
High Dimensional Bayesian Optimisation and
Bandits via Additive Models

Kirthevasan Kandasamy, Jeff Schneider, Barnabás Póczos

ICML ’15

July 8 2015

1/20

Bandits & Optimisation

Maximum Likelihood inference in Computational Astrophysics

Cosmological
 Simulator

Observation

E.g:
Hubble Constant
Baryonic Density

2/20

Bandits & Optimisation

Maximum Likelihood inference in Computational Astrophysics

Cosmological
 Simulator

Observation

E.g:
Hubble Constant
Baryonic Density

2/20

Bandits & Optimisation

Expensive Blackbox
 Function

2/20

Bandits & Optimisation

Expensive Blackbox
 Function
Examples:
Hyper-parameter tuning in ML
Optimal control strategy in Robotics

2/20

Bandits & Optimisation

f : [0, 1]D → R is an expensive, black-box, nonconvex function.
Let x∗ = argmaxx f (x).

x∗

f (x∗)

x

f(x)

3/20

Bandits & Optimisation

f : [0, 1]D → R is an expensive, black-box, nonconvex function.
Let x∗ = argmaxx f (x).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1x

f(x)

3/20

Bandits & Optimisation

f : [0, 1]D → R is an expensive, black-box, nonconvex function.
Let x∗ = argmaxx f (x).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1x

f(x)

Optimisation ∼= Minimise Simple Regret.

ST = f (x∗) − max
xt , t=1,...,T

f (xt).

3/20

Bandits & Optimisation

f : [0, 1]D → R is an expensive, black-box, nonconvex function.
Let x∗ = argmaxx f (x).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1x

f(x)

Bandits ∼= Minimise Cumulative Regret.

RT =
T∑
t=1

f (x∗) − f (xt).

3/20

Bandits & Optimisation

f : [0, 1]D → R is an expensive, black-box, nonconvex function.
Let x∗ = argmaxx f (x).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1x

f(x)

Optimisation ∼= Minimise Simple Regret.

ST = f (x∗) − max
xt , t=1,...,T

f (xt).

3/20

Gaussian Process (Bayesian) Optimisation
Model f ∼ GP(0, κ).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1x

f(x)

.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

xt = 0.828

x

ϕt(x)

4/20

Gaussian Process (Bayesian) Optimisation
Model f ∼ GP(0, κ).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1x

f(x)

Obtain posterior GP.

.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

xt = 0.828

x

ϕt(x)

4/20

Gaussian Process (Bayesian) Optimisation
Model f ∼ GP(0, κ).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1x

f(x)

Maximise acquisition function ϕt : xt = argmaxx ϕt(x).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

xt = 0.828

x

ϕt(x)

GP-UCB: ϕt(x) = µt−1(x) + β
1/2
t σt−1(x) (Srinivas et al. 2010)

4/20

Gaussian Process (Bayesian) Optimisation
Model f ∼ GP(0, κ).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1x

f(x)

Maximise acquisition function ϕt : xt = argmaxx ϕt(x).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

xt = 0.828

x

ϕt(x)

ϕt : Expected Improvement (GP-EI), Thompson Sampling etc.
4/20

Scaling to Higher Dimensions

Two Key Challenges:

I Statistical Difficulty:
Nonparametric sample complexity exponential in D.

I Computational Difficulty:
Optimising ϕt to within ζ accuracy requires O(ζ−D) effort.

Existing Work:
Chen et al. 2012, Wang et al. 2013, Djolonga et al. 2013.

I Assumes f varies only along a low dimensional subspace.

I Perform BO on a low dimensional subspace.

I Assumption too strong in realistic settings.

5/20

Scaling to Higher Dimensions

Two Key Challenges:

I Statistical Difficulty:
Nonparametric sample complexity exponential in D.

I Computational Difficulty:
Optimising ϕt to within ζ accuracy requires O(ζ−D) effort.

Existing Work:
I (Chen et al. 2012): f depends on a small number of variables.

Find variables and then GP-UCB.

I (Wang et al. 2013): f varies along a lower dimensional
subspace. GP-EI on a random subspace.

I (Djolonga et al. 2013): f varies along a lower dimensional
subspace. Find subspace and then GP-UCB.

Existing Work:
Chen et al. 2012, Wang et al. 2013, Djolonga et al. 2013.

I Assumes f varies only along a low dimensional subspace.

I Perform BO on a low dimensional subspace.

I Assumption too strong in realistic settings.

5/20

Scaling to Higher Dimensions

Two Key Challenges:

I Statistical Difficulty:
Nonparametric sample complexity exponential in D.

I Computational Difficulty:
Optimising ϕt to within ζ accuracy requires O(ζ−D) effort.

Existing Work:
Chen et al. 2012, Wang et al. 2013, Djolonga et al. 2013.

I Assumes f varies only along a low dimensional subspace.

I Perform BO on a low dimensional subspace.

I Assumption too strong in realistic settings.

5/20

Additive Functions

Structural assumption:

f (x) = f (1)(x (1)) + f (2)(x (2)) + . . . + f (M)(x (M)).

x (j) ∈ X (j) = [0, 1]d , d � D, x (i) ∩ x (j) = ∅.

Given (X ,Y) = {(xi , yi)
T
i=1}, and test point x†,

f (j)(x
(j)
†)|X ,Y ∼ N

(
µ(j), σ(j)

2
).

6/20

Additive Functions

Structural assumption:

f (x) = f (1)(x (1)) + f (2)(x (2)) + . . . + f (M)(x (M)).

x (j) ∈ X (j) = [0, 1]d , d � D, x (i) ∩ x (j) = ∅.

E.g. f (x{1,...,10}) = f (1)(x{1,3,9}) + f (2)(x{2,4,8}) + f (3)(x{5,6,10}) .

1 2 3 4 5 6 ��HH7 8 9 10

Call {X (j)M

j=1} = {(1, 3, 9), (2, 4, 8), (5, 6, 10)} the “decomposition”.

Given (X ,Y) = {(xi , yi)
T
i=1}, and test point x†,

f (j)(x
(j)
†)|X ,Y ∼ N

(
µ(j), σ(j)

2
).

6/20

Additive Functions

Structural assumption:

f (x) = f (1)(x (1)) + f (2)(x (2)) + . . . + f (M)(x (M)).

x (j) ∈ X (j) = [0, 1]d , d � D, x (i) ∩ x (j) = ∅.

Assume each f (j) ∼ GP(0, κ(j)). Then f ∼ GP(0, κ) where,

κ(x , x ′) = κ(1)(x (1), x (1)′) + · · ·+ κ(M)(x (M), x (M)′).

Given (X ,Y) = {(xi , yi)
T
i=1}, and test point x†,

f (j)(x
(j)
†)|X ,Y ∼ N

(
µ(j), σ(j)

2
).

6/20

Additive Functions

Structural assumption:

f (x) = f (1)(x (1)) + f (2)(x (2)) + . . . + f (M)(x (M)).

x (j) ∈ X (j) = [0, 1]d , d � D, x (i) ∩ x (j) = ∅.

Assume each f (j) ∼ GP(0, κ(j)). Then f ∼ GP(0, κ) where,

κ(x , x ′) = κ(1)(x (1), x (1)′) + · · ·+ κ(M)(x (M), x (M)′).

Given (X ,Y) = {(xi , yi)
T
i=1}, and test point x†,

f (j)(x
(j)
†)|X ,Y ∼ N

(
µ(j), σ(j)

2
).

6/20

Outline

1. GP-UCB
2. The Add-GP-UCB algorithm

I Bounds on ST : exponential in D → linear in D.

I An easy-to-optimise acquisition function.

I Performs well even when f is not additive.

3. Experiments

4. Conclusion & some open questions

7/20

GP-UCB

xt = argmax
x∈X

µt−1(x) + β
1/2
t σt−1(x)

Squared Exponential Kernel

κ(x , x ′) = A exp

(
‖x − x ′‖2

2h2

)

Theorem (Srinivas et al. 2010)

Let f ∼ GP(0, κ). Then w.h.p,

ST ∈ O

(√
DD(log T)D

T

)
.

8/20

GP-UCB

xt = argmax
x∈X

µt−1(x) + β
1/2
t σt−1(x)

Squared Exponential Kernel

κ(x , x ′) = A exp

(
‖x − x ′‖2

2h2

)

Theorem (Srinivas et al. 2010)

Let f ∼ GP(0, κ). Then w.h.p,

ST ∈ O

(√
DD(log T)D

T

)
.

8/20

GP-UCB on additive κ

If f ∼ GP(0, κ) where

κ(x , x ′) = κ(1)(x (1), x (1)′) + · · ·+ κ(M)(x (M), x (M)′).

κ(j) → SE Kernel.

Can be shown: If each κ(j) is a SE kernel,

ST ∈ O

(√
D2dd(log T)d

T

)
.

But ϕt = µt−1 + β
1/2
t σt−1 is D-dimensional !

9/20

GP-UCB on additive κ

If f ∼ GP(0, κ) where

κ(x , x ′) = κ(1)(x (1), x (1)′) + · · ·+ κ(M)(x (M), x (M)′).

κ(j) → SE Kernel.

Can be shown: If each κ(j) is a SE kernel,

ST ∈ O

(√
D2dd(log T)d

T

)
.

But ϕt = µt−1 + β
1/2
t σt−1 is D-dimensional !

9/20

GP-UCB on additive κ

If f ∼ GP(0, κ) where

κ(x , x ′) = κ(1)(x (1), x (1)′) + · · ·+ κ(M)(x (M), x (M)′).

κ(j) → SE Kernel.

Can be shown: If each κ(j) is a SE kernel,

ST ∈ O

(√
D2dd(log T)d

T

)
.

But ϕt = µt−1 + β
1/2
t σt−1 is D-dimensional !

9/20

Add-GP-UCB

ϕ̃t(x) =
M∑
j=1

µ
(j)
t−1(x) + β

1/2
t σ

(j)
t−1(x (j)).

Maximise each ϕ̃
(j)
t separately.

Requires only O(poly(D)ζ−d) effort (vs O(ζ−D) for GP-UCB).

Theorem

Let f (j) ∼ GP(0, κ(j)) and f =
∑

j f (j). Then w.h.p,

ST ∈ O

(√
D2dd(log T)d

T

)
.

10/20

Add-GP-UCB

ϕ̃t(x) =
M∑
j=1

µ
(j)
t−1(x) + β

1/2
t σ

(j)
t−1(x (j))︸ ︷︷ ︸

ϕ̃
(j)
t (x(j))

.

Maximise each ϕ̃
(j)
t separately.

Requires only O(poly(D)ζ−d) effort (vs O(ζ−D) for GP-UCB).

Theorem

Let f (j) ∼ GP(0, κ(j)) and f =
∑

j f (j). Then w.h.p,

ST ∈ O

(√
D2dd(log T)d

T

)
.

10/20

Add-GP-UCB

ϕ̃t(x) =
M∑
j=1

µ
(j)
t−1(x) + β

1/2
t σ

(j)
t−1(x (j))︸ ︷︷ ︸

ϕ̃
(j)
t (x(j))

.

Maximise each ϕ̃
(j)
t separately.

Requires only O(poly(D)ζ−d) effort (vs O(ζ−D) for GP-UCB).

Theorem

Let f (j) ∼ GP(0, κ(j)) and f =
∑

j f (j). Then w.h.p,

ST ∈ O

(√
D2dd(log T)d

T

)
.

10/20

Summary of Theoretical Results (for SE Kernel)

GP-UCB with no assumption on f :

ST ∈ O
(

DD/2(log T)D/2T−1/2
)

GP-UCB on additive f :

ST ∈ O
(

DT−1/2
)

Maximising ϕt : O(ζ−D) effort.

Add-GP-UCB on additive f :

ST ∈ O
(

DT−1/2
)

Maximising ϕ̃t : O(poly(D)ζ−d) effort.

11/20

Add-GP-UCB f (x{1,2}) = f (1)(x{1}) + f (2)(x{2})

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x{1}

f (1)(x{1})

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

x
{2
}

f
(2
) (
x
{2
}
)

1
12/20

Add-GP-UCB f (x{1,2}) = f (1)(x{1}) + f (2)(x{2})

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x{1}

f (1)(x{1})

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

x
{2
}

f
(2
) (
x
{2
}
)

1
12/20

Add-GP-UCB f (x{1,2}) = f (1)(x{1}) + f (2)(x{2})

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x{1}

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

x
{2
}

1
12/20

Add-GP-UCB f (x{1,2}) = f (1)(x{1}) + f (2)(x{2})

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
(1)
t

= 0.869

x{1}

ϕ̃
(1)(x{1})

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

x
(2
)

t
=

0
.1
4
1

x
{2
}

ϕ̃
(2
)
(x

{2
}
)

1
12/20

Add-GP-UCB f (x{1,2}) = f (1)(x{1}) + f (2)(x{2})

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
(1)
t

= 0.869

x{1}

ϕ̃
(1)(x{1})

xt = (0.869, 0.141)

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

x
(2
)

t
=

0
.1
4
1

x
{2
}

ϕ̃
(2
)
(x

{2
}
)

1
12/20

Additive modeling in non-additive settings

I Additive models common in high dimensional regression.
E.g.: Backfitting, MARS, COSSO, RODEO, SpAM etc.
f (x{1,...,D}) = f (x{1}) + f (x{2}) + · · ·+ f (x{D}).

I Additive models are statistically simpler =⇒ worse bias, but
much better variance in low sample regime.

I In BO applications queries are expensive. So we usually
cannot afford many queries.

I Observation:
Add-GP-UCB does well even when f is not additive.

I Better bias/ variance trade-off in high dimensional regression.

I Easy to maximise acquisition function.

13/20

Additive modeling in non-additive settings

I Additive models common in high dimensional regression.
E.g.: Backfitting, MARS, COSSO, RODEO, SpAM etc.
f (x{1,...,D}) = f (x{1}) + f (x{2}) + · · ·+ f (x{D}).

I Additive models are statistically simpler =⇒ worse bias, but
much better variance in low sample regime.

I In BO applications queries are expensive. So we usually
cannot afford many queries.

I Observation:
Add-GP-UCB does well even when f is not additive.

I Better bias/ variance trade-off in high dimensional regression.

I Easy to maximise acquisition function.

13/20

Additive modeling in non-additive settings

I Additive models common in high dimensional regression.
E.g.: Backfitting, MARS, COSSO, RODEO, SpAM etc.
f (x{1,...,D}) = f (x{1}) + f (x{2}) + · · ·+ f (x{D}).

I Additive models are statistically simpler =⇒ worse bias, but
much better variance in low sample regime.

I In BO applications queries are expensive. So we usually
cannot afford many queries.

I Observation:
Add-GP-UCB does well even when f is not additive.

I Better bias/ variance trade-off in high dimensional regression.

I Easy to maximise acquisition function.

13/20

Additive modeling in non-additive settings

I Additive models common in high dimensional regression.
E.g.: Backfitting, MARS, COSSO, RODEO, SpAM etc.
f (x{1,...,D}) = f (x{1}) + f (x{2}) + · · ·+ f (x{D}).

I Additive models are statistically simpler =⇒ worse bias, but
much better variance in low sample regime.

I In BO applications queries are expensive. So we usually
cannot afford many queries.

I Observation:
Add-GP-UCB does well even when f is not additive.

I Better bias/ variance trade-off in high dimensional regression.

I Easy to maximise acquisition function.

13/20

Unknown Kernel/ Decomposition in practice

Learn kernel hyper-parameters and decomposition {Xj} by
maximising GP marginal likelihood periodically.

14/20

Experiments

0 200 400 600 800

100

101

102 Add-∗: Knows
decomposition.

Add-d/M:

M groups of

size ≤ d .

Use 1000 DiRect evaluations to maximise acquisition function.
DiRect: Dividing Rectangles (Jones et al. 1993)

15/20

Experiments

0 200 400 600 800

100

101

102

Add-∗: Knows
decomposition.

Add-d/M:

M groups of

size ≤ d .

Use 4000 DiRect evaluations to maximise acquisition function.

15/20

SDSS Luminous Red Galaxies

Cosmological
 Simulator

Observation

E.g:
Hubble Constant
Baryonic Density

I Task: Find maximum likelihood cosmological parameters.

I 20 Dimensions. But only 9 parameters are relevant.

I Each query takes 2-5 seconds.

I Use 500 DiRect evaluations to maximise acquisition function.

16/20

SDSS Luminous Red Galaxies

0 100 200 300 400
−103

−102

−101

REMBO: (Wang et al. 2013)

17/20

Viola & Jones Face Detection

A cascade of 22 weak classifiers.
Image classified negative if the score < threshold at any stage.

I Task: Find optimal threshold values on a training set of
1000 images.

I 22 dimensions.

I Each query takes 30-40 seconds.

I Use 1000 DiRect evaluations to maximise acquisition function.

18/20

Viola & Jones Face Detection

0 100 200 300
65

70

75

80

85

90

95

19/20

Summary

I Additive assumption improves regret:
exponential in D → linear in D.

I Acquisition function is easy to maximise.

I Even for non-additive f is not additive, Add-GP-UCB does
well in practice.

I Similar results hold for Matérn kernels and in bandit setting.

Some open questions:

I How to choose (d ,M)?

I Can we generalise to other acquisition functions?

Code available: github.com/kirthevasank/add-gp-bandits

Jeff’s Talk: Friday 2pm @ Van Gogh
Thank You.

20/20

Summary

I Additive assumption improves regret:
exponential in D → linear in D.

I Acquisition function is easy to maximise.

I Even for non-additive f is not additive, Add-GP-UCB does
well in practice.

I Similar results hold for Matérn kernels and in bandit setting.

Some open questions:

I How to choose (d ,M)?

I Can we generalise to other acquisition functions?

Code available: github.com/kirthevasank/add-gp-bandits

Jeff’s Talk: Friday 2pm @ Van Gogh
Thank You.

20/20

Summary

I Additive assumption improves regret:
exponential in D → linear in D.

I Acquisition function is easy to maximise.

I Even for non-additive f is not additive, Add-GP-UCB does
well in practice.

I Similar results hold for Matérn kernels and in bandit setting.

Some open questions:

I How to choose (d ,M)?

I Can we generalise to other acquisition functions?

Code available: github.com/kirthevasank/add-gp-bandits

Jeff’s Talk: Friday 2pm @ Van Gogh
Thank You.

20/20

Summary

I Additive assumption improves regret:
exponential in D → linear in D.

I Acquisition function is easy to maximise.

I Even for non-additive f is not additive, Add-GP-UCB does
well in practice.

I Similar results hold for Matérn kernels and in bandit setting.

Some open questions:

I How to choose (d ,M)?

I Can we generalise to other acquisition functions?

Code available: github.com/kirthevasank/add-gp-bandits

Jeff’s Talk: Friday 2pm @ Van Gogh
Thank You.

20/20

