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Abstract— This paper describes Latent Beta Topographic
Mapping (LBTM), a generative probability model for non
linear dimensionality reduction and density estimation. LBTM
is based on Generative Topographic Mapping (GTM) and
hence inherits its ability to map complex non linear manifolds.
However, the GTM is limited in its ability to reliably estimate
sophisticated densities on the manifold. This paper explores the
possibilities of learning a probability distribution for the data
on the lower dimensional latent space. Learning a distribution
helps not only in density estimation but also in maintaining
topographic structure. In addition, LBTM provides useful
methods for sampling, inference and visualization of high
dimensional data. Experimental results indicate that LBTM can
reliably learn the structure and distribution of the data and is
competitive with existing methods for dimensionality reduction
and density estimation.

Keywords—Non linear dimensionality reduction, Manifold
mapping, Density Estimation, Generative Topographic Mapping

I. INTRODUCTION

The curse of dimensionality is a recurrent problem in ma-

chine learning and many related fields. Obtaining a compact

representation of high dimensional data is often a neces-

sary preprocessing step in many algorithms. Dimensionality

reduction algorithms compress data by abstracting patterns

and retaining only important information. Though there are

efficient methods for linear dimensionality reduction, Non

Linear Dimensionality Reduction (NLDR) remains one of

the challenging problems in unsupervised learning.

Classical methods such as Principal Components Analy-

sis (PCA), Factor Analysis and Multi Dimensional Scaling

can only capture linear structure in the data. Most Neural

Network based methods [1], [2] suffer from not having

mathematically well defined optimization objectives.

Mixture of Probabilistic Principal Component Analyzers

(MPPCA), Tipping and Bishop [3] and Mixture of Factor

Analyzers (MFA), Ghahramani and Hinton [4], are generative

latent variable models that perform local dimensionality

reduction. Local dimensionality reduction is a powerful con-

cept [4]. Both models have been successfully used in many

density estimation applications. However, it is important to

note that they do not produce a global lower dimensional

embedding of all points. This implies, among other things,

that they cannot be used as a preprocessing technique to

obtain a lower dimensional representation of data.

Non-parametric, non-probabilistic formulations for NLDR

such as Locally Linear Embedding (LLE) [5], Laplacian

Eigenmaps [6] and Isomap [7] are promising methods that

have gained in popularity due to their computational simplic-

ity. A favorable property in these algorithms is that they have

a convex optimization objective. Also, unlike MPPCA and

MFA they allow studying global structure in data. However,

the performance of these models is poor in the presence of

noise [8] and multiple separated clusters [9]. In addition,

they have two critical shortcomings. First, there is no natural

transformation from points in the data space to the latent

space and vice versa. Hence while these algorithms can

return a lower dimensional embedding of the training set,

they cannot handle out of sample points. Second, as they

are not probabilistic models, density estimation and data

generation are not straight forward. Methods to work around

these problems either require the initial data set be present, an

expensive eigenvector calculation or an unnatural extension

to the model [10], [11].

An interesting formulation for NLDR is the Gaussian

Process Latent Variable Model (GPLVM) [12]. GPLVM is

a generative model and assumes a transformation from the

latent space to the data space. Unlike conventional models the

likelihood function in GPLVM is obtained by marginalizing

over the parameters and not the latent variables. While this

approach may produce coherent lower dimensional embed-

dings, it provides no inverse function mapping points in

the data space to the latent space and hence cannot handle

out of sample data. Also, though data may be sampled

using a GPLVM, the sampled points will generally not be

independent which limits its use as a data generator.

In the light of the discussion above, we list the following as

desirable characteristics of an NLDR algorithm. (a) Global
structure: Producing a global lower dimensional embedding

of data. (b) Bijective mapping: Should have a natural map-

ping from the data space to the latent space and vice versa.

(c) Density estimation: Should be able to learn a density

model for the data on the manifold. (d) Data Generation
(Sampling): After learning one should be able to use the

model to sample independent data points that replicate and

generalize the distribution of the training set. This property

is desirable because it is often needed to generate data (e.g.

creating additional training data for learning, approximate

inference in complex models). (e) Convex Objective: The

algorithm should guarantee a globally optimum solution.

Generative Topographic Mapping, Bishop et al. [13] is

a manifold mapping model that addresses concerns (a) -

(d) discussed above. It can learn complex manifolds while

preserving topographic structure and is less sensitive to noise
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TABLE I

COMPARISON OF DIFFERENT MODELS OF NLDR

Global em-
bedding

f(y) f−1(x) Probabilistic

LLE/ Laplacian /
Isomap

√

MFA/ MPPCA
√1 √

GPLVM
√ √ √

GTM/ LBTM
√ √ √2 √

Comparison of properties of different NLDR algorithms. Does the algorithm
produce a global embedding of data (Col1)?. Is there a transformation from
the latent space to the data space (Col2) and vice versa (Col3)? Is the method
probabilistic (Col4)?.
1 MFA & MPPCA produce multiple latent spaces and a point in any of
them can be mapped to the data space.
2 There is no direct inversion but there exists a function that has a valid
interpretation as an inverse mapping.

and outliers. However, the GTM is severely limited because

it assumes a uniform distribution on the latent space. As a

result it fails as a density estimation technique.

This paper proposes a method to learn a distribution

for the latent space in GTM. Learning a distribution also

helps in achieving robust topographic ordering. The resulting

algorithm, Latent Beta Topographic Mapping can reliably

learn non-linear lower dimensional structure of high dimen-

sional data and a distribution for the data on the manifold.

LBTM is trained using Expectation Maximization (EM) and

is computationally more expensive than the GTM. However,

once trained, inference and sampling is simple and efficient.

Like most EM formulations, LBTM suffers from having

multiple local maxima. However, we take a look at a different

initialization technique based on nonparametric methods that

ensures a near global optimum at convergence.

This paper begins with a brief review of GTM in Section

II. Section III presents the LBTM algorithm in detail. Section

IV discusses results on popular datasets.

II. GENERATIVE TOPOGRAPHIC MAPPING

An L-dimensional discrete latent space consists of NL

latent nodes, usually assumed to exist on a regular grid. The

GTM maps points in the latent space to the D-dimensional

data space (L < D). To effect this mapping we use an RBF

network of M non-linear basis functions. The basis functions

are Gaussians centered at M fixed points in the latent space

(also usually taken to lie on a regular grid). A typical choice

for a basis function centered on the point νr is,

φr(y) = exp

(
− (y − νr)

2

2σ2

)
(1)

where σ determines the spread of the basis function. Given

M such points {ν1, . . . νM} we may accordingly define the

following vector valued function φ(y) ∈ R
M .

φ(y) = {φr(y)|r = 1, . . . ,M} (2)

Selecting a suitable number of basis functions M and width

parameter σ (which is generally taken to be the same for all

φr) are important. When M is small and/or σ is large, the

manifold tends to be smoother. But as the map is reluctant

to warp itself, it might fail to capture the lower dimensional

structure of the data. Conversely, if M is too large and/or σ
is too small then it might result in twisted maps and hence

poor topographic ordering. Consequently, lower dimensional

coordinates obtained using such maps will not be meaningful

representations of the data.

A weight matrix W ∈ R
D×M maps a point y in the latent

space to the data space. The mapping is given by,

f(y;W) = Wφ(y) (3)

During data generation all latent nodes are sampled with

equal probability. The distribution of a point x in the data

space, conditioned on a latent node y is a radially symmetric

Gaussian distribution centered on f(y) and covariance matrix
1
η2 ID. The probability distribution for x is obtained by

summing over all NL latent nodes. The GTM can hence

be viewed as a constrained mixture of isotropic Gaussians.

The parameters W and η are learned via EM. The log

likelihood function l(W, η) and the lower bound on the

log likelihood lb(W, η) constructed by applying Jensen’s

inequality are given by

l(W, η) =
m∑
i=1

log

NL∑
j=1

p(x(i), y(j);W, η)

lb(W, η) =
m∑
i=1

NL∑
j=1

Qi(y(j)) log
p(x(i), y(j);W, η)

Qi(y(j))

(4)

where {x(i)|i = 1, 2, . . . ,m} is the training set and {y(j)|j =
1, 2, . . . , NL} is the set of latent nodes.

In the E-step we assign the responsibilities Qi(y(j)) =
p(y(j)|x(i);W, η) based on the current guesses for W and η.

In the M-step we update W and η as follows,

(ΦTGΦ)WT
new = ΦTRX

1

ηnew
=

1

mD

m∑
i=1

NL∑
j=1

Qi(y(j))||f(y(j))− x(i)||2 (5)

In the above expression Φ is an NL × M matrix where

Φij = φj(y(i)). G is an NL × NL diagonal matrix where

Gjj =
∑

i Qi(y(j)) and R is an m × NL matrix where

Rij = Qi(y(j)). X is the m × D data matrix where each

row corresponds to a point in the data set.

A concern with point representations for the latent space

is that the number of points (NL), needed to obtain a

good embedding increases exponentially with the latent space

dimensionality (L) [13], [14]. However, in [12] it was shown

that the difficulty in modeling a probability distribution

on a lower dimensional manifold was in propagating this

distribution through a nonlinear mapping to the data space.

In that context, it was argued that point representations were

useful because each point can be easily propagated through

the nonlinear mapping. Therefore, despite its drawbacks and

computational complexity there is a strong case for the GTM

as a model for NLDR. Table I summarizes some of the

advantages of using the GTM over other approaches.
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One of the shortcomings of the GTM is the assumption

that all latent nodes are equally likely during data generation.

Generally, this means that we will not be able to learn a

faithful density model on the manifold. Our manifold might

be able to capture topographic structure in the data and

correctly map existing points in the dataset. However, it

cannot be used for inference and will be useless as a data

generator. It is possible to improve density estimation in the

GTM by using more basis functions. This however, results

in twisted maps [13].

III. LATENT BETA TOPOGRAPHIC MAPPING

A. Model

In the LBTM, the transformation from the latent space

to the data space is effected via the GTM. While the basic

GTM framework is necessarily present in LBTM, introducing

a probability distribution on the latent space overcomes the

limitations of GTM in faithfully estimating densities.

The latent space probability distribution is achieved via a

finite mixture model. This way, by varying the number of

mixtures we can control the degrees of freedom to ensure

that the model only learns credible patterns in the data. Our

model posits that during the data generation process, a latent

node y was drawn from one of NP mixtures depending on

a second latent variable z. x is then drawn from an isotropic

Gaussian centered on f(y) just as in the GTM (3).

We choose p(z) to be a multinomial on the NP−1 simplex.

For p(y|z) we require a discrete probability distribution

with finite support on L dimensions. We achieve this by

constructing a multi-dimensional beta binomial distribution

using L independent beta binomial distributions.

The beta binomial is a discrete probability distribution on

the support {0, 1, . . . , N}. The positive parameters α and

β determine its precision s = α + β and mean Nα/s.

Depending on the values of α and β the mass function can

assume a variety of different shapes, which is convenient

for our purpose. The probability mass function of the beta

binomial for k = 0, 1, . . . , N is given by,

pbb(k;α, β,N) =

(
N

k

)
Γ(α+ β)

Γ(α)Γ(β)

Γ(α+ k)Γ(β +N − k)

Γ(α+ β +N)
(6)

Each mixture in our model consists of L independent beta bi-

nomials, one per dimension. If our latent nodes are arranged

in a n1 × n2 × · · · × nL grid (hence NL = n1n2 . . . nL),

the probability of the latent node u whose coordinates in the

grid are given by (a1, a2, . . . , aL) is

pBB(u) =
L∏

l=1

pbb(al;αl, βl, nl − 1) (7)

Here al ∈ {0, 1, . . . , nl − 1} and αl, βl are the parameters

of the beta binomial along the (l)th dimension.

We see from equation (7) that the beta binomials are axis

aligned. As the beta binomial along each dimension is inde-

pendent of the others, it might fail to capture any interesting

covariance between the dimensions. While this may be seen

P (z)

z y x

P (y|z) ∼ BB(α,β) P (x|y) ∼ N (f(y), 1
η2 ID)

Fig. 1. Bayesian Network representation of LBTM

as a shortcoming, for the task of density estimation this

problem becomes insignificant for large enough NP .

To summarize, LBTM assumes the following generative

process for the data.

1) Choose z ∼ ω, where ω is a multinomial on the

NP − 1 simplex.
2) Choose y ∼ BB(α,β). α,β ∈ R

NP×L such that αij

and βij are the parameters of the (j)th dimensional

beta binomial in the (i)th mixture.

3) Choose x ∼ N (Wφ(y), 1
η2 ID).

The model is illustrated in Figure 1. Note that x is

independent of z when y is known. We shall see later that

this assumption of conditional independence reduces the

complexity of training.

B. Training and the EM Algorithm

LBTM is trained using EM, [15]. The log likelihood

function to be maximized may be written as

l(θ) =

m∑
i=1

log
∑
y,z

p(x(i), y, z; θ) (8)

In equation (8), θ refers to the tuple (W, η,α,β, ω). By

denoting the responsibilities by Qi(y, z) = p(y, z|x(i)), the

lower bound lb(θ) on the log likelihood is given by,

lb(θ) =

m∑
i=1

∑
y,z

Qi(y, z) log
(
p(x(i)|y, z)p(y|z)p(z)

Qi(y, z)

)
(9)

A naive implementation of EM based on equation (9) will

require O(mNLNP ) time and space complexity to compute

the responsibilities as Qi(y, z) needs to be computed for

each x, y and z. Fortunately, the conditional independence

assumption gives rise to simpler computation. To derive this

implementation we expand equation (9)

lb(θ) =

m∑
i=1

∑
y,z

Qi(y, z)
{
log p(x(i)|y, z) + log p(y|z)

+ log p(z)− logQi(y, z)
} (10)

and note the following.

• p(x(i)|y, z) = p(x(i)|y) as (x ⊥ z|y).
•
∑

z Qi(y, z) =
∑

z p(y, z|x(i)) = p(y|x(i)).
Let us denote p(y(j)|x(i)) by Qx

i (y(j)).
•
∑

i Qi(y, z) =
∑

i p(y, z|x(i)) =
∑

i
p(x(i)|y)p(y|z)p(z)

p(x(i)) =
p(y|z)p(z)

p(y)
∑

i
p(x(i)|y)p(y)

p(x(i)) = p(z|y)w(y) where w(y) =∑
i
p(x(i)|y)p(y)

p(x(i)) =
∑

i p(y|x(i)) =
∑

i Q
x
i (y).

Let us denote p(z(k)|y(j))w(y(j)) by Qy
j (z(k)).
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The above results propose a scheme where Qi(y, z) need

not be explicitly computed - thus reducing the complexity.

Incorporating the above, we may rewrite lb(θ) as follows.

lb(θ) = s1(W, η) + s2(α,β) + s3(ω) + s4. where

s1(W, η) =

m∑
i=1

NL∑
j=1

Qx
i (y

(j)) log p(x(i)|y(j);W, η)

s2(α,β) =

NL∑
j=1

NP∑
k=1

Qy
j (z

(k)) log p(y(j)|z(k);α,β)

s3(ω) =

NL∑
j=1

NP∑
k=1

Qy
j (z

(k)) log p(z(k);ω)

s4 = −
m∑
i=1

NL∑
j=1

NP∑
k=1

Qi(y(j), z(k)) logQi(y(j), z(k))

(11)

An EM procedure based on equation (11) is more efficient

due to two reasons. First, the complexity of computing the

responsibilities Qx
i and Qy

j has been reduced to O(mNL +
NLNP ). Second, as the parameters W, η,α,β, ω have been

decoupled in the expressions for s1, s2 and s3 we may

maximize lb(θ) by individually maximizing each component.

In maximizing lb(θ) first note that s4 is just a constant

and does not affect the optimum point. The expression in

equation (4) for the lower bound of the log likelihood in

the GTM can be reduced to s1 in equation (11). Hence the

updates for the parameters W and η obtained by maximizing

s1 is the same as those given by equation (5).

Optimizing s3 is also easily done. The

optimization objective for the multinomial ω is,

ω = argmaxω
∑

j

∑
k Q

y
j (z(k)) logωk subject to the

constraint
∑

k ωk = 1. It is easily derived by constructing

the Lagrangian and then applying certain results arrived at

before that the update for ω is

ωk :=
1

m

NL∑
j=1

Qy
j (z

(k))

This leaves us with s2. By observing equations (6), (7)

and (11) we construct the following expression for s2.

s2(α,β) =
∑
j,k

Qy
j (z

(k)) log

{
NL∏
l=1

pbb(y(j);αkl,βkl, nl − 1)

}

=

NL∑
j=1

NP∑
k=1

Qy
j (z

(k))
L∑

l=1

log

{
(nl − 1)!

a
(j)
l !b

(j)
l !

Γ(αkl + βkl)

Γ(αkl) Γ(βkl)

Γ(αkl + a
(j)
l ) Γ(βkl + b

(j)
l )

Γ(αkl + βkl + nl − 1)

}
(12)

Here each latent node y(j) is represented by the coordinates

(a
(j)
1 , a

(j)
2 , . . . , a

(j)
L ) on the grid. For notational convenience

we have taken b
(j)
l = nl − 1− a

(j)
l .

In order to optimize the above expression for α and β we

use Newton’s method. The approach is similar to the proce-

dure outlined in [16] for estimating a Dirichlet distribution.

Inverting the Hessian is generally a cubic operation. However

we saw before that in each mixture the beta binomials along

each dimension were independent. As the optimization of

αkl is coupled only to βkl and vice versa Newton’s method

would converge in linear time.

By partially differentiating equation (12) we arrive at the

first and second derivatives of s2 with respect to αhd.

∂s2
∂αhd

=

NL∑
j=1

Qy
j (z

(k))
{
Ψ(αhd + βhd) + Ψ(αhd + ad)

−Ψ(αhd + βhd + nd − 1)−Ψ(αhd)
}

∂2s2
∂α2

hd

=

NL∑
j=1

Qy
j (z

(k))
{
Ψ′(αhd + βhd) + Ψ′(αhd + ad)

−Ψ′(αhd + βhd + nd − 1)−Ψ′(αhd)
}

(13)

In equation (13) Ψ and Ψ′ refer to the digamma and

trigamma functions respectively1. We may similarly con-

struct expressions for ∂s2
∂βhd

, ∂2s2
∂β2

hd
and ∂2s2

∂αhd∂βhd
.

Now that we have computed the first and second deriva-

tives we may proceed to apply Newton’s method. As we

noted earlier, we may apply the updates individually to each

pair (αhd,βhd). The Newton’s method update is given by,(
αhd

βhd

)
:=

(
αhd

βhd

)
−H−1

hd ghd, where

Hhd =

(
∂2s2
∂α2

hd

∂2s2
∂αhdβhd

∂2s2
∂αhdβhd

∂2s2
∂β2

hd

)
, ghd =

(
∂s2
∂αhd
∂s2
∂βhd

) (14)

We may construct the Hessian (Hhd) and the gradient (ghd)
using equation (13) and then use (14) to iteratively update

αhd and βhd. s2 in equation (11) is thus optimized.

The EM algorithm for LBTM is summarized in Table

II. The formulae describe an implementation that can be

efficiently vectorized. L2-regularization has been incorpo-

rated to the updates derived thus far. λ and μ are the

regularization coefficients for the updates for W [13] and

(α,β) respectively. The complexity of each iteration as

described in the table is O(mNL +NLNP +NPL).

C. Initialization and Model Hyper-parameters

Like most EM formulations, the performance of LBTM

depends critically on initialization. Randomly initializing W
will almost always converge to a very poor local optimum. To

alleviate this problem the GTM is initialized using a PCA

based procedure in [13]. But a linear approximation may

not always be the best initialization - especially for datasets

with non-trivial manifolds. Non parametric models for NLDR

such as LLE, Laplacian Eigenmaps and Isomap can produce

good lower dimensional embeddings. Initializing our mani-

fold using an embedding thus produced might improve our

chances of obtaining a near-global optimum. Here we outline

a simple method to achieve such an initialization.

1Ψ(x) = d
dx

log(Γ(x)) is the digamma function. The trigamma function
Ψ′(x) is the derivative of the digamma function
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Given an L-dimensional representation returned by a suit-

able nonparametric algorithm Ye ∈ R
m×L, {y(1)e , . . . y

(m)
e }

we initialize W to minimize the least square error of trans-

forming Ye to X (see equation 3). i.e. set

W = XTP (PTP )−1

Where P ∈ R
m×M such that Pij = φj(y

(i)
e ). η is set to

the inverse of the average reconstruction error when using

W as initialized above. In the experiments reported the

initialization which gave the best results was chosen.

α, β and ω are initialized using simple heuristics.

• Uniformly initialize the latent space distribution.

• Compute the inverse mapping ([13]) of all points in the

training set to obtain Ŷ ∈ R
m×L.

• Initialize NP seeds {c(k)|k = 1, 2, . . . , NP } on the

latent space using Ŷ via seeding [17], k-means clus-

tering or any appropriate procedure. Initialize NP unity

precision multidimensional beta binomials whose means

are given by the NP seeds. I.e. set αkl = c
(k)
l /dl,

βkl = (dl − c
(k)
l )/dl, where dl is the length of the

(l)th dimension in the latent space.

• We now have NP mixtures. Initialize ω by setting ωk =
1
m

∑
i

p(x(i)|z(k))∑
z p(x(i)|z) .

For the transformation via the GTM we need to choose

NL, M and σ. A discussion on the choice of these parameters

is available in [13], [14]. For the LBTM we should choose

NP . If there is prior knowledge on the nature of clustering

of the data then we may set NP to the number of expected

clusters. Otherwise we may choose NP using heuristics such

as a validation set likelihood.

D. Transformations, Inversions and Data Generation

Ideally, we would prefer an NLDR model to have a

bijective mapping from points in the data space to the latent

space. While most linear dimensionality reduction methods

have this property nonlinear methods do not [12]. For the

GTM/ LBTM we have a transformation from the latent space

to the data space (equation 3). Though there is no direct

inverse function, the Inverse Mean Mapping (IMM) [13] has

a valid interpretation as an inverse transformation for the

GTM. For the LBTM, the slightly modified definition of the

IMM ŷmean of a point x in the data space is

ŷmean(x) =
∑
j

p(y(j)|x) · y(j) where

p(y(j)|x) ∝ p(x|y(j))
∑
k

p(y(j)|z(k))p(z(k))
(15)

As a parametric density model the LBTM can also be used to

generate data (Figure 1). After learning, the LBTM samples

data that faithfully replicates the original distribution of the

training set. As a data generator the LBTM outperforms the

GTM and other latent variable models.

A multinomial distribution for the latent space: We

conclude this section with a slight digression. Instead of

learning a mixture of beta binomials we could have just

learned a multinomial on the latent nodes - an approach

TABLE II

EM ALGORITHM FOR LATENT BETA TOPOGRAPHIC MAPPING

E-step
Qx

i (y
(j)) =

p(x(i)|y(j))p(y(j))
p(x(i))

∀i = 1, . . . ,m j = 1, . . . , NL

w(y(j)) =
m∑
i=1

Qx
i (y

(j)) ∀j = 1, . . . , NL

Qy
j (z

(k)) = w(y(j)) p(y(j)|z(k))p(z(k))

p(y(j))
∀j = 1, . . . , NL k = 1, . . . , NP

M-step
W := {(ΦTGΦ+ λ

η
I)−1 ΦTRX}T

η :=
{

1
mD

m∑
i=1

NL∑
j=1

Qx
i (y

(j))||Wφ(y(j))− x(i)||2
}−1

Update until convergence ∀h ∈ {1, . . . , NP }, ∀d ∈ {1, . . . , L}:

ξhd :=

nd∑
j=1

Qy
j (z

(h))
{
Ψ(αhd + βhd)−Ψ(αhd + βhd + nd − 1)

}

ξ′hd :=
nd∑
j=1

Qy
j (z

(h))
{
Ψ′(αhd + βhd)−Ψ′(αhd + βhd + nd − 1)

}

γhd :=

nd∑
j=1

Qy
j (z

(h))
{
Ψ(αhd + ad)−Ψ(αhd)

}
− 2μαhd

δhd :=

nd∑
j=1

Qy
j (z

(h))
{
Ψ(βhd + bd)−Ψ(βhd)

}
− 2μβhd

γ′hd :=
∂γhd
∂αhd

, δ′hd :=
∂δhd
∂βhd

, Δhd := ξ′hd(γ
′
hd + δ′hd) + γ′hdδ

′
hd

αhd := αhd − 1
Δhd

(
ξ′hd(γhd − δhd) + δ′hd(ξhd + γhd)

)

βhd := βhd − 1
Δhd

(
ξ′hd(δhd − γhd) + γ′hd(ξhd + δhd)

)

ωk :=
1
m

NL∑
j=1

Qy
j (z

(k)) ∀k ∈ {1, . . . , NP }

which we shall refer to as the M-GTM. It is easily shown that

the E-Step updates to compute the responsibilities Qx
i (y(j))

and the M-step updates for W and η are as described in

section II. The M-step update for the multinomial on the

latent nodes is given by πj = 1
m

∑
i Q

x
i (y(j)) where πj

refers to the probability of the (j)th node. While this method

may be computationally cheaper, it has certain inherent

disadvantages. First, the model will have too many degrees of

freedom and will be susceptible to overfitting. The resulting

probability distribution on the latent space will be very

unsmooth (see Figures 2, 3d). Though this can be smoothed

(Laplacian smoothing, convolution) there are no principled

methods to choose the smoothing parameters (k for Lapla-

cian smoothing, kernel for convolution). Second, storing the

model would require memory linear in NL (exponential in

L). Reducing NL to avoid these problems is not an option as

that would be compromising on the quality of the mapping.

IV. EXPERIMENTAL RESULTS

A. Toy Datasets

We test the GTM, M-GTM and LBTM on the datasets

shown in Figures 2(left) and 3a. The former is a sine curve

with a non-uniform distribution along the curve. The latter is

the standard S-curve which has an intrinsic 2D manifold but
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TABLE III

RESULTS ON THE SINE AND S-CURVE DATASETS

Sine data GTM M-GTM LBTM MPPCA GPLVM�

Log L -Train -1.0818 -0.6894 -0.7656 -0.2276 2.3082
Log L -Valid -1.2116 -0.9112 -0.7847 -2.8535 -
Training Time 1.76s 1.81s 3.31s 0.45s 169.2s
S-Curve
Log L -Train -3.2538 -2.6335 -2.8185 -3.2093 -2.2914
Log L -Valid -3.3669 -3.0827 -2.8639 -3.2156 -
Training Time 46.1 s 50.5 s 96.1 s 1.6 s 736.9 s

The average training and validation likelihoods on the Sine data and S-curve.
Though expensive, LBTM achieves a higher likelihood on the validation set
when compared to GTM and M-GTM.
�As the GPLVM cannot handle out of sample data it is not possible
to compute a Validation set log likelihood. Also strictly, the training
log likelihood of GPLVM has a slightly different interpretation as it is
marginalized over the parameters and not the latent variables.

Fig. 2. Left: Sine data in 2 dimensions. Right: The latent space distribution
(row 1) and data sampled (row 2) using the GTM, M-GTM and LBTM

is slightly modified to have a non-uniform distribution and

contain some spherical Gaussian noise. All 3 models were

able to correctly learn the manifold when initialized using

the embedding produced by Laplacian Eigenmaps. Figure

3b shows the manifold learned by LBTM for the S-curve

projected onto the data space.

Observe the data sampled using the models after learning.

In both cases we see that while the GTM has captured

the structure of the manifold it has failed to estimate the

density properly. The data sampled by the M-GTM and

the LBTM both resemble the original dataset. However, the

latent space distribution of the M-GTM is very unsmooth

(Figures 2(right), 3d). On observing the training and cross

validation likelihoods for the M-GTM and the LBTM in

Table III it is seen that the former has overfit the data.

This highlights the importance of controlling the degrees of

freedom when learning. The LBTM, though computationally

expensive, outperforms the other 2 versions.

Note the following about the S-Curve test. One of the rea-

sons the manifold resembled a “perfect” S in the data space

was that Laplacian Eigenmaps returned a near rectangular

embedding whose sides were aligned along the axes. When

initialized using Isomap/ LLE where the embedding was not

rectangular or not aligned along the axes the manifold did

not resemble an S. When initialized using the PCA based

procedure [13] performance was very poor. Even though

LBTM was able to learn a distribution reasonably well after

a “bad” initialization, the log likelihood was less than when

initialized using Laplacian Eigenmaps.

Fig. 3. (a) The S-curve dataset. (b) The manifold learned by LBTM
projected to the data space. (c) Sampled data using the GTM. The GTM
has a uniform latent space distribution. (d)&(e) Sampled data and the latent
space distribution when using the M-GTM and LBTM respectively.

Fig. 4. The first row shows 7 original images from the Isomap face dataset.
The images were represented in 3D and then reconstructed using PCA (row
2), GTM (row 3), and LBTM (row 4).

B. Isomap Face Data

The Isomap face dataset consists of 698 grayscale images

of size 64 × 64(D = 560). The images are synthetic faces

with different poses and lighting. There are only 3 variants

across the dataset (2 for the pose and 1 for the lighting).

The task at hand is to recover the 3 intrinsic dimensions

and learn a probability model for the data. We compare the

performance of LBTM against GTM, MPPCA and MFA.

The dataset was first reduced to its first 240 principal

components. A GTM and an LBTM were trained using 80%

of the data with 3 latent dimensions, 125 basis functions,

13824 latent points and 400 mixtures. For this dataset, initial-

ization based on PCA gave the best results. Accordingly each

image was represented using 3 coordinates. Figure 4 shows

images reconstructed from the 3 coordinate representation

using PCA, GTM and LBTM. From the reconstructions it

is evident that the GTM and LBTM were able to capture

nonlinear structure in the data.

Visually, the reconstructions using the LBTM and GTM

are not very distinguishable. However, what differentiates

the LBTM from the GTM is its ability to faithfully esti-

mate the density of the distribution. The results of density

estimation are shown in Table IV. From the Validation set
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TABLE IV

RESULTS ON THE ISOMAP FACE DATA

GTM M-GTM LBTM MPPCA MFA
Log L −132.75 −114.34 −105.04 −109.24 −113.25
Percentage 46% 89% 84% 67% 62%

Row 1: Average Log Likelihood on a Validation set consisting of 140
images. Row 2: Percentage of sampled images that resembled a face
(according to the subjective judgment of the author). All models were trained
using 3 dimensional latent spaces. The best results for MPPCA and MFA
were obtained when using 22 and 55 mixtures respectively.

Fig. 5. Faces sampled by LBTM after learning.

log likelihoods we see that the LBTM performs better than

GTM, M-GTM, MPPCA and MFA. A better estimation of

density meant that data sampled by the LBTM was able to

better replicate the original dataset than the GTM. Figure

5 shows some of the images sampled using the LBTM.

Though the images are not as neat as the images in Figure

4, the orientation and lighting are very well represented in

all images. The structure of the face (including the eyes and

nose) is also intact. Faces with orientation and lighting that

did not exactly match any of the faces in the dataset were

also generated. This indicates that the model was able to

adequately generalize the distribution of the data. Note here

that the LBTM has estimated the density very well. If not,

had we chosen a random point on the 3D latent space that

did not belong to this distribution, the reconstruction may not

have resembled a face. 84% of the images sampled using the

LBTM resembled a face. The corresponding figure for the

GTM was 46%.

To see why, observe the point clouds depicted in Figure

7. As expected we see that in the GTM, the sampled data

Fig. 6. Faces sampled using the model learned via GTM, MPPCA and
MFA. The samples produced by the GTM are of poor visual quality. In the
samples produced by the MPPCA even though the orientation and lighting
are well represented, the structure of the faces seem to be slightly less
pronounced. In most samples produced my MFA the images suffer from
having one or more ghost faces in the background.

Fig. 7. IMMs of data using the GTM (left), LBTM (right). The first row
shows the IMM of the original dataset while the second row shows the
corresponding view of the mapping of some sampled data.

is spread uniformly across the latent space even though the

original dataset only occupies a subset of the latent space.

This confirms the GTM’s inability to estimate density and

explains why most of the sampled data do not resemble a

face (Figure 6). On the other hand, the LBTM seems to have

generalized the distribution quite well as the sampled points

reasonably resemble the original distribution. Interestingly

though, the M-GTM was able to produce a slightly higher

fraction of “good” faces. It is important to note that when a

model overfits the training set, data sampled using the model

tends to exactly reproduce the training set (carefully inspect

Figures 2 and 3). Such models have poor generalization per-

formance. Even though the M-GTM produced more “good”

faces, most of them closely resembled faces in the original

training set as the model failed to interpolate and generalize.

Finally note that though such point clouds cannot be

obtained for MPPCA and MFA it is still possible to sample

data as they are both generative models. We have shown

some of the images generated using MPPCA and MFA in

Figure 6. By comparing the quality of the samples in Figure

5 and Figure 6 we see that LBTM has outperformed both

MPPCA and MFA.

C. Frey Face Data

The Frey face dataset consists of 1965 grayscale images

of size 20 × 28 (D = 560). The dataset was reduced to its

first 50 principal components and an LBTM (L = 2, NL =
10, 000,M = 25, NP = 100) was trained using 1572 of the

images. For initialization we used the embedding produced

by the Isomap algorithm. LBTM was able to successfully

learn the manifold and the distribution of this dataset.

Figure 8 shows the IMMs of the original dataset and

a sampled dataset. The figure also shows some of the

images generated using the model after learning. The images

sampled here are less noisy and visually much better than the

images generated in the Isomap face experiment. This is not

surprising because the Frey face dataset is a much simpler

problem than the Isomap face dataset (more data and fewer

latent space and data space dimensions).

Also note that the manifold achieves good topographic

ordering. The faces shown are the samples produced along

different traces in the manifold. When traversing along the

curve we see that variations are gradual which indicates that
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Fig. 8. The scatter plots are the IMMs of the original dataset (blue) and a sampled dataset using LBTM (magenta). The faces shown are images sampled
using the model (not from the original dataset) that lie along the blue, red and green traces indicated in the sampled data scatter plot. The samples are
legitimate faces representative of the original dataset and more importantly respect topographic order.

the LBTM hasn’t produced any twisted maps.

V. CONCLUSION

A. Discussion

It is important to evaluate some of the tests demonstrated

above for the LBTM against other NLDR formulations. To

compare different density models we generally use validation

set log likelihoods. LLE, Laplacian Eigenmaps and Isomap

are not density models to begin with. Though GPLVM is a

probabilistic model, it has no mechanism to handle out of

sample data and hence a validation set log likelihood cannot

be computed.

Using most other algorithms discussed above, data cannot

be reduced to L-dimensions and then be reconstructed in

the data space to assess how much information the lower

dimensional representation has retained. Concretely, we can-

not carry out the test demonstrated in Figure 4. MPPCA and

MFA cannot be used to obtain a global lower dimensional

representation in the first place while LLE, Isomap, Lapla-

cian Eigenmaps and GPLVM do not have an inverse function

from the data space to the latent space.

As an algorithm that can produce a global lower dimen-

sional embedding of data, map points in the latent space to

the data space and vice versa and learn a density model for

the data which can be used for inference and data generation,

the LBTM can be viewed as a more versatile model for

NLDR than the other models discussed above.

B. Summary

This paper proposed a method to learn a latent space

probability distribution for the GTM which allows density

estimation without compromising on topographic ordering.

In addition, we saw how good initialization of the GTM/

LBTM helps avoid local optima. Like popular nonparametric

techniques, LBTM provides a global lower dimensional

embedding of data. As a generative probability model it

outperforms the GTM and powerful local dimensionality

reduction techniques such as MPPCA and MFA.

Different variations to the LBTM can be obtained by

imposing constraints on the probability distributions of the

mixtures. For instance, we may fix ω to be a uniform

multinomial. An LBTM learned may increase the proba-

bility of a neighborhood in the latent space by peaking

the distributions of each beta binomial and/ or grouping

more of them together. Another variation would be to fix

the precisions for each beta binomial. We may choose the

precisions depending on how locally peaked or flat we want

our prior probabilities to be. We leave it to future work to

build on such formulations.
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