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Ch 2.1: Basic definitions
Example 1. Consider the following example. How is this game different to games we
have seen previously?

P1
P2

C D

A (0, 0) (2,−2)
B (5,−5) (1,−1)

Let us first compute Nash equilibria in this game. There are no pure NE. So let us
assume that s1 = (x , 1− x) and s2 = (y , 1− y), where x , y ∈ (0, 1) is a NE.

Applying the indifference principle for P2, i.e., u2(x ,C ) = u2(x ,D), we get
x · 0 + (1− x) · (−5) = x · (−2) + (1− x) · (−1). Hence, x = 2/3.

Applying the indifference principle for P1,i.e., u1(A, y) = u1(B, y), we get
y · 0 + (1− y) · 2 = y · 5 + (1− y) · 1. Hence, y = 1/6.

Hence, s1 = (2/3, 1/3) and s2 = (1/6, 5/6), is a NE.
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Example 1 (cont’d)

P1
P2

C D

A (0, 0) (2,−2)
B (5,−5) (1,−1)

Recall, safe strategies. Let gi (si ) denote

the lowest possible utility agent i could achieve

over the strategies of the others, i.e., gi (si ) =

mins−i∈S−i ui (si , s−i ). A strategy s̃i is a safe strategy

for agent i if gi (s̃i ) ≥ gi (si ) for all si ∈ Si .

Let us now compute the safe strategy for P1. Under a strategy profile s1 = (x , 1− x)
and s2 = (y , 1− y), we have,

u1(s1, s2) = xy · 0 + x(1− y) · 2 + (1− x)y · 5 + (1− x)(1− y) · 1
= 1 + x + 4y − 6xy

Therefore,

g(s1) = min
s2

u1(s1, s2) = min
y

x + 1 + 6y

(
2

3
− x

)
=

{
x + 1 if 2

3 − x ≥ 0,

5− 5x if 2
3 − x < 0.
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Example 1 (cont’d)

Hence,

argmax
x

min
y

u1(s1, s2) =
2

3
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Example 1 (cont’d)

P1
P2

C D

A (0, 0) (2,−2)
B (5,−5) (1,−1)

Let us now compute the safe strategy for P2. As u1 = −u2, under a strategy profile
s1 = (x , 1− x) and s2 = (y , 1− y), we have, u2(s1, s2) = −1− x − 4y + 6xy .
Therefore,

min
s1

u1(s1, s2) = min
x

−1− 4y − x (6y − 1)) =

{
−1− 4y if 6y − 1 ≥ 0,

−2 + 2y if 6y − 1 < 0.

Hence,

argmax
y

min
x

u2(s1, s2) =
1

6
.
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Two-player zero sum games

Definition (Two-player zero sum game). A two-player zero sum game is a normal
form game with two players and where the sum of utilities is equal for all action
profiles, i.e.,

u1(a1, a2) + u2(a1, a2) = u1(a
′
1, a

′
2) + u2(a

′
1, a

′
2) for all a1, a

′
1 ∈ A1, a2, a

′
2 ∈ A2.

Without loss of generality, we will assume that the sum is 0.

Following convention, we will assume A1 = [m] = {1, . . . ,m} and
A2 = [n] = {1, . . . , n}. Then, the utilities can be represented by a payoff matrix
Q ∈ Rm×n where, u1(i , j) = −u2(i , j) = Qi ,j .

We will also denote the mixed strategies of player 1 and player 2 by x and y
respectively (instead of s1, s2), where

x ∈ ∆m
∆
= ∆([m]) =

{
z ∈ Rm; z ≥ 0; z⊤1m = 1

}
,

y ∈ ∆n
∆
= ∆([n]) =

{
z ∈ Rn; z ≥ 0; z⊤1n = 1

}
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Two-player zero sum games: Nash strategies

We can therefore write the utilities as,

u1(x , y) = Ei∼x ,j∼y [u1(i , j)] =
∑
i ,j

xiyjQi ,j = x⊤Qy .

Similarly, u2(x , y) = −x⊤Qy .

Recall, Nash equilibrium. A strategy profile s⋆ = (s⋆1 , . . . , s
⋆
n ) is a Nash equilibrium if s⋆i is a

best response to s⋆−i for each agent i , i.e., ui (s
⋆
i , s

⋆
−i ) ≥ ui (s

′
i , s

⋆
−i ) for all s ′i ∈ Si , i ∈ [n].

Nash equilibrium in a zero sum game. If x⋆, y⋆ is a Nash equilibrium, it satisfies

for all x ∈ ∆m, y ∈ ∆n, x⊤Qy⋆ ≤ x⋆⊤Qy⋆ ≤ x⋆⊤Qy

Expl: first ineq: as x⋆ is a BR to y⋆.

second ineq: as y⋆ is a BR to x⋆.

7/24



Two-player zero sum games: Safe strategies
Recall, safe strategies. Let gi (si ) denote the lowest possible utility agent i could achieve over
the strategies of the others, i.e., gi (si ) = mins−i∈S−i ui (si , s−i ). A strategy s̃i is a safe strategy
for agent i if gi (s̃i ) ≥ gi (si ) for all si ∈ Si .

Recall, utilities in a zero-sum game. Under a strategy profile x ∈ ∆m, y ∈ ∆n, we have

u1(x , y) =
∑

i,j xiyjQi,j = x⊤Qy , and u2(x , y) = −x⊤Qy .

Safe strategies. The safe strategies x̃ , ỹ satisfy,

x̃ = argmax
x∈∆m

min
y∈∆n

x⊤Qy ,

ỹ = argmax
y∈∆n

min
x∈∆m

−x⊤Qy = argmin
y∈∆n

max
x∈∆m

x⊤Qy .

Shortly, we will see that safe strategies and Nash strategies coincide in two-player zero
sum games.
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Ch 2.2: The minimax theorem

Motivation. Consider a two-player zero sum game with payoff matrix Q. Suppose P1
had to announce their strategy first, and commit to it. Which strategy would they
choose?

We know, if P1 announces x, P2 will choose

y(x) = argmax
y∈∆n

u2(x , y)︸ ︷︷ ︸
=−x⊤Qy

= argmin
y∈∆n

x⊤Qy .

Hence, if P1 had to announce their strategy first, they will choose:

x = argmax
x∈∆n

x⊤Qy(x) = argmax
x∈∆m

min
y∈∆n

x⊤Qy = P1’s safe strategy x̃

Expl: 2nd eq uses previous display.

A similar argument shows that if P2 had to choose their strategy first, they will choose
their safety strategy ỹ = argminy∈∆n

argmaxx∈∆m
x⊤Qy .
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The minimax theorem: motivation (cont’d)

Question: If you are P1, would you prefer to announce first, or would you prefer that
P2 announce first?

Ans: It is quite clear that announcing your strategy first does not help. Recall, in
HW0, you showed

max
x∈∆m

min
y∈∆n

x⊤Qy ≤ min
x∈∆m

max
y∈∆n

x⊤Qy

Hence, it appears that we should announce second.

Surprisingly, it turns out that announcing firstor second does not matter!
The celebrated minimax theorem tells us that we can replace the above inequality with
an equality.
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The minimax theorem

Theorem (Von Neumann’s minimax theorem). In any two player zero sum game,
there exists V ∈ R such that,

V
∆
= max

x∈∆m

min
y∈∆n

x⊤Qy = min
x∈∆m

max
y∈∆n

x⊤Qy

We call V the value of the game.

Proof. The classical proof is based on strong duality (see Theorem 2.3.1 in KP). In
Chapter 5, we will do a more modern (and simpler) proof using online learning.
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The minimax theorem (cont’d)

Corollary. If x̃ , ỹ are safe strategies, then V = x̃⊤Qỹ .

Recall, Safe strategies. The safe strategies x̃ , ỹ satisfy, x̃ = argmaxx∈∆m
miny∈∆n x

⊤Qy ,

and ỹ = argminy∈∆n
maxx∈∆m x⊤Qy .

Proof. First, using the minimax theorem, we have

V = max
x∈∆m

min
y∈∆n

x⊤Qy = min
y∈∆n

x̃⊤Qy = max
y∈∆n

x⊤Qỹ .

The second equality uses the definition of x̃ = argmaxx∈∆m
miny∈∆n x

⊤Qy , while the
third equality uses the definition of ỹ .

Hence, for all y , V ≤ x̃⊤Qy . In particular, V ≤ x̃⊤Qỹ .

Similarly, for all x , V ≥ x⊤Qỹ . In particular, V ≥ x̃⊤Qỹ .
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Safe strategies and Nash equilibria in two-player zero sum games

Theorem (Safe strategies are Nash strategies in TPZSGs (Prop 2.5.3 in KP)).
In a two player zero sum game, a pair of strategies x ∈ ∆m, y ∈ ∆n are safe strategies
for P1 and P2 respectively iff (x , y) is a Nash equilibrium.

Proof. 1. Safe =⇒ NE. Let us first recall the minimax theorem and its corollary.

value of the game V = x̃⊤Qỹ = max
x∈∆m

min
y∈∆n

x⊤Qy = min
x∈∆m

max
y∈∆n

x⊤Qy (1)

Suppose x , y are safe for P1 and P2 respectively. As x is safe for P1, she is guaranteed
a payoff of at least maxx miny x

⊤Qy regardless of what y plays, i.e.,

for all y ∈ ∆n, x⊤Qy ≥ max
x

min
y

x⊤Qy = x⊤Qy .

Here, the last equality uses (1). Hence, y is a best response to x for P2. We can
similarly show that x is a best response to y . Hence, (x , y) is a Nash equilibrium.
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Proof of theorem (cont’d)

2. NE =⇒ Safe. Now suppose that (x , y) is a Nash equilibrium. Then,

min
y

x⊤Qy
(a)
= x⊤Qy︸ ︷︷ ︸

=V ′ (say)

(b)
= max

x
x⊤Qy .

Here, (a) uses the fact that y is a best response to x and (b) uses the fact that x is a
best response to y .

Now suppose that x is not safe for P1. Then, there exists x ′ such that,
miny x

′⊤Qy > V ′. In particular, x ′⊤Qy > V ′. However, this contradicts (b) in the
equation above.

We can similarly show that y is safe for P2.
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Why study two-player zero sum games?

▶ A very natural abstraction as it models pure competition: players’ interests are
perfectly opposed to each other.

▶ Interesting from an academic perspective, as they have many nice properties:
- Minimax theorem, well-defined “value” for a game
- Equivalence of safe strategies and NE.

▶ Many real-world applications can be framed as TPZSGs. Some examples:
- Security: attacker vs defender
- ML: generative models (next topic)

▶ Easy to compute NE using linear programs (coming up in chapter 3) and online
learning (in chapter 5).

▶ Interesting connections to convex optimization.
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Quiz: state if the following statements are true or false

1. In a two player general sum game, it is always better to announce your strategy
second.

2. In an n player zero sum game, i.e., where
∑n

i=1 ui (a) = 0 for all a ∈ A1 × . . .An,
safe strategies constitute a Nash equilibrium.
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Ch 2.3: Case study: Zero sum games in Generative AI

Given data from a “true” distribution, we want to be able to generate data that “looks
like” the true distribution.

x ∼ ptrue x ∼ plearned

We want ptrue ≈ plearn.
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Case study: Zero sum games in Gen AI (cont’d)
How does one generate data? One approach is to generate data from a “simple”
distribution P, and pass it through a neural network, to produce “complex” data.

z ∼ 𝒩(0,σI)

Generator network  with parameters gθ θ

Suppose that the distribution of the data generated by this network is plearn. We wish
to learn the parameters θ of the generator network fθ so that plearn ≈ ptrue.

Expl: If you know about NNs, you will know that you can do this for different
domains: CNN for images, RNNs/Transformers for text etc.

Maybe give a small example to show how a network can transform the data.
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Generative Adversarial Networks
Let us try to formalize this (although we will still be somewhat informal).

Suppose the true data is drawn from some distribution ptrue, and belongs to some
space X (e.g., space of images, text, or just Euclidean data).

We can generate data from a “simple” distribution P (e.g., P = N (0, σIn)), where the
samples belong to some space Z (e.g., Z = Rn).

We have a generator network gθ : Z → X which maps data in Z to data in X .
Different values for θ produce different mappings.

Let us pretend we know ptrue for now (in practice, you only have samples from ptrue).
We wish to find θ so that the distribution of gθ(Z ) where Z ∼ P, is similar to ptrue. If
we can define a distance ρ between the distributions, then we can choose θ to
minimize it, i.e.,

θ = arginf
θ

ρ(ptrue, gθ(P)).
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Generative Adversarial Networks (cont’d)

Defining a distance. Consider some function d : X → R. Then, |EX∼ptrue [d(X )]
−EZ∼P [d(gθ(Z ))]| is a measure of dissimilarity between ptrue and gθ(P).

Expl: Pause here. Give eg here, pixel value of first cell, num words etc.

But comparing two distributions using a single function is too weak. We can instead
consider a class of functions D containing many functions which map from X → R
and consider the largest possible difference1:

ρ(ptrue, gθ(P)) = sup
d∈D

∣∣EX∼ptrue [d(X )]− EZ∼P [d(gθ(Z ))]
∣∣

= sup
d∈D

(
EX∼ptrue [d(X )]− EZ∼P [d(gθ(Z ))]

)
if D is symmetric

1You can show that ρ is a distance (i.e., satisfies all 4 axioms). Turns out, when D is the class of
1-Lipschitz functions, it is the Wasserstein-1 (or earth mover’s) distance. This specific formalism for
GANs is called Wasserstein-GANs for this reason.
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Generative Adversarial Networks (cont’d)

It is usually difficult to work with an abstract function class, so we can consider a
function class parametrized by the weights of a different neural network (called the
discriminator network), i.e., D = {dϕ}ϕ.

Discriminator network  with parameters dϕ ϕ

0.34

Hence, our metric is,

ρ(ptrue, gθ(P)) = sup
ϕ

(EX∼ptrue [dϕ(X )]− EZ∼P [dϕ(gθ(Z ))])
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Generative Adversarial Networks (cont’d)

z ∼ 𝒩(0,σI)

Generator network  with parameters gθ θ Discriminator network  with parameters dϕ ϕ

0.34

Let us now put everything together. We initially set our goal as finding parameters θ
of a generator network so that, θ = argminθ ρ(ptrue, gθ(P)).

We then defined the following distance,

ρ(ptrue, gθ(P)) = sup
ϕ

(EX∼ptrue [dϕ(X )]− EZ∼P [dϕ(gθ(Z ))])

Therefore, we can frame our problem as,

inf
θ
sup
ϕ

(
EX∼ptrue [dϕ(X )]− EZ∼P [dϕ(gθ(Z ))]

)︸ ︷︷ ︸
∆
=(f (ϕ,θ))
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Generative Adversarial Networks (cont’d)

z ∼ 𝒩(0,σI)

Generator network  with parameters gθ θ Discriminator network  with parameters dϕ ϕ

0.34

inf
θ
sup
ϕ

f (ϕ, θ), where f (ϕ, θ) = EX∼ptrue [dϕ(X )]− EZ∼P [dϕ(gθ(Z ))]

This can be viewed as a zero sum game between two players. P1 wishes to maximize
f (ϕ, θ) and her action set is the weights ϕ for the discriminator network. P2 wishes to
minimize f (ϕ, θ) and her action set is the weights θ for the generator network.

Intuition. The discriminator network is trying to differentiate between true images
and the images generated by the generator, by assigning high scores to true images
and low scores to fake images. The generator is trying to deceive the discriminator by
making it very hard to distinguish between the two.
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Generative Adversarial Networks (cont’d)

z ∼ 𝒩(0,σI)

Generator network  with parameters gθ θ Discriminator network  with parameters dϕ ϕ

0.34

inf
θ
sup
ϕ

f (ϕ, θ), where f (ϕ, θ) = EX∼ptrue [dϕ(X )]− EZ∼P [dϕ(gθ(Z ))]

Some remarks, which are beyond the scope of this course:

▶ In reality, we will not know ptrue. So replace the expectations with empirical
expectations over true and generated data respectively, i.e.,

f̂ (ϕ, θ) =
1

n

n∑
i=1

dϕ(Xi )−
1

m

m∑
i=1

dϕ(gθ(Zi )).

▶ To find the minimax solution, we can run gradient descent and ascent on f̂ with
respect to ϕ and θ respectively. 24/24


