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Abstract
Bayesian Optimisation (BO) is a technique used
in optimising a D-dimensional function which
is typically expensive to evaluate. While there
have been many successes for BO in low dimen-
sions, scaling it to high dimensions has been no-
toriously difficult. Existing literature on the topic
are under very restrictive settings. In this paper,
we identify two key challenges in this endeavour.
We tackle these challenges by assuming an addi-
tive structure for the function. This setting is sub-
stantially more expressive and contains a richer
class of functions than previous work. We prove
that, for additive functions the regret has only lin-
ear dependence on D even though the function
depends on all D dimensions. We also demon-
strate several other statistical and computational
benefits in our framework. Via synthetic exam-
ples, a scientific simulation and a face detection
problem we demonstrate that our method outper-
forms naive BO on additive functions and on sev-
eral examples where the function is not additive.

1. Introduction
In many applications we are tasked with zeroth order op-
timisation of an expensive to evaluate function f in D di-
mensions. Some examples are hyper parameter tuning in
expensive machine learning algorithms, experiment design,
optimising control strategies in complex systems, and sci-
entific simulation based studies. In such applications, f is
a blackbox which we can interact with only by querying
for the value at a specific point. Related to optimisation is
the bandits problem arising in applications such as online
advertising and reinforcement learning. Here the objective
is to maximise the cumulative sum of all queries. In either
case, we need to find the optimum of f using as few queries
as possible by managing exploration and exploitation.
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Bayesian Optimisation (Mockus & Mockus, 1991) refers
to a suite of methods that tackle this problem by modeling
f as a Gaussian Process (GP). In such methods, the chal-
lenge is two fold. At time step t, first estimate the unknown
f from the query value-pairs. Then use it to intelligently
query at xt where the function is likely to be high. For
this, we first use the posterior GP to construct an acquisi-
tion function ϕt which captures the value of the experiment
at a point. Then we maximise ϕt to determine xt.

Gaussian process bandits and Bayesian optimisation (GPB/
BO) have been successfully applied in many applications
such as tuning hyperparameters in learning algorithms
(Snoek et al., 2012; Bergstra et al., 2011; Mahendran et al.,
2012), robotics (Lizotte et al., 2007; Martinez-Cantin et al.,
2007) and object tracking (Denil et al., 2012). However,
all such successes have been in low (typically < 10) di-
mensions (Wang et al., 2013). Expensive high dimensional
functions occur in several problems in fields such as com-
puter vision (Yamins et al., 2013), antenna design (Hornby
et al., 2006), computational astrophysics (Parkinson et al.,
2006) and biology (Gonzalez et al., 2014). Scaling GPB/
BO methods to high dimensions for practical problems has
been challenging. Even current theoretical results suggest
that GPB/ BO is exponentially difficult in high dimensions
without further assumptions (Srinivas et al., 2010; Bull,
2011). To our knowledge, the only approach to date has
been to perform regular GPB/ BO on a low dimensional
subspace. This works only under strong assumptions.

We identify two key challenges in scaling GPB/ BO to high
dimensions. The first is the statistical challenge in esti-
mating the function. Nonparametric regression is inher-
ently difficult in high dimensions with known lower bounds
depending exponentially in dimension (Györfi et al., 2002).
The often exponential sample complexity for regression is
invariably reflected in the regret bounds for GPB/ BO. The
second is the computational challenge in maximising
ϕt. Commonly used global optimisation heuristics used
to maximise ϕt themselves require computation exponen-
tial in dimension. Any attempt to scale GPB/ BO to high
dimensions must effectively address these two concerns.
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In this work, we embark on this challenge by treating f
as an additive function of mutually exclusive lower dimen-
sional components. Our contributions in this work are:

1. We present the Add-GP-UCB algorithm for optimi-
sation and bandits of an additive function. An attrac-
tive property is that we use an acquisition function
which is easy to optimise in high dimensions.

2. In our theoretical analysis we bound the regret for
Add-GP-UCB. We show that it has only linear de-
pendence on the dimension D when f is additive1.

3. Empirically we demonstrate that Add-GP-UCB out-
performs naive BO on synthetic experiments, an astro-
physical simulator and the Viola and Jones face detec-
tion problem. Furthermore Add-GP-UCB does well
on several examples when the function is not additive.

A Matlab implementation of our methods is available on-
line at github.com/kirthevasank/add-gp-bandits.

2. Related Work
GPB/ BO methods follow a family of GP based active
learning methods which select the next experiment based
on the posterior (Osborne et al., 2012; Ma et al., 2015;
Kandasamy et al., 2015). In the GPB/ BO setting, com-
mon acquisition functions include Expected improvement
(Mockus, 1994), probability of improvement (Jones et al.,
1998), Thompson sampling (Thompson, 1933) and upper
confidence bound (Auer, 2003). Of particular interest to
us, is the Gaussian process upper confidence bound (GP-
UCB). It was first proposed and analysed in the noisy set-
ting by Srinivas et al. (2010) and extended to the noiseless
case by de Freitas et al. (2012). Some literature stud-
ies variants, such as combining several acquisition func-
tions (Hoffman et al., 2011) and querying in batches (Az-
imi et al., 2010).

To our knowledge, most literature for GPB/ BO in high
dimensions are in the setting where the function varies
only along a very low dimensional subspace (Chen et al.,
2012; Wang et al., 2013; Djolonga et al., 2013). In these
works, the authors do not encounter either challenge as
they perform GPB/ BO in either a random or carefully se-
lected lower dimensional subspace. However, assuming
that the problem is an easy (low dimensional) one hiding
in a high dimensional space is often too restrictive. In-
deed, our experimental results confirm that such methods
perform poorly on real applications when the assumptions
are not met. While our additive assumption is strong in its
own right, it is considerably more expressive. It is more

1Post-publication it was pointed out to us that there was a bug
in our analysis. We are working on resolving it and will post an
update shortly. See Section 6 for more details.

general than the setting in Chen et al. (2012). Even though
it does not contain the settings in Djolonga et al. (2013);
Wang et al. (2013), unlike them, we still allow the function
to vary along the entire domain.

Using an additive structure is standard in high dimensional
regression literature both in the GP framework and other-
wise. Hastie & Tibshirani (1990); Ravikumar et al. (2009)
treat the function as a sum of one dimensional components.
Our additive framework is more general. Duvenaud et al.
(2011) assume a sum of functions of all combinations of
lower dimensional coordinates. These literature argue that
using an additive model has several advantages even if f is
not additive. It is a well understood notion in statistics that
when we only have a few samples, using a simpler model
to fit our data may give us a better trade off for estimation
error against approximation error. This observation is cru-
cial: in many applications for Bayesian optimisation we are
forced to work in the low sample regime since calls to the
blackbox are expensive. Though the additive assumption
is biased for nonadditive functions, it enables us to do well
with only a few samples. While we have developed theo-
retical results only for additive f , empirically we show that
our additive model outperforms naive GPB/ BO even when
the underlying function is not additive.

Analyses of GPB/ BO methods focus on the query com-
plexity of f which is the dominating cost in relevant appli-
cations. It is usually assumed that ϕt can be maximised to
arbitrary precision at negligible cost. Common techniques
to maximise ϕt include grid search, Monte Carlo and mul-
tistart methods (Brochu et al., 2010). In our work we use
the Dividing Rectangles (DiRect) algorithm of Jones et al.
(1993). While these methods are efficient in low dimen-
sions they require exponential computation in high dimen-
sions. It is widely acknowledged in the community that
this is a critical bottleneck in scaling GPB/ BO to high di-
mensions (de Freitas, 2014). While we still work in the
paradigm where evaluating f is expensive and characterise
our theoretical results in terms of query complexity, we be-
lieve that assuming arbitrary computational power to opti-
mise ϕt is too restrictive. For instance, in hyperparameter
tuning the budget for determining the next experiment is
dictated by the cost of the learning algorithm. In online ad-
vertising and robotic reinforcement learning we need to act
in under a few seconds or real time.

In this manuscript, Section 3 formally details our problem
and assumptions. We present Add-GP-UCB in Section 4
and our theoretical results in Section 4.3. All proofs are de-
ferred to Appendix B. We summarize the regrets for Add-
GP-UCB and GP-UCB in Table 1. In Section 5 we
present the experiments.
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Kernel Squared Exponential Matérn

GP-UCB on Dth order kernel
√
DD+2T (log T )D+2 2D

√
DT

ν+D(D+1)
2ν+D(D+1) log T

Add-GP-UCB on additive kernel
√
ddD2T (log T )d+2 2dDT

ν+d(d+1)
2ν+d(d+1) log T

Table 1. Comparison of Cumulative Regret for GP-UCB and Add-GP-UCB for the Squared Exponential and Matérn kernels.

3. Problem Statement & Set up
We wish to maximise a function f : X → R where X
is a rectangular region in RD. We will assume w.l.o.g
X = [0, 1]D. f may be nonconvex and gradient informa-
tion is not available. We can interact with f only by query-
ing at some x ∈ X and obtain a noisy observation y =
f(x)+ε. Let an optimum point be x∗ = argmaxx∈X f(x).
Suppose at time t we choose to query at xt. Then we
incur instantaneous regret rt = f(x∗) − f(xt). In the
bandit setting, we are interested in the cumulative regret
RT =

∑T
t=1 rt =

∑T
t=1 f(x∗) − f(xt), and in the op-

timisation setting we are interested in the simple regret
ST = mint≤T rt = f(x∗) − maxxt f(xt). For a ban-
dit algorithm, a desirable property is to have no regret:
limT→∞

1
TRT = 0. Since ST ≤ 1

TRT , any such pro-
cedure is also a consistent procedure for optimisation.

Key structural assumption: In order to make progress in
high dimensions, we will assume that f decomposes into
the following additive form,

f(x) = f (1)(x(1)) + f (2)(x(2)) + · · ·+ f (M)(x(M)). (1)

Here each x(j) ∈ X (j) = [0, 1]dj are lower dimensional
components. We will refer to the X (j)’s as “groups” and
the grouping of different dimensions into these groups
{X (j)}Mj=1 as the “decomposition”. The groups are dis-
joint – i.e. if we treat the elements of the vector x as a set,
x(i)∩x(j) = ∅. We are primarily interestd in the case when
D is very large and the group dimensionality is bounded:
dj ≤ d � D. We have D � dM ≥

∑
j dj . Paranthesised

superscripts index the groups and a union over the groups
denotes the reconstruction of the whole from the groups
(e.g. x =

⋃
j x

(j) and X =
⋃
j X (j)). xt denotes the point

chosen by the algorithm for querying at time t. We will
ignore logD terms in O(·) notation. Our theoretical anal-
ysis assumes that the decomposition is known but we also
present a modified algorithm to handle unknown decompo-
sitions and non-additive functions.

Some smoothness assumptions on f are warranted to make
the problem tractable. A standard in the Bayesian paradigm
is to assume f is sampled from a Gaussian Process (Ras-
mussen & Williams, 2006) with a covarince kernel κ :
X × X → R and that ε ∼ N (0, η2). Two commonly
used kernels are the squared exponential (SE) κσ,h and the
Matérn κν,h kernels with parameters (σ, h) and (ν, h) re-

spectively. Writing r = ‖x− x′‖2, they are defined as

κσ,h(x, x′) = σ exp

(
−r2

2h2

)
, (2)

κν,h(x, x′) =
21−ν

Γ(ν)

(√
2νr

h

)ν
Bν

(√
2νr

h

)
. (3)

Here Γ, Bν are the Gamma and modified Bessel functions.
A principal convenience in modelling our problem via a GP
is that posterior distributions are analytically tractable.

In keeping with this, we will assume that each f (j) is
sampled from a GP, GP(µ(j), κ(j)) where the f (j)’s
are independent. Here, µ(j) : X (j) → R is the mean
and κ(j) : X (j) × X (j) → R is the covariance for
f (j). W.l.o.g let µ(j) = 0 for all j. This implies that
f itself is sampled from a GP with an additive kernel
κ(x, x′) =

∑
j κ

(j)(x(j), x(j)′). We state this formally for
nonzero mean as we will need it for the ensuing discussion.

Observation 1. Let f be defined as in Equation (1), where
f (j) ∼ GP(µ(j)(x), κ(j)(x(i), x(j)′)). Let y = f(x) + ε
where ε ∼ N (0, η2). Denote δ(x, x′) = 1 if x =
x′, and 0 otherwise. Then y ∼ GP(µ(x), κ(x, x′) +
η2δ(x, x′)) where

µ(x) = µ(1)(x(1)) + · · ·+ µ(M)(x(M)) (4)

κ(x, x′) = κ(1)(x(1), x(1)′) + · · ·+ κ(M)(x(M), x(M)′).

We will call a kernel such as κ(j) which acts only on d
variables a dth order kernel. A kernel which acts on all
the variables is a Dth order kernel. Our kernel for f is a
sum of M at most dth order kernels which, we will show,
is statistically simpler than a Dth order kernel.

We conclude this section by looking at some seemingly
straightforward approaches to tackle the problem. The first
natural question is of course why not directly run GP-UCB
using the additive kernel? Since it is simpler than a Dth or-
der kernel we can expect statistical gains. While this is true,
it still requires optimising ϕt inD dimensions to determine
the next point which is expensive.

Alternatively, for an additive function, we could adopt a se-
quential approach where we use 1/M fraction of our query
budget to maximise the first group by keeping the rest of
the coordinates constant. Then we proceed to the second
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Figure 1. Illustration of the additive GP model for 2 observa-
tions where M = 2 in (1). The squared variables are observed
while the circled variables are not. For brevity we have denoted
f
(j)
i = f (j)(x

(j)
i ) for i = 1, 2, ∗. We wish to infer the posterior

distributions of the individual GPs f (j)(x
(j)
∗ ) (outlined in blue).

group and so on. While optimising a d dimensional ac-
quisition function is easy, this approach is not desirable for
several reasons. First, it will not be an anytime algorithm as
we will have to pre-allocate our query budget to maximise
each group. Once we proceed to a new group we cannot
come back and optimise an older one. Second, such an ap-
proach places too much faith in the additive assumption.
We will only have explored M d-dimensional hyperplanes
in the entire space. Third, it is not suitable as a bandit algo-
rithm as we suffer high regret until we get to the last group.
We further elaborate on the deficiencies of this and other
sequential approaches in Appendix A.2.

4. Algorithm
Under an additive assumption, our algorithm has two com-
ponents. First, we obtain the posterior GP for each f (j) us-
ing the query-value pairs until time t. Then we maximise a
d dimensional GP-UCB-like acquisition function on each
GP to construct the next query point. Since optimising ϕt
depends exponentially in dimension, this is cheaper than
optimising one acquisition on the combined GP.

4.1. Inference on Additive GPs

Typically in GPs, given noisy labels, Y = {y1, . . . , yn} at
points X = {x1, . . . , xn}, we are interested in inferring
the posterior distribution for f∗ = f(x∗) at a new point
x∗. In our case though, we will be primarily interested in
the distribution of f (j)

∗ = f (j)(x
(j)
∗ ) conditioned on X,Y .

We have illustrated this graphically in Figure 1. The joint
distribution of f (j)

∗ and Y can be written as

(
f

(j)
∗
Y

)
∼ N

(
0,

[
κ(j)(x

(j)
∗ , x

(j)
∗ ) κ(j)(x

(j)
∗ , X(j))

κ(j)(X(j), x
(j)
∗ ) κ(X,X) + η2In

])
.

The pth element of κ(j)(X(j), x
(j)
∗ ) ∈ Rn is κ(x

(j)
p , x

(j)
∗ )

and the (p, q)th element of κ(X,X) ∈ Rn×n is
κ(xp, xq). We have used the fact Cov(f

(i)
∗ , yp) =

Cov(f
(i)
∗ ,
∑
j f

(j)(x
(j)
p ) + η2ε) = Cov(f

(i)
∗ , f (i)(x

(i)
p )) =

κ(i)(x
(i)
∗ , x

(i)
p ) as f (j) ⊥ f (i),∀i 6= j. By writing ∆ =

κ(X,X) + η2In ∈ Rn×n, the posterior for f (j)
∗ is,

f
(j)
∗ |x∗, X, Y ∼ N

(
κ(j)(x

(j)
∗ , X(j))∆−1Y, (5)

κ(j)(x
(j)
∗ , x

(j)
∗ )− κ(j)(x

(j)
∗ , X(j))∆−1κ(j)(X,x(j))

)
4.2. The Add-GP-UCB Algorithm

In GPB/ BO algorithms, at each time step t we maximise
an acquisition function ϕt to determine the next point:
xt = argmaxx∈X ϕt(x). The acquisition function is itself
constructed using the posterior GP. The GP-UCB acquisi-
tion function, which we focus on here is,

ϕt(x) = µt−1(x) + β
1/2
t σt−1(x).

Intuitively, the µt−1 term in the GP-UCB objective prefers
points where f is known to be high, the σt−1 term prefers
points where we are uncertain about f and β1/2

t negotiates
the tradeoff. The former contributes to the “exploitation”
facet of our problem, in that we wish to have low instan-
taneous regret. The latter contributes to the “exploration”
facet since we also wish to query at regions we do not know
much about f lest we miss out on regions where f is high.
We provide a brief summary of GP-UCB and its theoreti-
cal properties in Appendix A.1.

As we have noted before, maximising ϕt which is typi-
cally multimodal to obtain xt is itself a difficult problem.
In any grid search or branch and bound methods such as Di-
Rect, maximising a function to within ζ accuracy, requires
O(ζ−D) calls to ϕt. Therefore, for large D maximising
ϕt is extremely difficult. In practical settings, especially in
situations where we are computationally constrained, this
poses serious limitations for GPB/ BO as we may not be
able to optimise ϕt to within a desired accuracy.

Fortunately, in our setting we can be more efficient. We
propose an alternative acquisition function which applies to
an additive kernel. We define the Additive Gaussian Pro-
cess Upper Confidence Bound (Add-GP-UCB) to be

ϕ̃t(x) = µt−1(x) + β
1/2
t

M∑
j=1

σ
(j)
t−1(x(j)). (6)

We immediately see that we can write ϕ̃t as a sum of
functions on orthogonal domains: ϕ̃t(x) =

∑
j ϕ̃

(j)
t (x(j))

where ϕ̃(j)
t (x(j)) = µ

(j)
t−1(x(j)) + β

1/2
t σ

(j)
t−1(x(j)). This

means that ϕ̃t can be maximised by maximising each
ϕ̃

(j)
t separately on X (j). As we need to solve M at
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most d dimensional optimisation problems, it requires only
O(Md+1ζ−d) calls to the utility function in total – far more
favourable than maximising ϕt.

Since the cost for maximising the acquisition function is a
key theme in this paper let us delve into this a bit more. One
call to ϕt requires O(Dt2) effort. For ϕ̃t we need M calls
each requiring O(djt

2) effort. So both ϕt and ϕ̃t require
the same effort in this front. For ϕt, we need to know the
posterior for only f whereas for ϕ̃t we need to know the
posterior for each f (j). However, the brunt of the work in
obtaining the posterior is the O(t3) effort in inverting the
t×tmatrix ∆ in (5) which needs to be done for both ϕt and
ϕ̃t. For ϕ̃t, we can obtain the inverse once and reuse it M
times, so the cost of obtaining the posterior isO(t3+Mt2).
Since the number of queries needed will be super linear in
D and hence M , the t3 term dominates. Therefore obtain-
ing each posterior f (j) is only marginally more work than
obtaining the posterior for f . Any difference here is easily
offset by the cost for maximising the acquisition function.

The question remains then if maximising ϕ̃t would result in
low regret. Since ϕt and ϕ̃t are neither equivalent nor have
the same maximiser it is not immediately apparent that this
should work. Nonetheless, intuitively this seems like a rea-
sonable scheme since the

∑
j σ

(j)
t−1 term captures some no-

tion of the uncertainty and contributes to exploration. In
Theorem 5 we show that this intuition is reasonable – max-
imising ϕ̃t achieves the same rates as ϕt for cumulative and
simple regrets if the kernel is additive.

We summarise the resulting algorithm in Algorithm 1. In
brief, at time step t, we obtain the posterior distribution for
f (j) and maximise ϕ̃(j)

t to determine the coordinates x(j)
t .

We do this for each j and then combine them to obtain xt.

Algorithm 1 Add-GP-UCB
Input: Kernels κ(1), . . . , κ(M), Decomposition (X (j))Mj=1

• D0 ← ∅,
• for j = 1, . . . ,M , (µ

(j)
0 , κ

(j)
0 )← (0, κ(j)).

• for t = 1, 2, . . .

1. for j = 1, . . . ,M ,
x

(j)
t ← argmaxz∈X (j) µ

(j)
t−1(z) +

√
βtσ

(j)
t−1(z)

2. xt ←
⋃M
j=1 x

(j)
t .

3. yt ← Query f at xt.
4. Dt = Dt−1 ∪ {(xt,yt)}.
5. Perform Bayesian posterior updates conditioned

on Dt to obtain µ(j)
t , σ

(j)
t for j = 1, . . . ,M .

4.3. Main Theoretical Results

Now, we present our main theoretical contributions. We
bound the regret for Add-GP-UCB under different ker-
nels. Following Srinivas et al. (2010), we first bound the

statistical difficulty of the problem as determined by the
kernel. We show that under additive kernels the problem
is much easier than when using a full Dth order kernel.
Next, we show that the Add-GP-UCB algorithm is able to
exploit the additive structure and obtain the same rates as
GP-UCB. The advantage to using Add-GP-UCB is that
it is much easier to optimise the acquisition function. For
our analysis, we will need Assumption 2 and Definition 3.

Assumption 2. Let f be sampled from a GP with kernel κ.
κ(·, x) is L-Lipschitz for all x. Further, the partial deriva-
tives of f satisfies the following high probability bound.
There exists constants a, b > 0 such that,

P
(

sup
x

∣∣∣∂f(x)

∂xi

∣∣∣ > J

)
≤ ae−(J/b)2 .

The Lipschitzian condition is fairly mild and the latter
condition holds for four times differentiable stationary
kernels such as the SE and Matérn kernels for ν > 2
(Ghosal & Roy, 2006). Srinivas et al. (2010) showed
that the statistical difficulty of GPB/ BO is determined
by the Maximum Information Gain as defined below. We
bound this quantity for additive SE and Matérn kernels in
Theorem 4. This is our first main theorem.

Definition 3. (Maximum Information Gain) Let f ∼
GP(µ, κ), yi = f(xi) + ε where ε ∼ N (0, η2). Let
A = {x1, . . . , xT } ⊂ X be a finite subset, fA denote the
function values at these points and yA denote the noisy ob-
servations. Let I be the Shannon Mutual Information. The
Maximum Information Gain between yA and fA is

γT = max
A⊂X ,|A|=T

I(yA; fA).

Theorem 4. Assume that the kernel κ has the additive form
of (4), and that each κ(j) satisfies Assumption 2. W.l.o.g
assume κ(x, x′) = 1. Then,

1. If each κ(j) is a dthj order squared exponential ker-
nel (2) where dj ≤ d, then γT ∈ O(Ddd(log T )d+1).

2. If each κ(j) is a dthj order Matérn kernel (3)
where dj ≤ d and ν > 2, then γT ∈
O(D2dT

d(d+1)
2ν+d(d+1) log(T )).

We use bounds on the eigenvalues of the SE and Matérn
kernels from Seeger et al. (2008) and a result from Srini-
vas et al. (2010) which bounds the information gain via the
eigendecay of the kernel. We bound the eigendecay of the
sum κ via M and the eigendecay of a single κ(j). The
complete proof is given in Appendix B.1. The important
observation is that the dependence on D is linear for an
additive kernel. In contrast, for a Dth order kernel this is
exponential (Srinivas et al., 2010).
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Next, we present our second main theorem which bounds
the regret for Add-GP-UCB for an additive kernel as
given in Equation 4.

Theorem 5. Suppose f is constructed by sampling f (j) ∼
GP(0, κ(j)) for j = 1, . . . ,M and then adding them. Let
all kernels κ(j) satisfy assumption 2 for some L, a, b. Fur-
ther, we maximise the acquisition function ϕ̃t to within
ζ0t
−1/2 accuracy at time step t. Pick δ ∈ (0, 1) and choose

βt = 2 log

(
Mπ2t2

2δ

)
+ 2d log

(
Dt3

)
∈ O (d log t) .

Then, Add-GP-UCB attains cumulative regret RT ∈
O
(√

DγTT log T
)

and hence simple regret ST ∈

O
(√

DγT log T/T
)

. Precisely, with probability > 1− δ,

∀T ≥ 1, RT ≤
√

8C1βTMTγt + 2ζ0
√
T + C2.

where C1 = 1/ log(1 + η−2) and C2 is a constant depend-
ing on a, b, D, δ, L and η.

Part of our proof uses ideas from Srinivas et al. (2010).
We show that

∑
j βtσ

(j)
t−1(·) forms a credible interval for

f(·) about the posterior mean µt(·) for an additive kernel in
Add-GP-UCB. We relate the regret to this confidence set
using a covering argument. We also show that our regret
doesn’t suffer severely if we only approximately optimise
the acquisition provided that the accuracy improves at rate
O(t−1/2). For this we establish smoothness of the poste-
rior mean. The correctness of the algorithm follows from
the fact that Add-GP-UCB can be maximised by individ-
ually maximising ϕ̃(j)

t on each X (j). The complete proof
is given in Appendix B.2. When we combine the results
in Theorems 4 and 5 we obtain the rates given in Table 12.

One could consider alternative lower order kernels – one
candidate is the sum of all possible dth order kernels (Du-
venaud et al., 2011). Such a kernel would arguably al-
low us to represent a larger class of functions than our
kernel in (4). If, for instance, we choose each of them
to be a SE kernel, then it can be shown that γT ∈
O(Dddd+1(log T )d+1). Even though this is worse than our
kernel in poly(D) factors, it is still substantially better than
using a Dth order kernel. However, maximising the corre-
sponding utility function, either of the form ϕt or ϕ̃t, is still
a D dimensional problem. We reiterate that what renders
our algorithm attractive in large D is not just the statistical
gains due to the simpler kernel. It is also the fact that our
acquisition function can be efficiently maximised.

4.4. Practical Considerations

Our practical implementation differs from our theoretical
analysis in the following aspects.

2See Footnote 1.

Choice of βt: βt as specified by Theorems 5, usually tends
to be conservative in practice (Srinivas et al., 2010). For
good empirical performance a more aggressive strategy is
required. In our experiments, we set βt = 0.2d log(2t)
which offered a good tradeoff between exploration and ex-
ploitation. Note that this captures the correct dependence
on D, d and t in Theorems 5 and 6.

Data dependent prior: Our analysis assumes that we
know the GP kernel of the prior. In reality this is rarely the
case. In our experiments, we choose the hyperparameters
of the kernel by maximising the GP marginal likelihood
(Rasmussen & Williams, 2006) every Ncyc iterations.

Initialisation: Marginal likelihood based kernel tuning
can be unreliable with few data points. This is a problem in
the first few iterations. Following the recommendations in
Bull (2011) we initialise Add-GP-UCB (and GP-UCB)
using Ninit points selected uniformly at random.

Decomposition & Non-additive functions: If f is ad-
ditive and the decomposition is known, we use it directly.
But it may not always be known or f may not be addi-
tive. Then, we could treat the decomposition as a hyperpa-
rameter of the additive kernel and maximise the marginal
likelihood w.r.t the decomposition. However, given that
there are D!/d!MM ! possible decompositions, comput-
ing the marginal likelihood for all of them is infeasible.
We circumvent this issue by randomly selecting a few
(O(D)) decompositions and choosing the one with the
largest marginal likelihood. Intuitively, if the function is
not additive, with such a “partial maximisation” we can
hope to capture some existing marginal structure in f . At
the same time, even an exhaustive maximisation will not do
much better than a partial maximisation if there is no addi-
tive structure. Empirically, we found that partially optimis-
ing for the decomposition performed slightly better than
using a fixed decomposition or a random decomposition
at each step. We incorporate this procedure for finding an
appropriate decomposition as part of the kernel hyper pa-
rameter learning procedure every Ncyc iterations.

How do we choose (d,M) when f is not additive? If d is
large we allow for richer class of functions, but risk high
variance. For small d, the kernel is too simple and we have
high bias but low variance – further optimising ϕ̃t is easier.
In practice we found that our procedure was fairly robust
for reasonable choices of d. Yet this is an interesting theo-
retical question. We also believe it is a difficult one. Using
the marginal likelihood alone will not work as the optimal
choice of d also depends on the computational budget for
optimising ϕ̃t. We hope to study this question in future
work. For now, we give some recommendations at the end.
Our modified algorithm with these practical considerations
is given below. Observe that in this specification if we use
d = D we have the original GP-UCB algorithm.
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Algorithm 2 Practical-Add-GP-UCB
Input: Ninit, Ncyc, d, M
• D0 ← Ninit points chosen uniformly at random.
• for t = 1, 2, . . .

1. if (t mod Ncyc = 0), Learn the kernel hyper
parameters and the decomposition {Xj} by max-
imising the GP marginal likelihood.

2. Perform steps 1-3 in Algorithm 1 with βt =
0.2d log 2t.

3. Dt = Dt−1 ∪ {(xt,yt)}.
4. Perform Bayesian posterior updates conditioned

on Dt to obtain µ(j)
t , σ

(j)
t for j = 1, . . . ,M .

Figure 2. Illustration of the trimodal function fd′ in d′ = 2.

5. Experiments
To demonstrate the efficacy of Add-GP-UCB over GP-
UCB we optimise the acquisition function under a con-
strained budget. Following, Brochu et al. (2010) we use
DiRect to maximise ϕt, ϕ̃t. We compare Add-GP-UCB
against GP-UCB, random querying (RAND) and DiRect3.
On the real datasets we also compare it to the Expected
Improvement (GP-EI) acquisition function which is pop-
ular in BO applications and the method of Wang et al.
(2013) which uses a random projection before applying BO
(REMBO). We have multiple instantiations of Add-GP-
UCB for different values for (d,M). For optimisation, we
perform comparisons based on the simple regret ST and for
bandits we use the time averaged cumulative regret RT /T .

For all GPB/ BO methods we set Ninit = 10, Ncyc = 25
in all experiments. Further, for the first 25 iterations we
set the bandwidth to a small value (10−5) to encourage
an explorative strategy. We use SE kernels for each ad-
ditive kernels and use the same scale σ and bandwidth h
hyperparameters for all the kernels. Every 25 iterations we
maximise the marginal likelihood with respect to these 2
hyperparameters in addition to the decomposition.

3There are several optimisation methods based on simulated
annealing, cross entropy and genetic algorithms. We use DiRect
since its easy to configure and known to work well in practice.

In contrast to existing literature in the BO community,
we found that the UCB acquisitions outperformed GP-EI.
One possible reason may be that under a constrained bud-
get, UCB is robust to imperfect maximisation (Theorem 5)
whereas GP-EI may not be. Another reason may be our
choice of constants in UCB (Section 4.4).

5.1. Simulations on Synthetic Data

First we demonstrate our technique on a series of synthetic
examples. For this we construct additive functions for dif-
ferent values for the maximum group size d′ and the num-
ber of groups M ′. We use the prime to distinguish it from
Add-GP-UCB instantiations with different combinations
of (d,M) values. The d′ dimensional function fd′ is,

fd′(x) = log

(
0.1

1

hd
′
d′

exp

(
‖x− v1‖2

2h2
d′

)
+ (7)

0.1
1

hd
′
d′

exp

(
‖x− v2‖2

2h2
d′

)
+ 0.8

1

hd
′
d′

exp

(
‖x− v3‖2

2h2
d′

))

where v1, v2, v3 are fixed d′ dimensional vectors and hd′ =
0.01d′

0.1. Then we create M ′ groups of coordinates by
randomly adding d′ coordinates into each group. On each
such group we use fd′ and then add them up to obtain the
composite function f . Precisely,

f(x) = fd′(x
(1)) + · · ·+ fd′(x

(M))

The remaining D − d′M ′ coordinates do not contribute
to the function. Since fd′ has 3 modes, f will have 3M

′

modes. We have illustrated fd′ for d′ = 2 in Figure 2.

In the synthetic experiments we use an instantiation
of Add-GP-UCB that knows the decomposition–i.e.
(d,M) = (d′,M ′) and the grouping of coordinates. We
refer to this as Add-?. For the rest we use a (d,M) de-
composition by creating M groups of size at most d and
find a good grouping by partially maximising the marginal
likelihood (Section 4.4). We refer to them as Add-d/M .

For GP-UCB we allocate a budget of min(5000, 100D)
DiRect function evaluations to optimise the acquisition
function. For all Add-d/M methods we set it to 90% of
this amount4 to account for the additional overhead in pos-
terior inference for each f (j). Therefore, in our 10D prob-
lem we maximise ϕt with βt = 2 log(2t) with 1000 DiRect
evaluations whereas for Add-2/5 we maximise each ϕ̃(j)

t

with βt = 0.4 log(2t) with 180 evaluations.

The results are given in Figures 3 and 4. We refer to each
example by the configuration of the additive function–its
(D, d′,M ′) values. In the (10, 3, 3) example Add-? does

4While the 90% seems arbitrary, in our experiments this was
hardly a factor as the cost was dominated by the inversion of ∆.
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Figure 3. Results on the synthetic datasets. In all images the x-axis is the number of queries and the y-axis is the regret
in log scale. We have indexed each experiment by their (D, d′,M ′) values. The first row is ST for the experiments with
(D, d′,M ′) set to (10, 3, 3), (24, 6, 4), (24, 11, 2) and the second row is RT /T for the same experiments. The third row is ST for
(40, 5, 8), (40, 18, 2), (40, 35, 1) and the fourth row is the corresponding RT /T . In some figures, the error bars are not visible since
they are small and hidden by the bullets. All figures were produced by averaging over 20 runs.
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Figure 4. More results on synthetic experiments. The simple regret ST (first row) and cumulative regret RT /T (second row) for
functions with (D, d′,M ′) set to (96, 5, 19), (96, 29, 3), (120, 55, 2) respectively. Read the caption under Figure 3 for more details.

best since it knows the correct model and the acquisition
function can be maximised within the budget. However
Add-3/4 and Add-5/2 models do well too and outperform
GP-UCB. Add-1/10 performs poorly since it is statisti-
cally not expressive enough to capture the true function.
In the (24, 11, 2), (40, 18, 2), (40, 35, 1), (96, 29, 3) and
(120, 55, 2) examples Add-? outperforms GP-UCB. How-
ever, it is not competitive with the Add-d/M for small d.
Even though Add-? knew the correct decomposition, there
are two possible failure modes since d′ is large. The kernel
is complex and the estimation error is very high in the ab-
sence of sufficient data points. In addition, optimising the
acquisition is also difficult. This illustrates our previous ar-
gument that using an additive kernel can be advantageous
even if the function is not additive or the decomposition is
not known. In the (24, 6, 4), (40, 5, 8) and (96, 5, 19) ex-
amples Add-? performs best as d′ is small enough. But
again, almost all Add-d/M instantiations outperform GP-
UCB. In contrast to the small D examples, for large D,
GP-UCB and Add-d/M with large d perform worse than
DiRect. This is probably because our budget for maximis-
ing ϕt is inadequate to optimise the acquisition function
to sufficient accuracy. For some of the large D examples
the cumulative regret is low for Add-GP-UCB and Add-
d/M with large d. This is probably since they have al-
ready started exploiting where as the Add-d/M with small

d methods are still exploring. We posit that if we run for
more iterations we will be able to see the improvements.

5.2. SDSS Astrophysical Dataset

Here we used Galaxy data from the Sloan Digital Sky Sur-
vey (SDSS). The task is to find the maximum likelihood
estimators for a simulation based astrophysical likelihood
model. Data and software for computing the likelihood are
taken from Tegmark et al (2006). The software itself takes
in only 9 parameters but we augment this to 20 dimensions
to emulate the fact that in practical astrophysical problems
we may not know the true parameters on which the prob-
lem is dependent. This also allows us to effectively demon-
strate the superiority of our methods over alternatives. Each
query to this likelihood function takes about 2-5 seconds.
In order to be wall clock time competitive with RAND and
DiRectwe use only 500 evaluations for GP-UCB, GP-EI
and REMBO and 450 for Add-d/M to maximise the ac-
quisition function.

We have shown the Maximum value obtained over 400 it-
erations of each algorithm in Figure 5(a). Note that RAND
outperforms DiRect here since a random query strategy
is effectively searching in 9 dimensions. Despite this ad-
vantage to RAND all BO methods do better. Moreover,
despite the fact that the function may not be additive, all
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Add-d/M methods outperform GP-UCB. Since the func-
tion only depends on 9 parameters we use REMBO with
a 9 dimensional projection. Yet, it is not competitive with
the Add-d/M methods. Possible reasons for this may in-
clude the scaling of the parameter space by

√
d in REMBO

and the imperfect optimisation of the acquisition function.
Here Add-5/4 performs slightly better than the rest since it
seems to have the best tradeoff between being statistically
expressive enough to capture the function while at the same
time be easy enough to optimise the acquisition function
within the allocated budget.

5.3. Viola & Jones Face Detection

The Viola & Jones (VJ) Cascade Classifier (Viola & Jones,
2001) is a popular method for face detection in computer
vision based on the Adaboost algorithm. The K-cascade
has K weak classifiers which outputs a score for any given
image. When we wish to classify an image we pass that
image through each classifier. If at any point the score falls
below a certain threshold the image is classified as nega-
tive. If the image passes through all classifiers then it is
classified as positive. The threshold values at each stage
are usually pre-set based on prior knowledge. There is no
reason to believe that these threshold values are optimal. In
this experiment we wish to find an optimal set of values for
these thresholds by optimising the classification accuracy
over a training set.

For this task, we use 1000 images from the Viola & Jones
face dataset containing both face and non-face images. We
use the implementation of the VJ classifier that comes with
OpenCV (Bradski & Kaehler, 2008) which uses a 22-stage
cascade and modify it to take in the threshold values as a
parameter. As our domain X we choose a neighbourhood
around the configuration given in OpenCV. Each function
call takes about 30-40 seconds and is the the dominant
cost in this experiment. We use 1000 DiRect evaluations
to optimise the acquisition function for GP-UCB, GP-
EI and REMBO and 900 for the Add-d/M instantiations.
Since we do not know the structure of the function we use
REMBO with a 5 dimensional projection. The results are
given in Figure 5(b). Not surprisingly, REMBO performs
worst as it is only searching on a 5 dimensional space. Bar-
ring Add-1/22 all other instantiations perform better than
GP-UCB and GP-EI with Add-6/4 performing the best.
Interestingly, we also find a value for the thresholds that
outperform the configuration used in OpenCV.

6. Conclusion
Recommendations: Based on our experiences, we rec-
ommend the following. If f is known to be additive, the
decomposition is known and d is small enough so that ϕ̃t
can be efficiently optimised, then running Add-GP-UCB
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Figure 5. Results on the Astrophysical experiment (a) and the Vi-
ola and Jones dataset (b). The x-axis is the number of queries and
the y-axis is the maximum value.

with the known decomposition is likely to produce the best
results. If not, then use a small value for d and run Add-
GP-UCB while partially optimising for the decomposition
periodically (Section 4.4). In our experiments we found
that using d between 3 an 12 seemed reasonable choices.
However, note that this depends on the computational bud-
get for optimising the acquisition, the query budget for f
and to a certain extent the the function f itself.

Summary: Our algorithm takes into account several prac-
tical considerations in real world GPB/ BO applications
such as computational constraints in optimising the acqui-
sition and the fact that we have to work with a relatively
few data points since function evaluations are expensive.
Our framework effectively addresses these concerns with-
out considerably compromising on the statistical integrity
of the model. We believe that this provides a promising
direction to scale GPB/ BO methods to high dimensions.

Future Work: Our experiments indicate that our methods
perform well beyond the scope suggested by our theory.
Developing an analysis that takes into account the bias-
variance and computational tradeoffs in approximating and
optimising a non-additive function via an additive model
is an interesting challenge. We also intend to extend this
framework to discrete settings, other acquisition functions
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and handle more general decompositions.
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A. Some Auxiliary Material
A.1. Review of the GP-UCB Algorithm

In this subsection we present a brief summary of the GP-UCB algorithm in (Srinivas et al., 2010). The algorithm is given
in Algorithm 3.

The following theorem gives the rate of convergence for GP-UCB. Note that under an additive kernel, this is the same
rate as Theorem 5 which uses a different acquisition function. Note the differences in the choice of βt.

Theorem 6. (Modification of Theorem 2 in (Srinivas et al., 2010)) Suppose f is constructed by sampling f (j) ∼
GP(0, κ(j)) for j = 1, . . . ,M and then adding them. Let all kernels κ(j) satisfy assumption 2 for some L, a, b. Fur-
ther, we maximise the acquisition function ϕ̃t to within ζ0t−1/2 accuracy at time step t. Pick δ ∈ (0, 1) and choose

βt = 2 log

(
2t2π2

δ

)
+ 2D log

(
Dt3

)
∈ O (D log t) .

Then, GP-UCB attains cumulative regretRT ∈ O
(√

DγTT log T
)

and hence simple regret ST ∈ O
(√

DγT log T/T
)

.
Precisely, with probability > 1− δ,

∀T ≥ 1, RT ≤
√

8C1βTMTγt + 2ζ0
√
T + C2.

where C1 = 1/ log(1 + η−2) and C2 is a constant depending on a, b, D, δ, L and η.

Proof. Srinivas et al. (2010) bound the regret for exact maximisation of the GP-UCB acquisition ϕt. By following an
analysis similar to our proof of Theorem 5 the regret can be shown to be the same for an ζ0t−1/2- optimal maximisation.

Algorithm 3 GP-UCB
Input: Kernel κ, Input Space X .
For t = 1, 2 . . .
• D0 ← ∅,
• (µ0, κ0)← (0, κ)
• for t = 1, 2, . . .

1. xt ← argmaxz∈X µt−1(z) +
√
βtσt−1(z)

2. yt ← Query f at xt.
3. Dt = Dt−1 ∪ {(xt,yt)}.
4. Perform Bayesian posterior updates to obtain µt, σt for j = 1, . . . ,M .

A.2. Sequential Optimisation Approaches

If the function is known to be additive, we could consider several other approaches for maximisation. We list two of them
here and explain their deficiencies. We recommend that the reader read the main text before reading this section.

A.2.1. OPTIMISE ONE GROUP AND PROCEED TO THE NEXT

First, fix the coordinates of x(j), j 6= 1 and optimise w.r.t x(1) by querying the function for a pre-specified number of times.
Then we proceed sequentially optimising with respect to x(2), x(3) . . . . We have outlined this algorithm in Algorithm 4.
There are several reasons this approach is not desirable.

• First, it places too much faith on the additive assumption and requires that we know the decomposition at the start
of the algorithm. Note that this strategy will only have searched the space in M d-dimensional subspaces. In our
approach even if the function is not additive we can still hope to do well since we learn the best additive approximation
to the true function. Further, if the decomposition is not known we could learn the decomposition “on the go” or at
least find a reasonably good decomposition as we have explained in Section 4.4.
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• Such a sequential approach is not an anytime algorithm. This in particular means that we need to predetermine the
number of queries to be allocated to each group. After we proceed to a new group it is not straightforward to come
back and improve on the solution obtained for an older group.

• This approach is not suitable for the bandits setting. We suffer large instantaneous regret up until we get to the last
group. Further, after we proceed beyond a group since we cannot come back, we cannot improve on the best regret
obtained in that group.

Our approach does not have any of these deficiencies.

Algorithm 4 Seq-Add-GP-UCB
Input: Kernels κ(1), . . . , κ(M), Decomposition (X (j))Mj=1, Query Budget T ,
• RD 3 θ =

⋃M
j=1 θ

(j) = rand([0, 1]d)
• for j = 1, . . . ,M

1. D(j)
0 ← ∅,

2. (µ
(j)
0 , κ

(j)
0 )← (0, κ(j)).

3. for t = 1, 2, . . . T/M

(a) x
(j)
t ← argmaxz∈X (j) µ(j)(z) +

√
βtσ

(j)(z)

(b) xt ← x
(j)
t

⋃
k 6=j θ

(k).
(c) yt ← Query f at xt.
(d) D(j)

t = D(j)
t−1 ∪ {(x

(j)
t ,yt)}.

(e) Perform Bayesian posterior updates to obtain µ(j)
t , σ

(j)
t .

4. θ(j) ← x
(j)
T/M

• Return θ

A.2.2. ONLY CHANGE ONE GROUP PER QUERY

In this strategy, the approach would be very similar to Add-GP-UCB except that at each query we will only update one
group at time. If it is the kth group the query point is determined by maximising ϕ̃(k)

t for x(k)
t and for all other groups we use

values from the previous rotation. After M iterations we cycle through the groups. We have outlined this in Algorithm 5.

This is a reasonable approach and does not suffer from the same deficiencies as Algorithm 4. Maximising the acquisition
function will also be slightly easier O(ζ−d) since we need to optimise only one group at a time. However, the regret for
this approach would beO(M

√
DγTT log T ) which is a factor ofM worse than the regret in our method (This can be show

by following an analysis similar to the one in section B.2. This is not surprising, since at each iteration you are moving in
d-coordinates of the space and you have to wait M iterations before the entire point is updated.

Algorithm 5 Add-GP-UCB-Buggy
Input: Kernels κ(1), . . . , κ(M), Decomposition (X (j))Mj=1

• D0 ← ∅,
• for j = 1, . . . ,M , (µ

(j)
0 , κ

(j)
0 )← (0, κ(j)).

• for t = 1, 2, . . .

1. k = j mod M

2. x
(k)
t ← argmaxz∈X (k) µ(k)(z) +

√
βtσ

(k)(z)

3. for j 6= k, x(j)
t ← x

(j)
t−1

4. xt ←
⋃M
j=1 x

(j)
t .

5. yt ← Query f at xt.
6. Dt = Dt−1 ∪ {(xt,yt)}.
7. Perform Bayesian posterior updates to obtain µ(j)

t , σ
(j)
t for j = 1, . . . ,M .
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B. Proofs of Results in Section 4.3
B.1. Bounding the Information Gain γT

For this we will use the following two results from Srinivas et al. (2010).

Lemma 7. (Information Gain in GP, (Srinivas et al., 2010) Lemma 5.3) Using the basic properties of a GP, they show that

I(yA; fA) =
1

2

n∑
t=1

log(1 + η−2σ2
t−1(xt)).

where σ2
t−1 is the posterior variance after observing the first t− 1 points.

Theorem 8. (Bound on Information Gain, (Srinivas et al., 2010) Theorem 8) Suppose that X is compact and κ is a kernel
on d dimensions satisfying Assumption 2. Let nT = C9T

τ log T where C9 = 4d+ 2. For any T∗ ∈ {1, . . . ,min(T, nT )},
let Bκ(T∗) =

∑
s>T∗

λs. Here (λn)n∈N are the eigenvalues of κ w.r.t the uniform distribution over X . Then,

γT ≤ inf
τ

(
1/2

1− e−1
max

r∈{1,...,T}

(
T∗ log(rnT /η

2) + C9η
2(1− r/T )(T τ+1Bκ(T∗) + 1) log T

)
+O(T 1−τ/d)

)
.

B.1.1. PROOF OF THEOREM 4-1

Proof. We will use some bounds on the eigenvalues for the simple squared exponential kernel given in (Seeger et al.,
2008). It was shown that the eigenvalues {λ(i)

s } of κ(i) satisfied λ(i)
s ≤ cdBs

1/di where B < 1 (See Remark 9). Since the
kernel is additive, and x(i) ∩ x(j) = ∅ the eigenfunctions corresponding to κ(i) and κ(j) will be orthogonal. Hence the
eigenvalues of κ will just be the union of the eigenvalues of the individual kernels – i.e. {λs} =

⋃M
j=1{λ

(j)
s }. As B < 1,

λ
(i)
s ≤ cdBs

1/d

. Let T+ = bT∗/Mc and α = − logB. Then,

Bκ(T∗) =
∑
s>T∗

λs ≤Mc
∑
s>T+

Bs
1/d

≤ cdM

(
BT

1/d
+ +

∫ ∞
T+

exp(−αx1/d)

)
dx

≤ cdM
(
BT

1/d
+ + dα−dΓ(d, αT

1/d
+ )

)
≤ cdMe−αT

1/d
+

(
1 + d!dα−d(αT

1/d
+ )d−1

)
.

The last step holds true whenever αT 1/d
+ ≥ 1. Here in the second step we bound the series by an integral and in the third

step we used the substitution y = αx1/d to simplify the integral. Here Γ(s, x) =
∫∞
x
ts−1e−tdt is the (upper) incomplete

Gamma function. In the last step we have used the following identity and the bound for integral s and x ≥ 1

Γ(s, x) = (s− 1)!e−x
s−1∑
k=0

xk

k!
≤ s!e−xxd−1.

By using τ = d and by using T∗ ≤ (M + 1)T+, we use Theorem 8 to obtain the following bound on γT ,

γT ≤
1/2

1− e−1
max

r∈{1,...,T}

(
(M + 1)T+ log(rnT /η

2)+

C9η
2(1− r/T ) log T

(
1 + cdMe−αT

1/d
+ T d+1

(
1 + d!dα−d(αT

1/d
+ )d−1

)))
. (8)

Now we need to pick T+ so as to balance these two terms. We will choose T+ =
(

log(TnT )
α

)d
which is less than

min(T, nT )/M for sufficiently large T . Then e−αT
1/d
+ = 1/TnT . Then the first term S1 inside the paranthesis is,

S1 = (M + 1) logd
(
TnT
α

)
log

(
rnT
η2

)
∈ O

(
M (log(TnT ))

d
log(rnT )

)
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∈ O
(
M
(
log(T d+1 log T )

)d
log(rT d log T )

)
∈ O

(
Mdd+1(log T )d+1 +Mdd(log T )d log(r)

)
.

Note that the constant in front has exponential dependence on d but we ignore it since we already have dd, (log T )d terms.
The second term S2 becomes,

S2 = C9η
2(1− r/T ) log T

(
1 +

cdM

TnT
T d+1

(
1 + d!dα−d(log(TnT )d−1

)))
≤ C9η

2(1− r/T )

(
log T +

cdM

C9

(
1 + d!dα−d(log(TnT )d−1

)))
≤ C9η

2(1− r/T )
(
O(log T ) +O(1) +O(d!dd(log T )d−1)

))
∈ O

(
(1− r/T )d!dd(log T )d−1

)
.

Since S1 dominates S2, we should choose r = T to maximise the RHS in (8). This gives us,

γT ∈ O
(
Mdd+1(log T )d+1

)
∈ O

(
Ddd(log T )d+1

)
.

B.1.2. PROOF OF THEOREM 4-2

Proof. Once again, we use bounds given in (Seeger et al., 2008). It was shown that the eigenvalues {λ(i)
s } for κ(i)

satisfied λ(i)
s ≤ cds

−
2ν+dj
dj (See Remark 9). By following a similar argument to above we have {λs} =

⋃M
j=1{λ

(j)
s }

and λ(i)
s ≤ cds−

2ν+d
d . Let T+ = bT∗/Mc. Then,

Bκ(T∗) =
∑
s>T∗

λs ≤Mcd
∑
s>T+

s−
2ν+d
d ≤Mcd

(
T
− 2ν+d

d
+ +

∫ ∞
T+

s−
2ν+d
d

)
≤ C82dMT

1− 2ν+d
d

+ .

where C8 is an appropriate constant. We set T+ = (TnT )
d

2ν+d (log(TnT ))−
d

2ν+d and accordingly we have the following
bound on γT as a function of T+ ∈ {1, . . . ,min(T, nT )/M},

γT ≤ inf
τ

(
1/2

1− e−1
max

r∈{1,...,T}

(
(M + 1)T+ log(rnT /η

2) + C9η
2(1− r/T )

(
log T + C82dMT+ log(TnT )

))
+O(T 1−τ/d)

)
.

(9)

Since this is a concave function on r we can find the optimum by setting the derivative w.r.t r to be zero. We get r ∈
O(T/2d log(TnT )) and hence,

γT ∈ inf
τ

(
O
(
MT+ log

(
TnT

2d log(TnT )

))
+O

(
M2dT+ log(TnT )

)
+O(T 1−τ/d)

)
∈ inf

τ

(
O

(
M2d log(TnT )

(
T τ+1 log(T )

(τ + 1) log(T ) + log log T

) d
2ν+d

)
+O(T 1−τ/d)

)
∈ inf

τ

(
O
(
M2d log(TnT )T

(τ+1)d
2ν+d

)
+O(T 1−τ/d)

)
∈ O

(
M2dT

d(d+1)
2ν+d(d+1) log(T )

)
.

Here in the second step we have substituted the values for T+ first and then nT . In the last step we have balanced the
polynomial dependence on T in both terms by setting τ = 2νd

2ν+d(d+1) .
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Remark 9. The eigenvalues and eigenfunctions for the kernel are defined with respect to a base distribution on X . In
the development of Theorem 8, Srinivas et al. (2010) draw nT samples from the uniform distribution on X . Hence, the
eigenvalues/eigenfunctions should be w.r.t the uniform distribution. The bounds given in Seeger et al. (2008) are for the
uniform distribution for the Matérn kernel and a Gaussian Distribution for the Squared Exponential Kernel. For the latter
case, Srinivas et al. (2010) argue that the uniform distribution still satisfies the required tail constraints and therefore the
bounds would only differ up to constants.

B.2. Rates on Add-GP-UCB

Our analysis in this section draws ideas from Srinivas et al. (2010). We will try our best to stick to their same notation.
However, unlike them we also handle the case where the acquisition function is optimised within some error. In the
ensuing discussion, we will use x̃t =

⋃
j x̃

(j)
t to denote the true maximiser of ϕ̃t – i.e. x̃

(j)
t = argmaxz∈X (j) ϕ̃

(j)
t (z).

xt =
⋃
j x

(j)
t denotes the point chosen by Add-GP-UCB at the tth iteration. Recall that xt is ζ0t−1/2–optimal; I.e.

ϕ̃t(x̃t)− ϕ̃t(xt) ≤ ζ0t−1/2.

Denote p =
∑
j dj . πt denotes a sequence such that

∑
t π
−1
t = 1. For e.g. when we use πt = π2t2/6 below, we obtain

the rates in Theorem 5.

In what follows, we will construct discretisations Ω(j) on each group X (j) for the sake of analysis. Let
ωj = |Ω(j)| and ωm = maxj ωj . The discretisation of the individual groups induces a discretisation Ω on X it-
self, Ω = {x =

⋃
j x

(j) : x(j) ∈ Ω(j), j = 1, . . . ,M}. Let ω = |Ω| =
∏
j ωj . We first establish the following two lemmas

before we prove Theorem 5.

Lemma 10. Pick δ ∈ (0, 1) and set βt = 2 log(ωmMπt/δ). Then with probability > 1− δ,

∀t ≥ 1,∀x ∈ Ω, |f(x)− µt−1(x)| ≤ β1/2
t

M∑
j=1

σ
(j)
t−1(x(j)).

Proof. Conditioned on Dt−1, at any given x and t we have f(x(j)) ∼ N (µ
(j)
t−1(x(j)), σ

(j)
t−1j), ∀j = 1, . . .M . Using the

tail bound, P(z > M) ≤ 1
2e
−M2/2 for z ∼ N (0, 1) we have with probability > 1− δ/ωMπt,

|f (j)(x(j))− µ(j)
t−1(x(j))|

σ
(j)
t−1(x(j))

> β
1/2
t ≤ e−βt/2 =

δ

ωmMπt
.

By using a union bound ωj ≤ ωm times over all x(j) ∈ Ω(j) and then M times over all discretisations the above holds
with probability > 1 − δ/πt for all j = 1, . . . ,M and x(j) ∈ Ω(j). Therefore, we have |f(x) − µt−1(x)| ≤ |f(x(j)) −
µ

(j)
t−1(x(j))| ≤ β1/2

t

∑
j σ

(j)
t−1(x(j)) for all x ∈ Ω. Now using the union bound on all t yields the result.

Lemma 11. The posterior mean µt−1 for a GP whose kernel κ(·, x) is L-Lipschitz satisfies,

P
(
∀t ≥ 1 |µt−1(x)− µt−1(x′)| ≤

(
f(x∗) + η

√
2 log(πt/2δ)

)
Lη−2t‖x− x′‖2

)
≥ 1− δ.

Proof. Note that for given t,

P
(
yt < f(x∗) + η

√
2 log(πt/2δ)

)
≤ P

(
εt/η <

√
2 log(πt/2δ)

)
≤ δ/πt.

Therefore the statement is true with probability > 1 − δ for all t. Further, ∆ � η2I implies ‖∆−1‖op ≤ η−2 and
|k(x, z)− k(x′, z)| ≤ L‖x− x′‖. Therefore

|µt−1(x)− µt−1(x′)| = |Y >t−1∆−1(k(x,XT )− k(x′, XT )| ≤ ‖Yt−1‖2‖∆−1‖op‖k(x,Xt−1)− k(x′, Xt−1)‖2

≤
(
f(x∗) + η

√
2 log(πt/2δ)

)
Lη−2(t− 1)‖x− x′‖2.
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B.2.1. PROOF OF THEOREM 5

Proof. First note that by Assumption 2 and the union bound we have, P(∀i supx(j)∈X (j) |∂f (j)(x(j))/∂x
(j)
i | > J) ≤

diae
−(J/b)2 . Since, ∂f(x)/∂x

(j)
i = ∂f (j)(x(j))/∂x

(j)
i , we have,

P
(
∀i = 1, . . . , D sup

x∈X

∣∣∣∂f(x)

∂xi

∣∣∣ > J

)
≤ pae−(J/b)2 .

By setting δ/3 = pae−J
2/b2 we have with probability > 1− δ/3,

∀x, x′ ∈ X , |f(x)− f(x′)| ≤ b
√

log(3ap/δ)‖x− x′‖1. (10)

Now, we construct a sequence of discretisations Ω
(j)
t satisfying ‖x(j) − [x(j)]t]‖1 ≤ dj/τt ∀x(j) ∈ Ω

(j)
t . Here, [x(j)]t is

the closest point to x(j) in Ω
(j)
t in an L2 sense. A sufficient discretisation is a grid with τt uniformly spaced points. Then

it follows that for all x ∈ Ωt, ‖x − [x]t‖1 ≤ p/τt. Here Ωt is the discretisation induced on X by the Ω
(j)
t ’s and [x]t is

the closest point to x in Ωt. Note that ‖x(j) − [x(j)]t‖2 ≤
√
dj/τt ∀x(j) ∈ Ω(j) and ‖x − [x]t‖2 ≤

√
p/τt. We will

set τt = pt3–therefore, ωtj ≤ (pt3)d
∆
= ωmt. When combining this with (10), we get that with probability > 1 − δ/3,

|f(x)− f([x])| ≤ b
√

log(3ap/δ)/t3. By our choice of βt and using Lemma 10 the following is true for all t ≥ 1 and for
all x ∈ X with probability > 1− 2δ/3,

|f(x)− µt−1([x]t)| ≤ |f(x)− f([x]t)|+ |f([x]t)− µt−1([x]t)| ≤
b
√

log(3ap/δ)

t2
+ β

1/2
t

M∑
j=1

σ
(j)
t−1([x(j)]t). (11)

By Lemma 11 with probability > 1− δ/3 we have,

∀x ∈ X , |µt−1(x)− µt−1([x]t)| ≤
L
(
f(x∗) + η

√
2 log(3πt/2δ)

)
√
pη2t2

. (12)

We use the above results to obtain the following bound on the instantaneous regret rt which holds with probability > 1− δ
for all t ≥ 1,

rt = f(x∗)− f(xt)

≤ µt−1([x∗]t) + β
1/2
t

M∑
j=1

σ
(j)
t−1([x

(j)
∗ ]t)− µt−1([xt]t) + β

1/2
t

M∑
j=1

σ
(j)
t−1([x

(j)
t ]t) +

2b
√

log(3ap/δ)

t3

≤
2b
√

log(3ap/δ)

t3
+
ζ0√
t

+ β
1/2
t

 M∑
j=1

σ
(j)
t−1(x

(j)
t ) +

M∑
j=1

σ
(j)
t−1([x

(j)
t ]t)

+ µt−1(xt)− µt−1([xt]t)

≤
2b
√

log(3ap/δ)

t3
+
L
(
f(x∗) + η

√
2 log(πt/2δ)

)
√
pη2t2

+
ζ0√
t

+ β
1/2
t

 M∑
j=1

σ
(j)
t−1(x

(j)
t ) +

M∑
j=1

σ
(j)
t−1([x

(j)
t ]t)

 . (13)

In the first step we have applied Equation (11) at x∗ and xt. In the second step we have used the fact that ϕ̃t([x∗]t) ≤
ϕ̃t(x̃t) ≤ ϕ̃t(xt) + ζ0t

−1/2. In the third step we have used Equation (12).

For any x ∈ X we can bound σt(x)
2 as follows,

σt(x)
2

= η2η−2σt(x)
2 ≤ 1

log(1 + η−2)
log
(

1 + η−2σt(x)
2
)
.

Here we have used the fact that u2 ≤ v2 log(1 + u2)/ log(1 + v2) for u ≤ v and σt(x)
2 ≤ κ(x, x) = 1. Write

C1 = log−1(1 + η−2). By using Jensen’s inequality and Definition 3 for any set of T points {x1, x2, . . . xT } ⊂ X , T∑
t=1

M∑
j=1

σ
(j)
t (x(j))

2

≤MT

T∑
t=1

M∑
j=1

σ
(j)
t (x(j))

2
≤ C1MT

T∑
t=1

log
(

1 + η−2σt(x)
2
)
≤ 2C1MTγT . (14)
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Finally we can bound the cumulative regret with probability > 1− δ for all T ≥ 1 by,

RT =

T∑
t=1

rt ≤ C2(a, b,D, L, δ) + ζ0

T∑
t=1

t−1/2 + β
1/2
T

 T∑
t=1

M∑
j=1

σ
(j)
t−1(x

(j)
t ) +

T∑
t=1

M∑
j=1

σ
(j)
t−1([x

(j)
t ]t)


≤ C2(a, b,D, L, δ) + 2ζ0

√
T +

√
8C1βTMTγT .

where we have used the summability of the first two terms in Equation (13). Here, for δ < 0.8, the constant C2 is given by,

C2 ≥ b
√

log(3ap/δ) +
π2Lf(x∗)

6
√
pη2

+
Lπ3/2

√
12pδη

.


