
Parallelised Bayesian Optimisation via
Thompson Sampling

Kirthevasan Kandasamy

Akshay Jeff Barnabás
Krishnamurthy Schneider Póczos

AISTATS 2018

Black-box Optimisation

Expensive Blackbox
 Function

Examples:
- Hyper-parameter Tuning
- ML estimation in Astrophysics
- Optimal policy in Autonomous Driving

1/15

Black-box Optimisation

f : X → R is an expensive, black-box, noisy function.

Let x? = argmaxx f (x).

x

f(x)

Simple Regret after n evaluations

SR(n) = f (x?) − max
t=1,...,n

f (xt).

2/15

Black-box Optimisation

f : X → R is an expensive, black-box, noisy function.

Let x? = argmaxx f (x).

x

f(x)

Simple Regret after n evaluations

SR(n) = f (x?) − max
t=1,...,n

f (xt).

2/15

Black-box Optimisation

f : X → R is an expensive, black-box, noisy function.
Let x? = argmaxx f (x).

x

f(x)

x∗

f(x∗)

Simple Regret after n evaluations

SR(n) = f (x?) − max
t=1,...,n

f (xt).

2/15

Black-box Optimisation

f : X → R is an expensive, black-box, noisy function.
Let x? = argmaxx f (x).

x

f(x)

x∗

f(x∗)

Simple Regret after n evaluations

SR(n) = f (x?) − max
t=1,...,n

f (xt).

2/15

Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Functions with no observations

x

f(x)

After t observations, f (x) ∼ N (µt(x), σ2t (x)).

3/15

Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Functions with no observations

x

f(x)

After t observations, f (x) ∼ N (µt(x), σ2t (x)).

3/15

Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Prior GP

x

f(x)

After t observations, f (x) ∼ N (µt(x), σ2t (x)).

3/15

Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Observations

x

f(x)

After t observations, f (x) ∼ N (µt(x), σ2t (x)).

3/15

Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Posterior GP given observations

x

f(x)

After t observations, f (x) ∼ N (µt(x), σ2t (x)).

3/15

Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Posterior GP given observations

x

f(x)

After t observations, f (x) ∼ N (µt(x), σ2t (x)).

3/15

Gaussian Process Bandit (Bayesian) Optimisation

Model f ∼ GP(0, κ).

Several criteria for picking next point:
GP-UCB (Srinivas et al. 2010), GP-EI (Mockus & Mockus, 1991).

x

f(x)

1) Compute posterior GP. 2) Construct acquisition ϕt .

3) Choose xt = argmaxx ϕt(x). 4) Evaluate f at xt .

4/15

Gaussian Process Bandit (Bayesian) Optimisation

Model f ∼ GP(0, κ).

Several criteria for picking next point:
GP-UCB (Srinivas et al. 2010), GP-EI (Mockus & Mockus, 1991).

x

f(x)

1) Compute posterior GP.

2) Construct acquisition ϕt .

3) Choose xt = argmaxx ϕt(x). 4) Evaluate f at xt .

4/15

Gaussian Process Bandit (Bayesian) Optimisation

Model f ∼ GP(0, κ).

Several criteria for picking next point:
GP-UCB (Srinivas et al. 2010), GP-EI (Mockus & Mockus, 1991).

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

1) Compute posterior GP. 2) Construct acquisition ϕt .

3) Choose xt = argmaxx ϕt(x). 4) Evaluate f at xt .

4/15

Gaussian Process Bandit (Bayesian) Optimisation

Model f ∼ GP(0, κ).

Several criteria for picking next point:
GP-UCB (Srinivas et al. 2010), GP-EI (Mockus & Mockus, 1991).

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

xt

1) Compute posterior GP. 2) Construct acquisition ϕt .

3) Choose xt = argmaxx ϕt(x).

4) Evaluate f at xt .

4/15

Gaussian Process Bandit (Bayesian) Optimisation

Model f ∼ GP(0, κ).

Several criteria for picking next point:
GP-UCB (Srinivas et al. 2010), GP-EI (Mockus & Mockus, 1991).

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

xt

1) Compute posterior GP. 2) Construct acquisition ϕt .

3) Choose xt = argmaxx ϕt(x). 4) Evaluate f at xt .
4/15

This work: Parallel Evaluations

Sequential evaluations with one worker

jth job has feedback
from all previous j − 1

evaluations.

Parallel evaluations with M workers (Asynchronous)

jth job missing feedback
from exactly M − 1

evaluations.

Parallel evaluations with M workers (Synchronous)

jth job missing feedback
from ≤ M − 1
evaluations.

5/15

This work: Parallel Evaluations

Sequential evaluations with one worker

jth job has feedback
from all previous j − 1

evaluations.

Parallel evaluations with M workers (Asynchronous)

jth job missing feedback
from exactly M − 1

evaluations.

Parallel evaluations with M workers (Synchronous)

jth job missing feedback
from ≤ M − 1
evaluations.

5/15

This work: Parallel Evaluations

Sequential evaluations with one worker

jth job has feedback
from all previous j − 1

evaluations.

Parallel evaluations with M workers (Asynchronous)

jth job missing feedback
from exactly M − 1

evaluations.

Parallel evaluations with M workers (Synchronous)

jth job missing feedback
from ≤ M − 1
evaluations.

5/15

This work: Parallel Evaluations

Sequential evaluations with one worker
jth job has feedback
from all previous j − 1

evaluations.

Parallel evaluations with M workers (Asynchronous)

jth job missing feedback
from exactly M − 1

evaluations.

Parallel evaluations with M workers (Synchronous)

jth job missing feedback
from ≤ M − 1
evaluations.

5/15

Challenges in parallel BO: encouraging diversity

Direct application of UCB in the synchronous setting . . .

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

xt1

- First worker: maximise acquisition, xt1 = argmaxϕt(x).

- Second worker: acquisition is the same! xt1 = xt2

- xt1 = xt2 = · · · = xtM .

Direct application of popular (deterministic) strategies, e.g.
GP-UCB, GP-EI, etc. do not work. Need to “encourage diversity”.

6/15

Challenges in parallel BO: encouraging diversity

Direct application of UCB in the synchronous setting . . .

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

xt2 = xt1

- First worker: maximise acquisition, xt1 = argmaxϕt(x).

- Second worker: acquisition is the same! xt1 = xt2

- xt1 = xt2 = · · · = xtM .

Direct application of popular (deterministic) strategies, e.g.
GP-UCB, GP-EI, etc. do not work. Need to “encourage diversity”.

6/15

Challenges in parallel BO: encouraging diversity

Direct application of UCB in the synchronous setting . . .

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

xt2 = xt1

- First worker: maximise acquisition, xt1 = argmaxϕt(x).

- Second worker: acquisition is the same! xt1 = xt2

- xt1 = xt2 = · · · = xtM .

Direct application of popular (deterministic) strategies, e.g.
GP-UCB, GP-EI, etc. do not work. Need to “encourage diversity”.

6/15

Challenges in parallel BO: encouraging diversity

Direct application of UCB in the synchronous setting . . .

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

xt2 = xt1

- First worker: maximise acquisition, xt1 = argmaxϕt(x).

- Second worker: acquisition is the same! xt1 = xt2

- xt1 = xt2 = · · · = xtM .

Direct application of popular (deterministic) strategies, e.g.
GP-UCB, GP-EI, etc. do not work. Need to “encourage diversity”.

6/15

Challenges in parallel BO: encouraging diversity

I Add hallucinated observations.
(Ginsbourger et al. 2011, Janusevkis et al. 2012)

I Optimise an acquisition over XM (e.g. M-product UCB).
(Wang et al 2016, Wu & Frazier 2017)

I Resort to heuristics, typically requires additional
hyper-parameters and/or computational routines.

(Contal et al. 2013, Gonzalez et al. 2015, Shah & Ghahramani 2015,

Wang et al. 2017, Wang et al. 2018)

Our Approach: Based on Thompson sampling (Thompson, 1933).

I Conceptually simple: does not require explicit diversity
strategies.

I Asynchronicity

I Theoretical guarantees

7/15

Challenges in parallel BO: encouraging diversity

I Add hallucinated observations.
(Ginsbourger et al. 2011, Janusevkis et al. 2012)

I Optimise an acquisition over XM (e.g. M-product UCB).
(Wang et al 2016, Wu & Frazier 2017)

I Resort to heuristics, typically requires additional
hyper-parameters and/or computational routines.

(Contal et al. 2013, Gonzalez et al. 2015, Shah & Ghahramani 2015,

Wang et al. 2017, Wang et al. 2018)

Our Approach: Based on Thompson sampling (Thompson, 1933).

I Conceptually simple: does not require explicit diversity
strategies.

I Asynchronicity

I Theoretical guarantees

7/15

Challenges in parallel BO: encouraging diversity

I Add hallucinated observations.
(Ginsbourger et al. 2011, Janusevkis et al. 2012)

I Optimise an acquisition over XM (e.g. M-product UCB).
(Wang et al 2016, Wu & Frazier 2017)

I Resort to heuristics, typically requires additional
hyper-parameters and/or computational routines.

(Contal et al. 2013, Gonzalez et al. 2015, Shah & Ghahramani 2015,

Wang et al. 2017, Wang et al. 2018)

Our Approach: Based on Thompson sampling (Thompson, 1933).

I Conceptually simple: does not require explicit diversity
strategies.

I Asynchronicity

I Theoretical guarantees

7/15

GP Optimisation with Thompson Sampling (Thompson, 1933)

x

f(x)

1) Construct posterior GP. 2) Draw sample g from posterior.
3) Choose xt = argmaxx g(x). 4) Evaluate f at xt .

Take-home message: In parallel settings, direct application of
sequential TS algorithm works. Inherent randomness adds
sufficient diversity when managing M workers.

8/15

GP Optimisation with Thompson Sampling (Thompson, 1933)

x

f(x)

1) Construct posterior GP.

2) Draw sample g from posterior.
3) Choose xt = argmaxx g(x). 4) Evaluate f at xt .

Take-home message: In parallel settings, direct application of
sequential TS algorithm works. Inherent randomness adds
sufficient diversity when managing M workers.

8/15

GP Optimisation with Thompson Sampling (Thompson, 1933)

x

f(x)

1) Construct posterior GP. 2) Draw sample g from posterior.

3) Choose xt = argmaxx g(x). 4) Evaluate f at xt .

Take-home message: In parallel settings, direct application of
sequential TS algorithm works. Inherent randomness adds
sufficient diversity when managing M workers.

8/15

GP Optimisation with Thompson Sampling (Thompson, 1933)

x

f(x)

xt

1) Construct posterior GP. 2) Draw sample g from posterior.
3) Choose xt = argmaxx g(x).

4) Evaluate f at xt .

Take-home message: In parallel settings, direct application of
sequential TS algorithm works. Inherent randomness adds
sufficient diversity when managing M workers.

8/15

GP Optimisation with Thompson Sampling (Thompson, 1933)

x

f(x)

xt

1) Construct posterior GP. 2) Draw sample g from posterior.
3) Choose xt = argmaxx g(x). 4) Evaluate f at xt .

Take-home message: In parallel settings, direct application of
sequential TS algorithm works. Inherent randomness adds
sufficient diversity when managing M workers.

8/15

GP Optimisation with Thompson Sampling (Thompson, 1933)

x

f(x)

xt

1) Construct posterior GP. 2) Draw sample g from posterior.
3) Choose xt = argmaxx g(x). 4) Evaluate f at xt .

Take-home message: In parallel settings, direct application of
sequential TS algorithm works. Inherent randomness adds
sufficient diversity when managing M workers.

8/15

Parallelised Thompson Sampling

Asynchronous: asyTS

At any given time,
1. (x ′, y ′)← Wait for

a worker to finish.
2. Compute posterior GP.
3. Draw a sample g ∼ GP.

4. Re-deploy worker at
argmax g .

Synchronous: synTS

At any given time,
1. {(x ′m, y ′m)}Mm=1 ← Wait for

all workers to finish.
2. Compute posterior GP.
3. Draw M samples

gm ∼ GP, ∀m.
4. Re-deploy worker m at

argmax gm, ∀m.

Parallel TS in prior work: (Osband et al. 2016, Israelsen et al. 2016,

Hernandez-Lobato et al. 2017)

9/15

Parallelised Thompson Sampling

Asynchronous: asyTS

At any given time,
1. (x ′, y ′)← Wait for

a worker to finish.
2. Compute posterior GP.
3. Draw a sample g ∼ GP.

4. Re-deploy worker at
argmax g .

Synchronous: synTS

At any given time,
1. {(x ′m, y ′m)}Mm=1 ← Wait for

all workers to finish.
2. Compute posterior GP.
3. Draw M samples

gm ∼ GP, ∀m.
4. Re-deploy worker m at

argmax gm, ∀m.

Parallel TS in prior work: (Osband et al. 2016, Israelsen et al. 2016,

Hernandez-Lobato et al. 2017)

9/15

Parallelised Thompson Sampling

Asynchronous: asyTS

At any given time,
1. (x ′, y ′)← Wait for

a worker to finish.
2. Compute posterior GP.
3. Draw a sample g ∼ GP.

4. Re-deploy worker at
argmax g .

Synchronous: synTS

At any given time,
1. {(x ′m, y ′m)}Mm=1 ← Wait for

all workers to finish.
2. Compute posterior GP.
3. Draw M samples

gm ∼ GP, ∀m.
4. Re-deploy worker m at

argmax gm, ∀m.

Parallel TS in prior work: (Osband et al. 2016, Israelsen et al. 2016,

Hernandez-Lobato et al. 2017)

9/15

Simple Regret in Parallel Settings

Simple regret after n evaluations,

SR(n) = f (x?) − max
t=1,...,n

f (xt).

n← # completed evaluations by all workers.

Simple regret with time as a resource,

Asynchronous Synchronous

SR′(T) = f (x?) − max
t=1,...,N

f (xt).

N ← # completed evaluations by all workers in time T .
(possibly random).

10/15

Simple Regret in Parallel Settings

Simple regret after n evaluations,

SR(n) = f (x?) − max
t=1,...,n

f (xt).

n← # completed evaluations by all workers.

Simple regret with time as a resource,

Asynchronous Synchronous

SR′(T) = f (x?) − max
t=1,...,N

f (xt).

N ← # completed evaluations by all workers in time T .
(possibly random).

10/15

Theoretical Results SR(n)

Several results for sequential Thompson sampling (Agrawal et al.

2012, Kaufmann et al. 2012, Russo & van Roy 2016)

seqTS (Russo & van Roy 2014)

E[SR(n)] .

√
Ψn log(n)

n

Ψn ← Maximum information gain (Srinivas et al. 2010)

GP with SE Kernel in d dimensions, Ψn(X) � dd log(n)d .

Theorem: synTS (Kandasamy et al. 2018)

E[SR(n)] .
M
√

log(M)

n
+

√
Ψn log(n+M)

n

Theorem: asyTS (Kandasamy et al. 2018)

E[SR(n)] .
Mpolylog(M)

n
+

√
CΨn log(n)

n

11/15

Theoretical Results SR(n)

Several results for sequential Thompson sampling (Agrawal et al.

2012, Kaufmann et al. 2012, Russo & van Roy 2016)

seqTS (Russo & van Roy 2014)

E[SR(n)] .

√
Ψn log(n)

n

Ψn ← Maximum information gain (Srinivas et al. 2010)

GP with SE Kernel in d dimensions, Ψn(X) � dd log(n)d .

Theorem: synTS (Kandasamy et al. 2018)

E[SR(n)] .
M
√

log(M)

n
+

√
Ψn log(n+M)

n

Theorem: asyTS (Kandasamy et al. 2018)

E[SR(n)] .
Mpolylog(M)

n
+

√
CΨn log(n)

n

11/15

Theoretical Results SR(n)

Several results for sequential Thompson sampling (Agrawal et al.

2012, Kaufmann et al. 2012, Russo & van Roy 2016)

seqTS (Russo & van Roy 2014)

E[SR(n)] .

√
Ψn log(n)

n

Ψn ← Maximum information gain (Srinivas et al. 2010)

GP with SE Kernel in d dimensions, Ψn(X) � dd log(n)d .

Theorem: synTS (Kandasamy et al. 2018)

E[SR(n)] .
M
√

log(M)

n
+

√
Ψn log(n+M)

n

Theorem: asyTS (Kandasamy et al. 2018)

E[SR(n)] .
Mpolylog(M)

n
+

√
CΨn log(n)

n

11/15

Theoretical Results SR(n)

Several results for sequential Thompson sampling (Agrawal et al.

2012, Kaufmann et al. 2012, Russo & van Roy 2016)

seqTS (Russo & van Roy 2014)

E[SR(n)] .

√
Ψn log(n)

n

Ψn ← Maximum information gain (Srinivas et al. 2010)

GP with SE Kernel in d dimensions, Ψn(X) � dd log(n)d .

Theorem: synTS (Kandasamy et al. 2018)

E[SR(n)] .
M
√

log(M)

n
+

√
Ψn log(n+M)

n

Theorem: asyTS (Kandasamy et al. 2018)

E[SR(n)] .
Mpolylog(M)

n
+

√
CΨn log(n)

n

11/15

Experiment: Park1-4D M = 10
Comparison in terms of number of evaluations

10 0

asyTS

seqTS
0 20 40 60 80 100 120

synTS

12/15

Theoretical Results for SR′(T)

Model evaluation time as an independent random variable

I Uniform unif(a, b) bounded

I Half-normal HN (τ2) sub-Gaussian

I Exponential exp(λ) sub-exponential

Theorem: TS with M parallel workers (Kandasamy et al. 2018)

If evaluation times are the same, synTS ≈ asyTS.
When there is high variability in evaluation times, asyTS is much
better than synTS.

- Uniform: constant factor

- Half-normal:
√

log(M) factor

- Exponential: log(M) factor

13/15

Theoretical Results for SR′(T)

Model evaluation time as an independent random variable

I Uniform unif(a, b) bounded

I Half-normal HN (τ2) sub-Gaussian

I Exponential exp(λ) sub-exponential

Theorem: TS with M parallel workers (Kandasamy et al. 2018)

If evaluation times are the same, synTS ≈ asyTS.
When there is high variability in evaluation times, asyTS is much
better than synTS.

- Uniform: constant factor

- Half-normal:
√

log(M) factor

- Exponential: log(M) factor

13/15

Theoretical Results for SR′(T)

Model evaluation time as an independent random variable

I Uniform unif(a, b) bounded

I Half-normal HN (τ2) sub-Gaussian

I Exponential exp(λ) sub-exponential

Theorem: TS with M parallel workers (Kandasamy et al. 2018)

If evaluation times are the same, synTS ≈ asyTS.
When there is high variability in evaluation times, asyTS is much
better than synTS.

- Uniform: constant factor

- Half-normal:
√

log(M) factor

- Exponential: log(M) factor

13/15

Experiment: Hartmann-18D M = 25
Evaluation time sampled from an exponential distribution

synRAND
synHUCB
synUCBPE
synTS
asyRAND
asyUCB
asyHUCB
asyEI
asyHTS
asyTS

0 5 10 15 20 25 30

2.5

3

3.5

4

4.5

5
5.5

6
6.5

Additional synthetic and real experiments in the paper/poster.

14/15

Summary

I synTS, asyTS: direct application of TS to synchronous and
asynchronous parallel settings.

I Take-aways: Theory

- Both perform essentially the same as seqTS in terms of the
number of evaluations.

- When we factor time as a resource, asyTS performs best.

I Take-aways: Practice

- Conceptually simple and scales better with the number of
workers than other methods.

Thank you
Poster #49, Session 3 (Tuesday evening).

Code: github.com/kirthevasank/gp-parallel-ts

15/15

Summary

I synTS, asyTS: direct application of TS to synchronous and
asynchronous parallel settings.

I Take-aways: Theory

- Both perform essentially the same as seqTS in terms of the
number of evaluations.

- When we factor time as a resource, asyTS performs best.

I Take-aways: Practice

- Conceptually simple and scales better with the number of
workers than other methods.

Thank you
Poster #49, Session 3 (Tuesday evening).

Code: github.com/kirthevasank/gp-parallel-ts

15/15

Appendix

Experiment: Branin-2D M = 4
Evaluation time sampled from a uniform distribution

0 10 20 30 40

10 -2

10 -1

Experiment: Branin-2D M = 4
Evaluation time sampled from a uniform distribution

0 10 20 30 40

10 -2

10 -1

Experiment: Branin-2D M = 4
Evaluation time sampled from a uniform distribution

synRAND
synHUCB
synUCBPE
synTS
asyRAND
asyUCB
asyHUCB
asyEI
asyHTS
asyTS

0 10 20 30 40

10 -2

10 -1

Experiment: Hartmann-6D M = 12
Evaluation time sampled from a half-normal distribution

synRAND
synHUCB
synUCBPE
synTS
asyRAND
asyUCB
asyHUCB
asyEI
asyHTS
asyTS

0 5 10 15 20 25 30

10 -1

10 0

Experiment: Hartmann-18D M = 25
Evaluation time sampled from an exponential distribution

synRAND
synHUCB
synUCBPE
synTS
asyRAND
asyUCB
asyHUCB
asyEI
asyHTS
asyTS

0 5 10 15 20 25 30

2.5

3

3.5

4

4.5

5
5.5

6
6.5

Experiment: Currin-Exponential-14D M = 35
Evaluation time sampled from a Pareto-3 distribution

synRAND
synHUCB
synUCBPE
synTS
asyRAND
asyUCB
asyHUCB
asyEI
asyHTS
asyTS

0 5 10 15 20
10

15

20

25

Experiment: Model Selection in Cifar10 M = 4

Tune # filters in in range (32, 256) for each layer in a 6 layer CNN.
Time taken for an evaluation: 4 - 16 minutes.

1000 2000 3000 4000 5000 6000 7000

0.68

0.69

0.7

0.71

0.72

synTS
asyRAND
asyHUCB

asyTS
asyEI

synHUCB

