# High Dimensional Bayesian Optimisation and Bandits via Additive Models

Kirthevasan Kandasamy, Jeff Schneider, Barnabás Póczos

**ICML '15** 

July 8 2015





Maximum Likelihood inference in Computational Astrophysics



Maximum Likelihood inference in Computational Astrophysics







 $f:[0,1]^D \to \mathbb{R}$  is an expensive, black-box, nonconvex function. Let  $\mathbf{x}_* = \operatorname{argmax}_{\mathbf{x}} f(\mathbf{x})$ .



 $f:[0,1]^D \to \mathbb{R}$  is an expensive, black-box, nonconvex function. Let  $\mathbf{x}_* = \operatorname{argmax}_x f(x)$ .



 $f:[0,1]^D \to \mathbb{R}$  is an expensive, black-box, nonconvex function. Let  $\mathbf{x}_* = \operatorname{argmax}_{\mathbf{x}} f(\mathbf{x})$ .



**Optimisation**  $\cong$  Minimise *Simple Regret*.

$$S_T = f(\mathbf{x}_*) - \max_{\mathbf{x}_t, t=1,...,T} f(\mathbf{x}_t).$$



 $f:[0,1]^D\to\mathbb{R}$  is an expensive, black-box, nonconvex function. Let  $\mathbf{x}_* = \operatorname{argmax}_{\mathbf{x}} f(\mathbf{x})$ .



**Bandits**  $\cong$  Minimise *Cumulative Regret*.

$$R_T = \sum_{t=1}^T f(\mathbf{x}_*) - f(\mathbf{x}_t).$$

 $f:[0,1]^D \to \mathbb{R}$  is an expensive, black-box, nonconvex function. Let  $\mathbf{x}_* = \operatorname{argmax}_{\mathbf{x}} f(\mathbf{x})$ .



**Optimisation**  $\cong$  Minimise *Simple Regret*.

$$S_T = f(\mathbf{x}_*) - \max_{\mathbf{x}_t, t=1,...,T} f(\mathbf{x}_t).$$



Model  $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$ .



Model  $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$ .



Obtain posterior GP.

(ロ) (御) (注) (注) (注) ( ( ) ( ) ( )

Model  $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$ .



Maximise acquisition function  $\varphi_t$ :  $\mathbf{x}_t = \operatorname{argmax}_x \varphi_t(x)$ .



**GP-UCB**: 
$$\varphi_t(x) = \mu_{t-1}(x) + \beta_t^{1/2} \sigma_{t-1}(x)$$
 (Srinivas et al. 2010)

Model  $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$ .



Maximise acquisition function  $\varphi_t$ :  $\mathbf{x}_t = \operatorname{argmax}_x \varphi_t(x)$ .



 $\varphi_t$ : Expected Improvement (**GP-EI**), Thompson Sampling etc.

### Scaling to Higher Dimensions

#### Two Key Challenges:

- Statistical Difficulty: Nonparametric sample complexity exponential in D.
- ▶ Computational Difficulty: Optimising  $\varphi_t$  to within  $\zeta$  accuracy requires  $\mathcal{O}(\zeta^{-D})$  effort.

### Scaling to Higher Dimensions

#### Two Key Challenges:

- Statistical Difficulty: Nonparametric sample complexity exponential in D.
- ► Computational Difficulty: Optimising  $\varphi_t$  to within  $\zeta$  accuracy requires  $\mathcal{O}(\zeta^{-D})$  effort.

#### Existing Work:

- ► (Chen et al. 2012): f depends on a small number of variables. Find variables and then **GP-UCB**.
- ▶ (Wang et al. 2013): *f* varies along a lower dimensional subspace. **GP-EI** on a random subspace.
- ▶ (Djolonga et al. 2013): *f* varies along a lower dimensional subspace. Find subspace and then **GP-UCB**.

## Scaling to Higher Dimensions

#### Two Key Challenges:

- Statistical Difficulty: Nonparametric sample complexity exponential in D.
- ► Computational Difficulty: Optimising  $\varphi_t$  to within  $\zeta$  accuracy requires  $\mathcal{O}(\zeta^{-D})$  effort.

#### Existing Work:

Chen et al. 2012, Wang et al. 2013, Djolonga et al. 2013.

- ► Assumes *f* varies only along a low dimensional subspace.
- Perform BO on a low dimensional subspace.
- Assumption too strong in realistic settings.

#### Structural assumption:

$$f(x) = f^{(1)}(x^{(1)}) + f^{(2)}(x^{(2)}) + \dots + f^{(M)}(x^{(M)}).$$
  
$$x^{(j)} \in \mathcal{X}^{(j)} = [0, 1]^d, \qquad d \ll D, \qquad x^{(i)} \cap x^{(j)} = \varnothing.$$

#### Structural assumption:

$$f(x) = f^{(1)}(x^{(1)}) + f^{(2)}(x^{(2)}) + \dots + f^{(M)}(x^{(M)}).$$
  
$$x^{(j)} \in \mathcal{X}^{(j)} = [0, 1]^d, \qquad d \ll D, \qquad x^{(i)} \cap x^{(j)} = \varnothing.$$

E.g. 
$$f(x_{\{1,...,10\}}) = f^{(1)}(x_{\{1,3,9\}}) + f^{(2)}(x_{\{2,4,8\}}) + f^{(3)}(x_{\{5,6,10\}})$$
.

Call 
$$\{X^{(j)}_{j=1}^M\} = \{(1,3,9), (2,4,8), (5,6,10)\}$$
 the "decomposition".

#### **Structural assumption:**

$$f(x) = f^{(1)}(x^{(1)}) + f^{(2)}(x^{(2)}) + \dots + f^{(M)}(x^{(M)}).$$
  
$$x^{(j)} \in \mathcal{X}^{(j)} = [0, 1]^d, \qquad d \ll D, \qquad x^{(i)} \cap x^{(j)} = \varnothing.$$

Assume each  $f^{(j)} \sim \mathcal{GP}(\mathbf{0}, \kappa^{(j)})$ . Then  $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$  where,

$$\kappa(x, x') = \kappa^{(1)}(x^{(1)}, x^{(1)'}) + \dots + \kappa^{(M)}(x^{(M)}, x^{(M)'}).$$

#### Structural assumption:

$$f(x) = f^{(1)}(x^{(1)}) + f^{(2)}(x^{(2)}) + \dots + f^{(M)}(x^{(M)}).$$
  
$$x^{(j)} \in \mathcal{X}^{(j)} = [0, 1]^d, \qquad d \ll D, \qquad x^{(i)} \cap x^{(j)} = \varnothing.$$

Assume each  $f^{(j)} \sim \mathcal{GP}(\mathbf{0}, \kappa^{(j)})$ . Then  $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$  where,

$$\kappa(x,x') = \kappa^{(1)}(x^{(1)},x^{(1)'}) + \dots + \kappa^{(M)}(x^{(M)},x^{(M)'}).$$

Given 
$$(X, Y) = \{(x_i, y_i)_{i=1}^T\}$$
, and test point  $x_{\dagger}$ , 
$$f^{(j)}(x_{\downarrow}^{(j)})|X, Y \sim \mathcal{N}(\mu^{(j)}, \sigma^{(j)^2}).$$

#### Outline

- 1. GP-UCB
- 2. The Add-GP-UCB algorithm
  - ▶ Bounds on  $S_T$ : exponential in D o linear in D.
  - ► An easy-to-optimise acquisition function.
  - ▶ Performs well even when *f* is not additive.
- 3. Experiments
- 4. Conclusion & some open questions

#### **GP-UCB**

$$\mathbf{x}_t = \operatorname*{argmax}_{x \in \mathcal{X}} \mu_{t-1}(x) + \beta_t^{1/2} \sigma_{t-1}(x)$$

#### **GP-UCB**

$$\mathbf{x}_t = \operatorname*{argmax}_{\mathbf{x} \in \mathcal{X}} \mu_{t-1}(\mathbf{x}) + \beta_t^{1/2} \sigma_{t-1}(\mathbf{x})$$

Squared Exponential Kernel

$$\kappa(x, x') = A \exp\left(\frac{\|x - x'\|^2}{2h^2}\right)$$

Theorem (Srinivas et al. 2010)

Let  $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$ . Then w.h.p,

$$S_T \in \mathcal{O}\left(\sqrt{rac{D^D(\log T)^D}{T}}
ight).$$

#### **GP-UCB** on additive $\kappa$

If  $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$  where

$$\kappa(x,x') = \kappa^{(1)}(x^{(1)},x^{(1)'}) + \cdots + \kappa^{(M)}(x^{(M)},x^{(M)'}).$$

 $\kappa^{(j)} \to \mathsf{SE} \mathsf{ Kernel}.$ 

#### **GP-UCB** on additive $\kappa$

If  $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$  where

$$\kappa(x,x') = \kappa^{(1)}(x^{(1)},x^{(1)'}) + \cdots + \kappa^{(M)}(x^{(M)},x^{(M)'}).$$

 $\kappa^{(j)} \to \mathsf{SE} \; \mathsf{Kernel}.$ 

Can be shown: If each  $\kappa^{(j)}$  is a SE kernel,

$$S_T \in \mathcal{O}\left(\sqrt{rac{D^2 d^d (\log T)^d}{T}}\right).$$

#### **GP-UCB** on additive $\kappa$

If  $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$  where

$$\kappa(x,x') = \kappa^{(1)}(x^{(1)},x^{(1)'}) + \cdots + \kappa^{(M)}(x^{(M)},x^{(M)'}).$$

 $\kappa^{(j)} \to \mathsf{SE} \; \mathsf{Kernel}.$ 

Can be shown: If each  $\kappa^{(j)}$  is a SE kernel,

$$S_T \in \mathcal{O}\left(\sqrt{rac{D^2 d^d (\log T)^d}{T}}\right).$$

But  $\varphi_t = \mu_{t-1} + \beta_t^{1/2} \sigma_{t-1}$  is *D*-dimensional!

#### Add-GP-UCB

$$\widetilde{\varphi}_t(x) = \sum_{j=1}^M \mu_{t-1}^{(j)}(x) + \beta_t^{1/2} \sigma_{t-1}^{(j)}(x^{(j)}).$$

#### Add-GP-UCB

$$\widetilde{\varphi}_t(x) = \sum_{j=1}^{M} \underbrace{\mu_{t-1}^{(j)}(x) + \beta_t^{1/2} \sigma_{t-1}^{(j)}(x^{(j)})}_{\widetilde{\varphi}_t^{(j)}(x^{(j)})}.$$

Maximise each  $\widetilde{\varphi}_t^{(j)}$  separately.

Requires only  $\mathcal{O}(\text{poly}(D)\zeta^{-d})$  effort (vs  $\mathcal{O}(\zeta^{-D})$  for **GP-UCB**).

#### Add-GP-UCB

$$\widetilde{\varphi}_t(x) = \sum_{j=1}^{M} \underbrace{\mu_{t-1}^{(j)}(x) + \beta_t^{1/2} \sigma_{t-1}^{(j)}(x^{(j)})}_{\widetilde{\varphi}_t^{(j)}(x^{(j)})}.$$

Maximise each  $\widetilde{\varphi}_t^{(j)}$  separately.

Requires only  $\mathcal{O}(\text{poly}(D)\zeta^{-d})$  effort (vs  $\mathcal{O}(\zeta^{-D})$  for **GP-UCB**).

#### **Theorem**

Let  $f^{(j)} \sim \mathcal{GP}(\mathbf{0}, \kappa^{(j)})$  and  $f = \sum_j f^{(j)}$ . Then w.h.p,

$$S_T \in \mathcal{O}\left(\sqrt{rac{D^2 d^d (\log T)^d}{T}}\right).$$

## Summary of Theoretical Results (for SE Kernel)

#### **GP-UCB** with no assumption on f:

$$S_T \in \mathcal{O}\left(D^{D/2}(\log T)^{D/2}T^{-1/2}\right)$$

#### **GP-UCB** on additive f:

$$S_T \in \mathcal{O}\Big( {\stackrel{\mathsf{D}}{\mathsf{D}}} T^{-1/2} \Big)$$

Maximising  $\varphi_t$ :  $\mathcal{O}(\zeta^{-D})$  effort.

#### **Add-GP-UCB** on additive f:

$$S_T \in \mathcal{O}\left( \frac{\mathsf{D}}{\mathsf{T}} T^{-1/2} \right)$$

Maximising  $\widetilde{\varphi}_t$ :  $\mathcal{O}(\text{poly}(D)\zeta^{-d})$  effort.











Additive models common in high dimensional regression. E.g.: Backfitting, MARS, COSSO, RODEO, SpAM etc.  $f(x_{\{1,...,D\}}) = f(x_{\{1\}}) + f(x_{\{2\}}) + \cdots + f(x_{\{D\}})$ .

- Additive models common in high dimensional regression. E.g.: Backfitting, MARS, COSSO, RODEO, SpAM etc.  $f(x_{\{1,...,D\}}) = f(x_{\{1\}}) + f(x_{\{2\}}) + \cdots + f(x_{\{D\}})$ .
- ▶ Additive models are *statistically* simpler ⇒ worse bias, but much better variance in low sample regime.

- Additive models common in high dimensional regression. E.g.: Backfitting, MARS, COSSO, RODEO, SpAM etc.  $f(x_{\{1,...,D\}}) = f(x_{\{1\}}) + f(x_{\{2\}}) + \cdots + f(x_{\{D\}})$ .
- ▶ Additive models are *statistically* simpler ⇒ worse bias, but much better variance in low sample regime.
- In BO applications queries are expensive. So we usually cannot afford many queries.

- Additive models common in high dimensional regression. E.g.: Backfitting, MARS, COSSO, RODEO, SpAM etc.  $f(x_{\{1,...,D\}}) = f(x_{\{1\}}) + f(x_{\{2\}}) + \cdots + f(x_{\{D\}})$ .
- ▶ Additive models are *statistically* simpler ⇒ worse bias, but much better variance in low sample regime.
- In BO applications queries are expensive. So we usually cannot afford many queries.

#### Observation:

**Add-GP-UCB** does well even when f is not additive.

- ▶ Better bias/ variance trade-off in high dimensional regression.
- ▶ Easy to maximise acquisition function.

# Unknown Kernel/ Decomposition in practice

Learn kernel hyper-parameters and decomposition  $\{\mathcal{X}_j\}$  by maximising GP marginal likelihood periodically.

### **Experiments**



Use **1000** DiRect evaluations to maximise acquisition function. DiRect: **Di**viding **Rect**angles (Jones et al. 1993)

### **Experiments**



Use **4000** DiRect evaluations to maximise acquisition function.

#### SDSS Luminous Red Galaxies



- ► **Task:** Find maximum likelihood cosmological parameters.
- ▶ 20 Dimensions. But only 9 parameters are relevant.
- Each query takes 2-5 seconds.
- ▶ Use 500 DiRect evaluations to maximise acquisition function.

### SDSS Luminous Red Galaxies



REMBO: (Wang et al. 2013)

#### Viola & Jones Face Detection

A cascade of 22 weak classifiers.

Image classified negative if the score < threshold at any stage.



- ► Task: Find optimal threshold values on a training set of 1000 images.
- 22 dimensions.
- Each query takes 30-40 seconds.
- ▶ Use 1000 DiRect evaluations to maximise acquisition function.

#### Viola & Jones Face Detection



- Additive assumption improves regret: exponential in  $D \rightarrow linear$  in D.
- Acquisition function is easy to maximise.
- Even for non-additive f is not additive, Add-GP-UCB does well in practice.

- Additive assumption improves regret: exponential in  $D \rightarrow linear$  in D.
- Acquisition function is easy to maximise.
- Even for non-additive f is not additive, Add-GP-UCB does well in practice.
- Similar results hold for Matérn kernels and in bandit setting.

- Additive assumption improves regret: exponential in  $D \rightarrow linear$  in D.
- Acquisition function is easy to maximise.
- Even for non-additive f is not additive, Add-GP-UCB does well in practice.
- Similar results hold for Matérn kernels and in bandit setting.

#### Some open questions:

- ▶ How to choose (d, M)?
- Can we generalise to other acquisition functions?

- Additive assumption improves regret: exponential in  $D \rightarrow linear$  in D.
- Acquisition function is easy to maximise.
- Even for non-additive f is not additive, Add-GP-UCB does well in practice.
- Similar results hold for Matérn kernels and in bandit setting.

#### Some open questions:

- ▶ How to choose (d, M)?
- Can we generalise to other acquisition functions?

Code available: github.com/kirthevasank/add-gp-bandits

Jeff's Talk: Friday 2pm @ Van Gogh

Thank You.