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Bandits & Optimisation

Maximum Likelihood inference in Computational Astrophysics
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Bandits & Optimisation

T —p

Expensive Blackbox
Function

Examples:
Hyper-parameter tuning in ML
Optimal control strategy in Robotics
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Bandits & Optimisation

f:]o, 1]D — R is an expensive, black-box, nonconvex function.

Let x, = argmax, f(x).

f(@)

fla)
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Bandits & Optimisation

f:]o, 1]D — R is an expensive, black-box, nonconvex function.
Let x, = argmax, f(x).

f(z)

0 0.‘1 0.‘2 0.‘3 0‘4 0‘5 0‘6 0‘7 O‘B O‘S 1
Bandits = Minimise Cumulative Regret.

N
Rr = f(x.) — f(x).
t=1
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Bandits & Optimisation

f:]o, 1]D — R is an expensive, black-box, nonconvex function.
Let x, = argmax, f(x).
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Gaussian Process (Bayesian) Optimisation
Model f ~ GP(0, k).
A a—
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Gaussian Process (Bayesian) Optimisation
Model f ~ GP(0, k).
fa)

Obtain posterior GP.
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Gaussian Process (Bayesian) Optimisation
Model f ~ GP(0, k).
fa)

Maximise acquisition function @:: x; = argmax, @¢(x).
e

x¢ = 0.828

GP-UCB: ¢:(x) = pre—1(x) + ﬂ:/zat_l(x) (Srinivas et al. 2010)
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Gaussian Process (Bayesian) Optimisation
Model f ~ GP(0, k).
fa)

Maximise acquisition function @:: x; = argmax, @¢(x).
e

x¢ = 0.828

-
@+ Expected Improvement (GP-EI), Thompson Sampling etc.
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Scaling to Higher Dimensions

Two Key Challenges:

» Statistical Difficulty:
Nonparametric sample complexity exponential in D.

» Computational Difficulty:
Optimising ¢; to within ¢ accuracy requires O(¢~P) effort.
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Scaling to Higher Dimensions

Two Key Challenges:

» Statistical Difficulty:
Nonparametric sample complexity exponential in D.

» Computational Difficulty:
Optimising ¢; to within ¢ accuracy requires O(¢~P) effort.

Existing Work:
» (Chen et al. 2012): f depends on a small number of variables.
Find variables and then GP-UCB.
» (Wang et al. 2013): f varies along a lower dimensional
subspace. GP-EIl on a random subspace.
> (Djolonga et al. 2013): f varies along a lower dimensional
subspace. Find subspace and then GP-UCB.
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Scaling to Higher Dimensions

Two Key Challenges:

» Statistical Difficulty:
Nonparametric sample complexity exponential in D.

» Computational Difficulty:

Optimising ¢; to within ¢ accuracy requires O(¢~P) effort.

Existing Work:
Chen et al. 2012, Wang et al. 2013, Djolonga et al. 2013.
» Assumes f varies only along a low dimensional subspace.

» Perform BO on a low dimensional subspace.

» Assumption too strong in realistic settings.
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Additive Functions

Structural assumption:
F(x) = FOD) + FA@Y) 4 4 (M),

xU) e x0) =10,1)¢, d < D, x A xU) =g,
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Additive Functions

Structural assumption:

xW e x0) =0,1]9,

d< D, x) N xt) = &.

N > e ¢
Call {X(f)jl\il} ={(1,3,9),(2,4,8),(5,6,10)} the “decomposition”
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Additive Functions

Structural assumption:
f(x) = f(l)(X(l)) + f(2)(x(2)) + ...+ f(M)(X(M)).

x) e xU) =10,1]¢, d < D, XD A x0) = &

Assume each fU) ~ GP(0,xY)). Then f ~ GP(0, k) where,
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Additive Functions

Structural assumption:
f(x) = f(l)(X(l)) + f(2)(x(2)) + ...+ f(M)(X(M)).

x) e xU) =10,1]¢, d < D, XD A x0) = &

Assume each fU) ~ GP(0,xY)). Then f ~ GP(0, k) where,

Given (X, Y) = {(x;,yi)_,}, and test point x,

FOIIX, Y ~ N (0,007,
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Outline

[y

. GP-UCB
. The Add-GP-UCB algorithm

N

» Bounds on Sr: exponential in D — linear in D.
» An easy-to-optimise acquisition function.

» Performs well even when f is not additive.

w

. Experiments

4. Conclusion & some open questions
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GP-UCB

1/2
x; = argmax jie_1(x) + B 20¢_1(x)
xeX
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GP-UCB

1/2
X; = argmax p—1(x) + ﬂt/ or—1(x)
X€
Squared Exponential Kernel

k(x,x") = Aexp (”X

— x|
2h?

«O>» 4F» «=Er « =) =

DA
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GP-UCB on additive &

If f ~GP(0,k) where
r(x, x') = kM (xM), X(l)/) b M) (M), x(M)/),

xkU) — SE Kernel.
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GP-UCB on additive &

If £ ~ GP(0, k) where

k(x,x') = /4;(1)(X(1),X(1)/) .
K](J) — SE Kernel.

o /(M) (M) (M)

Da
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GP-UCB on additive &

If f ~GP(0,k) where

K,(X, X/) = H(l)(X(l),X(l)/) +
xU) — SE Kernel.

e M) (M) (M)

But ¢; = pe—1 + 5:/2015_1 is D-dimensional !

«0O)>» «Fr «=>»

« =

DA
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Add-GP-UCB

M
5e00) = S 1 (x) + 820D (xV)).
j=1
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Add-GP-UCB

Zut, )+ 820D (x0).
Pt (X(j))

h V)

Maximise eac separately.

Requires only O(poly(D)(~9) effort  (vs O(¢~P) for GP-UCB).
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Add-GP-UCB

ZMF )+ 81209 (xV)).

30 (x0)

()

Maximise each ¢;’ separately.

Requires only O(poly(D)(~9) effort  (vs O(¢~P) for GP-UCB).

Theorem
Let f0) ~ GP(0,5¥) and f =Y ; fU). Then w.h.p,

24d d
STGO( M)
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Summary of Theoretical Results (for SE Kernel)

GP-UCB with no assumption on f:
Sy e O(DD/2(|og T)P2 12 )

GP-UCB on additive f:
Sy e O(DT‘1/2>

Maximising ¢, :  O(¢P) effort.

Add-GP-UCB on additive f:
Sre O(DT—1/2 )

Maximising @; :  O(poly(D)¢™9) effort.
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Add-GP-UCB  f(

X{1,2}

) _ f(l)(x{l}) + f(z)(X{Q})
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Add-GP-UCB f(x{lg})—f( )(X{l})+f /(x21)

Ty

O (zy)

“rpy
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Add-GP-UCB f(X{l,z}) _ f(l)(x{l}) + f(2)(X{2})

WT{Q)‘
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Add-GP-UCB  f(x(12)) = f(”(X{l}) + )
- R . \

)
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Xt” = 0.869
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Add-GP-UCB  f(x(14) = fO(x))

_|_ f(2) (X{Z})

Ty

TN
\

x{" = 0.869

T
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Additive modeling in non-additive settings

> Additive models common in high dimensional regression.
E.g.: Backfitting, MARS, COSSO, RODEO, SpAM etc.

f(xq1,..0y) = f(xqy) + fxy) + - + F(xpy)-
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Additive modeling in non-additive settings

> Additive models common in high dimensional regression.
E.g.: Backfitting, MARS, COSSO, RODEO, SpAM etc.

f(xq1,..0y) = f(xqy) + fxy) + - + F(xpy)-

» Additive models are statistically simpler = worse bias, but
much better variance in low sample regime.

» In BO applications queries are expensive. So we usually
cannot afford many queries.

» Observation:
Add-GP-UCB does well even when f is not additive.

» Better bias/ variance trade-off in high dimensional regression.

» Easy to maximise acquisition function.
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Unknown Kernel/ Decomposition in practice

Learn kernel hyper-parameters and decomposition {X} by
maximising GP marginal likelihood periodically.
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Experiments
(D,d", M) = (10, 3, 3)

10

0 200 400 600 800
Number of Queries (T)

Add-*: Knows

decomposition.

Add-d/M:
M  groups of
size < d.

Use 1000 DiRect evaluations to maximise acquisition function.

DiRect: Dividing Rectangles (Jones et al. 1993)

15/20



Experiments

(D, d", M') = (40, 18, 2)

ST Add-*: Knows
RAND decomposition.
Di‘Rect
2
10 GP-UCB  puq d/M:
l M  groups of
Add-20/2  size < d.
10" . o J
o—o—6—*¢€ Add-*
10° | ¥ Add-10/4
Add-4/10

0 200 400 600 800
Number of Queries (T')

Use 4000 DiRect evaluations to maximise acquisition function.
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SDSS Luminous Red Galaxies

r —> Cosmological

E.g:

Hubble Constant
Baryonic Density

v

v

v

v

Simulator

Observatlon

B

Task: Find maximum likelihood cosmological parameters.

20 Dimensions. But only 9 parameters are relevant.

Each query takes 2-5 seconds.

Use 500 DiRect evaluations to maximise acquisition function.
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SDSS Luminous Red Galaxies

1 T T T T .

|
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o

Maxilmum Value
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o

-1o 0 100 200 300 400
Number of Queries (T')

REMBO: (Wang et al. 2013)
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Viola & Jones Face Detection

A cascade of 22 weak classifiers.

Image classified negative if the score < threshold at any stage.

r

r

aWe <ti? )X <t?X

» Task: Find optimal threshold values on a training set of

1000 images.

» 22 dimensions.

» Each query takes 30-40 seconds.

> Use 1000 DiRect evaluations to maximise acquisition function.
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Viola & Jones Face Detection

Classification Accuracy

100 200 300
Number of Queries (T')
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Summary

» Additive assumption improves regret:
exponential in D — linear in D.

» Acquisition function is easy to maximise.

» Even for non-additive f is not additive, Add-GP-UCB does
well in practice.
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Summary

» Additive assumption improves regret:
exponential in D — linear in D.

» Acquisition function is easy to maximise.

» Even for non-additive f is not additive, Add-GP-UCB does
well in practice.

> Similar results hold for Matérn kernels and in bandit setting.
Some open questions:
» How to choose (d, M)?

» Can we generalise to other acquisition functions?

Code available: github.com/kirthevasank/add-gp-bandits
Jeff's Talk: Friday 2pm @ Van Gogh
Thank You.
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