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Black-box Optimisation

Expensive Blackbox
          Function

Examples:
- Hyper-parameter Tuning
- ML estimation in Astrophysics
- Optimal policy in Autonomous Driving
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Black-box Optimisation

f : X → R is an expensive, black-box, noisy function.

Let x? = argmaxx f (x).

x

f(x)

Simple Regret after n evaluations

SR(n) = f (x?) − max
t=1,...,n

f (xt).
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Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Functions with no observations

x

f(x)

After t observations, f (x) ∼ N (µt(x), σ2t (x) ).
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Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Observations

x

f(x)
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Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Posterior GP given observations
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Gaussian Process Bandit (Bayesian) Optimisation

Model f ∼ GP(0, κ).

Several criteria for picking next point:
GP-UCB (Srinivas et al. 2010), GP-EI (Mockus & Mockus, 1991).

x

f(x)

1) Compute posterior GP. 2) Construct acquisition ϕt .

3) Choose xt = argmaxx ϕt(x). 4) Evaluate f at xt .
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This work: Parallel Evaluations

Sequential evaluations with one worker

jth job has feedback
from all previous j − 1

evaluations.

Parallel evaluations with M workers (Asynchronous)

jth job missing feedback
from exactly M − 1

evaluations.

Parallel evaluations with M workers (Synchronous)

jth job missing feedback
from ≤ M − 1
evaluations.
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Challenges in parallel BO: encouraging diversity

Direct application of UCB in the synchronous setting . . .

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

xt1

- First worker: maximise acquisition, xt1 = argmaxϕt(x).

- Second worker: acquisition is the same! xt1 = xt2

- xt1 = xt2 = · · · = xtM .

Direct application of popular (deterministic) strategies, e.g.
GP-UCB, GP-EI, etc. do not work. Need to “encourage diversity”.
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Challenges in parallel BO: encouraging diversity

I Add hallucinated observations.
(Ginsbourger et al. 2011, Janusevkis et al. 2012)

I Optimise an acquisition over XM (e.g. M-product UCB).
( Wang et al 2016, Wu & Frazier 2017 )

I Resort to heuristics, typically requires additional
hyper-parameters and/or computational routines.

(Contal et al. 2013, Gonzalez et al. 2015, Shah & Ghahramani 2015,

Wang et al. 2017, Wang et al. 2018)

Our Approach: Based on Thompson sampling (Thompson, 1933).

I Conceptually simple: does not require explicit diversity
strategies.

I Asynchronicity

I Theoretical guarantees
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GP Optimisation with Thompson Sampling (Thompson, 1933)

x

f(x)

1) Construct posterior GP. 2) Draw sample g from posterior.
3) Choose xt = argmaxx g(x). 4) Evaluate f at xt .

Take-home message: In parallel settings, direct application of
sequential TS algorithm works. Inherent randomness adds
sufficient diversity when managing M workers.
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Parallelised Thompson Sampling

Asynchronous: asyTS

At any given time,
1. (x ′, y ′)← Wait for

a worker to finish.
2. Compute posterior GP.
3. Draw a sample g ∼ GP.

4. Re-deploy worker at
argmax g .

Synchronous: synTS

At any given time,
1. {(x ′m, y ′m)}Mm=1 ← Wait for

all workers to finish.
2. Compute posterior GP.
3. Draw M samples

gm ∼ GP, ∀m.
4. Re-deploy worker m at

argmax gm, ∀m.

Parallel TS in prior work: (Osband et al. 2016, Israelsen et al. 2016,

Hernandez-Lobato et al. 2017)
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Simple Regret in Parallel Settings

Simple regret after n evaluations,

SR(n) = f (x?) − max
t=1,...,n

f (xt).

n← # completed evaluations by all workers.

Simple regret with time as a resource,

Asynchronous Synchronous

SR′(T ) = f (x?) − max
t=1,...,N

f (xt).

N ← # completed evaluations by all workers in time T .
(possibly random).
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Theoretical Results SR(n)

Several results for sequential Thompson sampling (Agrawal et al.

2012, Kaufmann et al. 2012, Russo & van Roy 2016 )

seqTS (Russo & van Roy 2014)

E[SR(n)] .

√
Ψn log(n)

n

Ψn ← Maximum information gain (Srinivas et al. 2010)

GP with SE Kernel in d dimensions, Ψn(X ) � dd log(n)d .

Theorem: synTS (Kandasamy et al. 2018)

E[SR(n)] .
M
√

log(M)

n
+

√
Ψn log(n+M)

n

Theorem: asyTS (Kandasamy et al. 2018)

E[SR(n)] .
Mpolylog(M)

n
+

√
CΨn log(n)

n
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Experiment: Park1-4D M = 10
Comparison in terms of number of evaluations

10 0

asyTS

seqTS
0 20 40 60 80 100 120

synTS
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Theoretical Results for SR′(T )

Model evaluation time as an independent random variable

I Uniform unif(a, b) bounded

I Half-normal HN (τ2) sub-Gaussian

I Exponential exp(λ) sub-exponential

Theorem: TS with M parallel workers (Kandasamy et al. 2018)

If evaluation times are the same, synTS ≈ asyTS.
When there is high variability in evaluation times, asyTS is much
better than synTS.

- Uniform: constant factor

- Half-normal:
√

log(M) factor

- Exponential: log(M) factor
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Experiment: Hartmann-18D M = 25
Evaluation time sampled from an exponential distribution

synRAND
synHUCB
synUCBPE
synTS
asyRAND
asyUCB
asyHUCB
asyEI
asyHTS
asyTS

0 5 10 15 20 25 30

2.5

3

3.5

4

4.5

5
5.5

6
6.5

Additional synthetic and real experiments in the paper/poster.
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Summary

I synTS, asyTS: direct application of TS to synchronous and
asynchronous parallel settings.

I Take-aways: Theory

- Both perform essentially the same as seqTS in terms of the
number of evaluations.

- When we factor time as a resource, asyTS performs best.

I Take-aways: Practice

- Conceptually simple and scales better with the number of
workers than other methods.

Thank you
Poster #49, Session 3 (Tuesday evening).

Code: github.com/kirthevasank/gp-parallel-ts
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Appendix



Experiment: Branin-2D M = 4
Evaluation time sampled from a uniform distribution
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Experiment: Branin-2D M = 4
Evaluation time sampled from a uniform distribution
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Experiment: Hartmann-6D M = 12
Evaluation time sampled from a half-normal distribution
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Experiment: Hartmann-18D M = 25
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Experiment: Currin-Exponential-14D M = 35
Evaluation time sampled from a Pareto-3 distribution

synRAND
synHUCB
synUCBPE
synTS
asyRAND
asyUCB
asyHUCB
asyEI
asyHTS
asyTS

0 5 10 15 20
10

15

20

25



Experiment: Model Selection in Cifar10 M = 4

Tune # filters in in range (32, 256) for each layer in a 6 layer CNN.
Time taken for an evaluation: 4 - 16 minutes.

1000 2000 3000 4000 5000 6000 7000

0.68

0.69

0.7

0.71

0.72

synTS
asyRAND
asyHUCB

asyTS
asyEI

synHUCB


