Parallelised Bayesian Optimisation via Thompson Sampling

Kirthevasan Kandasamy

Akshay Krishnamurthy

Jeff Schneider

Barnabás Póczos

AISTATS 2018

 $f: \mathcal{X} \to \mathbb{R}$ is an expensive, black-box, noisy function.

 $f: \mathcal{X} \to \mathbb{R}$ is an expensive, black-box, noisy function.

 $f: \mathcal{X} \to \mathbb{R}$ is an expensive, black-box, noisy function. Let $x_{\star} = \operatorname{argmax}_{\mathbf{x}} f(\mathbf{x})$.

 $f:\mathcal{X} \to \mathbb{R}$ is an expensive, black-box, noisy function. Let $x_\star = \operatorname{argmax}_{\mathsf{x}} f(x)$.

Simple Regret after n evaluations

$$SR(n) = f(x_{\star}) - \max_{t=1,\dots,n} f(x_t).$$

 $\mathcal{GP}(\mu,\kappa)$: A distribution over functions from $\mathcal X$ to $\mathbb R$.

 $\mathcal{GP}(\mu, \kappa)$: A distribution over functions from \mathcal{X} to \mathbb{R} .

Functions with no observations

 $\mathcal{GP}(\mu, \kappa)$: A distribution over functions from \mathcal{X} to \mathbb{R} .

Prior \mathcal{GP}

 $\mathcal{GP}(\mu, \kappa)$: A distribution over functions from \mathcal{X} to \mathbb{R} .

Observations

 $\mathcal{GP}(\mu, \kappa)$: A distribution over functions from \mathcal{X} to \mathbb{R} .

Posterior \mathcal{GP} given observations

3/15

 $\mathcal{GP}(\mu, \kappa)$: A distribution over functions from \mathcal{X} to \mathbb{R} .

Posterior \mathcal{GP} given observations

After t observations, $f(x) \sim \mathcal{N}(\mu_t(x), \sigma_t^2(x))$.

Model $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$.

Several criteria for picking next point:

GP-UCB (Srinivas et al. 2010), GP-EI (Mockus & Mockus, 1991).

Model $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$.

Several criteria for picking next point:

GP-UCB (Srinivas et al. 2010), GP-EI (Mockus & Mockus, 1991).

1) Compute posterior \mathcal{GP} .

Model $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$.

Several criteria for picking next point:

GP-UCB (Srinivas et al. 2010), GP-El (Mockus & Mockus, 1991).

1) Compute posterior \mathcal{GP} .

2) Construct acquisition φ_t .

Model $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$.

Several criteria for picking next point:

GP-UCB (Srinivas et al. 2010), GP-EI (Mockus & Mockus, 1991).

1) Compute posterior \mathcal{GP} .

- 2) Construct acquisition φ_t .
- 3) Choose $x_t = \operatorname{argmax}_x \varphi_t(x)$.

Model $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$.

Several criteria for picking next point:

GP-UCB (Srinivas et al. 2010), GP-EI (Mockus & Mockus, 1991).

- 1) Compute posterior \mathcal{GP} .
- 3) Choose $x_t = \operatorname{argmax}_x \varphi_t(x)$.
- 2) Construct acquisition φ_t .
- 4) Evaluate f at x_t .

Sequential evaluations with one worker

Sequential evaluations with one worker

Parallel evaluations with M workers (Asynchronous)

Sequential evaluations with one worker

Parallel evaluations with M workers (Asynchronous)

Parallel evaluations with M workers (Synchronous)

Sequential evaluations with one worker

 $j^{
m th}$ job has feedback from all previous j-1 evaluations.

Parallel evaluations with M workers (Asynchronous)

 $j^{
m th}$ job missing feedback from exactly M-1 evaluations.

Parallel evaluations with M workers (Synchronous)

 $j^{ ext{th}}$ job missing feedback from $\leq M-1$ evaluations.

Direct application of UCB in the synchronous setting . . .

- First worker: maximise acquisition, $x_{t1} = \operatorname{argmax} \varphi_t(x)$.

Direct application of UCB in the synchronous setting . . .

- First worker: maximise acquisition, $x_{t1} = \operatorname{argmax} \varphi_t(x)$.
- Second worker: acquisition is the same! $x_{t1} = x_{t2}$

Direct application of UCB in the synchronous setting . . .

- First worker: maximise acquisition, $x_{t1} = \operatorname{argmax} \varphi_t(x)$.
- Second worker: acquisition is the same! $x_{t1} = x_{t2}$
- $x_{t1} = x_{t2} = \cdots = x_{tM}$.

Direct application of UCB in the synchronous setting . . .

- First worker: maximise acquisition, $x_{t1} = \operatorname{argmax} \varphi_t(x)$.
- Second worker: acquisition is the same! $x_{t1} = x_{t2}$
- $x_{t1} = x_{t2} = \cdots = x_{tM}$.

Direct application of popular (deterministic) strategies, e.g. GP-UCB, GP-EI, etc. do not work. Need to "encourage diversity".

Add hallucinated observations.

(Ginsbourger et al. 2011, Janusevkis et al. 2012)

▶ Optimise an acquisition over \mathcal{X}^M (e.g. M-product UCB).

(Wang et al 2016, Wu & Frazier 2017)

 Resort to heuristics, typically requires additional hyper-parameters and/or computational routines.

(Contal et al. 2013, Gonzalez et al. 2015, Shah & Ghahramani 2015,

Wang et al. 2017, Wang et al. 2018)

Add hallucinated observations.

(Ginsbourger et al. 2011, Janusevkis et al. 2012)

▶ Optimise an acquisition over \mathcal{X}^M (e.g. M-product UCB).

(Wang et al 2016, Wu & Frazier 2017)

 Resort to heuristics, typically requires additional hyper-parameters and/or computational routines.

(Contal et al. 2013, Gonzalez et al. 2015, Shah & Ghahramani 2015, Wang et al. 2017, Wang et al. 2018)

Our Approach: Based on Thompson sampling (Thompson, 1933).

Conceptually simple: does not require explicit diversity strategies.

Add hallucinated observations.

(Ginsbourger et al. 2011, Janusevkis et al. 2012)

▶ Optimise an acquisition over \mathcal{X}^M (e.g. M-product UCB).

(Wang et al 2016, Wu & Frazier 2017)

 Resort to heuristics, typically requires additional hyper-parameters and/or computational routines.

(Contal et al. 2013, Gonzalez et al. 2015, Shah & Ghahramani 2015, Wang et al. 2017, Wang et al. 2018)

Wang et al. 2017, Wang et al. 2018)

Our Approach: Based on Thompson sampling (Thompson, 1933).

- Conceptually simple: does not require explicit diversity strategies.
- Asynchronicity
- ► Theoretical guarantees

1) Construct posterior \mathcal{GP} .

- 1) Construct posterior \mathcal{GP} .
- 2) Draw sample g from posterior.

- 1) Construct posterior \mathcal{GP} .
- 3) Choose $x_t = \operatorname{argmax}_x g(x)$.
- 2) Draw sample g from posterior.

- 3) Choose $x_t = \operatorname{argmax}_x g(x)$.
- 1) Construct posterior \mathcal{GP} . 2) Draw sample g from posterior.
 - 4) Evaluate f at x_t .

- 3) Choose $x_t = \operatorname{argmax}_{x} g(x)$. 4) Evaluate f at x_t .
- 1) Construct posterior \mathcal{GP} . 2) Draw sample g from posterior.

Take-home message: In parallel settings, direct application of sequential TS algorithm works. Inherent randomness adds sufficient diversity when managing M workers.

Parallelised Thompson Sampling

Asynchronous: asyTS

At any given time,

- 1. $(x', y') \leftarrow \text{Wait for a worker to finish.}$
- 2. Compute posterior \mathcal{GP} .
- 3. Draw a sample $g \sim \mathcal{GP}$.
- 4. Re-deploy worker at $\operatorname*{argmax} g$.

Parallelised Thompson Sampling

Asynchronous: asyTS

At any given time,

- 1. $(x', y') \leftarrow \text{Wait for}$ a worker to finish.
- 2. Compute posterior \mathcal{GP} .
- 3. Draw a sample $g \sim \mathcal{GP}$.
- 4. Re-deploy worker at $\underset{\text{argmax } g}{\operatorname{g}}$.

Synchronous: synTS

At any given time,

- 1. $\{(x'_m, y'_m)\}_{m=1}^M \leftarrow \text{Wait for all workers to finish.}$
- 2. Compute posterior \mathcal{GP} .
- 3. Draw M samples $g_m \sim \mathcal{GP}, \forall m$.
- 4. Re-deploy worker m at $\underset{\text{argmax } g_m, \forall m}{\text{w}}$.

Parallelised Thompson Sampling

Asynchronous: asyTS

At any given time,

- 1. $(x', y') \leftarrow \text{Wait for}$ a worker to finish.
- 2. Compute posterior \mathcal{GP} .
- 3. Draw a sample $g \sim \mathcal{GP}$.
- 4. Re-deploy worker at $\underset{\text{argmax } g}{\operatorname{g}}$.

Synchronous: synTS

At any given time,

- 1. $\{(x'_m, y'_m)\}_{m=1}^M \leftarrow \text{Wait for all workers to finish.}$
- 2. Compute posterior \mathcal{GP} .
- 3. Draw M samples $g_m \sim \mathcal{GP}, \forall m$.
- 4. Re-deploy worker m at $\underset{\text{argmax } g_m, \forall m}{\text{w}}$.

Parallel TS in prior work:

(Osband et al. 2016, Israelsen et al. 2016, Hernandez-Lobato et al. 2017)

Simple Regret in Parallel Settings

Simple regret after n evaluations,

$$SR(n) = f(x_*) - \max_{t=1,\dots,n} f(x_t).$$

 $n \leftarrow \#$ completed evaluations by all workers.

Simple Regret in Parallel Settings

Simple regret after n evaluations,

$$SR(n) = f(x_*) - \max_{t=1,\ldots,n} f(x_t).$$

 $n \leftarrow \#$ completed evaluations by all workers.

Simple regret with time as a resource,

$$SR'(T) = f(x_*) - \max_{t=1,\dots,N} f(x_t).$$

 $N \leftarrow \#$ completed evaluations by all workers in time T. (possibly random).

Several results for sequential Thompson sampling $% \left(A_{i}\right) =A_{i}\left(A$

2012, Kaufmann et al. 2012, Russo & van Roy 2016)

Several results for sequential Thompson sampling (Agrawal et al.

2012, Kaufmann et al. 2012, Russo & van Roy 2016)

seqTS
$$\mathbb{E}[\mathsf{SR}(n)] \lesssim \sqrt{\frac{\Psi_n \log(n)}{n}}$$
 (Russo & van Roy 2014)

 $\Psi_n \leftarrow \mathsf{Maximum}$ information gain

(Srinivas et al. 2010)

GP with SE Kernel in d dimensions, $\Psi_n(\mathcal{X}) \simeq d^d \log(n)^d$.

Several results for sequential Thompson sampling (Agrawal et al.

2012, Kaufmann et al. 2012, Russo & van Roy 2016)

seqTS
$$\mathbb{E}[\mathsf{SR}(n)] \lesssim \sqrt{\frac{\Psi_n \log(n)}{n}}$$
 (Russo & van Roy 2014)

 $\Psi_n \leftarrow Maximum information gain$

(Srinivas et al. 2010)

GP with SE Kernel in d dimensions, $\Psi_n(\mathcal{X}) \simeq d^d \log(n)^d$.

Theorem: synTS (Kandasamy et al. 2018)
$$\mathbb{E}[\mathsf{SR}(n)] \lesssim \frac{M\sqrt{\log(M)}}{n} + \sqrt{\frac{\Psi_n \log(n+M)}{n}}$$

Several results for sequential Thompson sampling (Agrawal et al.

2012, Kaufmann et al. 2012, Russo & van Roy 2016)

$$\mathbb{E}[\mathsf{SR}(n)] \lesssim \sqrt{\frac{\Psi_n \log(n)}{n}}$$
 (Russo & van Roy 2014)

 $\Psi_n \leftarrow \mathsf{Maximum}$ information gain

(Srinivas et al. 2010)

GP with SE Kernel in d dimensions, $\Psi_n(\mathcal{X}) \asymp d^d \log(n)^d$.

Theorem: synTS (Kandasamy et al. 2018)
$$\mathbb{E}[\mathsf{SR}(n)] \lesssim \frac{M\sqrt{\log(M)}}{n} + \sqrt{\frac{\Psi_n \log(n+M)}{n}}$$

Theorem: asyTS (Kandasamy et al. 2018)
$$\mathbb{E}[SR(n)] \lesssim \frac{M \text{polylog}(M)}{n} + \sqrt{\frac{C\Psi_n \log(n)}{n}}$$

Experiment: Park1-4D

M = 10

Comparison in terms of number of evaluations

Theoretical Results for SR'(T)

Model evaluation time as an independent random variable

ightharpoonup Uniform unif(a, b) bounded

▶ Half-normal $\mathcal{HN}(au^2)$ sub-Gaussian

ightharpoonup Exponential $\exp(\lambda)$ sub-exponential

Theoretical Results for SR'(T)

Model evaluation time as an independent random variable

- ightharpoonup Uniform unif(a,b) bounded
- ▶ Half-normal $\mathcal{HN}(au^2)$ sub-Gaussian
- ightharpoonup Exponential $\exp(\lambda)$ sub-exponential

Theorem: TS with M parallel workers (Kandasamy et al. 2018)

If evaluation times are the same, synTS \approx asyTS.

When there is high variability in evaluation times, asyTS is much better than synTS.

Theoretical Results for SR'(T)

Model evaluation time as an independent random variable

- ▶ Uniform unif(a, b) bounded
- ▶ Half-normal $\mathcal{HN}(au^2)$ sub-Gaussian
- ightharpoonup Exponential $\exp(\lambda)$ sub-exponential

Theorem: TS with M parallel workers (Kandasamy et al. 2018)

If evaluation times are the same, $\text{synTS} \approx \text{asyTS}.$

When there is high variability in evaluation times, asyTS is much better than synTS.

- Uniform: constant factor
- Half-normal: $\sqrt{\log(M)}$ factor
- Exponential: log(M) factor

Experiment: Hartmann-18D

M = 25

Evaluation time sampled from an exponential distribution

Additional synthetic and real experiments in the paper/poster.

Summary

- synTS, asyTS: direct application of TS to synchronous and asynchronous parallel settings.
- Take-aways: Theory
 - Both perform essentially the same as seqTS in terms of the number of evaluations.
 - When we factor time as a resource, asyTS performs best.
- Take-aways: Practice
 - Conceptually simple and scales better with the number of workers than other methods.

Summary

- synTS, asyTS: direct application of TS to synchronous and asynchronous parallel settings.
- Take-aways: Theory
 - Both perform essentially the same as seqTS in terms of the number of evaluations.
 - When we factor time as a resource, asyTS performs best.
- Take-aways: Practice
 - Conceptually simple and scales better with the number of workers than other methods.

Thank you

Poster #49, Session 3 (Tuesday evening).

Code: github.com/kirthevasank/gp-parallel-ts

Appendix

Experiment: Branin-2D

M=4

Evaluation time sampled from a uniform distribution

Experiment: Branin-2D

M = 4

Evaluation time sampled from a uniform distribution

Experiment: Branin-2D

M=4

Evaluation time sampled from a uniform distribution

Experiment: Hartmann-6D

M = 12

Evaluation time sampled from a half-normal distribution

Experiment: Hartmann-18D

M = 25

Evaluation time sampled from an exponential distribution

Evaluation time sampled from a Pareto-3 distribution

Experiment: Model Selection in Cifar10

M=4

Tune # filters in in range (32, 256) for each layer in a 6 layer CNN. Time taken for an evaluation: 4 - 16 minutes.

