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Maximum Likelihood inference in Computational Astrophysics

Cosmological
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Bandits & Optimisation

Expensive Blackbox
          Function
Examples:
Hyper-parameter tuning in ML
Optimal control strategy in Robotics
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f : [0, 1]D → R is an expensive, black-box, nonconvex function.
Let x∗ = argmaxx f (x).
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Gaussian Process (Bayesian) Optimisation
Model f ∼ GP(0, κ).
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Gaussian Process (Bayesian) Optimisation
Model f ∼ GP(0, κ).
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GP-UCB: ϕt(x) = µt−1(x) + β
1/2
t σt−1(x) (Srinivas et al. 2010)
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ϕt : Expected Improvement (GP-EI), Thompson Sampling etc.
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Scaling to Higher Dimensions

Two Key Challenges:

I Statistical Difficulty:
Nonparametric sample complexity exponential in D.

I Computational Difficulty:
Optimising ϕt to within ζ accuracy requires O(ζ−D) effort.

Existing Work:
Chen et al. 2012, Wang et al. 2013, Djolonga et al. 2013.

I Assumes f varies only along a low dimensional subspace.

I Perform BO on a low dimensional subspace.

I Assumption too strong in realistic settings.
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Additive Functions

Structural assumption:

f (x) = f (1)(x (1)) + f (2)(x (2)) + . . . + f (M)(x (M)).

x (j) ∈ X (j) = [0, 1]d , d � D, x (i) ∩ x (j) = ∅.

Given (X ,Y ) = {(xi , yi )
T
i=1}, and test point x†,

f (j)(x
(j)
† )|X ,Y ∼ N

(
µ(j), σ(j)

2
).
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Outline

1. GP-UCB
2. The Add-GP-UCB algorithm

I Bounds on ST : exponential in D → linear in D.

I An easy-to-optimise acquisition function.

I Performs well even when f is not additive.

3. Experiments

4. Conclusion & some open questions
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GP-UCB

xt = argmax
x∈X

µt−1(x) + β
1/2
t σt−1(x)

Squared Exponential Kernel

κ(x , x ′) = A exp

(
‖x − x ′‖2

2h2

)

Theorem (Srinivas et al. 2010)

Let f ∼ GP(0, κ). Then w.h.p,

ST ∈ O

(√
DD(log T )D

T

)
.
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GP-UCB on additive κ

If f ∼ GP(0, κ) where

κ(x , x ′) = κ(1)(x (1), x (1)′) + · · ·+ κ(M)(x (M), x (M)′).

κ(j) → SE Kernel.

Can be shown: If each κ(j) is a SE kernel,

ST ∈ O

(√
D2dd(log T )d

T

)
.

But ϕt = µt−1 + β
1/2
t σt−1 is D-dimensional !
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Add-GP-UCB

ϕ̃t(x) =
M∑
j=1

µ
(j)
t−1(x) + β

1/2
t σ

(j)
t−1(x (j)).

Maximise each ϕ̃
(j)
t separately.

Requires only O(poly(D)ζ−d) effort (vs O(ζ−D) for GP-UCB).

Theorem

Let f (j) ∼ GP(0, κ(j)) and f =
∑

j f (j). Then w.h.p,

ST ∈ O

(√
D2dd(log T )d

T

)
.
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Summary of Theoretical Results (for SE Kernel)

GP-UCB with no assumption on f :

ST ∈ O
(

DD/2(log T )D/2T−1/2
)

GP-UCB on additive f :

ST ∈ O
(

DT−1/2
)

Maximising ϕt : O(ζ−D) effort.

Add-GP-UCB on additive f :

ST ∈ O
(

DT−1/2
)

Maximising ϕ̃t : O(poly(D)ζ−d) effort.
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Add-GP-UCB f (x{1,2}) = f (1)(x{1}) + f (2)(x{2})
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Additive modeling in non-additive settings

I Additive models common in high dimensional regression.
E.g.: Backfitting, MARS, COSSO, RODEO, SpAM etc.
f (x{1,...,D}) = f (x{1}) + f (x{2}) + · · ·+ f (x{D}).

I Additive models are statistically simpler =⇒ worse bias, but
much better variance in low sample regime.

I In BO applications queries are expensive. So we usually
cannot afford many queries.

I Observation:
Add-GP-UCB does well even when f is not additive.

I Better bias/ variance trade-off in high dimensional regression.

I Easy to maximise acquisition function.
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Unknown Kernel/ Decomposition in practice

Learn kernel hyper-parameters and decomposition {Xj} by
maximising GP marginal likelihood periodically.
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Experiments

0 200 400 600 800

100
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102 Add-∗: Knows
decomposition.

Add-d/M:

M groups of

size ≤ d .

Use 1000 DiRect evaluations to maximise acquisition function.
DiRect: Dividing Rectangles (Jones et al. 1993)
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SDSS Luminous Red Galaxies

Cosmological
   Simulator

Observation

E.g:
Hubble Constant
Baryonic Density

I Task: Find maximum likelihood cosmological parameters.

I 20 Dimensions. But only 9 parameters are relevant.

I Each query takes 2-5 seconds.

I Use 500 DiRect evaluations to maximise acquisition function.
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SDSS Luminous Red Galaxies
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REMBO: (Wang et al. 2013)
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Viola & Jones Face Detection

A cascade of 22 weak classifiers.
Image classified negative if the score < threshold at any stage.

I Task: Find optimal threshold values on a training set of
1000 images.

I 22 dimensions.

I Each query takes 30-40 seconds.

I Use 1000 DiRect evaluations to maximise acquisition function.
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Viola & Jones Face Detection

0 100 200 300
65

70

75

80

85

90

95

19/20



Summary

I Additive assumption improves regret:
exponential in D → linear in D.

I Acquisition function is easy to maximise.

I Even for non-additive f is not additive, Add-GP-UCB does
well in practice.

I Similar results hold for Matérn kernels and in bandit setting.

Some open questions:

I How to choose (d ,M)?

I Can we generalise to other acquisition functions?

Code available: github.com/kirthevasank/add-gp-bandits

Jeff’s Talk: Friday 2pm @ Van Gogh
Thank You.
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