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Black-box Optimisation
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Function

Examples:

- Hyper-parameter Tuning

- ML estimation in Astrophysics

- Optimal policy in Autonomous Driving
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Black-box Optimisation

f: X — R is an expensive, black-box, noisy function.

f(x)
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Black-box Optimisation

f: X — R is an expensive, black-box, noisy function.
Let x, = argmax, f(x).
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Black-box Optimisation

f: X — R is an expensive, black-box, noisy function.
Let x, = argmax, f(x).

f(x)

Simple Regret after n evaluations

SR(n) = f(x.) — t:rr}axnf(xt).

-----
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Gaussian Processes (GP)

GP(u, k): A distribution over functions from X" to R.
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Gaussian Processes (GP)

Functions with no observations
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Gaussian Processes (GP)

GP(u, k): A distribution over functions from X" to R.
Prior GP
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Gaussian Processes (GP)

GP(u, k): A distribution over functions from X" to R.
Observations
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Gaussian Processes (GP)

GP(u, k): A distribution over functions from X" to R.

Posterior GP given observations
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Gaussian Processes (GP)

GP(u, k): A distribution over functions from X" to R.

Posterior GP given observations

f(z)

After t observations, f(x) ~ N(u(x), 02(x)).
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Gaussian Process Bandit (Bayesian) Optimisation
Model f ~ GP(0, k).

Several criteria for picking next point:
GP-UCB (Srinivas et al. 2010),  GP-El (Mockus & Mockus, 1991).

f(z)
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1) Compute posterior GP.
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f(z)

x

1) Compute posterior GP. 2) Construct acquisition .

3) Choose x; = argmax, p¢(x).
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Gaussian Process Bandit (Bayesian) Optimisation
Model f ~ GP(0, k).

Several criteria for picking next point:
GP-UCB (Srinivas et al. 2010),  GP-El (Mockus & Mockus, 1991).

f(z) = it Vo T

Lt

A
1) Compute posterior GP. 2) Construct acquisition .

3) Choose x; = argmax, ¢¢(x).  4) Evaluate f at x;.
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This work: Parallel Evaluations
Sequential evaluations with one worker
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This work: Parallel Evaluations

Sequential evaluations with one worker
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This work: Parallel Evaluations

Sequential evaluations with one worker /™ job has feedback

)ivl e B e - from all previous j — 1
Time — evaluations.

Parallel evaluations with M workers (Asynchronous)
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Parallel evaluations with M workers (Synchronous)
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Challenges in parallel BO: encouraging diversity

Direct application of UCB in the synchronous setting ...

f(x) Pr = -1 + ﬁ,”zdr—l /"/

T
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- First worker: maximise acquisition, x;1 = argmax ¢(x).
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Challenges in parallel BO: encouraging diversity

Direct application of UCB in the synchronous setting ...

=
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T
- First worker: maximise acquisition, x;1 = argmax @(x).
- Second worker: acquisition is the same! x;1 = x¢

- Xel = X2 = 00 = XeM-

Direct application of popular (deterministic) strategies, e.g.
GP-UCB, GP-El, etc. do not work. Need to “encourage diversity"”.
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Challenges in parallel BO: encouraging diversity

» Add hallucinated observations.
(Ginsbourger et al. 2011, Janusevkis et al. 2012)
» Optimise an acquisition over XYM (e.g. M-product UCB).

( Wang et al 2016, Wu & Frazier 2017 )
» Resort to heuristics, typically requires additional

hyper-parameters and/or computational routines.
(Contal et al. 2013, Gonzalez et al. 2015, Shah & Ghahramani 2015,

Wang et al. 2017, Wang et al. 2018)
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Challenges in parallel BO: encouraging diversity

» Add hallucinated observations.
(Ginsbourger et al. 2011, Janusevkis et al. 2012)
» Optimise an acquisition over XYM (e.g. M-product UCB).
( Wang et al 2016, Wu & Frazier 2017 )
» Resort to heuristics, typically requires additional

hyper-parameters and/or computational routines.
(Contal et al. 2013, Gonzalez et al. 2015, Shah & Ghahramani 2015,

Wang et al. 2017, Wang et al. 2018)

Our Approach: Based on Thompson sampling (Thompson, 1933).

» Conceptually simple: does not require explicit diversity
strategies.
» Asynchronicity

» Theoretical guarantees
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GP Optimisation with Thompson Sampling  (Thompson, 1933)

f(z)
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1) Construct posterior GP.
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f(z)

T

1) Construct posterior GP. 2) Draw sample g from posterior.
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GP Optimisation with Thompson Sampling  (Thompson, 1933)

f(z)

Ly

T

1) Construct posterior GP. 2) Draw sample g from posterior.
3) Choose x; = argmax, g(x). 4) Evaluate f at x;.

Take-home message: In parallel settings, direct application of
sequential TS algorithm works. Inherent randomness adds
sufficient diversity when managing M workers.
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Parallelised Thompson Sampling

Asynchronous: asyTS

At any given time,

1.

(x',y") < Wait for

a worker to finish.
Compute posterior GP.
Draw a sample g ~ GP.

Re-deploy worker at
argmax g.
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Parallelised Thompson Sampling

Asynchronous: asyTS

Synchronous: synTS

At any given time,

1.

(X', y") « Wait for

a worker to finish.
Compute posterior GP.
Draw a sample g ~ GP.

At any given time,

1.

w P

(O, i) PM_ | Wait for
all workers to finish.
Compute posterior GP.
Draw M samples

gm ~ GP, Vm.

4. Re-deploy worker at 4. Re-deploy worker m at
argmax g. argmax gm, Vm.
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Parallelised Thompson Sampling

Asynchronous: asyTS Synchronous: synTS

At any given time, At any given time,

1. (X, y") «+ Wait for LA, yi) M < Wait for
a worker to finish. all workers to finish.
2. Compute posterior GP. 2. Compute posterior GP.
3. Draw a sample g ~ GP. 3. Draw M samples
gm ~ GP, Vm.
4. Re-deploy worker at 4. Re-deploy worker m at
argmax g. argmax gn,, Vm.
1»1 X! N e 1\.1 4 i
,r.z 0 K R ,i,z =5 ; 8 ;
3 .5 L7 L1 .3 L 16 19 .

Parallel TS in prior work:

(Osband et al. 2016, Israelsen et al. 2016,

Hernandez-Lobato et al. 2017)



Simple Regret in Parallel Settings

Simple regret after n evaluations,

SR(n) = f(x.) — max f(xt).

n < # completed evaluations by all workers.
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Simple Regret in Parallel Settings

Simple regret after n evaluations,

SR(n) = f(x.) — ,Mmax f(xt).

=1,...,n

n < # completed evaluations by all workers.

Simple regret with time as a resource,

Asynchronous Synchronous
,‘\1 X ‘ 2 P2 ;I\l_| 4 :"
= UREL P
.3 /5 7 L1 3 i 6 . 19 .
1\ ) ) ) Time — 1\ ‘ ‘ Time —

SR(T) = f(x) — max f(xz).

t=1,...,.N

N < # completed evaluations by all workers in time T.
(possibly random).
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Theoretical Results SR(n)

Several results for sequential Thompson sampling (Agrawal et al.
2012, Kaufmann et al. 2012, Russo & van Roy 2016 )
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Theoretical Results SR(n)

Several results for sequential Thompson sampling (Agrawal et al.
2012, Kaufmann et al. 2012, Russo & van Roy 2016 )

seqTS v, Iog(n) (Russo & van Roy 2014)

EISR(n)] S/~

WV, «< Maximum information gain (Srinivas et al. 2010)
GP with SE Kernel in d dimensions, W,(X) < d9log(n)?.
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Experiment: Parkl-4D M

=10
Comparison in terms of number of evaluations
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Theoretical Results for SR'(T)

Model evaluation time as an independent random variable

» Uniform unif(a, b) bounded
» Half-normal HN(72) sub-Gaussian
» Exponential exp()) sub-exponential
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Theoretical Results for SR'(T)

Model evaluation time as an independent random variable

» Uniform unif(a, b) bounded
» Half-normal HN(72) sub-Gaussian
» Exponential exp()) sub-exponential

Theorem: TS with M parallel workers (Kandasamy et al. 2018)

If evaluation times are the same, synTS =~ asyTS.

When there is high variability in evaluation times, asyTS is much
better than synTS.

- Uniform: constant factor

- Half-normal: \/log(M) factor

- Exponential: log(M) factor
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Experiment: Hartmann-18D M = 25

Evaluation time sampled from an exponential distribution

- - -synRAND
- - -synHUCB
4| - - -synUCBPE
-=-=-synTS
——asyRAND
——asyUCB
——asyHUCB
——asyEl
| asyHTS
—asyTS

0 5 10 15 20 25 30
Simulated time units (T")

Additional synthetic and real experiments in the paper/poster.
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Summary

» synTS, asyTS: direct application of TS to synchronous and
asynchronous parallel settings.
> Take-aways: Theory

- Both perform essentially the same as seqTS in terms of the
number of evaluations.

- When we factor time as a resource, asyTS performs best.
» Take-aways: Practice

- Conceptually simple and scales better with the number of
workers than other methods.
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Summary

» synTS, asyTS: direct application of TS to synchronous and
asynchronous parallel settings.

> Take-aways: Theory

- Both perform essentially the same as seqTS in terms of the
number of evaluations.

- When we factor time as a resource, asyTS performs best.

» Take-aways: Practice

- Conceptually simple and scales better with the number of
workers than other methods.

Thank you

Poster #49, Session 3 (Tuesday evening).

Code: github.com/kirthevasank/gp-parallel-ts
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Appendix



Experiment: Branin-2D

Evaluation time sampled from a uniform distribution

M =4
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Experiment: Branin-2D M =4

Evaluation time sampled from a uniform distribution

SR/(T)
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Experiment: Branin-2D

M =4

Evaluation time sampled from a uniform distribution
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Experiment: Hartmann-6D M =12

Evaluation time sampled from a half-normal distribution
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Experiment: Hartmann-18D M =25

Evaluation time sampled from an exponential distribution
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Experiment: Currin-Exponential-14D M = 35

Evaluation time sampled from a Pareto-3 distribution

1= - -synRAND
- - -synHUCB
- - -synUCBPE
-=-=-synTS
——asyRAND
——asyUCB
asyHUCB
——asyEl
asyHTS
——asyTS

25 |

~—~~ 20

SR(T

15 |

10 k . . . ;
0 5 10 15 20
Simulated time units (77)




Experiment: Model Selection in Cifarl0 M =4

Tune # filters in in range (32,256) for each layer in a 6 layer CNN.
Time taken for an evaluation: 4 - 16 minutes.
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