High Dimensional Bayesian Optimisation and Bandits via Additive Models

Kirthevasan Kandasamy, Jeff Schneider, Barnabás Póczos

ICML '15
July 82015

Autab

Bandits \& Optimisation

Maximum Likelihood inference in Computational Astrophysics

Bandits \& Optimisation

Maximum Likelihood inference in Computational Astrophysics

Bandits \& Optimisation

Bandits \& Optimisation

$x \rightarrow$ Expensive Blackbox Function

Examples:

Hyper-parameter tuning in ML Optimal control strategy in Robotics

Bandits \& Optimisation

$f:[0,1]^{D} \rightarrow \mathbb{R}$ is an expensive, black-box, nonconvex function.
Let $\mathbf{x}_{*}=\operatorname{argmax}_{x} f(x)$.

Bandits \& Optimisation

$f:[0,1]^{D} \rightarrow \mathbb{R}$ is an expensive, black-box, nonconvex function.
Let $\mathbf{x}_{*}=\operatorname{argmax}_{x} f(x)$.

Bandits \& Optimisation

$f:[0,1]^{D} \rightarrow \mathbb{R}$ is an expensive, black-box, nonconvex function.
Let $\mathbf{x}_{*}=\operatorname{argmax}_{x} f(x)$.

Optimisation \cong Minimise Simple Regret.

$$
S_{T}=f\left(\mathbf{x}_{*}\right)-\max _{\mathbf{x}_{t}, t=1, \ldots, T} f\left(\mathbf{x}_{t}\right) .
$$

Bandits \& Optimisation

$f:[0,1]^{D} \rightarrow \mathbb{R}$ is an expensive, black-box, nonconvex function.
Let $\mathbf{x}_{*}=\operatorname{argmax}_{x} f(x)$.

Bandits \cong Minimise Cumulative Regret.

$$
R_{T}=\sum_{t=1}^{T} f\left(\mathbf{x}_{*}\right)-f\left(\mathbf{x}_{t}\right)
$$

Bandits \& Optimisation

$f:[0,1]^{D} \rightarrow \mathbb{R}$ is an expensive, black-box, nonconvex function.
Let $\mathbf{x}_{*}=\operatorname{argmax}_{x} f(x)$.

Optimisation \cong Minimise Simple Regret.

$$
S_{T}=f\left(\mathbf{x}_{*}\right)-\max _{\mathbf{x}_{t}, t=1, \ldots, T} f\left(\mathbf{x}_{t}\right) .
$$

Gaussian Process (Bayesian) Optimisation

Model $f \sim \mathcal{G} \mathcal{P}(\mathbf{0}, \kappa)$.

Gaussian Process (Bayesian) Optimisation

 Model $f \sim \mathcal{G} \mathcal{P}(\mathbf{0}, \kappa)$.

Obtain posterior GP.

Gaussian Process (Bayesian) Optimisation

Model $f \sim \mathcal{G} \mathcal{P}(\mathbf{0}, \kappa)$.

Maximise acquisition function $\varphi_{t}: \mathbf{x}_{t}=\operatorname{argmax}_{x} \varphi_{t}(x)$.

GP-UCB: $\varphi_{t}(x)=\mu_{t-1}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}(x) \quad$ (Srinivas et al. 2010)

Gaussian Process (Bayesian) Optimisation

Model $f \sim \mathcal{G} \mathcal{P}(\mathbf{0}, \kappa)$.

Maximise acquisition function $\varphi_{t}: \mathbf{x}_{t}=\operatorname{argmax}_{x} \varphi_{t}(x)$.

φ_{t} : Expected Improvement (GP-EI), Thompson Sampling etc.

Scaling to Higher Dimensions

Two Key Challenges:

- Statistical Difficulty:

Nonparametric sample complexity exponential in D.

- Computational Difficulty: Optimising φ_{t} to within ζ accuracy requires $\mathcal{O}\left(\zeta^{-D}\right)$ effort.

Scaling to Higher Dimensions

Two Key Challenges:

- Statistical Difficulty:

Nonparametric sample complexity exponential in D.

- Computational Difficulty:

Optimising φ_{t} to within ζ accuracy requires $\mathcal{O}\left(\zeta^{-D}\right)$ effort.

Existing Work:

- (Chen et al. 2012): f depends on a small number of variables. Find variables and then GP-UCB.
- (Wang et al. 2013): f varies along a lower dimensional subspace. GP-EI on a random subspace.
- (Djolonga et al. 2013): f varies along a lower dimensional subspace. Find subspace and then GP-UCB.

Scaling to Higher Dimensions

Two Key Challenges:

- Statistical Difficulty:

Nonparametric sample complexity exponential in D.

- Computational Difficulty:

Optimising φ_{t} to within ζ accuracy requires $\mathcal{O}\left(\zeta^{-D}\right)$ effort.

Existing Work:
Chen et al. 2012, Wang et al. 2013, Djolonga et al. 2013.

- Assumes f varies only along a low dimensional subspace.
- Perform BO on a low dimensional subspace.
- Assumption too strong in realistic settings.

Additive Functions

Structural assumption:

$$
\begin{gathered}
f(x)=f^{(1)}\left(x^{(1)}\right)+f^{(2)}\left(x^{(2)}\right)+\ldots+f^{(M)}\left(x^{(M)}\right) . \\
x^{(j)} \in \mathcal{X}^{(j)}=[0,1]^{d}, \quad d \ll D, \quad x^{(i)} \cap x^{(j)}=\varnothing .
\end{gathered}
$$

Additive Functions

Structural assumption:

$$
\begin{aligned}
f(x) & =f^{(1)}\left(x^{(1)}\right)+f^{(2)}\left(x^{(2)}\right)+\ldots+f^{(M)}\left(x^{(M)}\right) . \\
x^{(j)} \in \mathcal{X}^{(j)} & =[0,1]^{d}, \quad d \ll D, \quad x^{(i)} \cap x^{(j)}=\varnothing .
\end{aligned}
$$

$$
\text { E.g. } f\left(x_{\{1, \ldots, 10\}}\right)=f^{(1)}\left(x_{\{1,3,9\}}\right)+f^{(2)}\left(x_{\{2,4,8\}}\right)+f^{(3)}\left(x_{\{5,6,10\}}\right) \text {. }
$$

1	2	3	4	5	6	7	8	9	10

Call $\left\{\mathcal{X}^{(j)}{ }_{j=1}^{M}\right\}=\{(1,3,9),(2,4,8),(5,6,10)\}$ the "decomposition".

Additive Functions

Structural assumption:

$$
\begin{gathered}
f(x)=f^{(1)}\left(x^{(1)}\right)+f^{(2)}\left(x^{(2)}\right)+\ldots+f^{(M)}\left(x^{(M)}\right) . \\
x^{(j)} \in \mathcal{X}(j)=[0,1]^{d}, \quad d \ll D, \quad x^{(i)} \cap x^{(j)}=\varnothing .
\end{gathered}
$$

Assume each $\left.f^{(j)} \sim \mathcal{G P} \mathcal{(} \mathbf{0}, \kappa^{(j)}\right)$. Then $f \sim \mathcal{G} \mathcal{P}(\mathbf{0}, \kappa)$ where,

$$
\kappa\left(x, x^{\prime}\right)=\kappa^{(1)}\left(x^{(1)}, x^{(1)^{\prime}}\right)+\cdots+\kappa^{(M)}\left(x^{(M)}, x^{(M)^{\prime}}\right) .
$$

Additive Functions

Structural assumption:

$$
\begin{aligned}
f(x) & =f^{(1)}\left(x^{(1)}\right)+f^{(2)}\left(x^{(2)}\right)+\ldots+f^{(M)}\left(x^{(M)}\right) . \\
x^{(j)} \in \mathcal{X}(j) & =[0,1]^{d}, \quad d \ll D, \quad x^{(i)} \cap x^{(j)}=\varnothing .
\end{aligned}
$$

Assume each $\left.f^{(j)} \sim \mathcal{G P} \mathcal{(} \mathbf{0}, \kappa^{(j)}\right)$. Then $f \sim \mathcal{G} \mathcal{P}(\mathbf{0}, \kappa)$ where,

$$
\kappa\left(x, x^{\prime}\right)=\kappa^{(1)}\left(x^{(1)}, x^{(1)^{\prime}}\right)+\cdots+\kappa^{(M)}\left(x^{(M)}, x^{(M)^{\prime}}\right) .
$$

Given $(X, Y)=\left\{\left(x_{i}, y_{i}\right)_{i=1}^{T}\right\}$, and test point x_{\dagger},

$$
f^{(j)}\left(x_{\dagger}^{(j)}\right) \mid X, Y \sim \mathcal{N}\left(\mu^{(j)}, \sigma^{(j)^{2}}\right)
$$

Outline

1. GP-UCB
2. The Add-GP-UCB algorithm

- Bounds on S_{T} : exponential in $D \rightarrow$ linear in D.
- An easy-to-optimise acquisition function.
- Performs well even when f is not additive.

3. Experiments
4. Conclusion \& some open questions

GP-UCB

$$
\mathbf{x}_{t}=\underset{x \in \mathcal{X}}{\operatorname{argmax}} \mu_{t-1}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}(x)
$$

GP-UCB

$$
\mathbf{x}_{t}=\underset{x \in \mathcal{X}}{\operatorname{argmax}} \mu_{t-1}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}(x)
$$

Squared Exponential Kernel

$$
\kappa\left(x, x^{\prime}\right)=A \exp \left(\frac{\left\|x-x^{\prime}\right\|^{2}}{2 h^{2}}\right)
$$

Theorem (Srinivas et al. 2010)
Let $f \sim \mathcal{G P}(\mathbf{0}, \kappa)$. Then w.h.p,

$$
S_{T} \in \mathcal{O}\left(\sqrt{\frac{D^{D}(\log T)^{D}}{T}}\right) .
$$

GP-UCB on additive κ

If $f \sim \mathcal{G P}(\mathbf{0}, \kappa)$ where

$$
\kappa\left(x, x^{\prime}\right)=\kappa^{(1)}\left(x^{(1)}, x^{(1)^{\prime}}\right)+\cdots+\kappa^{(M)}\left(x^{(M)}, x^{(M)^{\prime}}\right) .
$$

$\kappa^{(j)} \rightarrow$ SE Kernel.

GP-UCB on additive κ

If $f \sim \mathcal{G P}(\mathbf{0}, \kappa)$ where

$$
\kappa\left(x, x^{\prime}\right)=\kappa^{(1)}\left(x^{(1)}, x^{(1)^{\prime}}\right)+\cdots+\kappa^{(M)}\left(x^{(M)}, x^{(M)^{\prime}}\right) .
$$

$\kappa^{(j)} \rightarrow$ SE Kernel.

Can be shown: If each $\kappa^{(j)}$ is a SE kernel,

$$
S_{T} \in \mathcal{O}\left(\sqrt{\frac{D^{2} d^{d}(\log T)^{d}}{T}}\right)
$$

GP-UCB on additive κ

If $f \sim \mathcal{G P}(\mathbf{0}, \kappa)$ where

$$
\kappa\left(x, x^{\prime}\right)=\kappa^{(1)}\left(x^{(1)}, x^{(1)^{\prime}}\right)+\cdots+\kappa^{(M)}\left(x^{(M)}, x^{(M)^{\prime}}\right) .
$$

$\kappa^{(j)} \rightarrow$ SE Kernel.

Can be shown: If each $\kappa^{(j)}$ is a SE kernel,

$$
S_{T} \in \mathcal{O}\left(\sqrt{\frac{D^{2} d^{d}(\log T)^{d}}{T}}\right) .
$$

But $\varphi_{t}=\mu_{t-1}+\beta_{t}^{1 / 2} \sigma_{t-1}$ is D-dimensional !

Add-GP-UCB

$$
\widetilde{\varphi}_{t}(x)=\sum_{j=1}^{M} \mu_{t-1}^{(j)}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}^{(j)}\left(x^{(j)}\right)
$$

Add-GP-UCB

$$
\widetilde{\varphi}_{t}(x)=\sum_{j=1}^{M} \underbrace{\mu_{t-1}^{(j)}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}^{(j)}\left(x^{(j)}\right)}_{\widetilde{\varphi}_{t}^{(j)}\left(x^{(j)}\right)}
$$

Maximise each $\widetilde{\varphi}_{t}^{(j)}$ separately.
Requires only $\mathcal{O}\left(\operatorname{poly}(D) \zeta^{-d}\right)$ effort $\quad\left(\right.$ vs $\mathcal{O}\left(\zeta^{-D}\right)$ for GP-UCB).

Add-GP-UCB

$$
\widetilde{\varphi}_{t}(x)=\sum_{j=1}^{M} \underbrace{\mu_{t-1}^{(j)}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}^{(j)}\left(x^{(j)}\right)}_{\widetilde{\varphi}_{t}^{(j)}\left(x^{(j)}\right)}
$$

Maximise each $\widetilde{\varphi}_{t}^{(j)}$ separately.
Requires only $\mathcal{O}\left(\operatorname{poly}(D) \zeta^{-d}\right)$ effort $\quad\left(\right.$ vs $\mathcal{O}\left(\zeta^{-D}\right)$ for GP-UCB).

Theorem

Let $f^{(j)} \sim \mathcal{G} \mathcal{P}\left(\mathbf{0}, \kappa^{(j)}\right)$ and $f=\sum_{j} f^{(j)}$. Then w.h.p,

$$
S_{T} \in \mathcal{O}\left(\sqrt{\frac{D^{2} d^{d}(\log T)^{d}}{T}}\right)
$$

Summary of Theoretical Results (for SE Kernel)

GP-UCB with no assumption on f :

$$
S_{T} \in \mathcal{O}\left(D^{D / 2}(\log T)^{D / 2} T^{-1 / 2}\right)
$$

GP-UCB on additive f :

$$
S_{T} \in \mathcal{O}\left(D T^{-1 / 2}\right)
$$

Maximising $\varphi_{t}: \mathcal{O}\left(\zeta^{-D}\right)$ effort.

Add-GP-UCB on additive f :

$$
S_{T} \in \mathcal{O}\left(D T^{-1 / 2}\right)
$$

Maximising $\widetilde{\varphi}_{t}: \mathcal{O}\left(\operatorname{poly}(D) \zeta^{-d}\right)$ effort.

Add-GP-UCB $\quad f\left(x_{\{1,2\}}\right)=f^{(1)}\left(x_{\{1\}}\right)+f^{(2)}\left(x_{\{2\}}\right)$

Add-GP-UCB $\quad f\left(x_{\{1,2\}}\right)=f^{(1)}\left(x_{\{1\}}\right)+f^{(2)}\left(x_{\{2\}}\right)$

Add-GP-UCB $\quad f\left(x_{\{1,2\}}\right)=f^{(1)}\left(x_{\{1\}}\right)+f^{(2)}\left(x_{\{2\}}\right)$

Add-GP-UCB $\quad f\left(x_{\{1,2\}}\right)=f^{(1)}\left(x_{\{1\}}\right)+f^{(2)}\left(x_{\{2\}}\right)$

Add-GP-UCB $\quad f\left(x_{\{1,2\}}\right)=f^{(1)}\left(x_{\{1\}}\right)+f^{(2)}\left(x_{\{2\}}\right)$

Additive modeling in non-additive settings

- Additive models common in high dimensional regression. E.g.: Backfitting, MARS, COSSO, RODEO, SpAM etc. $f\left(x_{\{1, \ldots, D\}}\right)=f\left(x_{\{1\}}\right)+f\left(x_{\{2\}}\right)+\cdots+f\left(x_{\{D\}}\right)$.

Additive modeling in non-additive settings

- Additive models common in high dimensional regression. E.g.: Backfitting, MARS, COSSO, RODEO, SpAM etc. $f\left(x_{\{1, \ldots, D\}}\right)=f\left(x_{\{1\}}\right)+f\left(x_{\{2\}}\right)+\cdots+f\left(x_{\{D\}}\right)$.
- Additive models are statistically simpler \Longrightarrow worse bias, but much better variance in low sample regime.

Additive modeling in non-additive settings

- Additive models common in high dimensional regression. E.g.: Backfitting, MARS, COSSO, RODEO, SpAM etc. $f\left(x_{\{1, \ldots, D\}}\right)=f\left(x_{\{1\}}\right)+f\left(x_{\{2\}}\right)+\cdots+f\left(x_{\{D\}}\right)$.
- Additive models are statistically simpler \Longrightarrow worse bias, but much better variance in low sample regime.
- In BO applications queries are expensive. So we usually cannot afford many queries.

Additive modeling in non-additive settings

- Additive models common in high dimensional regression. E.g.: Backfitting, MARS, COSSO, RODEO, SpAM etc. $f\left(x_{\{1, \ldots, D\}}\right)=f\left(x_{\{1\}}\right)+f\left(x_{\{2\}}\right)+\cdots+f\left(x_{\{D\}}\right)$.
- Additive models are statistically simpler \Longrightarrow worse bias, but much better variance in low sample regime.
- In BO applications queries are expensive. So we usually cannot afford many queries.
- Observation:

Add-GP-UCB does well even when f is not additive.

- Better bias/ variance trade-off in high dimensional regression.
- Easy to maximise acquisition function.

Unknown Kernel/ Decomposition in practice

Learn kernel hyper-parameters and decomposition $\left\{\mathcal{X}_{j}\right\}$ by maximising GP marginal likelihood periodically.

Experiments

Add-*: Knows decomposition.

Add-d/M:
M groups of
size $\leq d$.

Use 1000 DiRect evaluations to maximise acquisition function. DiRect: Dividing Rectangles (Jones et al. 1993)

Experiments

Use 4000 DiRect evaluations to maximise acquisition function.

SDSS Luminous Red Galaxies

- Task: Find maximum likelihood cosmological parameters.
- 20 Dimensions. But only 9 parameters are relevant.
- Each query takes 2-5 seconds.
- Use 500 DiRect evaluations to maximise acquisition function.

SDSS Luminous Red Galaxies

REMBO: (Wang et al. 2013)

Viola \& Jones Face Detection

A cascade of 22 weak classifiers. Image classified negative if the score $<$ threshold at any stage.

- Task: Find optimal threshold values on a training set of 1000 images.
- 22 dimensions.
- Each query takes 30-40 seconds.
- Use 1000 DiRect evaluations to maximise acquisition function.

Viola \& Jones Face Detection

Summary

- Additive assumption improves regret: exponential in $D \rightarrow$ linear in D.
- Acquisition function is easy to maximise.
- Even for non-additive f is not additive, Add-GP-UCB does well in practice.

Summary

- Additive assumption improves regret: exponential in $D \rightarrow$ linear in D.
- Acquisition function is easy to maximise.
- Even for non-additive f is not additive, Add-GP-UCB does well in practice.
- Similar results hold for Matérn kernels and in bandit setting.

Summary

- Additive assumption improves regret: exponential in $D \rightarrow$ linear in D.
- Acquisition function is easy to maximise.
- Even for non-additive f is not additive, Add-GP-UCB does well in practice.
- Similar results hold for Matérn kernels and in bandit setting.

Some open questions:

- How to choose (d, M) ?
- Can we generalise to other acquisition functions?

Summary

- Additive assumption improves regret: exponential in $D \rightarrow$ linear in D.
- Acquisition function is easy to maximise.
- Even for non-additive f is not additive, Add-GP-UCB does well in practice.
- Similar results hold for Matérn kernels and in bandit setting.

Some open questions:

- How to choose (d, M) ?
- Can we generalise to other acquisition functions?

Code available: github.com/kirthevasank/add-gp-bandits Jeff's Talk: Friday 2pm @ Van Gogh

Thank You.

