90x − 90 = 1.
That is, s1 = (1, 0) (always park legally).
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Safe strategies: Example 2 (Try at home)
Recall the stag hunt game.

P1
P2

S H

S (4, 4) (0, 2)
H (2, 0) (1, 1)

Suppose that the players have strategies s1 = (x , 1− x) and s2 = (y , 1− y). Then,
P1’s utility is:

u1(s1, s2) = xy · 4 + x(1− y) · 0 + (1− x)y · 2 + (1− x)(1− y) · 1
= −x + 1 + y(3x + 1)

Therefore,

g1(s1) = min
s2

u1(s1, s2) = min
y

(−x + 1 + y(3x + 1)) = −x + 1.

Hence, the P1’s safe strategy is, argmaxs1 g1(s1) = argmaxx∈[0,1]−x + 1 = 0. That is,
s1 = (0, 1) (always chase the hare).
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Best responses and Nash equilibria

Definition (Best response). For player i , a strategy si is a best response to a
strategy profile s−i of the other players, if it maximizes i ’s utility, i.e.,

ui (si , s−i ) ≥ ui (s
′
i , s−i ) for all s ′i ∈ Si

Definition (Nash equilibrium). A strategy profile s⋆ = (s⋆1 , . . . , s
⋆
n) is a Nash

equilibrium if s⋆i is a best response to s⋆−i for each agent i , i.e.,

ui (s
⋆
i , s

⋆
−i ) ≥ ui (s

′
i , s

⋆
−i ) for all s ′i ∈ Si , i ∈ [n].

If s⋆ consists only of pure strategies, it is called a pure Nash equilibrium.
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Nash equilibria (cont’d)

Prisoner’s dilemma

P1
P2

B L

B (−3,−3) (0,−5)
L (−5, 0) (−1,−1)

(B,B) is a NE.

Stag hunt

P1
P2

S H

S (4, 4) (0, 2)
H (2, 0) (1, 1)

(S , S) and (H,H) are pure NE.
((1/3, 2/3), (1/3, 2/3)) is a mixed NE.
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Quiz: state if the following statements are true or false
1. Every DSE is a NE.

2. Every NE is a DSE.

3. If a player has a mixed dominant strategy, she also has a pure dominant strategy.

4. Every normal form game has a DSE.

5. In every normal form game, each player has a safe strategy.

6. Every normal form game has a NE.

7. If a player has a dominant strategy, it is also a safe strategy for her.

8. If each player follows their safe strategy, it constitutes a NE.
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Existence of NE

The following is the celebrated theorem of John Nash.

Theorem (Existence of NE, Nash 1950). Every finite normal form game has at
least one (mixed) Nash equilibrium.

We will not prove this theorem in class. You may read chapter 5 of KP for a proof.
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Symmetric Games

Definition (Symmetric game). Suppose all players in an n-player game have the
same set of actions A. Let ui (ã, ã′) denote i ’s utility when she follows ã ∈ A and
others follow ã′ ∈ An−1. We say a game is symmetric if,

ui (ã, ã
′) = uj(ã, ã

′) for all i , j ∈ [n], ã ∈ A, ã′ ∈ An−1.

A Nash equilibrium s = {si}i∈[n] is symmetric if si = sj for all i , j .

Theorem. Every finite symmetric game has at least one symmetric Nash equilibrium.

Proof in Chapter 5 of KP.
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Ch 1.2: Indifference principle
The indifference principle states that in a (mixed) NE, a player will be indifferent to
any action she may choose with positive probability.

Notation. We will use the following notation for the expected utility when a player i
chooses action ai while others are following mixed strategies s−i :

ui (ai , s−i )
∆
= Ea−i∼s−i [ui (a)] =

∑
a−i∈A−i

s1(a1) . . . si−1(ai−1)si+1(ai+1) . . . sn(an)·ui (a1, . . . , an)

Theorem (Indifference principle). (Lemma 4.3.7 in KP). Consider an n player game
with action spaces A1, . . . ,An. Let s = (s1, . . . , sn), where si ∈ ∆(Ai ) be a mixed
strategy profile. Let Bi = {a ∈ Ai ; si (a) > 0} be the set of strategies for player i that
will be selected with non-zero probability. Then, s is a NE iff there exists constant
c1, . . . , cn such that

for all, ai ∈ Bi , ui (ai , s−i ) = ci ,

for all, ai ∈ Ai \ Bi , ui (ai , s−i ) ≤ ci .
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Indifference principle (cont’d)

Theorem (Indifference principle). Consider an n player game with action spaces
A1, . . . ,An. Let s = (s1, . . . , sn), where si ∈ ∆(Ai ) be a mixed strategy profile. Let
Bi = {a ∈ Ai ; si (a) > 0} be the set of strategies for player i that will be selected with non-zero
probability. Then, s is a NE iff there exists constant c1, . . . , cn such that

for all, ai ∈ Bi , ui (ai , s−i ) = ci ,

for all, ai ∈ Ai \ Bi , ui (ai , s−i ) ≤ ci .

Intuition.

▶ In a mixed-strategy NE, any action that a player uses with positive probability
must give the player the same expected utility. Otherwise, the player would shift
probability toward the better-paying strategy, contradicting Nash equilibrium.

▶ All other actions should yield equal or less utility. Otherwise, the player would
simply choose the other action.

Our proof will simply formalize the above intuition.
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Proof of the indifference principle
Indifference principle. s is a NE iff there exists constant c1, . . . , cn such that

∀ ai ∈ Bi , ui (ai , s−i ) = ci , ∀ ai ∈ Ai \ Bi , ui (ai , s−i ) ≤ ci . where, Bi = {a ∈ Ai ; si (a) > 0}.

Proof. First, suppose that s is a NE. Let ci = maxai∈Ai
ui (ai , s−i ). As si is the best

response to s−i , for any a′i ∈ Ai ,

if ui (a
′
i , s−i ) < ci , =⇒ si (a

′
i ) = 0.

Otherwise, we can shift the probability si (a
′
i ) from a′i to ai , for some action ai with

ui (ai , s−i ) = ci and increase the expected utility of user i .

The above statement, (along with its constrapositive, i.e., si (a
′
i ) > 0 =⇒

ui (a
′
i , s−i ) = ci ) implies the condition.
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Proof of the indifference principle (cont’d)
Indifference principle. s is a NE iff there exists constant c1, . . . , cn such that

∀ ai ∈ Bi , ui (ai , s−i ) = ci , ∀ ai ∈ Ai \ Bi , ui (ai , s−i ) ≤ ci . where, Bi = {a ∈ Ai ; si (a) > 0}.

Proof (cont’d). Now suppose that the condition holds. Consider any agent i and an
alternative strategy s ′i for i . We can expand ui (s

′
i , s−i ) as follows:

ui (s
′
i , s−i ) =

∑
a∈A

s1(a1)× · · · × si−1(ai−1)× s ′i (ai )× si+1(ai+1)× . . . sn(an)ui (a)

=
∑
ai∈Ai

s ′i (ai )
∑

a−i∈A−i

s1(a1)× · · · × si−1(ai−1)× si+1(ai+1)× . . . sn(an)ui (a)

=
∑
ai∈Ai

s ′i (ai )ui (ai , s−i )

≤
∑
ai∈Ai

si (ai )ui (ai , s−i ). via the given condition

Hence, si is a best response to s−i player i . As this is true for all players i , s is a NE.
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Computing all NE using the indifference principle

Indifference principle. s is a NE iff there exists constant c1, . . . , cn such that

for all, ai ∈ Bi , ui (ai , s−i ) = ci , for all, ai ∈ Ai \ Bi , ui (ai , s−i ) ≤ ci .

The indifference principle suggests the following recipe for finding all NE in (small)
games:

1. Enumerate all possible supports (which strategies each player plays with positive
probability) for the Nash equilibria.

2. For each such support, equate expected payoffs of all actions in each player’s
support using the indifference principle.

3. Solve for the mixed strategies.
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Eg1: Stag hunt

Recall the stag hunt
game:

P1
P2

S H

S (4, 4) (0, 2)
H (2, 0) (1, 1)

Let us first enumerate all possible supports for a NE:
1. Both players use a single action (pure NE)
2. One player uses a single action and the other uses both actions.
3. Both players use both actions.

1. First consider pure NE:
- s1 = s2 = (1, 0), (S , S).
- s1 = s2 = (0, 1), (H,H).

2. Next, consider NE where one agent follows a pure strategy and the other follows a
mixed strategy. However, such NE does not exist. If one agent follows S , the best
response for the other is to also follow S , and likewise if the agent follows H.
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Eg1: Stag hunt (cont’d)

Recall the stag hunt
game:

P1
P2

S H

S (4, 4) (0, 2)
H (2, 0) (1, 1)

3. Finally, let us consider fully mixed NE. Suppose agents 1 and 2 follow
s1 = (x , 1− x) and s2 = (y , 1− y) with x , y ∈ (0, 1).

Let us first write P2’s utility when following both actions,

If P2 chooses S : u2(s1, S) = Ea1∼s1 [u2(a1, S)] = x · 4 + (1− x) · 0 = 4x ,

If P2 chooses H: u2(s1,H) = Ea1∼s1 [u2(a1,H)] = x · 2 + (1− x) · 1 = 1 + x .

By the indifference principle, P2 should receive the same expected utility regardless of
either action (as both actions will be chosen with nonzero probability), i.e.,
4x = 1 + x =⇒ x = 1/3.

By a similar argument, y = 1/3. Hence s1 = s2 = (1/3, 2/3) is a mixed NE.
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Eg2: Driver vs Inspector (try at home)

Recall the driver vs in-
spector game:

P1
P2

N (Not inspect) In (Inspect)

L (Legal) (0, 0) (0,−1)
I (Illegal) (10,−10) (−90,−6)

It is straightforward to verify that there are no pure NE or NE where one player follows
a pure strategy and the other follows a mixed strategy. To find fully mixed NE,
suppose agents 1 and 2 follow s1 = (x , 1− x) and s2 = (y , 1− y) with x , y ∈ (0, 1).

Applying the indifference principle for P2, i.e., u2(s1,N) = u2(s1, In), we have

x · 0 + (1− x) · (−10) = x · (−1) + (1− x) · (−6) ⇐⇒ x = 0.8

Applying the indifference principle for P1, i.e., u1(L, s2) = u1(I , s2), we have

y · 0 + (1− y) · 0 = y · 10 + (1− y) · (−90) ⇐⇒ y = 0.9

Hence, the following is a NE: s1 = (0.8, 0.2), s2 = (0.9, 0.1).
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Eg 3: Pollution game (E.g. 4.3.2 in KP)
Three firms (P1, P2, P3) are sharing a lake. they can choose to pollute it (P) or clean
it (C). It costs 1 to clean, and 0 to pollute. If 1 or fewer pollute, the lake is still usable.
If 2 or more pollute, the lake is unusable, and everyone incurs an additional cost of -3.
The utilities can be written as follows:

If P3 chooses C:

P1
P2

C P

C (−1,−1,−1) (−1, 0,−1)
P ( 0,−1,−1) (−3,−3,−4)

If P3 chooses P:

P1
P2

C P

C (−1,−1, 0) (−4,−3,−3)
P (−3,−4,−3) (−3,−3,−3)

Let us first enumerate all possible supports for a NE:
1. All 3 players use a single action (pure strategy NE).
2. Two players use a single action and the other uses both actions.
3. One player uses a single action and the other two use both actions.
4. All 3 players use fully mixed strategies.
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Eg 3: Pollution game (cont’d)

1. Let us first consider all pure NE:
- All agents pollute (1 pure NE).
- One player pollutes while the other 2 clean (3 pure NE).

2. No NE where two players use a single action and the other uses both.

3. Next, let us consider NE where one player (say P3) uses a single action and the
other two use both actions:
- If P3 chooses to pollute, the only NE is when the other choose to clean (already
accounted for under pure NE).
- Suppose P3 chooses to clean. Suppose s1 = (x , 1− x), s2 = (y , 1− y), and
s3 = (1, 0) is a NE where x , y ∈ (0, 1).
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Eg 3: Pollution game (cont’d)
If P3 chooses C:

P1
P2

C P

C (−1,−1,−1) (−1, 0,−1)
P ( 0,−1,−1) (−3,−3,−4)

If P3 chooses P:

P1
P2

C P

C (−1,−1, 0) (−4,−3,−3)
P (−3,−4,−3) (−3,−3,−3)

Let us apply the indifference principle for P2:

Ea1∼s1 [u2(a1,C ,C )] = Ea1∼s1 [u2(a1,P,C )]

⇐⇒ x · (−1) + (1− x) · (−1) = x · 0 + (1− x) · (−3) ⇐⇒ x = 2/3.

By symmetry, we also get y = 2/3. Hence s1 = (2/3, 1/3), s2 = (2/3, 1/3), and
s3 = (1, 0) is a NE.

By repeating the same argument by assuming that P1 and P2 choose a single action,
we get 3 NE in total.
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Eg 3: Pollution game (cont’d)
If P3 chooses C:

P1
P2

C P

C (−1,−1,−1) (−1, 0,−1)
P ( 0,−1,−1) (−3,−3,−4)

If P3 chooses P:

P1
P2

C P

C (−1,−1, 0) (−4,−3,−3)
P (−3,−4,−3) (−3,−3,−3)

4. Finally, let us consider fully mixed strategies. - Suppose s1 = (x , 1− x),
s2 = (y , 1− y), and s3 = (z , 1− x) is a NE where x , y , z ∈ (0, 1).

Let us apply the indifference principle for P3:

Ea1,a2 [u3(a1, a2,C )] = Ea1,a2 [u3(a1, a2,P)]

⇐⇒ xy · (−1) + x(1− y) · (−1) + (1− x)y · (−1) + (1− x)(1− y) · (−4)
= xy · 0 + x(1− y) · (−3) + (1− x)y · (−3) + (1− x)(1− y) · (−3)
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Eg 3: Pollution game (cont’d)

Solving this, we get 3x + 3y = 1 + 6xy . Via a similar argument, we can also obtain,

3x + 3z = 1 + 6xz , 3y + 3z = 1 + 6yz .

After some algebra, we get two symmetric mixed NE:

x = y = z =
3−
√
3

6
, x = y = z =

3 +
√
3

6
.

In total, there are 1 + 3 + 3 + 2 = 9 NE.

Expl: You will see a similar example in the homework, where you will work

out all the details. This is based on Eg 4.3.2 in KP.
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Computational complexity of finding NE
▶ Based on the above examples, what can you say about computing NE in (large)

games?

▶ Clearly finding all NE is difficult.

▶ Even finding one NE is PPAD-complete (optional reading on the course webpage).

▶ Using the indifference principle to find a NE can be expensive even in practice.

▶ Next, we will study potential games, where a simple greedy algorithm often finds
a pure NE efficiently in practice.

▶ A few lectures down the line, we will introduce other equilibrium concepts, which
can be efficiently approximated via techniques from machine learning (online
learning).

▶ In the next chapter, we will introduce two player zero sum games, where NE can
be efficiently approximated via similar online learning techniques.
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Ch 1.3: Potential games and repeated play dynamics

Recall the following two games:

Driver vs Inspector

P1
P2

N In

L (0, 0) (0,−1)
I (10,−10) (−90,−6)

Prisoner’s dilemma

P1
P2

B L

B (−3,−3) (0,−5)
L (−5, 0) (−1,−1)

In the games above, what happens if we were to start at some arbitrary action profile,
and some player changes their action to the best response given the other’s action?
- In Prisoner’s dilemma, we converge to the NE (DSE).
- In Driver vs Inspector, we do not.

34/81



Repeated play dynamics
Repeated play dynamics is a greedy algorithm where players start with an arbitrary
action profile. Then, on each step, exactly one player changes their action so as to
strictly increase their utility. We continue in this fashion until no player can strictly
improve their utility.

Algorithm 1 Repeated play dynamics

1: Initialize a = (a1, . . . , an) ∈ A arbitrarily.
2: while there exists i ∈ [n] such that ai /∈ argmaxãi∈Ai

ui (ãi , a−i ) do
3: Set a′i ← any action ãi such that ui (ãi , a−i ) > ui (ai , a−i ).
4: Set a← (a′i , a−i ).
5: end while
6: return a

If we replace line 3 with a′i ← argmaxãi∈Ai
ui (ãi , a−i ), then the algorithm is called best

response dynamics.
Expl: What can you say about the terminal action profile? NE!
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Repeated play dynamics (cont’d)

▶ Observation 1: By design, if RPD/BRD terminates, it terminates at a pure NE.

▶ But RPD/BRD may not terminate (e.g., Driver vs inspector, Rock-paper-scissors).

▶ We are interested in studying when BRD/RPD terminates. Why?

▶ An intuitive algorithm which replicates real-world behavior of agents.

▶ Terminates at a pure NE.

▶ Often efficient in practice, even if worst-case complexity could be large.

▶ In this subchapter, we will study necessary and sufficient conditions for
termination of RPD.
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Potential games

Definition (Potential function, Potential game). Consider an n player game.
Suppose there exists a function ψ : A1 × · · · × An → R such that for all i ∈ [n] and
a−i ∈ A−i , we have that ψ(ai , a−i )− ui (ai , a−i ) does not depend on ai . Then, this
game is called a potential game and ψ is called the potential function of this game.

Remark. This condition can be equivalently written as follows: for all i ∈ [n],
ai , a

′
i ∈ Ai , and a−i ∈ A−i , we have

ψ(ai , a−i )− ui (ai , a−i ) = ψ(a′i , a−i )− ui (a
′
i , a−i ),

or equivalently,

ψ(ai , a−i )− ψ(a′i , a−i ) = ui (ai , a−i )− ui (a
′
i , a−i ).

Expl: this last version is most convenient to apply.
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Example: Congestion game (E.g. 4.4.1 in KP)

There are n players and a road network (graph) with edge set E . Player i wishes to
drive from point si to ti .

- Player i ’s action space Ai consists of all paths from si to ti .

- Let ai ∈ Ai be i ’s action and a = {ai}ni=1 be a given action profile.

- Let Ne(a) = |{i ∈ [n]; e ∈ a}| be the number of drivers using edge e.

- The latency to cross edge e when there are N drivers on the edge is ℓe(N), where
ℓe : N→ R+ is an edge-specific nondecreasing function.

- Driver i ’s total latency (i.e., cost or negative utility) under an action profile a is,

ci (a)
∆
= −ui (a) =

∑
e∈ai

ℓe(Ne(a)).
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Example: Congestion game (cont’d)

Claim. This is a potential game with potential function

ψ(a) = −
∑
e∈E

Ne(a)∑
k=1

ℓe(k).

Proof. Suppose player i switches from ai to a′i . Then,

ui (ai , a−i )− ui (a
′
i , a−i ) = ci (a

′
i , a−i )− ci (ai , a−i )

=
∑

e∈a′i\ai

ℓe(Ne(a) + 1)−
∑

e∈ai\a′i

ℓe(Ne(a))

Expl: −ui (ai , a−i ) is i ’s latency under a. When moving from ai to ai , the

latency in common edges do not change, latency for edges in a′i \ ai have one

more edge, and we subtract the latency in edges in ai \ a′i as i no longer uses

it.
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Example: Congestion game (cont’d)

Claim. This is a potential game with potential function ψ(a) = −
∑

e∈E

∑Ne(a)
k=1 ℓe(k).

Now, let us consider ψ(ai , a−i )− ψ(a′i , a−i ). We have,

ψ(ai , a−i )− ψ(a′i , a−i ) =
∑
e∈E

Ne(a′i ,a−i )∑
k=1

ℓe(k)−
∑
e∈E

Ne(a)∑
k=1

ℓe(k)

=
∑

e∈a′i\ai

Ne(a)+1∑
k=1

ℓe(k)−
Ne(a)∑
k=1

ℓe(k)

+
∑

e∈ai\a′i

Ne(a)−1∑
k=1

ℓe(k)−
Ne(a)∑
k=1

ℓe(k)


=

∑
e∈a′i\ai

ℓe(Ne(a) + 1) −
∑

e∈ai\a′i

ℓe(Ne(a))

= ui (ai , a−i )− ui (a
′
i , a−i )

Hence, this is a potential game.
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RPD in potential games
Algorithm 2 Repeated play dynamics

1: Initialize a = (a1, . . . , an) ∈ A arbitrarily.
2: while there exists i ∈ [n] such that ai /∈ argmaxãi∈Ai

ui (ãi , a−i ) do
3: Set a′i ← any action ãi such that ui (ãi , a−i ) > ui (ai , a−i ).
4: Set a← (a′i , a−i ).
5: end while
6: return a

Theorem (RPD in potential games). Repeated play dynamics terminates in a finite
potential game.

Corollary. Every finite potential game has at least one pure NE.

Proof. Follows from the above theorem and observation 1 (if RPD terminates, it
terminates in a pure NE.)
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RPD in potential games
Proof of RPD theorem. In RPD, the utility of a player switching their action from ai
to a′i strictly increases. Since

ψ(a′i , a−i )− ψ(ai , a−i ) = ui (a
′
i , a−i )− ui (ai , a−i ),

the value of the potential function also increases.

As the game is finite, ψ can take on only finitely many values. Hence, RPD
terminates.

Expl: The maximizer of the potential function is a NE. Why?

Convention. If we consider agent costs (disutilities) instead of utilities, we will
typically write ci (a) = −ui (a) and ϕ(a) = −ψ(a). In this case, BRD can be interpreted
as an algorithm which “minimizes the potential” to reach an equilibrium.

Depending on whether we use ψ, ui or ϕ, ci , we will say RPD increases or decreases the
potential function.

42/81



Properties of potential functions
The following lemma is often useful in finding the potential function of a game.

Theorem (Separability of potential function). Consider any n-player normal form
game. Let Ai be the action space of player i , let A =×n

j=1Aj be the space of action
profiles, and let A−i =×j ̸=i Aj the space of action profiles of all except i . Then, the
following two statements are true:

1. Let ψ : A → R be a function defined on the action profile of n players. Suppose
that, for all i ∈ [n], there exists ψ−i : A−i → R such that ψ(a) = ψ−i (a−i ) + ui (a) for
all a ∈ A. Then ψ is a potential function for this game.

2. Suppose this game has a potential function ψ : A → R defined on the action profile
of n players. Then, for all i ∈ [n], there exist functions ψ−i : A−i → R such that
ψ(a) = ψ−i (a−i ) + ui (a) for all a ∈ A.
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Properties of potential functions (cont’d)

Proof. First, the given property implies that ψ(ai , a−i )− ui (ai , a−i ) does not depend
on ai , which is precisely the definition of a potential function.

We can write this out more explicitly as follows:

ψ(ai , a−i )− ψ(a′i , a−i ) = ψ−i (a−i ) + ui (ai , a−i )−
(
ψ−i (a−i ) + ui (a

′
i , a−i )

)
= ui (ai , a−i )− ui (a

′
i , a−i ).

Expl: Connect to: ψ(ai , a−i )− ui (ai , a−i ) does not depend on ai .

Next, using the definition of a potential function, we have that ψ(ai , a−i )− ui (ai , a−i )
does not depend on ai for all a−i . Hence, we can view this quantity as a function of
a−i and write, ψ(a)− ui (a) =: ψ−i (a−i ). This proves the second statement.
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Properties of potential functions (cont’d)
Recall: In potential games, we can write ψ(a) = ψ−i (a−i ) + ui (a) .

Another perspective of best response dynamics:

- In BRD, each player chooses a′i ← argmaxãi∈Ai
ui (ãi , a−i ) (or equivalently

a′i ← argminãi∈Ai
ci (ãi , a−i )).

- But, ψ(ãi , a−i ) = ψ(a−i ) + ui (ãi , a−i ). Hence, in effect the player is choosing

a′i = argmax
ãi∈Ai

ψ(ãi , a−i ),

(
or a′i = argmin

ãi∈Ai

ϕ(ãi , a−i ).

)

- Hence, we can think of BRD as coordinate ascent (descent)1 on the potential
function. This perspective is useful when applying BRD beyond finite games.

1Coordinate descent is an iterative method for multivariate optimization that minimizes an objective
function by repeatedly optimizing one variable (or coordinate) at a time while holding all others fixed.
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Properties of potential functions (cont’d)

Theorem (Uniqueness of potential function). The potential function is unique up
to an additive constant. That is, if ψ and ψ̃ are potential functions of this game, then
there exists some constant C such that, for all action profiles a, we have
ψ(a) = ψ̃(a) + C .

Proof.You will prove this in the homework.
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Example 1: Congestion game revisited
Recall: In potential games, we can write ϕ(a) = ϕ−i (a−i ) + ci (a) .

Recall that in congestion game, player i has latency ci and that this is a potential
game with potential function ϕ, where

ci (a) = −ui (a) =
∑
e∈ai

ℓe(Ne(a)). ϕ(a) = −ψ(a) =
∑
e∈E

Ne(a)∑
k=1

ℓe(k).

We can write the potential function as,

ϕ(a) =
∑
e∈E

Ne(a−i )∑
k=1

ℓe(k)︸ ︷︷ ︸
=ϕ−i (a−i )

+
∑
e∈E

1(e ∈ ai )ℓe(Ne(a))︸ ︷︷ ︸
=ci (a)

Expl: Here, = ϕ−i (a−i ) does not depend on ai .
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Example 2: Consensus game

Consider n players in an undirected graph G = (V ,E ) where each player is a vertex.

▶ Let N(i) = {j ∈ V ; (i , j) ∈ E} denote the neighborhood of player i .

▶ Each player chooses an action ai ∈ {0, 1}.

▶ The cost of player i is the number of disagreements among her neighbors, i.e.,

ci (a) =
∑

j∈N(i)

|ai − aj |.

Expl: Think of ai as their political party, or opinion on an issue.

Question: Can you guess a potential function for this game?
Hint: Use the lemma we just proved, i.e., ϕ(a) = ϕ−i (a−i ) + ci (a).

Expl: Pause to answer here. Don’t look at next slide.
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Example 2: Consensus game (cont’d)
One idea is to use the total number of disagreements, as we can write it as

ϕ(a) = # disgreements without i︸ ︷︷ ︸
=ϕ−i (a−i )

+ # disgreements with i︸ ︷︷ ︸
=ci (ai )

Formally, we can try ϕ(a) =
∑

(i ,j)∈E |ai − aj |. As it can be written as,

ϕ(a) =
∑

(j ,k)∈E ,j ,k ̸=i

|aj − ak |︸ ︷︷ ︸
=ϕ−i (a−i )

+
∑

j∈N(i)

|ai − aj |︸ ︷︷ ︸
=ci (ai )

.

You can also verify that ϕ is a potential function directly using the definition (try at
home).

Expl: We will look at more potential games when we study PoA, but let us

first study necessary conditions for convergence of RPD.
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Generalized potential function
We saw that the existence of a potential function is sufficient for RPD to converge in a
finite game. Next, we will show that a (slight) generalization of this concept provides a
necessary and sufficient condition for convergence of RPD.

Definition (Generalized potential function, Ordinal potential function).Consider
a finite n-player game with utilities ui : A → R. Say that there exists a function
ψ : A → R such that for all i ∈ [n], ai , a

′
i ∈ Ai , and a−i ∈ A−i we have,

sign(ψ(ai , a−i )− ψ(a′i , a−i )) = sign(ui (ai , a−i )− ψ(a′i , a−i )).

Expl: Here, sign(x) = 1 if x > 0, sign(x) = −1 if x < 0, and sign(x) = 0 if

x = 0
.
Intuition. If i increases her utility in RPD, it also increases the potential function, so
local improvements can lead to a NE.

Expl: Clearly every PF is also a GPF, as we have equality without sign, i.e.,

ψ(ai , a−i )− ψ(a′i , a−i ) = ui (ai , a−i )− ui (a
′
i , a−i ).
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Example: Load balancing game
The following is an example of a game which has a generalized potential function, but
not a potential function.

There are n players sharing m computers. Player i has a job of size wi > 0 and must
choose which of the m machines to run it on. Hence ai = [m] for all i . The load on
machine k under an action profile a is ℓk(a) =

∑
i 1(ai = k)wi . The cost of player i is

the load of the machine she is running her job on, i.e., ci (a) = ℓai (a).

We will show that ϕ(a) = 1
2

∑m
k=1 ℓ

2
k(a) is a generalized potential function. Supose

ai = k and a′i = k ′. Let

x
∆
= ℓk(a−i ) =

∑
j ̸=i

1(aj = k)wj , x ′
∆
= ℓk ′(a−i ) =

∑
j ̸=i

1(aj = k ′)wj ,

denote the loads on k , k ′ without i . Then, we can write

ci (ai , a−i )− ci (a
′
i , a−i ) = ℓk(ai , a−i )− ℓk ′(a′i , a−i ) = (x + wi )− (x ′ + wi ) = x − x ′.
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Example: Load balancing game (cont’d)

Let us now consider, ϕ(ai , a−i )− ϕ(a′i , a−i ). We have,

ϕ(ai , a−i )− ϕ(a′i , a−i ) =
1

2

∑
j

ℓ2j (ai , a−i )−
1

2

∑
j

ℓ2j (a
′
i , a−i )

=
1

2

(
ℓ2k(ai , a−i ) + ℓ2k ′(ai , a−i )− ℓ2k(a′i , a−i )− ℓ2k ′(a′i , a−i )

)
=

1

2

(
(x + wi )

2 + x ′2 − x2 − (x ′ + wi )
2
)

= wi (x − x ′)

Hence, ϕ is a generalized potential function.
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Necessary and sufficient conditions for convergence of RPD

Theorem (Remark 4.4.8 in KP without proof). RPD converges in a finite game iff
the game has a generalized potential function.

Proof.The if condition is straightforward and identical to the proof for potential
function.

To prove the only if direction, let us construct a graph G = (V ,E ) as follows:

- Let the vertices be each action profile, V = A1 × · · · × An.

- For each pair of vertices a = (a1, . . . , ai , . . . , an) and a′ = (a1, . . . , a
′
i , . . . , an)

differing in only one agent’s action, let us add an edge from a to a′ if ui (a
′) > ui (a)

and an edge from a′ to a if ui (a) > ui (a
′). In particular, no edge if ui (a) = ui (a

′).

In the above construction, an edge exists from a to a′ only if a′ can be reached from a
via one iteration of RPD.

Expl: RPD converges iff no cycles. Pure NE exists iff a sink vertex exists.
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Necessary and sufficient conditions for convergence of RPD

RPD can be viewed as traversing this graph until you reach a sink vertex. Hence, RPD
converges from any initial action profile iff there are no cycles in this graph.

To construct a generalized potential function, we need to show that there exists a
function ψ which satisfies sign(ψ(ai , a−i )− ψ(a′i , a−i )) = sign(ui (ai , a−i )− ψ(a′i , a−i ))
for all ai , a

′
i , a−i . It is sufficient to show that for any (a′i , ai ) which is a child of

(ai , a−i ), we have ψ(ai , a−i ) < ψ(a′i , a−i ).

Let us construct a function ψ in this DAG as follows: Let ϕ(a) = −ψ(a) be the length
of the longest path from a to any sink vertex.

Here, for any a, a′ such that a′ is a child of a, we have ϕ(a) ≥ ϕ(a′) + 1 > ϕ(a).
Hence, ψ(a) < ψ(a′).

Question: : Why did we define it to be the longest path?
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Ch 1.4: Price of Anarchy/Stability

The price of anarchy (PoA) measures the degradation in efficiency due to selfish
behavior, comparing the best achievable welfare (or cost) relative to the worst NE.

The price of stability (PoS) similarly compares the best achievable welfare (or cost)
relative to the best NE.
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Example 1: Stag hunt
Define the welfare under an action profile a and strategy profile s as follows:

W (a) =
n∑

i=1

ui (a) = u1(a) + u2(a), W (s) = Ea∼s [W (a)] .

Recall the stag hunt game.

P1
P2

S H

S (4, 4) (0, 2)
H (2, 0) (1, 1)

Recall that this game has two pure NE,
(S , S) and (H,H), and one mixed NE
s = ((1/3, 2/3), (1/3, 2/3)).

We have, W (S ,S) = 8, W (H,H) = 2, and W (s) = 8
3 . Therefore,

PoA =
maximum welfare

welfare at worst NE
=

maxs∈S W (s)

mins;s is a NEW (s)
=

8

2
= 4.

PoS =
maximum welfare

welfare at best NE
=

maxs∈S W (s)

maxs;s is a NEW (s)
=

8

8
= 1.

Expl: W (s) = 1
3 ·

1
3 × 8 + 1

3 ·
2
3 × 2 + 2

3 ·
1
3 × 2 + 2

3 ·
2
3 × 2 = 8/3.
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Example 2: Prisoner’s Dilemma
Define the total cost under an action profile a and strategy profile s as follows:

C (a) =
n∑

i=1

ci (a) = c1(a) + c2(a), C (s) = Ea∼s [C (a)] .

Recall the prisoner’s dilemma with costs:

P1
P2

B L

B (3, 3) (0, 5)
L (5, 0) (1, 1)

This game has just one NE
(B,B).

We have, C (B,B) = 6, and C (L, L) = 2. Therefore,

PoA =
cost at worst NE

minimum cost
=

maxs;s is a NE C (s)

mins∈S C (s)
=

6

2
= 3.

PoS =
cost at best NE

minimum cost
=

mins;s is a NE C (s)

mins∈S C (s)
=

6

2
= 3.

Expl: Should know compute PoA/PoS for complex games. Will study some

canonical games.
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Example 3: Market sharing game (Sec 8.3 in KP)
There are n sports teams and K cities, with K ≥ n. The population of city k ∈ [K ] is
vk . We will assume, w.l.o.g, that v1 ≥ v2 ≥ · · · ≥ vK .

- Each team should choose a city, i.e., the action space is Ai = [K ] for each i ∈ [n].

- Let Nk(a) = {i ∈ [n]; ai = k} be the number of teams in city k under an action
profile a.

- If N ′ teams select city k, the utility for each is vk/N
′. Hence, ui (a) = vai/Nai (a).

- Let J(a) = {k ∈ [K ];∃i ∈ [n] s.t ai = k} be the set of cities selected under an action
profile a.

- For any J ′ ⊂ [K ], let V (J) =
∑

j∈J′ vj be the total population of the cities in J.

- The welfare under an action profile a is

W (a) =
n∑

i=1

ui (a) =
∑

j∈J(a)

vj(a) = V (J(a)).

- The optimal welfare is WOPT = V (JOPT), where JOPT = {1, 2, . . . , n}. 58/81



Example 3: Market sharing game (cont’d)
The market sharing game is a potential game (you will prove this in HW2). Therefore,
it has at least one pure Nash equilibrium (PNE).

Claim. For the market sharing game,

PoAPNE =
WOPT

mina;a is a pure NEW (J(a))
≤ 2.

Proof. Let a, a′ be two action profiles in the market sharing game and let the cities
selected by J(a), J(a′) respectively. If a′i ∈ J(a′i , a−i ) \ J(ai , a−i ), i.e., if a new city was
added by i switching to a′i , we have ui (a

′
i , a−i ) = va′i . Otherwise

ui (a
′
i , a−i ) =

va′
i

Na′
i
(a′i ,a−i )

≥ 0. Therefore,
m∑
i=1

ui (a
′
i , a−i ) ≥ V (J(a′) \ J(a)) = V (J(a′))− V (J(a′) ∩ J(a)) ≥ V (J(a′))− V (J(a)).

The first inequality follows from the observation that we are adding every city in
J(a′) \ J(a) at least once. 59/81



Example 3: Market sharing game (cont’d)

Let a⋆ be any pure NE and let aOPT be an optimal action profile in which
J(aOPT) = {1, . . . , n}. Then,

V (J(a⋆)) =
n∑

i=1

ui (a
⋆)

(a)

≥
n∑

i=1

ui (a
OPT
i , a⋆−i )

(b)

≥ V (J(aOPT))− V (J(a⋆)).

Here, (a) uses the fact that a⋆ is a NE, while (b) uses the previously derived result.
Therefore, W (aOPT) = V (J(aOPT)) ≤ 2V (J(a⋆)) = 2W (a⋆).

Remark. This can be improved to 2− 1/n (in HW3).
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Example 4: Fair network formation games (§8.2 in KP)
A set of n players wish to construct a road network across cities. We are given a
weighted directed graph G = (V ,E , b), where V represents the cities, E represents
links that can be constructed between cities, and b = {b}e∈E represents the costs,
with be being the cost to construct link e. Each player i wishes to construct a path
between city si ∈ V and city ti ∈ V . If N players decide to construct a link along e,
they share the cost be . Player i ’s action space Ai is all paths from si to ti .

- Let Ne(a) = |{i ∈ [n]; e ∈ ai}| denote the number of players who have chosen a path
which includes edge i under action profile a.

- The cost of player i is
ci (a) =

∑
e∈ai

be
Ne(a)

.

- Letting E (a) denote the edges constructed under a, the total cost is,

C (a) =
n∑

i=1

ci (a) =
∑

e∈E(a)

be .
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Example 4: Fair network formation games (cont’d)

This is a potential game with potential function, (Try at home)

ϕ(a) =
∑
e∈E

Ne(a)∑
j=1

be
j
.

Therefore, it has at least one pure Nash equilibrium (PNE).

Let us define the price of anarchy and stability as follows:

PoAPNE =
maxa;a is a pure NE C (a)

mina C (a)
PoSPNE =

mina;a is a pure NE C (a)

mina C (a)

Question: How large can the price on anarchy be on a given graph?
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Example 4: Fair network formation games (cont’d)
Consider the following graph, where all agents have the same source si and sink ti , and
ε > 0. What is the PoA and PoS on this graph?

PoAPNE =
n

1 + ε
PoSPNE = 1

Expl: If everyone is at e2, no one will switch to e1.

Question: In this example, the PoA is large, but the PoS is small. Is it possible to
bound the price of stability for an arbitrary network?
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Example 4: Fair network formation games (cont’d)
Claim. For any fair network formation game with n players, PoS ≤ Hn.

Proof. First note that∑
e∈E(a)

be︸ ︷︷ ︸
=C(a)

(a)

≤
∑

e∈E(a)

be

Ne(a)∑
j=1

1

j︸ ︷︷ ︸
=ϕ(a)

=
∑

e∈E(a)

beHNe(a)

(b)

≤ Hn

∑
e∈E(a)

be︸ ︷︷ ︸
=C(a)

Let aOPT = argmina C (a) be the cost-optimal action profile. Suppose we execute RPD
starting at aOPT. We will terminate at a NE a⋆ where ϕ(a⋆) ≤ ϕ(aOPT). Therefore,

C (a⋆) ≤ ϕ(a⋆) ≤ ϕ(aOPT) ≤ HnC (aOPT).

Above, the first inequality is by (a) and the last is by (b). Therefore, there exists a
pure NE a⋆ (specifically, the one obtained by running RPD starting from aOPT) such

that c(a⋆)
c(aOPT)

≤ Hn.
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Example 4: Fair network formation games (cont’d)
This bound is tight, in that, ∀ε > 0, there exists a network with PoS = Hn

1+ε .

Consider the following network:

- C (aOPT) = 1 + ε, where all agents
choose si → v → t.

- Here, each agent incurs cost 1+ε
n .

- But from this action profile, player n
can benefit by switching to the edge
sn → t.

- Then, player n − 1 can benefit by
switching to sn−1 → t.

...

Here, PoS = Hn
1+ε . 65/81



(Non-atomic) Selfish Routing
Consider the following road network, where a large number of drivers wish to go from
A to B. They can choose to go via A→ C → B or A→ D → B. Each driver will
choose a path to minimize their own latency.

- The latency on a link if a fraction x of the drivers are on that link is,
ℓAC (x) = ℓDB(x) = x , ℓAD(x) = ℓCB(x) = 1.

- At equilibrium, half of the drivers will choose A→ C → B and the other half will
choose A→ D → B.

- The average latency at equilibrium is 3/2.

- This is also the optimal flow as it minimizes the average latency.
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(Non-atomic) Selfish Routing (cont’d)

Braess’s paradox. Suppose we add a zero latency path from C → D.

The optimal flow does not change, but this is not an equilibrium anymore!

At equilibrium, all drivers will choose A→ C → D → B.
The average latency at this equilibrium is 2.

PoA =
latency at worst equilibrium

minimum average latency
=

4

3
.

Expl: Real-world eg: NYC, 1990. Closing 42nd street improved traffic.
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(Non-atomic) Selfish Routing (cont’d)

Theorem ((Theorem 8.18 in KP)). In any (non-atomic) selfish routing network
with affine latency functions, i.e., ℓe(x) = aex + be , we have PoA ≤ 4/3.
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Ch 1.5: Correlated and Coarse-correlated equilibria
Expl: Why study beyond NE? Consider the following example.

Example: Coordination game (a.k.a battle of the sexes). Two friends should
choose between attending a Ballet (B) or a Lecture (L). Both players wish to spend
time with each other, but disagree on which event they prefer.

P1
P2

B L

B (10, 7) (0, 0)
L (0, 0) (7, 10)

This game has 3 NE:

1) (B,B), u1 = 10, u2 = 7.

2) (L, L), u1 = 7, u2 = 10.

3) ((10/17, 7/17), (7/17, 10/17)),
u1 = 70/17, u2 = 70/17.

But these three NE are “unsatisfying”:

- The two pure NE are welfare-optimal (u1 + u2 = 17), but not fair (one user has lower
utility).

- The mixed NE is fairer, but has lower welfare u1 + u2 < 17.
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Coordination game (cont’d)

Can we consider other solutions concepts, besides NE?

P1
P2

B L

B (10, 7) (0, 0)
L (0, 0) (7, 10)

Consider the following suggestion:

- P1 and P2 flip a coin. If ’Heads’, they both go to the ballet, and if ’Tails’, they both
go to the lecture.

- The expected welfare under this scheme is 17, ane expected utility for each player is
8.5.

- This is an example of a “correlated equilibrium”.
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Correlated equilibrium

Recall the following definitions: There are n players in a normal form game. The action space
of player i is Ai . A player’s (mixed) strategy is an element of ∆(Ai ).

Let A =×n

i=1
Ai . We can write the utility of player i as ui (a) = ui (ai , a−i ).

Before we define CEs, let us first recall the definition of a NE.

Definition (Nash equilibrium). A set of n distributions (mixed strategies) s1, . . . , sn,
where si ∈ ∆(Ai ) for all i ∈ [n] is a Nash equilibrium if, for all i ∈ [n], and any
a′i ∈ Ai , we have Ea∼s [ui (a)] ≥ Ea∼s

[
ui (a

′
i , a−i )

]
.

Here, s = s1 × · · · × sn is the product distribution.

Expl: 1) We wrote LHS is ui (s). 2)Slightly different to previous statement,

where we allowed for mixed strategy deviations in the RHS, but you can check

both are equivalent (may have proved something similar for DSE in HWs).
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Correlated equilibrium
Recall the following definitions: There are n players in a normal form game. The action space

of player i is Ai . Let A =×n

i=1
Ai . We can write the utility of player i as ui (a) = ui (ai , a−i ).

Definition (Correlated equilibrium). A joint distribution s ∈ ∆(A) is a correlated
equilibirum if, for all i ∈ [n], and any ai , a

′
i ∈ Ai , we have

Ea∼s

[
ui (a)

∣∣ai] ≥ Ea∼s

[
ui (a

′
i , a−i )

∣∣ai] .
Interpretation of a correlated equilibrium.
- The distrbution s is known ahead of time to the players.

- A trusted third party draws a ∼ s and reveals ai and only ai to player i . Importantly,
she does not reveal other’s actions to i .

- Player i can follow ai or choose any other action a′i (or any mixed strategy s ′i ).

- If s is a CE, then following ai maximizes player i ’s utility, provided that others are
following a−i .

Expl: s need not be a product distro. If so, it is a NE. Hence, any NE is a CE. 72/81



Example 1: Coordination game

Recall the coordination game (left). Suppose the friends agree to flip a fair coin. If it
is ’Heads’, they both go to the ballet, and if ’Tails’, they both go to the lecture. This
results in the following joint distribution s (right).

Utilities

P1
P2

B L

B (10, 7) (0, 0)
L (0, 0) (7, 10)

Joint distribution s

P1
P2

B L

B 0.5 0
L 0 0.5

Which of the following statements are true?

1. s is NE.

2. s is CE.
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Example 1: Coordination game (cont’d)

1. s is not a NE.

2. s is a CE.

- Suppose we reveal B to P1. P1 knows that (B,B) was chosen and by following B,
her utility is 10, whereas if she switches to L, her utility is 0 (given that P2 is following
B).

- Suppose we reveal L to P1. P1 knows that (L, L) was chosen, and by following L, her
utility is 7, whereas if she switches to B, her utility is 0.
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Example 2: Traffic lights

Two drivers, P1 and P2 arrive at an intersection. They should decide whether to go
(G), or stop (S) and let the other pass. Consider the following joint distribution s.
Show that s is a correlated equilibrium. (Try at home)

Utilities

P1
P2

S G

S (−1,−1) (−1,+1)
G (+1,−1) (−5,−5)

Joint distribution s

P1
P2

S G

S 0 0.5
G 0.5 0

Expl: This is a traffic light. TLs are canonical examples of CE.
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Example 2: Traffic lights (cont’d)
Consider instead the following joint distribution, which may represent a faulty traffic
light. We will show that this is also a CE.

Utilities

P1
P2

S G

S (−1,−1) (−1,+1)
G (+1,−1) (−5,−5)

Joint distribution s

P1
P2

S G

S 0.2 0.4
G 0.4 0

- Suppose P1 was told G . Then, P1 knows P2 will stop, so P1 will go.

- Suppose P1 was told S . The expected utilities of choosing G and S are:

Ea∼s

[
u1(G , a2)

∣∣S] = 0.2

0.2 + 0.4
× 1 +

0.4

0.2 + 0.4
× (−5) = −3.

Ea∼s

[
u1(S , a2)

∣∣S] = −1.
Therefore, s is a CE.
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Coarse correlated equilibrium
Recall the following definitions: There are n players in a normal form game. The action space

of player i is Ai . Let A =×n

i=1
Ai . We can write the utility of player i as ui (a) = ui (ai , a−i ).

Definition (Coarse correlated equilibrium). A joint distribution s ∈ ∆(A) is a
coarse correlated equilibirum if, for all i ∈ [n], and any a′i ∈ Ai , we have

Ea∼s [ui (a)] ≥ Ea∼s

[
ui (a

′
i , a−i )

]
.

Interpretation of a coarse correlated equilibrium.
- The distrbution s is known ahead of time to the players.

- Each player i can choose their own alternative action a′i (or a mixed strategy s ′i ), or
agree to a contract where a trusted third party will draw a ∼ s and play ai on behalf of
player i .

- Unlike a correlated equilibrium, the player cannot change her action after her action
is revealed to her.
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Quiz: Draw a Venn diagram illustrating DSE, NE, CE, and CCE

Expl: Try at home: show that every CE is also a CCE.
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Example 3

Consider the following game.

Utilities

P1
P2

A B C

A (0, 0) (0, 0) (0, 0)
B (0, 0) (−100,−100) (10,−1)
C (0, 0) (−1, 10) (−1,−1)

Joint distribution s

P1
P2

A B C

A 0 0 0
B 0 0 0.5
C 0 0.5 0

Which of the following statements are true?

1. s is NE.

2. s is CE.

3. s is CCE.
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Example 3 (cont’d)

1. s is not a NE.

2. s is not a CE. Suppose P1 was told C . Then, it is better to deviate to A, as her
utility improves from −10 to 0.

3. s is a CCE. Suppose P2 has agreed to the contract. P1’s expected utility under s
is 0.5× 10 + 0.5× (−1) = 4.5. Let us compute P1’s expected utility for independently
choosing any action:

Ea∼s [u1(A, a2)] = 0

Ea∼s [u1(B, a2)] = 0.5× (−100) + 0.5× 10 = −45.
Ea∼s [u1(C , a2)] = −10

As all three are lower than 4.5, this is a CCE.
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Why are we interested in CE and CCE?

▶ Often, a social planner can provide a signal to induce socially desirable outcomes
(e.g., traffic lights).

▶ CE or CCE may exist, when NE may not.

▶ Easier to compute than NE via linear programming (chapter 3) or online
(machine) learning (chapter 5).

▶ No-regret learning converges to CE/CCE (also in chapter 5). Hence, CE/CCE
better explain long-run behavior of adaptive agents, than NE.
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