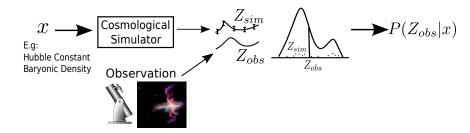
High Dimensional Bayesian Optimisation and Bandits via Additive Models

Kirthevasan Kandasamy, Jeff Schneider, Barnabás Póczos

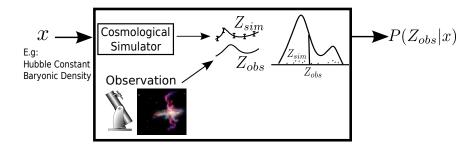
ICML '15

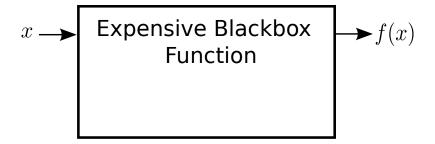
July 8 2015

Maximum Likelihood inference in Computational Astrophysics

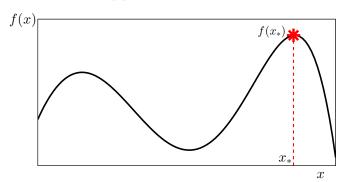


Maximum Likelihood inference in Computational Astrophysics

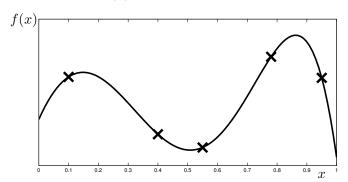




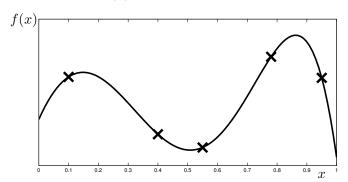
 $f:[0,1]^D \to \mathbb{R}$ is an expensive, black-box, nonconvex function. Let $\mathbf{x}_* = \operatorname{argmax}_{\mathbf{x}} f(\mathbf{x})$.



 $f:[0,1]^D \to \mathbb{R}$ is an expensive, black-box, nonconvex function. Let $\mathbf{x}_* = \operatorname{argmax}_x f(x)$.



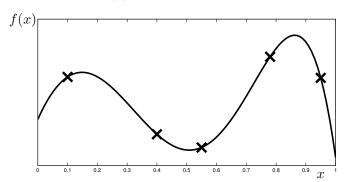
 $f:[0,1]^D \to \mathbb{R}$ is an expensive, black-box, nonconvex function. Let $\mathbf{x}_* = \operatorname{argmax}_{\mathbf{x}} f(\mathbf{x})$.



Optimisation \cong Minimise *Simple Regret*.

$$S_T = f(\mathbf{x}_*) - \max_{\mathbf{x}_t, t=1,...,T} f(\mathbf{x}_t).$$

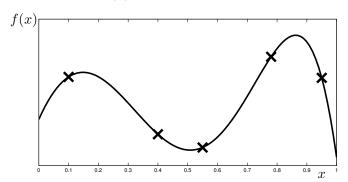
 $f:[0,1]^D\to\mathbb{R}$ is an expensive, black-box, nonconvex function. Let $\mathbf{x}_* = \operatorname{argmax}_{\mathbf{x}} f(\mathbf{x})$.



Bandits \cong Minimise *Cumulative Regret*.

$$R_T = \sum_{t=1}^T f(\mathbf{x}_*) - f(\mathbf{x}_t).$$

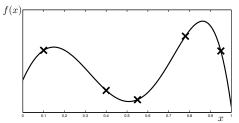
 $f:[0,1]^D \to \mathbb{R}$ is an expensive, black-box, nonconvex function. Let $\mathbf{x}_* = \operatorname{argmax}_{\mathbf{x}} f(\mathbf{x})$.



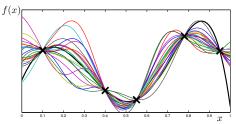
Optimisation \cong Minimise *Simple Regret*.

$$S_T = f(\mathbf{x}_*) - \max_{\mathbf{x}_t, t=1,...,T} f(\mathbf{x}_t).$$

Model $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$.



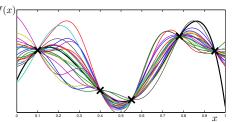
Model $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$.



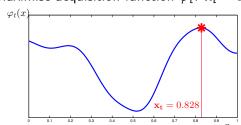
Obtain posterior GP.

(ロ) (御) (注) (注) (注) (() () ()

Model $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$.

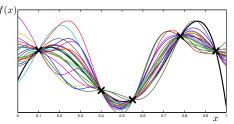


Maximise acquisition function φ_t : $\mathbf{x}_t = \operatorname{argmax}_x \varphi_t(x)$.

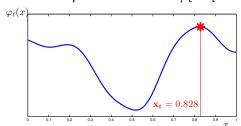


GP-UCB:
$$\varphi_t(x) = \mu_{t-1}(x) + \beta_t^{1/2} \sigma_{t-1}(x)$$
 (Srinivas et al. 2010)

Model $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$.



Maximise acquisition function φ_t : $\mathbf{x}_t = \operatorname{argmax}_x \varphi_t(x)$.



 φ_t : Expected Improvement (**GP-EI**), Thompson Sampling etc.

Scaling to Higher Dimensions

Two Key Challenges:

- Statistical Difficulty: Nonparametric sample complexity exponential in D.
- ▶ Computational Difficulty: Optimising φ_t to within ζ accuracy requires $\mathcal{O}(\zeta^{-D})$ effort.

Scaling to Higher Dimensions

Two Key Challenges:

- Statistical Difficulty: Nonparametric sample complexity exponential in D.
- ► Computational Difficulty: Optimising φ_t to within ζ accuracy requires $\mathcal{O}(\zeta^{-D})$ effort.

Existing Work:

- ► (Chen et al. 2012): f depends on a small number of variables. Find variables and then **GP-UCB**.
- ▶ (Wang et al. 2013): *f* varies along a lower dimensional subspace. **GP-EI** on a random subspace.
- ▶ (Djolonga et al. 2013): *f* varies along a lower dimensional subspace. Find subspace and then **GP-UCB**.

Scaling to Higher Dimensions

Two Key Challenges:

- Statistical Difficulty: Nonparametric sample complexity exponential in D.
- ► Computational Difficulty: Optimising φ_t to within ζ accuracy requires $\mathcal{O}(\zeta^{-D})$ effort.

Existing Work:

Chen et al. 2012, Wang et al. 2013, Djolonga et al. 2013.

- ► Assumes *f* varies only along a low dimensional subspace.
- Perform BO on a low dimensional subspace.
- Assumption too strong in realistic settings.

Structural assumption:

$$f(x) = f^{(1)}(x^{(1)}) + f^{(2)}(x^{(2)}) + \dots + f^{(M)}(x^{(M)}).$$

$$x^{(j)} \in \mathcal{X}^{(j)} = [0, 1]^d, \qquad d \ll D, \qquad x^{(i)} \cap x^{(j)} = \varnothing.$$

Structural assumption:

$$f(x) = f^{(1)}(x^{(1)}) + f^{(2)}(x^{(2)}) + \dots + f^{(M)}(x^{(M)}).$$

$$x^{(j)} \in \mathcal{X}^{(j)} = [0, 1]^d, \qquad d \ll D, \qquad x^{(i)} \cap x^{(j)} = \varnothing.$$

E.g.
$$f(x_{\{1,...,10\}}) = f^{(1)}(x_{\{1,3,9\}}) + f^{(2)}(x_{\{2,4,8\}}) + f^{(3)}(x_{\{5,6,10\}})$$
.

Call
$$\{X^{(j)}_{j=1}^M\} = \{(1,3,9), (2,4,8), (5,6,10)\}$$
 the "decomposition".

Structural assumption:

$$f(x) = f^{(1)}(x^{(1)}) + f^{(2)}(x^{(2)}) + \dots + f^{(M)}(x^{(M)}).$$

$$x^{(j)} \in \mathcal{X}^{(j)} = [0, 1]^d, \qquad d \ll D, \qquad x^{(i)} \cap x^{(j)} = \varnothing.$$

Assume each $f^{(j)} \sim \mathcal{GP}(\mathbf{0}, \kappa^{(j)})$. Then $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$ where,

$$\kappa(x, x') = \kappa^{(1)}(x^{(1)}, x^{(1)'}) + \dots + \kappa^{(M)}(x^{(M)}, x^{(M)'}).$$

Structural assumption:

$$f(x) = f^{(1)}(x^{(1)}) + f^{(2)}(x^{(2)}) + \dots + f^{(M)}(x^{(M)}).$$

$$x^{(j)} \in \mathcal{X}^{(j)} = [0, 1]^d, \qquad d \ll D, \qquad x^{(i)} \cap x^{(j)} = \varnothing.$$

Assume each $f^{(j)} \sim \mathcal{GP}(\mathbf{0}, \kappa^{(j)})$. Then $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$ where,

$$\kappa(x,x') = \kappa^{(1)}(x^{(1)},x^{(1)'}) + \dots + \kappa^{(M)}(x^{(M)},x^{(M)'}).$$

Given
$$(X, Y) = \{(x_i, y_i)_{i=1}^T\}$$
, and test point x_{\dagger} ,
$$f^{(j)}(x_{\downarrow}^{(j)})|X, Y \sim \mathcal{N}(\mu^{(j)}, \sigma^{(j)^2}).$$

Outline

- 1. GP-UCB
- 2. The Add-GP-UCB algorithm
 - ▶ Bounds on S_T : exponential in D o linear in D.
 - ► An easy-to-optimise acquisition function.
 - ▶ Performs well even when *f* is not additive.
- 3. Experiments
- 4. Conclusion & some open questions

GP-UCB

$$\mathbf{x}_t = \operatorname*{argmax}_{x \in \mathcal{X}} \mu_{t-1}(x) + \beta_t^{1/2} \sigma_{t-1}(x)$$

GP-UCB

$$\mathbf{x}_t = \operatorname*{argmax}_{\mathbf{x} \in \mathcal{X}} \mu_{t-1}(\mathbf{x}) + \beta_t^{1/2} \sigma_{t-1}(\mathbf{x})$$

Squared Exponential Kernel

$$\kappa(x, x') = A \exp\left(\frac{\|x - x'\|^2}{2h^2}\right)$$

Theorem (Srinivas et al. 2010)

Let $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$. Then w.h.p,

$$S_T \in \mathcal{O}\left(\sqrt{rac{D^D(\log T)^D}{T}}
ight).$$

GP-UCB on additive κ

If $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$ where

$$\kappa(x,x') = \kappa^{(1)}(x^{(1)},x^{(1)'}) + \cdots + \kappa^{(M)}(x^{(M)},x^{(M)'}).$$

 $\kappa^{(j)} \to \mathsf{SE} \mathsf{ Kernel}.$

GP-UCB on additive κ

If $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$ where

$$\kappa(x,x') = \kappa^{(1)}(x^{(1)},x^{(1)'}) + \cdots + \kappa^{(M)}(x^{(M)},x^{(M)'}).$$

 $\kappa^{(j)} \to \mathsf{SE} \; \mathsf{Kernel}.$

Can be shown: If each $\kappa^{(j)}$ is a SE kernel,

$$S_T \in \mathcal{O}\left(\sqrt{rac{D^2 d^d (\log T)^d}{T}}\right).$$

GP-UCB on additive κ

If $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$ where

$$\kappa(x,x') = \kappa^{(1)}(x^{(1)},x^{(1)'}) + \cdots + \kappa^{(M)}(x^{(M)},x^{(M)'}).$$

 $\kappa^{(j)} \to \mathsf{SE} \; \mathsf{Kernel}.$

Can be shown: If each $\kappa^{(j)}$ is a SE kernel,

$$S_T \in \mathcal{O}\left(\sqrt{rac{D^2 d^d (\log T)^d}{T}}\right).$$

But $\varphi_t = \mu_{t-1} + \beta_t^{1/2} \sigma_{t-1}$ is *D*-dimensional!

Add-GP-UCB

$$\widetilde{\varphi}_t(x) = \sum_{j=1}^M \mu_{t-1}^{(j)}(x) + \beta_t^{1/2} \sigma_{t-1}^{(j)}(x^{(j)}).$$

Add-GP-UCB

$$\widetilde{\varphi}_t(x) = \sum_{j=1}^{M} \underbrace{\mu_{t-1}^{(j)}(x) + \beta_t^{1/2} \sigma_{t-1}^{(j)}(x^{(j)})}_{\widetilde{\varphi}_t^{(j)}(x^{(j)})}.$$

Maximise each $\widetilde{\varphi}_t^{(j)}$ separately.

Requires only $\mathcal{O}(\text{poly}(D)\zeta^{-d})$ effort (vs $\mathcal{O}(\zeta^{-D})$ for **GP-UCB**).

Add-GP-UCB

$$\widetilde{\varphi}_t(x) = \sum_{j=1}^{M} \underbrace{\mu_{t-1}^{(j)}(x) + \beta_t^{1/2} \sigma_{t-1}^{(j)}(x^{(j)})}_{\widetilde{\varphi}_t^{(j)}(x^{(j)})}.$$

Maximise each $\widetilde{\varphi}_t^{(j)}$ separately.

Requires only $\mathcal{O}(\text{poly}(D)\zeta^{-d})$ effort (vs $\mathcal{O}(\zeta^{-D})$ for **GP-UCB**).

Theorem

Let $f^{(j)} \sim \mathcal{GP}(\mathbf{0}, \kappa^{(j)})$ and $f = \sum_j f^{(j)}$. Then w.h.p,

$$S_T \in \mathcal{O}\left(\sqrt{rac{D^2 d^d (\log T)^d}{T}}\right).$$

Summary of Theoretical Results (for SE Kernel)

GP-UCB with no assumption on f:

$$S_T \in \mathcal{O}\left(D^{D/2}(\log T)^{D/2}T^{-1/2}\right)$$

GP-UCB on additive f:

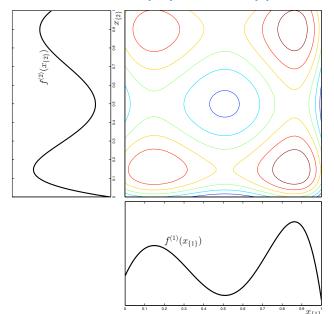
$$S_T \in \mathcal{O}\Big({\stackrel{\mathsf{D}}{\mathsf{D}}} T^{-1/2} \Big)$$

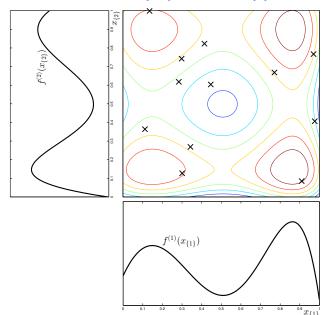
Maximising φ_t : $\mathcal{O}(\zeta^{-D})$ effort.

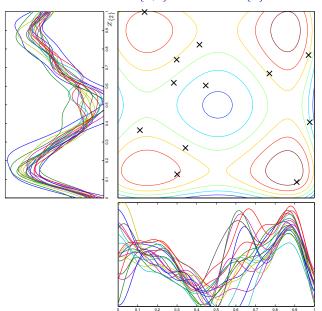
Add-GP-UCB on additive f:

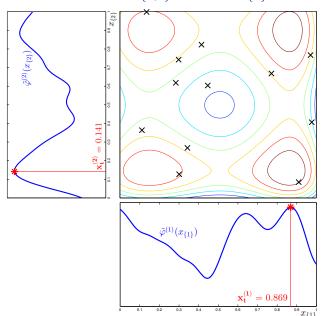
$$S_T \in \mathcal{O}\left(\frac{\mathsf{D}}{\mathsf{T}} T^{-1/2} \right)$$

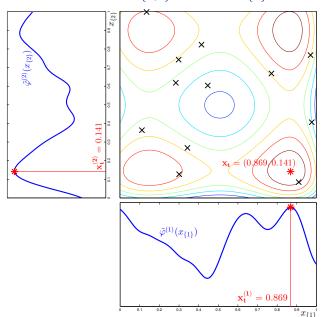
Maximising $\widetilde{\varphi}_t$: $\mathcal{O}(\text{poly}(D)\zeta^{-d})$ effort.











Additive models common in high dimensional regression. E.g.: Backfitting, MARS, COSSO, RODEO, SpAM etc. $f(x_{\{1,...,D\}}) = f(x_{\{1\}}) + f(x_{\{2\}}) + \cdots + f(x_{\{D\}})$.

- Additive models common in high dimensional regression. E.g.: Backfitting, MARS, COSSO, RODEO, SpAM etc. $f(x_{\{1,...,D\}}) = f(x_{\{1\}}) + f(x_{\{2\}}) + \cdots + f(x_{\{D\}})$.
- ▶ Additive models are *statistically* simpler ⇒ worse bias, but much better variance in low sample regime.

- Additive models common in high dimensional regression. E.g.: Backfitting, MARS, COSSO, RODEO, SpAM etc. $f(x_{\{1,...,D\}}) = f(x_{\{1\}}) + f(x_{\{2\}}) + \cdots + f(x_{\{D\}})$.
- ▶ Additive models are *statistically* simpler ⇒ worse bias, but much better variance in low sample regime.
- In BO applications queries are expensive. So we usually cannot afford many queries.

- Additive models common in high dimensional regression. E.g.: Backfitting, MARS, COSSO, RODEO, SpAM etc. $f(x_{\{1,...,D\}}) = f(x_{\{1\}}) + f(x_{\{2\}}) + \cdots + f(x_{\{D\}})$.
- ▶ Additive models are *statistically* simpler ⇒ worse bias, but much better variance in low sample regime.
- In BO applications queries are expensive. So we usually cannot afford many queries.

Observation:

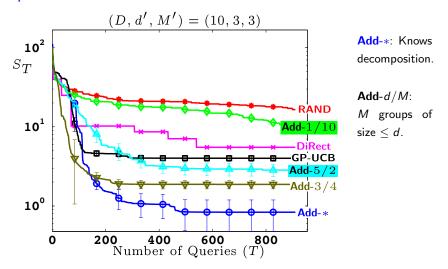
Add-GP-UCB does well even when f is not additive.

- ▶ Better bias/ variance trade-off in high dimensional regression.
- ▶ Easy to maximise acquisition function.

Unknown Kernel/ Decomposition in practice

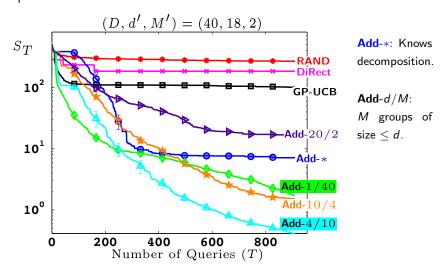
Learn kernel hyper-parameters and decomposition $\{\mathcal{X}_j\}$ by maximising GP marginal likelihood periodically.

Experiments



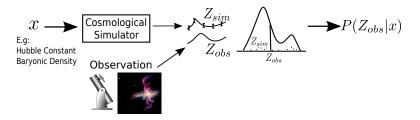
Use **1000** DiRect evaluations to maximise acquisition function. DiRect: **Di**viding **Rect**angles (Jones et al. 1993)

Experiments



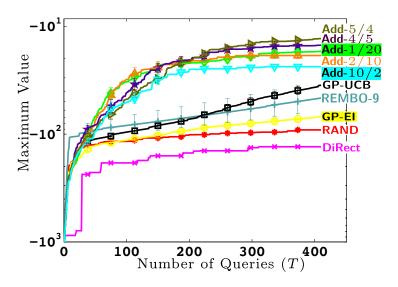
Use **4000** DiRect evaluations to maximise acquisition function.

SDSS Luminous Red Galaxies



- ► **Task:** Find maximum likelihood cosmological parameters.
- ▶ 20 Dimensions. But only 9 parameters are relevant.
- Each query takes 2-5 seconds.
- ▶ Use 500 DiRect evaluations to maximise acquisition function.

SDSS Luminous Red Galaxies

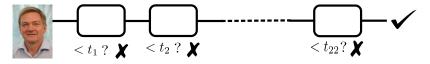


REMBO: (Wang et al. 2013)

Viola & Jones Face Detection

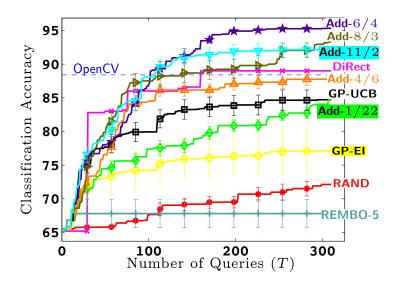
A cascade of 22 weak classifiers.

Image classified negative if the score < threshold at any stage.



- ► Task: Find optimal threshold values on a training set of 1000 images.
- 22 dimensions.
- Each query takes 30-40 seconds.
- ▶ Use 1000 DiRect evaluations to maximise acquisition function.

Viola & Jones Face Detection



- Additive assumption improves regret: exponential in $D \rightarrow linear$ in D.
- Acquisition function is easy to maximise.
- Even for non-additive f is not additive, Add-GP-UCB does well in practice.

- Additive assumption improves regret: exponential in $D \rightarrow linear$ in D.
- Acquisition function is easy to maximise.
- Even for non-additive f is not additive, Add-GP-UCB does well in practice.
- Similar results hold for Matérn kernels and in bandit setting.

- Additive assumption improves regret: exponential in $D \rightarrow linear$ in D.
- Acquisition function is easy to maximise.
- Even for non-additive f is not additive, Add-GP-UCB does well in practice.
- Similar results hold for Matérn kernels and in bandit setting.

Some open questions:

- ▶ How to choose (d, M)?
- Can we generalise to other acquisition functions?

- Additive assumption improves regret: exponential in $D \rightarrow linear$ in D.
- Acquisition function is easy to maximise.
- Even for non-additive f is not additive, Add-GP-UCB does well in practice.
- Similar results hold for Matérn kernels and in bandit setting.

Some open questions:

- ▶ How to choose (d, M)?
- Can we generalise to other acquisition functions?

Code available: github.com/kirthevasank/add-gp-bandits

Jeff's Talk: Friday 2pm @ Van Gogh

Thank You.