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Abstract
In many scientific and engineering applications, we are tasked with the maximisation of an

expensive to evaluate black box function f . Traditional settings for this problem assume just the
availability of this single function. However, in many cases, cheap approximations to f may be
obtainable. For example, the expensive real world behaviour of a robot can be approximated by a
cheap computer simulation. We can use these approximations to eliminate low function value regions
cheaply and use the expensive evaluations of f in a small but promising region and speedily identify
the optimum. We formalise this task as a multi-fidelity bandit problem where the target function and
its approximations are sampled from a Gaussian process. We develop MF-GP-UCB, a novel method
based on upper confidence bound techniques. In our theoretical analysis we demonstrate that it
exhibits precisely the above behaviour and achieves better bounds on the regret than strategies which
ignore multi-fidelity information. Empirically, MF-GP-UCB outperforms such naive strategies and
other multi-fidelity methods on several synthetic and real experiments.

1. Introduction

In stochastic bandit optimisation, we wish to optimise a function f : X → R by sequentially querying
it and obtaining bandit feedback, i.e. when we query at any x ∈ X , we observe a possibly noisy
evaluation of f(x). f is typically expensive and the goal is to identify its maximum while keeping
the number of queries as low as possible. Some applications are hyper-parameter tuning in expensive
machine learning algorithms (Snoek, Larochelle, & Adams, 2012), optimal policy search in complex
systems (Martinez-Cantin, de Freitas, Doucet, & Castellanos, 2007), online advertising (Kar, Li,
Narasimhan, Chawla, & Sebastiani, 2016), scientific experiments (Parkinson, Mukherjee, & Liddle,
2006), and statistical tasks such as collaborative filtering (S. Li, Karatzoglou, & Gentile, 2016) and
clustering (Gentile et al., 2017). Historically, bandit problems were studied in settings where the goal
is to maximise the cumulative reward of all queries to the payoff instead of just finding the maximum.
Applications in this setting include clinical trials and online advertising.

Conventional methods in these settings assume access to only this single expensive function of
interest f . We will collectively refer to them as single fidelity methods. In many practical problems
however, cheap approximations to f might be available. For instance, when tuning hyper-parameters
of learning algorithms, the goal is to maximise a cross validation score on a training set, which can be
expensive if the training set is large. However validation curves tend to vary smoothly with training
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n=300
n=3000

Figure 1: Average 5-fold CV log likelihood on datasets of size 300, 3000 on a synthetic kernel
density estimation task. The crosses are the maxima.

set size; therefore, we can train and cross validate on small subsets to approximate the validation
accuracies of the entire dataset. For a concrete example, consider kernel density estimation (KDE),
where we need to tune the bandwidth h of a kernel when using a dataset of size 3000. Figure 1
shows the average cross validation likelihood against h for a dataset of size n = 3000 and a smaller
subset of size n = 300. Since the cross validation performance of a hyper-parameter depends on the
training set size (Vapnik & Vapnik, 1998), we can obtain only a biased estimate of the cross validation
performance with 3000 points using a subset of size 300. Consequently, the two maximisers are
also different. That said, the curve for n = 300 approximates the n = 3000 curve quite well.
Since training and cross validation on small n is cheap, we can use it to eliminate bad values of the
hyper-parameters and reserve the expensive experiments with the entire dataset for the promising
hyper-parameter values (for example, boxed region in Figure 1).

In the conventional treatment for online advertising, each query to f is, say, the public display of
an ad on the internet for a certain time period. However, we could also choose smaller experiments
by, say, confining the display to a small geographic region and/or for shorter periods. The estimate
is biased, since users in different geographies are likely to have different preferences, but will
nonetheless be useful in gauging the all round performance of an ad. In optimal policy search in
robotics and autonomous driving, vastly cheaper computer simulations are used to approximate the
expensive real world performance of the system (Cutler, Walsh, & How, 2014; Urmson et al., 2008).
Scientific experiments can be approximated to varying degrees using less expensive data collection,
analysis, and computational techniques (Parkinson et al., 2006).

In this paper, we cast these tasks as multi-fidelity bandit optimisation problems assuming the
availability of cheap approximate functions (fidelities) to the payoff f . Our contributions are:

1. We present a formalism for multi-fidelity bandit optimisation using Gaussian process (GP)
assumptions on f and its approximations. We develop a novel algorithm, Multi-Fidelity Gaussian
Process Upper Confidence Bound (MF-GP-UCB) for this setting.

2. Our theoretical analysis proves that MF-GP-UCB explores the space X at lower fidelities and
uses the high fidelities in successively smaller regions to converge on the optimum. As lower
fidelity queries are cheaper, MF-GP-UCB has better upper bounds on the regret than single fidelity
strategies which have to rely on the expensive function to explore the entire space.

3. We demonstrate that MF-GP-UCB outperforms single fidelity methods and other alternatives
empirically, via a series of synthetic examples, three hyper-parameter tuning tasks and one
inference problem in astrophysics. Our matlab implementation and experiments are available at
github.com/kirthevasank/mf-gp-ucb.
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Related Work

Since the seminal work by Robbins (1952), the multi-armed bandit problem has been studied
extensively in the K-armed setting. Recently, there has been a surge of interest in the optimism under
uncertainty principle forK-armed bandits, typified by upper confidence bound (UCB) methods (Auer,
2003; Bubeck & Cesa-Bianchi, 2012). UCB strategies have also been used in bandit tasks with
linear (Dani, P. Hayes, & Kakade, 2008) and GP (Srinivas, Krause, Kakade, & Seeger, 2010) payoffs.
There is a plethora of work on single fidelity methods for global optimisation both with noisy and
noiseless evaluations. Some examples are branch and bound techniques such as dividing rectangles
(DiRect), simulated annealing, genetic algorithms and more (Jones, Perttunen, & Stuckman, 1993;
Kawaguchi, Kaelbling, & Lozano-Pérez, 2015; Kirkpatrick, Gelatt, & Vecchi, 1983; Munos, 2011).
A suite of single fidelity methods in the GP framework closely related to our work is Bayesian
Optimisation (BO). While there are several techniques for BO (Hernández-Lobato, Hoffman, &
Ghahramani, 2014; Jones, Schonlau, & Welch, 1998; Mockus, 1994; Thompson, 1933), of particular
interest to us is the Gaussian process upper confidence bound (GP-UCB) algorithm of Srinivas et al.
(2010).

Many applied domains of research such as aerodynamics, industrial design and hyper-parameter
tuning have studied multi-fidelity methods (Forrester, Sóbester, & Keane, 2007; Huang, Allen,
Notz, & Miller, 2006; Klein, Bartels, Falkner, Hennig, & Hutter, 2015; L. Li, Jamieson, DeSalvo,
Rostamizadeh, & Talwalkar, 2017; Swersky, Snoek, & Adams, 2013, 2014); a plurality of them
use BO techniques. However these treatments neither formalise nor analyse any notion of regret in
the multi-fidelity setting. In contrast, MF-GP-UCB is an intuitive UCB idea with good theoretical
properties. Bogunovic, Scarlett, Krause, and Cevher (2016) study a version of BO where an
algorithm might use cheap, noisy, yet unbiased approximations to a function f ; but as we will explain
in Section 2, this is different to the multi-fidelity problem. Agarwal, Duchi, Bartlett, and Levrard
(2011) derive oracle inequalities for hyper-parameter tuning with ERM under computational budgets.
Our setting is more general as it applies to any bandit optimisation task. Sabharwal, Samulowitz,
and Tesauro (2015) present a UCB based idea for tuning hyper-parameters with incremental data
allocation. However, their theoretical results are for an idealised non-realisable algorithm. Cutler
et al. (2014) study reinforcement learning with multi-fidelity simulators by treating each fidelity
as a Markov Decision Process. Finally, Zhang and Chaudhuri (2015) study active learning when
there is access to a cheap weak labeler and an expensive strong labeler. These works study problems
different to optimisation.

Recently, in Kandasamy, Dasarathy, Poczos, and Schneider (2016) we studied the classical
K-armed bandit in multi-fidelity settings. Here, we build on this work to study multi-fidelity
Bayesian optimisation; as such, we share similarities in the assumptions, algorithm, and some
analysis techniques. A preliminary version of this paper appeared in Kandasamy, Dasarathy, Oliva,
Schenider, and Póczos (2016) where we provided theoretical results in continuous domains and with
two fidelities (one approximation). In this paper, we expand on the above and provide results both in
discrete domains and for a general number of fidelities. Furthermore, we eliminate some technical
assumptions from our previous work and present cleaner and more interpretable versions of our
theorems. In follow up work (Kandasamy, Dasarathy, Schneider, & Poczos, 2017), we extend multi-
fidelity optimisation to settings with continuous approximations. While the assumptions there are
considerably different, it builds on the main intuitions from this work. To the best of our knowledge,
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this is the first line of work to formalise a notion of regret and provide a theoretical analysis for
multi-fidelity optimisation.

Subsequent to our work, there has been a line of research on multi-fidelity optimisation in various
settings. Sen, Kandasamy, and Shakkottai (2018, 2019) develop an algorithm in frequentist settings
which builds on the key intuitions here, i.e. query at low fidelities and proceed higher only when
the uncertainty has shrunk. In addition, Song, Chen, and Yue (2018) develop a Bayesian algorithm
which chooses fidelities based on the mutual information. Poloczek, Wang, and Frazier (2017); Wu,
Toscano-Palmerin, Frazier, and Wilson (2019) use knowledge gradient methods for multi-fidelity
Bayesian optimisation while Hoag and Doppa (2018) use techniques from search based optimisation
for this problem.

The remainder of this manuscript is organised as follows. Section 2 presents our formalism
including a notion of simple regret for multi-fidelity GP optimisation. Section 4 presents our
algorithm. We present our theoretical results in Section 5 beginning with an informal discussion
of results for M = 2 fidelities in Section 5.1 to elucidate the main ideas. The proofs are given in
Section 8. Section 7 presents our experiments with some details deferred to Appendix A. Appendix B
collects some ancillary material including a table of notations and abbreviations in Appendix B.2.

2. Problem Set Up

We wish to maximise a function f : X → R where X is a finite discrete or compact subset of [0, r]d,
where r > 0 and d is the dimension of X . We can interact with f only by querying it at some
x ∈ X and obtaining a noisy evaluation y = f(x) + ε of f , where the noise satisfies E[ε] = 0. Let
x? ∈ argmaxx∈X f(x) be a maximiser of f and f? = f(x?) be the maximum value. Let xt ∈ X be
the point queried at time t by a sequential procedure. The goal in bandit optimisation is to achieve
small simple regret Sn, defined below, after n queries to f .

Sn = min
t=1,...,n

f? − f(xt). (1)

Our primary distinction from the usual setting is that we have access to M − 1 successively accurate
approximations f (1), f (2), . . . , f (M−1) to the function of interest f = f (M). We refer to these
approximations as fidelities. The multi-fidelity framework is attractive when the following two
conditions are true about the problem.

1. The approximations f (1), . . . , f (M−1) approximate f (M). To this end, we will assume a uniform
bound for the fidelities, ‖f (M) − f (m)‖∞ ≤ ζ(m) for m = 1, . . . ,M , where the bounds ζ(1) >
ζ(2) > · · · > ζ(M) = 0 are known.

2. The approximations are cheaper than evaluating at f (M). We will assume that a query at fidelity
m expends a cost λ(m) of a resource, such as computational effort or money. The costs are known
and satisfy 0 < λ(1) < λ(2) < · · · < λ(M).

Above, and throughout this manuscript, for any h : X → R, we define ‖h‖∞ = supx∈X |h(x)|. As
the fidelity m increases, the approximations become better but are also more costly. An algorithm
for multi-fidelity bandits is a sequence of query-fidelity pairs {(xt,mt)}t≥0, where at time n, the
algorithm chooses (xn,mn) using information from previous query-observation-fidelity triples
{(xt, yt,mt)}n−1

t=1 . Here yt = f (mt)(xt) + εt where, the εt values are independent noise at each time
step t and E[εt] = 0.
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Some smoothness assumptions on f (m)’s are needed to make the problem tractable. A standard
in the Bayesian nonparametric literature is to use a Gaussian process (GP) prior (Rasmussen &
Williams, 2006) with covariance kernel κ. Two popular kernels of choice are the squared exponential
(SE) kernel κσ,h and the Matérn kernel κν,h. Writing z = ‖x− x′‖2, they are defined as

κσ,h(x, x′) = σ exp

(
− z2

2h2

)
, κν,ρ(x, x

′) =
21−ν

Γ(ν)

(√
2νz

ρ

)ν
Bν

(√
2νz

ρ

)
,

respectively. Here σ, h, ν, ρ > 0 are parameters of the kernels and Γ, Bν are the Gamma and
modified Bessel functions. A convenience the GP framework offers is that posterior distributions
are analytically tractable. If f ∼ GP(0, κ) is a sample from a GP, and we have observations
Dt = {(xi, yi)}ti=1, where yi = f(xi) + ε and ε ∼ N (0, η2) is Gaussian noise, then the posterior
distribution for f(x)|Dt is also Gaussian N (µt(x), σ2

t (x)) with (Rasmussen & Williams, 2006),

µt(x) = k>(K + η2It)
−1Y, σ2

t (x) = κ(x, x)− k>(K + η2It)
−1k. (2)

Here, Y ∈ Rt is a vector with Yi = yi, k ∈ Rt is a vector with ki = κ(x, xi). The matrix K ∈ Rt×t
is given by Ki,j = κ(xi, xj). It ∈ Rt×t is the t× t identity matrix.

2.1 The Generative Process for Multi-fidelity Optimisation

In keeping with the above framework, we assume the following generative model for the functions
f (1), . . . , f (M). A generative mechanism is given constants ζ(1), . . . , ζ(M−1). It then generates the
functions as follows.

Step 1. Sample f (m) ∼ GP(0, κ) for m = 1, . . . ,M . (A1)

Step 2. Check if ‖f (M) − f (m)‖∞ ≤ ζ(m) for all m = 1, . . . ,M − 1. If true, then deliver
f (1), . . . , f (M). If false, go back to Step 1. (A2)

In addition to this, we will also assume that upon querying f (m) at xt we observe f (m)(xt) + ε where
ε ∼ N (0, η2) is Gaussian noise with variance η2. Note that for well behaved kernels, such as the SE
and Matérn kernels, GP sample paths are continuous with probabiliy 1 (Adler, 1990).

Condition A2 characterises the approximation conditions for the lower fidelities. Lemma 2 shows
that A2 is satisfied with positive probability when f (1), . . . , f (M) are sampled from a GP. Hence this
is a valid generative process since A2 will eventually be satisfied. Moreover, in Section 4 we argue
that while A2 renders the computation of the true posterior of all GPs inefficient via closed form
equations such as in (2), it is still possible to derive an efficient algorithm that uses (2) to determine
future points for evaluation.

We note that other natural approximation conditions can be used to characterise the cheaper
fidelities. We choose a uniform bound condition because it provides a simple way to reason about one
fidelity from the others, hence keeping the analysis tractable while ensuring the model is interesting
enough so that empirical performance is not compromised. Our theoretical analysis assumes that the
algorithm needs to know the uniform bounds ζ(1), . . . , ζ(M−1) which can be unrealistic in practical
settings. In Section 6 we describe a heuristic for choosing these values in a data dependent manner.
That said, we believe that the intuitions in this work can be used to develop other upper confidence
based multi-fidelity BO algorithms for other approximation conditions. In fact, the approximation
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conditions in our follow up work in Kandasamy et al. (2017), are of a Bayesian flavour via a kernel
on the fidelities. The algorithm, BOCA, builds on the key insights developed here.

It is worth mentioning that while our theoretical results are valid for arbitrary In this work, we
will assume that M is a small fixed value and that λ(1) is comparable to λ(M). For instance, in many
practical applications of multi-fidelity optimisation, while an approximation may be cheaper than the
real experiment, it could itself be quite expensive and hence require an intelligence procedure, such
as Bayesian optimisation, to choose the next point. This is the regime the current paper focuses on,
as opposed to asymptotic regimes where M →∞ and/or λ(1) → 0. Moreover, very large values of
M are better handled by the formalism in our follow up work in Kandasamy et al. (2017).

Finally, we note that Assumption A1 can be relaxed to hold for different kernels and noise
variances for each fidelity, i.e. different κ(m), η(m) for m = 1, . . . ,M , with minimal modifications
to our analysis but we use the above form to simplify the presentation of the results. In fact, our
practical implementation uses different kernels.

2.2 Simple Regret for Multi-fidelity Optimisation

Our goal is to achieve small simple regret S(Λ) after spending capital Λ of a resource. We will aim
to provide any-capital bounds, meaning that we will assume that the game is played indefinitely and
will try to bound the regret for all (sufficiently large) values of Λ. This is similar in spirit to any-time
analyses in single fidelity bandit methods as opposed to fixed time horizon analyses. Let {mt}t≥0

be the fidelities queried by a multi-fidelity method at each time step. Let N be the random quantity
such that N = max{n ≥ 1 :

∑n
t=1 λ

(mt) ≤ Λ}, i.e. it is the number of queries the strategy makes
across all fidelities until capital Λ. Only the optimum of f = f (M) is of interest to us. The lower
fidelities are useful to the extent that they help us optimise f (M) with less cost, but there is no reward
for optimising a cheaper approximation. Accordingly, we set the instantaneous reward qt at time t to
be −∞ if mt 6= M and f (M)(xt) if mt = M . If we let rt = f? − qt denote the instantaneous regret,
we have rt = +∞ if mt 6= M and f? − f (M)(xt) if mt = M . For optimisation, the simple regret is
simply the best instantaneous regret, S(Λ) = mint=1,...,N rt. Equivalently,

S(Λ) = min
t=1,...,N

rt =


min

t= 1,...,N
t :mt=M

f? − f (M)(xt) if we have queried at the M th fidelity
at least once,

+∞ otherwise.

(3)

Note that the above reduces to Sn in (1) when we only have access to f (M) with n = N = bΛ/λ(M)c.
Before we proceed, we note that it is customary in the bandit literature to analyse cumulative

regret. The definition of cumulative regret depends on the application at hand (Kandasamy, Dasarathy,
Poczos, & Schneider, 2016) and our results can be extended to many sensible notions of cumulative
regret. However, both to simplify exposition and since our focus in this paper is optimisation, we
stick to simple regret.

Challenges: We conclude this subsection with a commentary on some of the challenges in multi-
fidelity optimisation using Figure 2 for illustration. For simplicity, we will focus on 2 fidelities
when we have one approximation f (1) to an expensive function f (2). For now assume that (unreal-
istically) f (1) and its optimum x

(1)
? are known. Typically x(1)

? is suboptimal for f (2). A seemingly
straightforward solution might be to search for x? in an appropriate subset, such as a neighborhood

156



MULTI-FIDELITY GAUSSIAN PROCESS BANDIT OPTIMISATION

x⋆ x
(1)
⋆

f (1)

f (2)

(a)

x⋆ x
(1)
⋆

f (1)

f (2)

(b)

x⋆ x
(1)
⋆

f (1)

f (2)

(c)

x⋆x
(1)
⋆

f (1)

f (2)

(d)

Figure 2: An illustration of the challenges in multi-fidelty optimisation. See Section 2.

of x(1)
? . However, if this neighborhood is too small, we might miss the optimum x? (green region

in Figure 2(a)). A crucial challenge for multi-fidelity methods is to not get stuck at the optimum of
a lower fidelity. While exploiting information from lower fidelities, it is also important to explore
sufficiently at higher fidelities. In our experiments, we demonstrate that naive strategies which do
not do so could get stuck at the optimum of a lower fidelity. Alternatively, if we pick a very large
subset (Figure 2(b)) we might not miss x?; however, it defeats the objectives of the multi-fidelity set
up where the goal is to use the approximation to be prudent about where we query f (2). Figure 2(c)
displays a seemingly sensible subset, but it remains to be seen how it is chosen. Further, this subset
might not even be a neighborhood as illustrated in Figure 2(d), where f (1), f (2) are multi-modal
and the optima are in different modes. In such cases, an appropriate algorithm should explore all
such modes. On top of the above, an algorithm does not actually know f (1). A sensible algorithm
should explore f (1) and simultaneously identify the above subset, either implicitly or explicitly, for
exploration at the second fidelity f (2). Finally, it is also important to note that f (1) is not simply a
noisy version of f (2); this setting is more challenging as an algorithm needs to explicitly account for
the bias in the approximations.

2.3 Some Useful Properties of GPs

For what follows, we present some useful properties and concepts related to GPs with well behaved
kernels. We we will denote probabilities when f (1), . . . , f (M) ∼ GP(0, κ) independently, by PGP . P
will denote probabilities under the prior in the multi-fidelity setting which includes A2 after sampling
the functions; i.e. for any event E, P(E) = PGP(E|A2). First, we will need the following regularity
conditions on the kernel. It is satisfied for four times differentiable kernels such as the SE kernel and
Matérn kernel when ν > 2; see Ghosal and Roy (2006), Theorem 5.

Assumption 1. (Theorem 5 in Ghosal and Roy, 2006) Let f ∼ GP(0, κ), where κ : [0, r]d×[0, r]d →
R is a stationary kernel (Rasmussen & Williams, 2006). The partial derivatives of f satisfies the
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following condition. There exist constants a, b > 0 such that,

for all J > 0, and for all i ∈ {1, . . . , d}, PGP
(

sup
x

∣∣∣∂f(x)

∂xi

∣∣∣ > J

)
≤ ae−(J/b)2

.

Observe that we have used notation PGP to indicate the prior probability when f ∼ GP(0, κ) for
consistency. Next, the following assumption supposes that there is a positive probability to the event
that the supremum of a GP in a bounded domain is smaller than any given ε > 0.

Assumption 2. Let X = [0, r]d and f ∼ GP(0, κ). Let κ : X ×X d → R be such that for all ε > 0,
there exists Q(ε) > 0 such that,

PGP
(

sup
x∈X
|f(x)| < ε

)
> Q(ε).

As shown by Theorem 4 in Ghosal and Roy (2006), this is satisfied for the SE and Matérn kernels.
Finally, following Srinivas et al. (2010), our theoretical results will be given in terms of the Maximum
Information Gain (MIG), defined below.

Definition 1. (Maximum Information Gain Srinivas et al., 2010) Let f ∼ GP(0, κ). Consider
any A ⊂ Rd any let Ã = {x1, . . . , xn} ⊂ A be a finite subset. Let f

Ã
, ε
Ã
∈ Rn be such that

(f
Ã

)i = f(xi), (ε
Ã

)i ∼ N (0, η2) for i = 1, . . . , n, and y
Ã

= f
Ã

+ ε
Ã

. Let I denote the Shannon
mutual information. The Maximum Information Gain Ψn(A) of set A after n evaluations is the
maximum mutual information between the function values and observations among all choices of n
points in A. Precisely,

Ψn(A) = max
Ã⊂A,|Ã|=n

I(y
Ã

; f
Ã

).

The MIG, which depends on the kernel and the set A, will be an important quantity in our
analysis as it characterises the statistical difficulty of GP Bandits. For a given kernel it typically
scales with the volume of A (Srinivas et al., 2010)1. For example, if A = [0, r]d then Ψn(A) ∈
O(rdΨn([0, 1]d)). It is known that for the SE kernel, Ψn([0, 1]d) ∈ O((log(n))d+1) and for the

Matérn kernel, Ψn([0, 1]d) ∈ O(n
d(d+1)

2ν+d(d+1) log(n)) (Seeger, Kakade, & Foster, 2008; Srinivas et al.,
2010).

3. A Review of GP-UCB

Sequential optimisation methods adopting UCB principles maintain a high probability upper bound
ϕt : X → R for f(x) for all x ∈ X (Auer, 2003). At time t we query at the maximiser of this upper
bound xt = argmaxx∈X ϕt(x). Our work builds on GP-UCB (Srinivas et al., 2010), where ϕt takes
the form ϕt(x) = µt−1(x) + β

1/2
t σt−1(x). Here µt−1, σt−1 are the posterior mean and standard

deviation of the GP conditioned on the previous t − 1 queries {(xi, yi)}t−1
i=1 and βt > 0. The key

intuition here is that the mean µt−1 encourages an exploitative strategy – in that we want to query
where we know the function is high – and the standard deviation σt−1 encourages an explorative
strategy – in that we want to query at regions we are uncertain about f lest we miss out on high
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x

ϕt

f

Figure 3: Illustration of GP-UCB. The solid black line is f(x) and the dashed blue line is ϕt(x). The
observations until t− 1 are shown as black crosses. At time t, we query at the maximiser
xt = argmaxx∈X ϕt(x) shown via the red star.

Algorithm 1 GP-UCB (Srinivas et al., 2010)
Input: kernel κ.
• D0 ← ∅, (µ0, σ0)← (0, κ1/2).

• for t = 1, 2, . . .

1. xt ← argmaxx∈X µt−1(x) + β
1/2
t σt−1(x)

2. yt ← Query f at xt.

3. Perform Bayesian posterior updates to obtain µt, σt. See (2).

valued regions. βt will control the trade-off between exploration and exploitation. We have presented
GP-UCB in Algorithm 1 and illustrated it in Figure 3.

The following theorem from Srinivas et al. (2010) bounds the simple regret Sn (1) for GP-
UCB. They give their bounds in terms of the cumulative regret, but converting it to simple regret is
straightforward.

Theorem 1. (Theorems 1 and 2 in Srinivas et al., 2010) Let f ∼ GP(0, κ), f : X → R and the
kernel κ satisfies Assumption 1). At each query, we have noisy observations y = f(x) + ε where
ε ∼ N (0, η2). Denote C1 = 8/ log(1 + η−2). Pick a failure probability δ ∈ (0, 1). The following
bounds on the simple regret Sn hold with PGP -probability > 1− δ for all n ≥ 1.

• If X is a finite discrete set, run GP-UCB with βt = 2 log
(
|X |t2π2/6δ

)
. Then,

for all n ≥ 1, Sn ≤
√
C1βnΨn(X )

n

• If X = [0, r]d, run GP-UCB with βt = 2 log
(

2π2t2

3δ

)
+ 2d log

(
t2bdr

√
4ad
δ

)
. Then,

for all n ≥ 1, Sn ≤
√
C1βnΨn(X )

n
+

2

n

1. In section C.2 of Srinivas et al. (2010), the kernel’s eigenspectrum is defined with respect to the uniform measure
on the domain X . When we consider any subset A ⊂ X with the same measure and eigenspectrum, a multiplicative
vol(A) term appears.
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4. Multi-fidelity Gaussian Process Upper Confidence Bound (MF-GP-UCB)

We now propose MF-GP-UCB, which extends GP-UCB to the multi-fidelity setting. Like GP-UCB,
MF-GP-UCB will also maintain a UCB for f (M) obtained via the previous queries at all fidelities.
Denote the posterior GP mean and standard deviation of f (m) conditioned only on the previous
queries at fidelity m by µ(m)

t , σ
(m)
t respectively (See (2)). Then define,

ϕ
(m)
t (x) = µ

(m)
t−1(x) + β

1/2
t σ

(m)
t−1(x) + ζ(m), ∀m, ϕt(x) = min

m=1,...,M
ϕ

(m)
t (x). (4)

For appropriately chosen βt, µ
(m)
t−1(x)+β

1/2
t σ

(m)
t−1(x) will upper bound f (m)(x) with high probability.

By A2 and (4), ϕ(m)
t (x) upper bounds f (M)(x) for all m. We have M such bounds, and their

minimum ϕt(x) gives the best upper bound for f (M). Following UCB strategies such as GP-UCB,
our next query is at the maximiser of this UCB, xt = argmaxx∈X ϕt(x).

Next we need to decide which fidelity to query at. Consider any m < M . The ζ(m) constraints
on f (m) restrict the value of f (M) – the confidence band β1/2

t σ
(m)
t−1 for f (m) is lengthened by ζ(m) to

obtain confidence on f (M). If β1/2
t σ

(m)
t−1(xt) for f (m) is large, it means that we have not constrained

f (m) sufficiently well at xt and should query at the mth fidelity. On the other hand, querying
indefinitely in the same region to reduce the uncertainty β1/2

t σ
(m)
t−1 at the mth fidelity in that region

will not help us much as the ζ(m) elongation caps off how much we can learn about f (M) from f (m);
i.e. even if we knew f (m) perfectly, we will only have constrained f (M) to within a ±ζ(m) band.
Our algorithm captures this simple intuition. Having selected xt, we begin by checking at the first
fidelity. If β1/2

t σ
(1)
t−1(xt) is smaller than a threshold γ(1), we proceed to the second fidelity. If at any

stage β1/2
t σ

(m)
t−1(xt) ≥ γ(m) we query at fidelity mt = m. If we proceed all the way to fidelity M ,

we query at mt = M . We will discuss choices for γ(m) in Sections 5.1 and 6. We summarise the
resulting procedure in Algorithm 2.

Algorithm 2 MF-GP-UCB
Inputs: kernel κ, bounds {ζ(m)}Mm=1, thresholds {γ(m)}Mm=1.

• For m = 1, . . . ,M : D(m)
0 ← ∅, (µ

(m)
0 , σ

(m)
0 )← (0, κ1/2).

• for t = 1, 2, . . .

1. xt ← argmaxx∈X ϕt(x). See (4) for ϕt and Sections 5, 6 for βt.

2. mt = min {m |β1/2
t σ

(m)
t−1(xt) ≥ γ(m) or m = M}.

3. yt ← Query f (mt) at xt.

4. Update D(mt)
t ← D(mt)

t−1 ∪ {(xt, yt)}. Obtain µ(mt)
t , σ

(mt)
t conditioned on D(mt)

t (2).

Set D(m)
t ← D(m)

t−1 , µ(m)
t ← µ

(m)
t−1, σ(m)

t ← σ
(m)
t−1 for m 6= mt.

Before we proceed, we make an essential observation. The posterior for any f (m)(x) conditioned
on previous queries at all fidelities

⋃M
`=1D

(`)
t is not Gaussian due to the ζ(m) constraints (A2).

However, |f (m)(x)− µ(m)
t−1(x)| < β

1/2
t σ

(m)
t−1(x) holds with high probability, since, by conditioning

only on queries at the mth fidelity we have Gaussianity for f (m)(x). (See Lemma 9, Section 8.1).
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γ
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γ
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f (2)

x⋆xt

t = 50

f (1)
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γ
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Figure 4: The 6 panels illustrate an execution of MF-GP-UCB in 2 fidelities at times t =
6, 8, 10, 11, 14, 50. In each panel, the top figure illustrates the upper bounds and se-
lection of xt while the bottom figure illustrates the selection of mt. We have initialised
MF-GP-UCB with 5 random points at the first fidelity. In the top figures, the solid lines in
brown and blue are f (1), f (2) respectively, and the dashed lines are ϕ(1)

t , ϕ
(2)
t . The solid

green line is ϕt = min(ϕ
(1)
t , ϕ

(2)
t ). The small crosses are queries from 1 to t− 1 and the

red star is the maximiser of ϕt, i.e. the next query xt. x?, the optimum of f (2) is shown in
magenta. In the bottom figures, the solid orange line is β1/2

t σ
(1)
t−1 and the dashed black line

is γ(1). When β1/2
t σ

(1)
t−1(xt) ≤ γ(1) we play at fidelity mt = 2 and otherwise at mt = 1.

The cyan region in the last panel is the good set X ?g described in Section 5.1.
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An Illustration of MF-GP-UCB: Figure 4 illustrates MF-GP-UCB via a simulation on a 2–fidelity
problem. At the initial stages, MF-GP-UCB is mostly exploring X in the first fidelity. β1/2

t σ
(1)
t−1 is

large and we are yet to constrain f (1) well to proceed to m = 2. At t = 10, we have constrained
f (1) sufficiently well at a region around the optimum. β1/2

t σ
(1)
t−1(xt) falls below γ(1) and we query

at mt = 2. Notice that once we do this (at t = 11), ϕ(2)
t dips to change ϕt in that region. At

t = 14, MF-GP-UCB has identified the maximum x? with just 4 queries to f (2). The region shaded
in cyan in the last figure is the “good set” X ?g , which we alluded to in Section 2. We will define
it formally and explain its significance in the multi-fidelity set up shortly. Our analysis predicts
that most second fidelity queries in MF-GP-UCB will be be confined to this set (roughly) and the
simulation corroborates this claim. For example, in the last figure, at t = 50, the algorithm decides
to explore at a point far away from the optimum. However, this query occurs in the first fidelity since
we have not sufficiently constrained f (1)(xt) in this region and β1/2

t σ
(1)
t−1(xt) is large. The key idea

is that it is not necessary to query such regions at the second fidelity as the first fidelity alone is
enough to conclude that it is suboptimal. In addition, observe that in a large portion of X , ϕt is given
by ϕ(1)

t except in a small neighborhood around x?, where it is given by ϕ(2)
t .

Next we present our main theoretical results. We wish to remind the reader that a table of
notations is available in Appendix B.2.

5. Theoretical Results

First and foremost, we will show that condition A2 occurs with positive probability when we sample
the functions from a GP. The following lemma shows that PGP(A2) = ξA2 > 0 which establishes
that the generative mechanism is valid. The proof is given in Section 8.

Lemma 2. Let f (1), . . . , f (M) be sampled from GP(0, κ) and A2 denote the event {‖f (M) −
f (m)‖∞ ≤ ζ(m),∀m ≤M − 1}. Then,

PGP(A2) = ξA2 ≥ Q

(
ζ(M−1)

2

)
·
M−1∏
m=1

Q

(
ζ(m)

2

)
(5)

Here Q is from Assumption 2. ξA2 > 0 since each of the terms in the product are positive.

We are now ready to present our theoretical results. We begin with an informal yet intuitive
introuduction to our theorems in M = 2 fidelities.

5.1 A Preview of our Theorems

In this subsection, we will ignore constants and polylog terms when they are dominated by other
terms. .,&,� denote inequality and equality ignoring constants. When A ⊂ X , we will denote its
complement by A.

Fundamental to the 2-fidelity problem is the good set X ?g = {x ∈ X ; f? − f (1)(x) ≤ ζ(1)}. X ?g
is a high-valued region for f (2)(x): for all x ∈ X ?g , f (2)(x) is at most 2ζ(1) away from the optimum.
If a multi-fidelity strategy were to use all its second fidelity queries only in X ?g , then, by Theorem 1,
the regret will only have Ψn(X ?g ) dependence after n high fidelity queries. In contrast, a strategy
that only operates at the highest fidelity, such as GP-UCB, will have Ψn(X ) dependence. When
ζ(1) is small, i.e. when f (1) is a good approximation to f (2), X ?g will be much smaller than X .
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Then, Ψn(X ?g )� Ψn(X ), and the multi-fidelity strategy will have better bounds on the regret than
a single fidelity strategy. Alas, achieving this somewhat ideal goal is not possible without perfect
knowledge of the approximation. However, with MF-GP-UCB we can come quite close. As we
will show shortly, most second fidelity queries will be confined to the slightly inflated good set
Xg = {x ∈ X ; f? − f (1)(x) ≤ ζ(1) + 3γ(1)}. The following lemma bounds the number of first and
second fidelity evaluations in Xg and its complement Xg. We denote the number of queries at the mth

fidelity in a set A ⊂ X within the first n time steps by T (m)
n (A).

Lemma 3 (Informal, Bounding the number of evaluations for M = 2). Let X ⊂ [0, r]d. Consider
MF-GP-UCB after n total evaluations at either fidelity. Let T (m)

n (A) denote the number of fidelity
m queries in some set A ⊂ X in n steps. Then,

T (1)
n

(
X g
)
. polylog(n) ·Π(Xg), T (1)

n (Xg) .
polylog(n)

γ(1)2 ·Π(Xg),

T (2)
n

(
X g
)
. τn · Π

(
X g
)
, T (2)

n (Xg) � n.

Here Π(A) = |A| for discrete A and Π(A) = vol(A) for continuous A. The bound for T (2)
n

(
X g
)

holds for any sublinear increasing sequence {τn}n≥1.

The above lemma will be useful for two reasons. First, the bounds on T (2)
n (·) show that most

second fidelity queries are inside Xg; the number of such expensive queries outside Xg is small. This
strong result is only possible in the multi-fidelity setting. From the results of Srinivas et al. (2010),
we can infer that the best achievable bound on the number of plays for GP-UCB inside a suboptimal
set is � n1/2 for the SE kernel and even worse for the Matérn kernel. For example, in the simulation
of Figure 4, all queries to f (2) are in fact confined to X ?g which is a subset of Xg. This allows us to
obtain regret that scales with Ψn(Xg) as explained above. Second, we will use Lemma 3 to control
N , the (random) number of queries by MF-GP-UCB within capital Λ. Let nΛ = bΛ/λ(2)c be the
(non-random) number of queries by a single fidelity method operating only at the second fidelity.
As λ(1) < λ(2), N could be large for an arbitrary multi-fidelity method. However, using the bounds
on T (1)

n (·) we can show that N is � nΛ when Λ is larger than some value Λ0. Below, we detail the
main ingredients in the proof of Lemma 3.

• T (1)
n (Xg): By the design of our algorithm, MF-GP-UCB will begin querying f (1). To achieve

finite regret we need to show that we will eventually query f (2). For any region in Xg the
switching condition of step 2 in Algorithm 2 ensures that we do not query that region indefinitely.
That is, if we keep querying a certain region, the first fidelity GP uncertainty β1/2

t σ
(m)
t−1 will

reduce below γ(1) in that region. We will discuss the implications of the choice of γ(1) at the
end of this subsection and in Section 6.

• T (1)
n

(
X g
)
: For queries to f (1) outside Xg, we use the following reasoning: as f (1) is small

outside Xg, it is unlikely to contain the UCB maximiser and be selected in step 1 of Algorithm 2
several times.

• T (2)
n

(
X g
)
: We appeal to previous first fidelity queries. If we are querying at the second fidelity

at a certain region, it can only be because the first fidelity confidence band is small. This implies
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that there must be several first fidelity queries in that region which in turn implies that we
can learn about f (1) with high confidence. As f (1) alone would tell us that any point in Xg is
suboptimal for f (2), the maximiser of the UCB is unlikely to lie in this region frequently. Hence,
we will not query outside Xg often.

It follows from the above that the number of second fidelity queries in Xg scales T (2)
n (Xg) � n.

Finally, we invoke techniques from Srinivas et al. (2010) to control the regret using the MIG. However,
unlike them, we can use the MIG of Xg since an overwhelming amount of evaluations at the second
fidelity are in Xg. This allows us to obtain a tighter bound on S(Λ) of the following form.

Theorem 4 (Informal, Regret of MF-GP-UCB for M = 2). Let X ⊂ [0, r]d. Then there exists Λ0

depending only on γ(1), λ(1) and the approximation f (1) such that, for all Λ > Λ0 the following
holds with high probability.

S(Λ) .

√
βnΛ

ΨnΛ
(Xg)

nΛ

It is instructive to compare the above rates against that for GP-UCB in Theorem 1. By dropping
the common and sub-dominant terms, the rate for GP-UCB is Ψ

1/2
nΛ

(X ) whereas for MF-GP-UCB
it is Ψ

1/2
nΛ

(Xg). Therefore, whenever the approximation is very good (vol(Xg)� vol(X )) the rates
for MF-GP-UCB are very appealing. When the approximation worsens and X ?g ,Xg become larger,
the bound decays gracefully. In the worst case, MF-GP-UCB is never worse than GP-UCB up to
constant terms for Λ ≥ Λ0. The Λ0 term is required since at the initial stages, MF-GP-UCB will
be exploring f (1) before proceeding to f (2), at which stage its regret will still be +∞. The costs
λ(1), λ(2) get factored into the result via the Λ > Λ0 condition. If λ(1) is large, for fixed γ(1), a larger
amount of capital is spent at the first fidelity, so Λ0 will be large. We will make the dependence on
Λ0 on the lower fidelities explicit in the formal theorem statements.

Now let us analyse the effect of the parameter γ(1) on the result. At first sight, large γ(1) seems
to increase the size of Xg which would suggest that we should keep it as small as possible. However,
smaller γ(1) also increases Λ0; intuitively, if γ(1) is too small, then one will wait for a long time in
step 2 of Algorithm 2 for β1/2

t σ
(1)
t−1 to decrease without proceeding to f (2). As one might expect,

an “optimal” choice of γ(1) depends on how large a Λ0 we are willing to tolerate; i.e. how long
we are willing to wait investigating the cheap approximation. Moreover, if the approximation is
extremely cheap, it makes sense to use very small γ(1) and learn as much as possible about f (2) from
f (1). However, it also depends on other problem dependent quantities such as X ?g . In Section 5.2
we describe a choice for γ(1) based on λ(1), λ(2) and ζ(1) that aims to balance the cost spent at each
fidelity. In our experiments however, we found that more aggressive choices for these threshold
values γ(m) perform better in practice. We describe one such technique in Section 6.

For general M , we will define a hierarchy of good sets, the complement of which will be
eliminated when we proceed from one fidelity to the next. At the highest fidelity, we will be querying
mostly inside a small subset of X informed by the approximations f (1), . . . , f (M−1). We will
formalise these intuitions in the next two subsections.
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Figure 5: Illustration of the partition H(m)’s for a M = 4 fidelity problem. The sets J (m)
0 are

indicated next to their boundaries. The sets H(1),H(2),H(3),H(4) are shown in green,
blue, yellow and red respectively. Most of the capital invested at points inH(m) will be
due to queries to the mth fidelity function f (m).

5.2 Discrete X

We first analyse the case whenX is a discrete subset of [0, r]d. Denote ∆(m)(x) = f?−f (m)(x)−ζ(m)

and J (m)
η = {x ∈ X ; ∆(m)(x) ≤ η}. Note that ∆(m) > 0 for all m by our assumptions. Central to

our analysis will be the partitioning (H(m))Mm=1 of X . First define H(1) = J (1)
3γ = {x : f (1)(x) <

f? − ζ(1) − 3γ(1)} to be the arms whose f (1) value is at least ζ(1) + 3γ(1) below the optimum f?.
Then recursively define,

H(m) = J (m)
3γ ∩

(
m−1⋂
`=1

J (`)
3γ

)
for 2 ≤ m ≤M − 1, H(M) =

M−1⋂
`=1

J (`)
3γ . (6)

In addition to the above, we will also find it useful to define the sets “above” H(m) as Ĥ(m) =⋃M
`=m+1H(`) and the sets “below”H(m) as Ĥ(m) =

⋃m−1
`=1 H(`). Our analysis reveals that most of

the capital invested at points inH(m) will be due to queries to the mth fidelity function f (m). Ĥ(m)

is the set of points that can be excluded from queries at fidelities m and beyond due to information
from lower fidelities. Ĥ(m) are points that will be queried at fidelities higher than m several times. In
the 2 fidelity setting described in Section 5, Xg = H(2) and Xg = H(1) = Ĥ(2). We have illustrated
these sets in Figure 5.

Recall that nΛ = bΛ/λ(M)c is the number of queries by a single-fidelity method; it is a lower
bound on N , the number of queries by a multi-fidelity method. Similarly, nΛ = bΛ/λ(1)c will be
an upper bound on N . We will now define two quantities Λ1,Λ2 where Λ1 < Λ2. We will show
improved simple regret over GP-UCB when the capital Λ is larger than these quantities, with the
Λ > Λ2 regime being better by an additive log(λ(M)/λ(1)) factor over the Λ > Λ1 case. Formally,
we define Λ1 to be the smallest Λ satisfying the following condition,

M∑
m=2

λ(m)|H(m−1)| +
M−1∑
m=1

λ(m)|H(m) ∪ Ĥ(m)|

⌈
η2

γ(m)2βnΛ

⌉
≤ Λ

2
, (7)
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and Λ2 to be the smallest Λ satisfying the following condition,

λ(M)|X | + λ(M)
M−1∑
m=1

|H(m) ∪ Ĥ(m)|

⌈
η2

γ(m)2βnΛ

⌉
≤ Λ

2
. (8)

We can find such Λ1,Λ2, since for fixed γ(m)’s, in both cases, the right side is linear in Λ and the
left is logarithmic since βn � O(log(n)) and nΛ � Λ. Since {H(m)}Mm=1 form a partition of X
and λ(1) < · · · < λ(M), we see that Λ1 < Λ2. Recall that at the initial stages, MF-GP-UCB has
infinite simple regret since the evaluations are at lower fidelities. Λ > Λ1 indicates the phase where
Θ(nΛ) evaluations have been made inside H(M), but the total number of evaluations N could be
much larger. When Λ > Λ2, we have reached a phase where N is also in Θ(nΛ).

Moreover, note that when the approximations are good, i.e. the sets H(m) are small, both
Λ1 and Λ2 are small. Λ1 is also small when the approximations are cheap, i.e. λ(m)’s are small.
Therefore, the cheaper and better the approximations, we have to wait less time (for fixed γ(m))
before MF-GP-UCB starts querying at the M th fidelity and achieves good regret.

We now state our main theorem for discrete X . To simplify the analysis, we will introduce
an additional condition in the fidelity selection criterion in step 2 of Algorithm 2. We will always
evaluate f (m) at xt only if xt has been evaluated at all lower fidelities, 1, . . . ,m− 1; precisely, that
mt = minm{m |β1/2

t σ
(m)
t−1(xt) ≥ γ(m) or m = M or T

(m)
n (xt) = 0}. Both this condition, and

the dependence of Λ2 on |X | in (8) are an artefact of our analysis. They arise only because we do not
account for the correlations between the arms in our discrete analysis; doing so requires us to make
assumptions about the locations of the arms in [0, r]d. We will not need this condition or have Λ2

depend on |X | for the continuous case.

Theorem 5. Let X be a discrete subset of [0, r]d. Let f (m) ∼ GP(0, κ) for all m. Assume that
f (m)’s satisfy assumptions A1, A2 and κ satisfies Assumption 1. Pick δ ∈ (0, 1) and run MF-GP-
UCB (Algorithm 2) with βt = 2 log

(
M |X |π2t2/(3ξA2δ)

)
. Then, we have the following bounds on

S(Λ) with P-probability greater than 1− δ.

for all Λ > Λ1, S(Λ) ≤

√
2C1βnΛΨnΛ

(H(M))

nΛ

for all Λ > Λ2, S(Λ) ≤

√
2C1β2nΛ

ΨnΛ
(H(M))

nΛ

Here C1 = 8/ log(1 + η2) is a constant, nΛ = bΛ/λ(M)c, nΛ = bΛ/λ(1)c, and ξA2 is from (5).

The difference between the two results is the βnΛ dependence in the former setting and βnΛ

in the latter; the latter bound is better by an additive log(λ(M)/λ(1)) term, but we have to wait for
longer. Dropping constant and polylog terms and comparing to the result in Theorem 1 reveals that

we outperform GP-UCB by a factor of
√

ΨnΛ
(H(M))/ΨnΛ

(X ) �
√

vol(H(M))/vol(X ) asymp-

totically. The setH(M) from (6) is determined by the ζ(1), . . . .ζ(M−1) values, the approximations
f (1), . . . , f (M−1) and the parameters γ(1), . . . , γ(M−1). The better the approximations, the smaller
the setH(M) and there is more advantage over single fidelity strategies. In Figure 6, we have shown
the ratio vol(H(2))/vol(X ) for a two fidelity problem as ζ(1) decreases—the figure corroborates our
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Figure 6: Empirically computed values for the ratio vol(H(2))/vol(X ) for a one dimensional (left)
and two dimensional (right) 2-fidelity problem. For this, the samples f (1), f (2) were
generated using the generative mechanism of Section 2.1, under the stipulated value for
ζ(1). In both cases, we used an SE kernel with bandwidth 1 and scale parameter 1. The
y-axis is the mean value for the ratio over several samples and the x-axis is ζ(1). In
both cases, we used γ(1) = ζ(1)/3, and approximated the continuous domain with a
uniform grid of size 104. The figure indicates that as the approximation improves, i.e. ζ(1)

decreases, the ratio decreases and consequently, we get better bounds.

claim that the rates improve as the ζ(m) values decrease. As the approximations worsen, the advan-
tage to multi-fidelity optimisation diminishes as expected, but we are never worse than GP-UCB up
to constant factors.

A few remarks are in order. First, note that the dependence on nΛ (or equivalently Λ) is the same
for both GP-UCB and MF-GP-UCB. In fact, one should not expect multi-fidelity optimisation to
yield “rate” improvements since such

√
1/n dependencies are typical in the bandit literature (Bubeck,

Munos, Stoltz, & Szepesvári, 2011; Shang, Kaufmann, & Valko, 2017). The multi-fidelity framework
allows us to find a good region, i.e. H(M), where the optimum exists, and as such, we should expect
the improvements to be in terms of the size of this set, relative to X . Second, even when the kernels
for each GP are different, the MIG dependence in Theorem 5 will be that of the highest fidelity GP
f (M). The dependence of the other kernels will factor in via the ξA2 bound; precisely, the more κ(m)

is different from κ(M), the corresponding Q(ζ(m)/2) term will be smaller, leading to a smaller ξA2
value. Finally, the bound is given in terms ofH(M) which, as illustrated by Figure 6, gives us insight
into the types of gains we can expect from multi-fidelity optimisation. However,H(M) is a random
quantity and obtaining high probability bounds on its volume could shed more light on the gains of
our multi-fidelity optimisation framework; this is an interesting avenue for future work.

Choice of γ(m). It should be noted that an “optimal” choice of γ(m) depends on the available
budget, i.e. how long we are willing to wait before achieving non-trivial regret. If we are willing
to wait long, we can afford to choose small γ(m) and consequently have better guarantees on the
regret. This optimal choice also depends on several unknown problem dependent factors – such
as the sizes of the setsH(m). In Kandasamy, Dasarathy, Poczos, and Schneider (2016), the choice
γ(m) = ζ(m)

√
λ(m)/λ(m+1) was used which ensures that for an arm x ∈ H(m), the cost spent at

lower fidelities 1, . . . ,m − 1 is not more than the cost spent at fidelity m. Beyond this intuitive
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property, this choice further achieves a lower bound on the K-armed multi-fidelity problem. The
same choice for γ(m) here ensures that the cost spent at the lower fidelities is not more than an upper
bound on the cost spent at fidelity m – we have elaborated more in Remark 2 after our proofs. We
have empirically demonstrated the effect of different choice of γ(m) values via an experiment in
Figure 8(b). Building on these ideas, an explicit prescription for the choice of γ(m) is bound to be
a fruitful avenue of research, and we leave this to future work. In the meanwhile, in Section 6, we
describe a heuristic for adaptively choosing γ(m) adaptively which worked well in our experiments.

5.3 Continuous and Compact X

We define the sets H(m), Ĥ(m) for m = 1, . . . ,M as in the discrete case. Let {νn}n≥0 be any
sublinear sequence such that νn →∞. Let

H(m)
n =

{
x ∈ X : B2

(
x, r
√
d/ν

1
2d
n

)
∩ H(m) 6= ∅ ∧ x /∈ Ĥ(m)

}
to be a νn-dependent L2 dilation of H(m)

n by r
√
d/ν

1
2d
n . Here, B2(x, ε) is an L2 ball of radius ε

centred at x. Notice that as n→∞,H(m)
n → H(m). Similar to the discrete case, we define Λ1 to be

the smallest Λ satisfying the following the condition,

λ(M)νnΛ + Cκη
2βp+1
nΛ

M−1∑
m=1

λ(m) vol(H(m)
nΛ
∪ Ĥ(m))

γ(m)2p ≤ Λ

2
, (9)

and Λ2 to be the smallest Λ satisfying the following condition,

λ(M)νnΛ + Cκη
2βp+1
nΛ

λ(M)
M−1∑
m=1

vol(H(m)
nΛ
∪ Ĥ(m))

γ(m)2p ≤ Λ

2
. (10)

Here p = 1/2 for the SE kernel and p = 1 for the Matérn kernel. Cκ is a kernel dependent constant
elucidated in our proofs; for the SE kernel, Cκ = 22+d/2(dκ0/h

2)d/2 where κ0, h are parameters of
the kernel. Via a reasoning similar to the discrete case we see that Λ1 < Λ2. Our main theorem is as
follows.

Theorem 6. Let X ⊂ [0, r]d be compact and convex. Let f (m) ∼ GP(0, κ) ∀m, and satisfy
assumptions A1, A2. Let κ satisfy Assumption 1 with some constants a, b. Pick δ ∈ (0, 1) and run
MF-GP-UCB (Algorithm 2) with

βt = 2 log

(
Mπ2t2

2ξA2δ

)
+ 4d log(t) + max

{
0 , 2d log

(
brd

√
log

(
6Mad

ξA2δ

))}
.

Then, we have the following bounds on S(Λ) with P-probability greater than 1− δ.

for all Λ > Λ1, S(Λ) ≤

√
2C1βnΛΨnΛ

(H(M)
nΛ

)

nΛ

+
π2

3nΛ

for all Λ > Λ2, S(Λ) ≤

√
2C1β2nΛ

ΨnΛ
(H(M)

nΛ
)

nΛ

+
π2

3nΛ

Here C1 = 8/ log(1 + η2) is a constant, nΛ = bΛ/λ(M)c, and nΛ = bΛ/λ(1)c.
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Note that the setsH(M)
nΛ

depend on the sublinear increasing sequence {νn}n≥0 – the theorem is
valid for any such choice of νn. The comparison of the above bound against GP-UCB is similar to
the discrete case. The main difference is that we have an additional dilation ofH(M) toH(M)

nΛ
which

occurs due to a covering argument in our analysis. Recall thatH(m)
nΛ
→ H(m) as Λ→∞. The bound

is determined by the MIG of the setH(M)
nΛ

, which is small when the approximations are good.

6. Some Implementation Details of MF-GP-UCB and other Baselines

Our implementation uses some standard techniques in the Bayesian optimisation literature given
below. In addition, we describe the heuristics used to set the γ(m), ζ(m) parameters of our method.

Initialisation: Following recommendations in Brochu, Cora, and de Freitas (2010), all GP methods
were initialised with uniform random queries using an initialisation capital Λ0. For single fidelity
methods, we used it at the M th fidelity, whereas for multi-fidelity methods we used Λ0/2 at the first
fidelity and Λ0/2 at the second fidelity.

Kernel: In all our experiments, we used the SE kernel. We initialise the kernel by maximising the
GP marginal likelihood (Rasmussen & Williams, 2006) on the initial sample and then update the
kernel every 25 iterations using marginal likelihood.

Choice of βt: βt, as specified in Theorems 1, 6 has unknown constants and tends to be too conser-
vative in practice. Following Kandasamy, Schenider, and Póczos (2015) we use βt = 0.2d log(2t)
which captures the dominant dependencies on d and t.

Maximising ϕt: We used the DiRect algorithm (Jones et al., 1993).

Choice of ζ(m)’s: Algorithm 2 assumes that the ζ(m)’s are given with the problem description,
which is hardly the case in practice. In our implementation, instead of having to deal with
M − 1, ζ(m) values we will assume ‖f (m) − f (m−1)‖∞ ≤ ζ. This satisfies assumption A2
with (ζ(1), ζ(2), . . . , ζ(M−1)) = ((M − 1)ζ, (M − 2)ζ, . . . , ζ). This allows us to work with only
one value of ζ. We initialise ζ to a small value, 1% of the range of initial queries. When-
ever we query at any fidelity m > 1 we also check the posterior mean of the (m − 1)th fi-
delity. If |f (m)(xt) − µ

(m−1)
t−1 (xt)| > ζ, we query again at xt, but at the (m − 1)th fidelity. If

|f (m)(xt)− f (m−1)(xt)| > ζ, we update ζ to twice the violation.

Choice of γ(m)’s: The role of the γ(m) values at each fidelity is to ensure that we do not spend too
much effort at the lower fidelities, where if γ(m) is too small, MF-GP-UCB spends a large number of
queries at fidelity m to reduce the variance below γ(m). This might cause MF-GP-UCB to spend an
unnecessarily large number of evaluations at fidelity m. Hence, we start with small values for all
γ(m). However, if the algorithm does not query above the mth fidelity for more than λ(m+1)/λ(m)

iterations, we double γ(m). All γ(m) values were initialised to 1% of the range of initial queries.

Whilst the first four choices are standard in the BO literature (Brochu et al., 2010; Snoek et al.,
2012), our methods for selecting the ζ(m) and γ(m) parameters are heuristic in nature. We obtained
robust implementations of MF-GP-UCB with little effort in tweaking these choices. In fact, we found
our implementation was able to recover even from fairly bad approximations at the lower fidelities
(see experiment in Figure 9). We believe that other reasonable heuristics can also be used in place of
our choices here, and a systematic investigation into protocols for the same will be a fruitful avenue
for future research.
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7. Experiments

We present experiments for compact and continuous X since it is the more practically relevant
setting. We compare MF-GP-UCB to the following baselines. Single fidelity methods: GP-UCB;
EI: the expected improvement criterion for BO (Jones et al., 1998); DiRect: the dividing rectangles
method (Jones et al., 1993). Multi-fidelity methods: MF-NAIVE: a naive baseline where we use
GP-UCB to query at the first fidelity a large number of times and then query at the last fidelity at
the points queried at f (1) in decreasing order of f (1)-value; MF-SKO: the multi-fidelity sequential
kriging method from Huang et al. (2006). Previous works on multi-fidelity methods (including
MF-SKO) had not made their code available and were not straightforward to implement. We discuss
this more in Appendix A.1 along with some other single and multi-fidelity baselines we tried but
excluded in the comparison to avoid clutter in the figures. We also detail some design choices and
hyper-parameters for the baselines in Appendix A.1.

7.1 Synthetic Examples

We begin with a series of synthetic experiments, designed to demonstrate the applicability and
limitations of MF-GP-UCB. We use the Currin exponential (d = 2), Park (d = 4) and Borehole
(d = 8) functions in M = 2 fidelity experiments and the Hartmann functions in d = 3 and 6 with
M = 3 and 4 fidelities respectively. The first three functions are taken from previous multi-fidelity
literature (Xiong, Qian, & Wu, 2013) while we tweaked the Hartmann functions to obtain the lower
fidelities for the latter two cases. In Appendix A we give the formulae for these functions and the
approximations used for the lower fidelities. We show the simple regret S(Λ) against capital Λ in
Figure 7. The number of fidelities and the costs used for each fidelity are also given in Figure 7.
MF-GP-UCB outperforms other baselines on all problems.

The last panel of Figure 7 shows a histogram of the number of queries at each fidelity after 184
queries of MF-GP-UCB, for different ranges of f (3)(x) for the Hartmann-3D function. Many of
the queries at the low f (3) values are at fidelity 1, but as we progress they decrease and the second
fidelity queries increase. The third fidelity dominates very close to the optimum but is used sparingly
elsewhere. This corroborates the prediction in our analysis that MF-GP-UCB uses low fidelities to
explore and successively higher fidelities at promising regions to zero in on x?. (Also see Figure 4.)

A common occurrence with MF-NAIVE was that once we started querying at fidelity M , the
regret barely decreased. The diagnosis in all cases was the same: it was stuck around the maximum
of f (1) which is suboptimal for f (M). This suggests that while we have cheap approximations,
the problem is by no means trivial. As explained previously, it is also important to explore at
higher fidelities to achieve good regret. The efficacy of MF-GP-UCB when compared to single
fidelity methods is that it confines this exploration to a small set containing the optimum. In our
experiments we found that MF-SKO did not consistently beat other single fidelity methods. Despite
our best efforts to reproduce MF-SKO, we found it to be quite brittle. In fact, we also tried another
multi-fidelity method and found that it did not perform as desired (See Appendix A.1 for details).

Effect of the cost of the approximations: We now test the effect the cost of the approximation on
performance. Figure 8(a) shows the results when MF-GP-UCB was run on the 2-fidelity Borehole
experiment for different costs for the approximation f (1). We fixed λ(2) = 1 and varied λ(1)

between 0.01 to 0.5. As λ(1) increases, the performance worsens as expected. At λ(1) = 0.5 it is
indistinguishable from GP-UCB as the overhead of managing 2 fidelities becomes significant when
compared to the improvements of using the approximation.
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Figure 7: The simple regret S(Λ) (3) against the spent capital Λ on the synthetic functions. The title
states the function, its dimensionality, the number of fidelities and the costs we used for
each fidelity in the experiment; for example, in the fourth panel, we used M = 3 fidelities,
with costs λ(1) = 1, λ(2) = 10, λ(3) = 100 on the 3 dimensional Hartmann function. All
curves barring DiRect (which is a deterministic), were produced by averaging over 20
experiments. The error bars indicate one standard error. All figures follow the legend in
the first figure for the Currin exponential function. The last panel shows the number of
queries at different function values at each fidelity for the Hartmann-3D example.

171



KANDASAMY, DASARATHY, OLIVA, SCHNEIDER, PÓCZOS
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Figure 8: (a): The performance of our implementation of MF-GP-UCB for different values of λ(1) in
the 2 fidelity Borehole experiment. Our implementation uses the techniques and heuristics
described in Section 6. In all experiments we used λ(2) = 1. We have also shown the curve
for GP-UCB for reference. (b): The performance of MF-GP-UCB for different choices of
fixed threshold values γ(1). The curves were averaged over 20 independent runs, and, in
this figure, they start when at least 10 of the 20 runs have queried at least once at the top
(second) fidelity. This experiment was run on the 3−dimensional Hartmann function in
the two fidelity set up where ζ(1) ≈ 0.112.

Effect of threshold values on MF-GP-UCB: We now demonstrate the effect of different choices
for γ(1) on MF-GP-UCB as described in Algorithm 2. We use the 3 dimensional Hartmann function
in a 2 fidelity set up where ζ(1) ≈ 0.112, λ(1) = 1 and λ(2) = 10. The implementation follows
the description in Section 6, except that the true ζ(1) value is made known to MF-GP-UCB and the
threshold value γ(1) is kept fixed at values 0.03, 0.1, 0.3, 1.0. The result is shown in Figure 8(b). We
see that as γ(1) decreases the curves start later in the figure indicating that MF-GP-UCB spends more
time at the approximation f (1) before proceeding to f (2); however, the simple regret is also generally
better for smaller γ(1). Therefore, if we have a large computational budget and are willing to wait
longer, we can choose small γ(m) values and achieve better simple regret.

Bad Approximations: It is natural to ask how MF-GP-UCB performs with bad approximations at
lower fidelities. We found that our implementation with the heuristics suggested in Section 6 to be
quite robust. We demonstrate this using the Currin exponential function, but using the negative of
f (2) as the first fidelity approximation, i.e. f (1)(x) = −f (2)(x). Figure 9 illustrates f (1), f (2) and
gives the simple regret S(Λ). Understandably, it loses to the single fidelity methods since the first
fidelity queries are wasted and it spends some time at the second fidelity recovering from the bad
approximation. However, it eventually is able to achieve low regret.

7.2 Model Selection and Astrophysics Experiments

We now present results on three hyper-parameter tuning tasks and a maximum likelihood inference
task in Astrophysics. We compare methods on computation time since that is the “cost” in all
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Figure 9: (a): The functions used in the Bad Currin Exponential experiment where f (1) = −f (2).
(b): The simple regret for this experiment. See caption under Figure 7 for more details.

experiments. We include the processing time for each method in the comparison (i.e. the cost of
determining the next query). The results are given in Figure 10, where, as we see MF-GP-UCB
outperforms other baselines on all tasks. The experimental set up for each optimisation problem is
described below.

Classification using SVMs (SVM): We trained a Support vector classifier on the magic gamma
dataset using the sequential minimal optimisation algorithm to an accuracy of 10−12. The goal is to
tune the kernel bandwidth and the soft margin coefficient in the ranges (10−3, 101) and (10−1, 105)
respectively on a dataset of size 2000. We set this up as a M = 2 fidelity experiment with the entire
training set at the second fidelity and 500 points at the first. Each query to f (m) required 5-fold cross
validation on the respective training sets.

Regression using additive kernels (SALSA): We used the SALSA method for additive kernel ridge
regression (Kandasamy & Yu, 2016) on the 4-dimensional coal power plant dataset. We tuned the
6 hyper-parameters –the regularisation penalty, the kernel scale and the kernel bandwidth for each
dimension– each in the range (10−3, 104) using 5-fold cross validation. This experiment usedM = 3
and 2000, 4000, 8000 points at each fidelity respectively.

Viola & Jones face detection (V&J): The Viola & Jones cascade face classifier (Viola & Jones,
2001), which uses a cascade of weak classifiers, is a popular method for face detection. To classify
an image, we pass it through each classifier. If at any point the classifier score falls below a threshold,
the image is classified as negative. If it passes through the cascade, then it is classified as positive.
One of the more popular implementations comes with OpenCV and uses a cascade of 22 weak
classifiers. The threshold values in the OpenCV implementation are pre-set based on some heuristics
and there is no reason to think they are optimal for a given face detection problem. The goal
is to tune these 22 thresholds by optimising them over a training set. We modified the OpenCV
implementation to take in the thresholds as parameters. As our domain X we chose a neighbourhood
around the configuration used in OpenCV. We set this up as an M = 2 fidelity experiment where
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Figure 10: Results on the real experiments. The first three figures are hyper-parameter tuning tasks
while the last is an astrophysical maximum likelihood problem. The title states the
experiment, dimensionality (number of hyper-parameters or cosmological parameters)
and the number of fidelities. For the three hyper-parameter tuning tasks we plot the best
cross validation error (lower is better) and for the astrophysics task we plot the highest
log likelihood (higher is better). For the hyper-parameter tuning tasks we obtained the
lower fidelities by using smaller training sets, indicated by ntr in the figures and for the
astrophysical problem we used a coarser grid for numerical integration, indicated by
“Grid”. MF-NAIVE is not visible in the last experiment because it performed very poorly.
All curves were produced by averaging over 10 experiments. The error bars indicate one
standard error. The lengths of the curves are different in time as we ran each method for
a pre-specified number of iterations and they concluded at different times.

the second fidelity used 3000 images from the Viola and Jones face database and the first used just
300. Interestingly, on an independent test set, the configurations found by MF-GP-UCB consistently
achieved over 90% accuracy while the OpenCV configuration achieved only 87.4% accuracy.

Type Ia Supernovae (Supernova): We use Type Ia supernovae data from Davis et al (2007) for
maximum likelihood inference on 3 cosmological parameters, the Hubble constantH0 ∈ (60, 80), the
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dark matter fraction ΩM ∈ (0, 1) and the dark energy fraction ΩΛ ∈ (0, 1). Unlike typical parametric
maximum likelihood problems we see in machine learning, the likelihood is only available as a
black-box. It is computed using the Robertson–Walker metric Davis et al (2007), which requires a
(one dimensional) numerical integration for each sample in the dataset. We set this up as a M = 3
fidelity task. At the third fidelity, the integration was performed using the trapezoidal rule on a grid
of size 106. For the first and second fidelities, we used grids of size 102, 104 respectively. The goal is
to maximise the likelihood at the third fidelity.

8. Proofs

In this section we present the proofs of our main theorems. While it is self contained, the reader
will benefit from first reading the more intuitive discussion in Section 5. The goal in this section
is to bound the simple regret S(Λ) given in (3). Recall that N is the random number of plays
within capital Λ. While N ≤ bΛ/λ(1)c is a trivial upper bound for N , this will be too loose for our
purposes. In fact, we will show that after a sufficiently large number of queries at any fidelity, the
number of queries at fidelities smaller than M will be sublinear in N . Hence N ∈ O(nΛ) where
nΛ = bΛ/λ(M)c is the number of plays by any algorithm that operates only at the highest fidelity.

We introduce some notation to keep track of the evaluations at each fidelity in MF-GP-UCB.
After n steps, we will have queried multiple times at any of the M fidelities. T (m)

n (x) denotes the
number of queries at x ∈ X at fidelity m after n steps. T (m)

n (A) denotes the same for a subset
A ⊂ X . D(m)

n = {(xt, yt)}t:mt=m is the set of query-value pairs at the mth fidelity until time n.

Roadmap: To bound S(Λ) in both the discrete and continuous settings, we will begin by studying
the algorithm after n evaluations at any fidelity and analyse the following quantity,

R̃n =
∑

t:mt=M
xt∈Z

(
f? − f (M)(xt)

)
(11)

Readers familiar with the bandit literature will see that this is similar to the notion of cumulative
regret, except we only consider queries at the M th fidelity and inside a set Z ⊂ X . Z contains the
optimum and generally has high value for the payoff function f (M)(x); it will be determined by the
approximations provided via the lower fidelity evaluations. We will show that most of the M th fidelity
evaluations will be inside Z in the multi-fidelity setting, and hence, the regret for MF-GP-UCB will
scale with Ψn(Z) instead of Ψn(X ) as is the case for GP-UCB. Finally, to convert this bound in
terms of n to one that depends on Λ, we show that both the total number of evaluations N and the
number of highest fidelity evaluations T (M)

N (X ) are on the order of nΛ when Λ is sufficiently large.
For this, we bound the number of plays at the lower fidelities (see Lemma 3). Then S(Λ) can be
bounded by,

S(Λ) ≤ 1

T
(M)
N (X )

R̃N .
1

nΛ

R̃nΛ
. (12)

Before we proceed, we will prove a series of results that will be necessary in our proofs of
Theorems 5 and 6. We first prove Lemma 2.
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Proof of Lemma 2. Let A2′ =
{
‖f (M)‖∞ ≤ ζ(M−1)/2 ∩

⋂M−1
m=1 ‖f (m)‖∞ ≤ ζ(m)/2

}
. It is

straightforward to see that A2′ ⊂ A2 since for any m ≤M − 1,

‖f (M) − f (m)‖∞ ≤ ‖f (M)‖∞ + ‖f (m)‖∞ ≤ ζ(M−1)/2 + ζ(m)/2 ≤ ζ(m).

Hence, PGP(A2) ≥ PGP(A2′). We can now bound,

PGP(A2′) = PGP
(
‖f (M)‖∞ ≤ ζ(M−1)/2

)
·
M−1∏
m=1

PGP
(
‖f (m)‖∞ ≤ ζ(m)/2

)
≥ ξA2.

Here the equality in the first step comes from the observation that the f (m)’s are independent under
the PGP probability. The last inequality comes from Assumption 2.

Remark 1. It is worth noting that the above bound is a fairly conservative lower bound on ξA2 since
A2′ essentially requires that all samples f (m) be small so as to make the differences f (M) − f (m)

small. We can obtain a more refined bound on ξA2 by noting that f (M) − f (m) ∼ GP(0, 2κ) and
following proofs for bounding the supremum of a GP (e.g. Theorem 5.4 in Adler, 1990, or Theorem 4
in Ghosal and Roy, 2006). This leads to smaller values for βt in Theorems 5 and 6 and consequently
better constants in our bounds. However, this analysis will require accounting for correlations when
analysing multiple GPs which is beyond the scope and tangential to the goals of this paper. Moreover,
from a practical perspective it would not result in anything actionable since many quantities in the
expression for βt are already unknown in practice, even for GP-UCB. It is also worth noting that the
dependence of ξA2 on our regret bounds is mild since it appears as a

√
log(1/ξA2) term.

Next, Lemma 7 provides a way to bound the probability of an event under our prior (A1 and A2)
using the probability of the event when the functions are sampled from a GP (A1 only).

Lemma 7. Let E be a PGP -measurable event. Then, P(E) ≤ ξ−1
A2 PGP(E).

Proof This follows via a straightforward application of Bayes’ rule, shown below. The last step uses
Lemma 2 and that the intersection of two sets is at most as large as either set.

P(E) = PGP(E|A2) =
PGP(E ∩ A2)

PGP(A2)
≤ 1

ξA2
PGP(E).

For our analysis, we will also need to control the sum of conditional standard deviations for
queries in a subset A ⊂ X . We provide the lemma below, whose proof is based of a similar result
in Srinivas et al. (2010).

Lemma 8. Let f ∼ GP(0, κ), f : X → R and each time we query at any x ∈ X we observe
y = f(x) + ε, where ε ∼ N (0, η2). Let A ⊂ X . Assume that we have queried f at n points, (xt)

n
t=1

of which s points are in A. Let σt−1 denote the posterior variance at time t, i.e. after t− 1 queries.
Then,

∑
xt∈A σ

2
t−1(xt) ≤ 2

log(1+η−2)
Ψs(A).
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Proof Let As = {z1, z2, . . . , zs} be the queries inside A in the order they were queried. Now,
assuming that we have only queried inside A at As, denote by σ̃t−1(·), the posterior standard
deviation after t− 1 such queries. Then,

∑
t:xt∈A

σ2
t−1(xt) ≤

s∑
t=1

σ̃2
t−1(zt) ≤

s∑
t=1

η2 σ̃
2
t−1(zt)

η2
≤

s∑
t=1

log(1 + η−2σ̃2
t−1(zt))

log(1 + η−2)

≤ 2

log(1 + η−2)
I(yAs ; fAs)

Queries outside A will only decrease the variance of the GP so we can upper bound the first sum
by the posterior variances of the GP with only the queries in A. The third step uses the inequality
u2/v2 ≤ log(1 + u2)/ log(1 + v2) with u = σ̃t−1(zt)/η and v = 1/η and the last step uses
Lemma 15 in Appendix B.1. The result follows from the fact that Ψs(A) maximises the mutual
information among all subsets of size s.

8.1 Discrete X

Proof of Theorem 5. Without loss of generality, we can assume that MF-GP-UCB is run indefinitely.
Let N denote the (random) number of queries within Λ, i.e. the quantity satisfying N = max{n ≥
1;
∑n

t=1 λ
(mt) ≤ Λ}. Note that supp (N) ⊂ {n ∈ N : nΛ ≤ n ≤ nΛ}. In our analysis, we

will first analyse MF-GP-UCB after n steps and control the regret and the number of lower fidelity
evaluations.

Bounding the regret after n evaluations: We will need the following lemma to establish that ϕt(x)
upper bounds f (M)(x). The proof is given in Section 8.1.1.

Lemma 9. Pick δ ∈ (0, 1) and choose βt ≥ 2 log
(
M |X |π2t2

3ξA2δ

)
. Then, with probability at least

1− δ/2, for all t ≥ 1, for all x ∈ X and for all m ∈ {1, . . . ,M}, we have∣∣f (m)(x)− µ(m)
t−1(x)

∣∣ ≤ β
1/2
t σ

(m)
t−1(x).

First note the following bound on the instantaneous regret when mt = M ,

f? − f (M)(xt) ≤ ϕt(x?)− (µ
(M)
t−1 (xt)− β1/2

t σ
(M)
t−1 (xt)) (13)

≤ ϕt(xt)− (µ
(M)
t−1 (xt)− β1/2

t σ
(M)
t−1 (xt)) ≤ 2β

1/2
t σ

(M)
t−1 (xt).

The first step uses that ϕ(m)
t (x) is an upper bound for f (M)(x) by Lemma 9 and the assumption

A2, and hence so is the minimum ϕt(x). The second step uses that xt was the maximiser of ϕt(x)

and the third step that ϕ(M)
t (x) ≥ ϕt(x). To control R̃n, we will use Z = H(M) in (11) and invoke

Lemma 8. Applying the Cauchy Schwarz inequality yields,

R̃2
n ≤ T (m)

n (H(M))
∑

t:mt=M
xt∈H(M)

(
f? − f (M)(xt)

)2
≤ T (m)

n (H(M))
∑

t:mt=M
xt∈H(M)

4βt(σ
(m)
t−1(xt))

2

≤ C1T
(m)
n (H(M))βnΨ

T
(m)
n (H(M))

(H(M)). (14)

Here C1 = 8/ log(1 + η−2).
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Bounding the number of evaluations: Lemma 10, given below, bounds the number of evaluations
at different fidelities in different regions of X . This will allow us to bound, among other things,
the total number of plays N and the number of M th fidelity evaluations outside Z . The proof of
Lemma 10 is given in Section 8.1.2. Recall that T (m)

n (x) denotes the number of queries at point
x ∈ X at fidelity m. Similarly, we will denote T (>m)

n (x) to denote the number of queries at point x
at fidelities larger than m.

Lemma 10. Pick δ ∈ (0, 1) and set βt = 2 log
(
M |X |π2t2

3ξA2δ

)
. Further assume ϕt(x?) ≥ f?. Consider

any x ∈ H(m)\{x?} for m < M . We then have the following bounds on the number of queries at
any given time step n,

T (`)
n (x) ≤ η2

γ(m)2βn + 1, for ` < m,

P
(
T (m)
n (x) >

⌈
5
( η

∆(m)(x)

)2
βn

⌉)
≤ 3δ

2π2

1

|X |n2
,

P
(
T (>m)
n (x) > u

)
≤ 3δ

2Mπ2

1

|X |u
.

First whenever ϕt(x?) ≥ f?, by using the union bound on the second result of Lemma 10,

P
(
∃n ≥ 1, ∃m ∈ {1, . . . ,M}, ∃x ∈ H(m)\{x?}, T (m)

n (x) >

⌈
5
( η

∆(m)(x)

)2
βn

⌉)
≤ δ

4
.

Here we have used
∑
n−2 = π2/6. The last two quantifiers just enumerates over all x ∈ X\{x?}.

Similarly, applying the union bound for u = 1 on the third result, we have, for any given n,

P
(
∃m ∈ {1, . . . ,M}, ∃x ∈ H(m), T (>m)

n (x) > 1
)
≤ 3δ

2π2
<
δ

4
.

We will apply the above result for n = bΛ/λ(1)c and observe that T (>m)
n (x) is non-decreasing in n.

Hence,

P
(
∀n ≤ Λ/λ(1), ∀m ∈ {1, . . . ,M}, ∀x ∈ H(m), T (>m)

n (x) ≤ 1
)
> 1− δ

4
. (15)

The condition for Lemma 10 holds with probability at least 1− δ/2 (by Lemma 9), and therefore the
above bounds hold together with probability > 1− δ. We have tabulated these bounds in Table 1.
We therefore have the following bound on the number of fidelity m (< M) plays T (m)

n (X ),

T (m)
n (X ) ≤ T (m)

n (Ĥ(m)) +
∑

x∈H(m)

⌈
5η2

∆(m)(x)
2βn

⌉
+ |Ĥ(m)|

⌈
η2

γ(m)2βn

⌉

≤ T (m)
n (Ĥ(m)) + |H(m) ∪ Ĥ(m)|

⌈
η2

γ(m)2βn

⌉
(16)

≤ |H(m−1)| + |H(m) ∪ Ĥ(m)|

⌈
η2

γ(m)2βn

⌉
(17)
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H(1) H(2) H(m) H(M)\{x?}
T

(1)
n (x) 5η2

∆(1)(x)
2βn + 1 η2

γ(1)2βn + 1 . . . η2

γ(1)2βn + 1 . . . η2

γ(1)2βn + 1

T
(2)
n (x)

1

5η2

∆(2)(x)
2βn + 1 . . . η2

γ(2)2βn + 1 . . . η2

γ(2)2βn + 1

...
...

...
T

(m)
n (x)

1

. . . 5η2

∆(m)(x)
2βn + 1 . . . η2

γ(m)2βn + 1

...
...

...
T

(M)
n (x) 1 5η2

∆(M)(x)
2βn + 1

Table 1: Bounds on the number of queries for each x ∈ H(m) (columns) at each fidelity (rows).
The bound for T (M)

n (x) in H(M) holds for all arms except the optimal arm x? (note
∆(M)(x?) = 0 ).

The second step uses that ∆(m)(x) ≥ 3γ(m) for x ∈ H(m) and the last step uses the modification to
the discrete algorithm which ensures that we will always play an arm at a lower fidelity before we
play it at a higher fidelity. Hence, for an arm inH(m), the 1 play at fidelities larger than m will be
played at fidelity m+ 1.

Proof of first result: First consider the total cost Λ′(n) expended at fidelities 1, . . . ,M − 1 and at
the M th fidelity outside ofH(M) after n evaluations. Using (17), we have,

Λ′(n) =

M−1∑
m=1

λ(m)T (m)
n (X ) + λ(M)T (M)

n (Ĥ(M))

≤
M∑
m=2

λ(m)|H(m−1)| +

M−1∑
m=1

λ(m)|H(m) ∪ Ĥ(m)|

⌈
η2

γ(m)2βn

⌉
.

Since N ≤ nΛ, we have for all n ∈ supp (N), Λ′(n) is less than the LHS of (7) and hence less than
Λ/2. Therefore, the amount of cost spent at the M th fidelity inside H(M) is at least Λ/2 and since
each such evaluation expends λ(M), we have T (M)

N (H(M)) ≥ nΛ/2. Therefore using (14) we have,

S(Λ) ≤ 1

T
(M)
N (H(M))

R̃N ≤

√√√√C1βNΨ
T

(M)
N (H(M))

(H(M))

T
(M)
N (H(M))

≤

√
2C1βnΛΨnΛ

(H(M))

nΛ

.

Here, we have used N ≤ nΛ and that nΛ ≥ T
(M)
N (H(M)) ≥ nΛ/2.

Proof of second result: Using (16), the total number of queries at fidelities less than M and the
number of M th fidelity queries outside ofH(M) can be bounded as follows,

M−1∑
m=1

∑
x∈X

T (m)
n (x) + T (M)

n (Ĥ(M)) ≤ |X | +
M−1∑
m=1

|H(m) ∪ Ĥ(m)|

⌈
η2

γ(m)2βn

⌉
. (18)
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The first term of the RHS above follows via (15) and the following argument. In particular, this does
not use the additional condition on the discrete algorithm – we will use a similar argument in the
continuous domain setting.

M∑
m=1

∑
x∈Ĥ(m)

T (m)
n (x) =

M∑
m=1

m−1∑
`=1

∑
x∈H(`)

T (m)
n (x) ≤

M−1∑
m=1

∑
x∈H(m)

T (>m)
n (x) ≤ |X |. (19)

Let the LHS of (18) be A and the RHS be B when n = N . When Λ > Λ2, by (8) and using
the fact that N ≤ nΛ, we have B < nΛ/2 < N/2. Since N = A + T

(M)
N (H(M)), we have

T
(M)
N (H(M)) > N/2 > nΛ/2. Further, since the total expended budget after N rounds Λ(N)

satisfies Λ(N) ≥ T
(M)
N (H(M))λ(M) > λ(M)N/2, we also have N < 2nΛ. Putting these results

together we have for all Λ > Λ2,

S(Λ) ≤

√√√√C1βNΨ
T

(M)
N (H(M))

(H(M))

T
(M)
N (H(M))

≤

√
2C1β2nΛ

ΨnΛ
(H(M))

nΛ

.

Remark 2. Choice of γ(m): As described in the main text, the optimal choice for γ(m) depends
on the available budget and unknown problem dependent quantities. However the choice γ(m) =√
λ(m)/λ(m+1)ζ(m) ensures that for any x ∈ H(m), the bounds on the number of plays in Table 1

are on the same order for fidelities m and below. To see this, consider any ` < m. Then,

∆(m)(x) = ∆(`)(x)+ζ(`)−ζ(m)+f (`)(x)−f (M)(x)+f (M)(x)−f (m)(x) ≤ 3γ(`)+2ζ(`) ≤ 5ζ(`).

We therefore have,

λ(`) · η2

γ(`)2 = λ(`+1) η2

ζ(`)2 ≤ 5

(
λ(m) · 5η2

∆(m)(x)
2

)
Above, by Table 1, the left most expression is an upper bound on the cost spent at fidelity ` and the
term inside the parantheses is an upper bound on the cost spent at fidelity m. Hence, the capital spent
at the lower fidelities is within a constant factor of this bound. In the K-armed setting (Kandasamy,
Dasarathy, Poczos, & Schneider, 2016), we showed a O(η2/∆(m)(x)

2
) lower bound on the number

of plays at the mth fidelity as well; such a result is not straightforward in the GP setting due to
correlations between arms.

8.1.1 PROOF OF LEMMA 9

This is a straightforward argument using Gaussian concentration and the union bound. Consider any
given m, t, x.

P
(
|f (m)(x)− µ(m)

t−1(x)| > β
1/2
t σ

(m)
t−1(x)

)
=

1

ξA2
PGP

(
|f (m)(x)− µ(m)

t−1(x)| > β
1/2
t σ

(m)
t−1(x)

)
=

1

ξA2
EGP

[
EGP

[
1

{
|f (m)(x)− µ(m)

t−1(x)| > β
1/2
t σ

(m)
t−1(x)

} ∣∣∣ D(m)
t−1

]]
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=
1

ξA2
EGP

[
EGP

[
1

{
|f (m)(x)− µ(m)

t−1(x)| > β
1/2
t σ

(m)
t−1(x)

} ∣∣∣ D(m)
t−1

]]
=

1

ξA2
EGP

[
PZ∼N (0,1)

(
|Z| > β

1/2
t

)]
≤ 1

ξA2
exp

(βt
2

)
=

3δ

M |X |π2t2
.

The first step uses Lemma 7. In the second step we have conditioned w.r.t D(m)
t−1 which allows us

to use Lemma 14. Recall that conditioning on all queries will not be a Gaussian due to the ζ(m)

constraints. The statement follows via a union bound over all m ∈ {1, . . . ,M}, x ∈ X and all t and
noting that

∑
t t
−2 = π2/6.

8.1.2 PROOF OF LEMMA 10

First consider any ` < m. Assume that we have already queried
⌈
η2βn/γ

(m)2⌉
times at any

t ≤ n. Since the Gaussian variance after s observations is η2/s and that queries elsewhere will
only decrease the conditional variance we have, κ(`)

t−1(x, x) ≤ η2/T
(`)
t−1(x) < γ(m)2

/βn. Therefore,

β
1/2
t σ

(`)
t−1(x) < β

1/2
n σ

(`)
t−1(x) < γ(m) and by the design of our algorithm we will not play at the `th

fidelity at time t for all t until n. This establishes the first result.
To bound T (m)

n (x) we first observe,

1
{
T (m)
n (x) > u

}
≤ 1

{
∃t : u+ 1 ≤ t ≤ n : ϕt(x) was maximum ∧

β
1/2
t σ

(`)
t−1(x) < γ(m), ∀ ` < m ∧ β

1/2
t σ

(m)
t−1(x) ≥ γ(m) ∧

T
(m)
t−1 (x) ≥ u

}
≤ 1

{
∃t : u+ 1 ≤ t ≤ n : ϕt(x) > ϕt(x?) ∧ T

(m)
t−1 (x) ≥ u

}
≤ 1

{
∃t : u+ 1 ≤ t ≤ n : ϕ

(m)
t (x) > f? ∧ T

(m)
t−1 (x) ≥ u

}
. (20)

The first line just enumerates the conditions in our algorithm for it to have played x at time t at fidelity
m. In the second step we have relaxed some of those conditions, noting in particular that if ϕt(·) was
maximised at x then it must be larger than ϕt(x?). The last step uses the fact that ϕ(m)

t (x) ≥ ϕt(x)

and the assumption on ϕt(x?). Consider the event {ϕ(m)
t (x) > f? ∧ T (m)

t−1 (x) ≥ u}. We will choose

u = d5η2βn/∆
(m)(x)

2e and bound its probability via,

P
(
ϕ

(m)
t (x) > f? ∧ T (m)

t−1 (x) ≥ u
)

=
1

ξA2
PGP

(
µ

(m)
t−1(x) + β

1/2
t σ

(m)
t−1(x) + ζ(m) > f? ∧ T

(m)
t−1 (x) ≥ u

)
=

1

ξA2
PGP

(
µ

(m)
t−1(x)− f (m)(x) > f? − f (m)(x)− ζ(m)︸ ︷︷ ︸

∆(m)(x)

−β1/2
t σ

(m)
t−1(x) ∧

T
(m)
t−1 (x) > u

)
≤ 1

ξA2
PGP

(
µ

(m)
t−1(x)− f (m)(x) > (

√
5− 1)β1/2

n σ
(m)
t−1(x)

)
≤ 1

ξA2
PZ∼N (0,1)

(
Z >

(
√

5− 1)2

2
β1/2
n

)
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≤ 1

ξA2

1

2
exp

(
−3

4
βn

)
=

1

ξA2

1

2

(
3ξA2δ

M |X |π2

) 3
2

n−3 ≤ 1

2

3δ

M |X |π2
n−3

Above in the third step we have used, if u ≥ 5η2βn/∆
(m)(x)

2
, then ∆(m)(x) ≥

√
5β

1/2
n σ

(m)
t−1(x)

and that βn ≥ βt. The fourth step uses Lemma 14 after conditioning on D(m)
t−1 , the fifth step

uses (
√

5 − 1)2 > 3/2 and the last step uses 3δ/|X |π2 < 1. Using the union bound on (20),
we get P(T

(m)
n (x) > u) ≤

∑n
t=u+1 P(ϕ

(m)
t (x) > f? ∧ T

(m)
t−1 (x) ≥ u). Now (20) implies that

P(T
(m)
n (x) > u) ≤

∑n
t=u+1 P(ϕ

(m)
t (x) > f? ∧ T

(m)
t−1 (x) ≥ u). The second inequality of the

lemma follows by noting that there are at most n terms in the summation.
Finally, for the third inequality we observe

P(T (>m)
n (x) > u) ≤ P

(
∃t : u+ 1 ≤ t ≤ n ; ϕ

(m)
t (x) > f? ∧ β

1/2
t σ

(m)
t−1(x) < γ(m)

)
. (21)

As before, we have used that if x is to be queried at time t, then ϕt(x) should be at least larger
than ϕt(x?) which is larger than f? due to the assumption in the theorem. The second condition is
necessary to ensure that the switching procedure proceeds beyond the mth fidelity. It is also necessary
to have β1/2

t σ
(`)
t−1(x) < γ(`) for ` < m, but we have relaxed them. We first bound the probability of

the event {ϕ(m)
t (x) > f? ∧ β

1/2
t σ

(m)
t−1(x) < γ(m)}.

P
(
ϕ

(m)
t (x) > f? ∧ β1/2

t σ
(m)
t−1(x) < γ(m)

)
=

1

ξA2
PGP

(
ϕ

(m)
t (x) > f? ∧ β1/2

t σ
(m)
t−1(x) < γ(m)

)
=

1

ξA2
PGP

(
µ

(m)
t−1(x)− f (m)(x) > ∆(m)(x)− β1/2

t σ
(m)
t−1(x) ∧ β1/2

t σ
(m)
t−1(x) < γ(m)

)
≤ 1

ξA2
PGP

(
µ

(m)
t−1(x)− f (m)(x) > 2γ(m) − β1/2

t σ
(m)
t−1(x) ∧ β

1/2
t σ

(m)
t−1(x) < γ(m)

)
≤ 1

ξA2
PGP

(
µ

(m)
t−1(x)− f (m)(x) > β

1/2
t σ

(m)
t−1(x)

)
≤ 1

ξA2
PZ∼N (0,1)

(
Z > β

1/2
t

)
≤ 1

ξA2

1

2
exp

(
−1

2
βt

)
=

1

ξA2

1

2

(
3ξA2δ

M |X |π2

)
t−2 ≤ 1

2

3δ

M |X |π2
t−2

Here, the second step uses that for all x ∈ H(m), ∆(m)(x) > 3γ(m) > 2γ(m) and the third step uses
the second condition. Using the union bound on (21) and bounding the sum by an integral gives us,

P(T (>m)
n (x) > u) ≤

n∑
t=u+1

1

2

3δ

M |X |π2
t−2 ≤ 1

2

3δ

M |X |π2

∫ ∞
u

t−2dt

≤ 1

2

3δ

M |X |π2

1

u
.

8.2 Compact and Convex X

To prove theorem 6 we will require a fairly delicate set up for the continuous setting. Given a
sequence {νn}n≥0, at time n we will consider a r

√
d/(2ν

1/2d
n )-covering of the space X of size ν1/2

n .
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Figure 11: Illustration of the sets {F (`)
n }m−1

`=1 with respect to H(m). The grid represents a
r
√
d/n1/(2d) covering of X . The yellow region is Ĥ(m). The area enclosed by the

solid red line (excluding Ĥ(m)) isH(m). H(m)
n , shown by a dashed red line, is obtained

by dilatingH(m) by r
√
d/nα/2d. The grey shaded region represents

⋃m−1
`=1 F

(`)
n . By our

definition,
⋃m−1
`=1 F

(`)
n contains the cells which are entirely outsideH(m). However, the

inflation H(m)
n is such that Ĥ(m) ∪ H(m)

n ∪
⋃m−1
`=1 F

(`)
n = X . We further note that as

n→∞,H(m)
n → H(m).

For instance, if X = [0, r]d a sufficient discretisation would be an equally spaced grid having ν1/2d
n

points per side. Let {ai,n}n
α
2

i=1 be the points in the covering, Fn = {Ai,n}n
α
2

i=1 be the “cells” in the
covering, i.e. Ai,n is the set of points which are closest to ai,n in X and the union of all sets Ai,n in
Fn is X . Next we will define another partitioning of the space similar using this covering. First let
F

(1)
n = {Ai,n ∈ Fn : Ai,n ⊂ J (1)

max(τ,ργ)}. Next,

F (m)
n =

{
Ai,n ∈ Fn : Ai,n ⊂ J

(m)
max(τ,ργ) ∧ Ai,n /∈

m−1⋃
`=1

F (`)
n

}
for 2 ≤ m ≤M − 1. (22)

Note that F (m)
n ⊂ F

(m)
n . We define the following disjoint subsets {F (m)

n }M−1
m=1 of X via F (m)

n =⋃
Ai,n∈F

(m)
n

Ai,n. We have illustrated
⋃m−1
`=1 F

(`)
n with respect to H(m) and H(m)

n in Figure 11. By

observing that H(1)
n = H(1) and that H(m)

n ∪ Ĥ(m) ⊂
⋃m−1
`=1 F

(`)
n (see Figure 11) we have the

following,

∀m ∈ {1, . . . ,M}, T (m)
n (X ) ≤

(
m−1∑
`=1

T (m)
n (F (`)

n )

)
+ T (m)

n (H(m)
n ) + T (m)

n (Ĥ(m)). (23)

We are now ready to prove Theorem 6. We will denote the ε covering number of a set A ⊂ X in the
‖ · ‖2 metric by Ωε(A).

Proof of Theorem 6. As in the discrete case, we will first control the regret and the number of lower
fidelity evaluations by controlling each term in (23).
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Bounding the regret after n evaluations: We will need the following lemma whose proof is given
in Section 8.1.1.

Lemma 11. For βt as given in Theorem 6, the following holds with probability > 1− 5δ/6.

∀m ∈ {1, . . . ,M}, ∀ t ≥ 1, ∆(m)(xt) = f? − f (m)(xt) ≤ 2βtσ
(m)
t−1(xt) + 1/t2.

As in the discrete setting, we set Z = H(M)
n in (11) to bound R̃n. Using m = M in Lemma 11

and using calculations similar to the discrete case yields,

R̃n ≤
∑
mt=M
xt∈Z

(
2β

1/2
t σ

(M)
t−1 (xt) +

1

t2

)
≤
√
C1T

(m)
n (H(M)

n )βnΨ
T

(m)
n (H(m)

n )
(H(m)

n ) +
π2

6
. (24)

Here C1 = 8/ log(1 + η−2). We have also used the fact
∑

t>0 t
−2 = π2

6 .

Bounding the number of evaluations: The following lemma will be used to bound the number of
plays inH(m)

n ∪ Ĥ(m). The proof is given in Section 8.2.2.

Lemma 12. Let f ∼ GP(0, κ), f : X → R and we observe y = f(x) + ε where ε ∼ N (0, η2). Let
A ⊂ X such that its L2 diameter diam(A) ≤ D. Say we have n queries (xt)

n
t=1 of which s points

are in A. Then the posterior variance of the GP, κ′(x, x) at any x ∈ A satisfies

κ′(x, x) ≤

{
CSED

2 + η2

s if κ is the SE kernel,

CMatD + η2

s if κ is the Matérn kernel,

for appropriate kernel dependent constants CSE , CMat.

First consider the SE kernel. At time t consider any εn = γ(m)
√

8CSEβn
covering (Bi)

εn
i=1 of

H(m)
n ∪ Ĥ(m). The number of queries inside any Bi of this covering at time n will be at most⌈
2η2

γ(m)2βn

⌉
. To see this, assume we have already queried this many times inside Bi at time t ≤ n.

By Lemma 12 the maximum variance in Ai can be bounded by

max
x∈Ai

κ
(m)
t−1(x, x) ≤ CSE(2εn)2 +

η2

T
(m)
t (Ai)

≤ γ(m)2

βn
.

Therefore, β1/2
t σ

(m)
t−1(x) ≤ β

1/2
n σ

(m)
t−1(x) < γ(m) and we will not query inside Ai until time n. A

similar result is obtained for the Matérn kernel by setting εn = γ(m)2

4CMatβn
. Therefore we have,

T (m)
n (H(m)

n ∪ Ĥ(m)) ≤ Ωεn(Ĥ(m) ∪ Ĥ(m))

⌈
2η2

γ(m)2βn

⌉
(25)

≤ Cκη
2βp+1
n

vol(H(m)
n ∪ Ĥ(m))

γ(m)2p .

Here Cκ = 22+d/2(dCSE)
d
2 and p = 1/2 for the SE kernel while Cκ = 22+d(CMat)

ddd/2 and
p = 1 for the Matérn kernel. We have also used the fact that dke ≤ 2k for large enough k and the
following bound for a δ-packing in the Euclidean metric Ωδ(A) ≤ vol(A)dd/2/(2d/2δd).
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Next, we will bound T (m)
n (H(m)

n ∪ Ĥ(m)) by controlling. T (>m)
n (F (m)

n ). To that end we provide
the following Lemma whose proof is given in Section 8.2.3.

Lemma 13. Consider any Ai,n ∈ F (m)
n where F (m)

n is as defined in (22). Let βt be as given in
Theorem 6. Then for all n′ ≥ u ≥ (3η)−2/3 we have,

P(T
(>m)
n′ (Ai,n) > u) ≤ δ

π2
· 1

u

Using the above result with n′ = nΛ gives us the result for all n′ ≤ nΛ since T (>m)
n′ (Ai,n) is

nondecreasing with n. Setting u = max{(3η)−2/3, ν
1/2
n }, and applying the union bound over all

m ∈ {1, . . . ,M} and Ai,n ∈ F (m)
n , yields the following bound for all n′ ≤ nΛ,

P
(
∃m ∈ {1, . . . ,M}, T (>m)

n′ (F (m)
n ) > |F (m)

n |ν1/2
n

)
≤

M∑
m=1

P
(
T

(>m)
n′ (F (m)

n ) > |F (m)
n |ν1/2

n

)
≤

M∑
m=1

∑
Ai,n∈F

(m)
n

P
(
T

(>m)
n′ (Ai,n) > ν1/2

n

)
≤

M∑
m=1

|F (m)
n | δ

π2

1

ν
1/2
n

≤ |Fn|
δ

π2

1

ν
1/2
n

=
δ

π2
≤ δ

6
. (26)

Henceforth, all statements we make will make use of the bounds above and will hold with
probability > 1− δ for all n ∈ supp (N).

Proof of first result: Consider the cost Λ′(n) spent at fidelities 1, . . . ,M − 1 and at the M th fidelity
outside ofH(M)

n after n evaluations.

Λ′(n) =

M−1∑
m=1

λ(m)T (m)
n (X ) + λ(M)T (M)

n (H(M)
n )

=

M∑
m=1

λ(m)

(
m−1∑
`=1

T (m)
n (F (`)

n )

)
+

M−1∑
m=1

λ(m)T (m)
n (H(m)

n ∪ Ĥ(m))

≤ λ(M)νn + Cκη
2βp+1
n

M−1∑
m=1

λ(m) vol(H(m)
n ∪ Ĥ(m))

γ(m)2p

The second step uses (23). The third step uses (25), (26), and the following argument,

M∑
m=1

(
m−1∑
`=1

T (m)
n (F (`)

n )

)
≤

M−1∑
m=1

T (>m)
n (F (`)

n ) ≤
M−1∑
m=1

|F (m)
n |ν1/2

n ≤ ν1/2
n |Fn| ≤ νn. (27)

The remainder of the proof follows similar to the discrete case. Noting that nΛ ≤ n ≤ nΛ and
thatH(m)

n is shrinking with n, we can conclude that Λ′(n) is less than the LHS of (10). Therefore,
T

(M)
N (H(M)

n ) ≥ nΛ/2 and hence,

S(Λ) ≤

√√√√√C1βNΨ
T

(M)
N (H(m)

n )
(H(m)

n )

T
(M)
N (H(M)

n )
+

π2

6T
(M)
N (H(M)

n )
≤

√
2C1βnΛΨnΛ

(H(M)
nΛ

)

nΛ

+
π2

3nΛ

.
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Proof of second result: As in the discrete case, we bound the number of queries at fidelity m < M

and the M th fidelity queries outsideH(M)
n ∪H(M) as follows.

M−1∑
m=1

T (m)
n (X ) + T (M)

n (H(M)
n ) ≤

M∑
m=1

(
m−1∑
`=1

T (m)
n (F (`)

n )

)
+

M−1∑
m=1

T (m)
n (H(m)

n ∪ Ĥ(m))

≤ νn + Cκβ
p+1
n

M−1∑
m=1

vol(H(M)
n ∪H(M))

γ(m)2p (28)

The first step uses (23) while the second step uses (25) and (27). Once again, similar to the discrete
case we can argue that for all Λ > Λ2, the RHS B of (28) satisfies B < nΛ/2 < N/2, the M th

fidelity plays in H(M)
n satisfies T (M)

N (H(M)
n ) > N/2 > nΛ/2, and the number of plays satisfies

N ≤ 2nΛ. Combining this with (24) gives us the following for all n ≤ nΛ,

S(Λ) ≤

√√√√√C1βNΨ
T

(M)
N (H(m)

n )
(H(m)

n )

T
(M)
N (H(M)

n )
+

π2

6T
(M)
N (H(M)

n )
≤

√
2C1β2nΛ

ΨnΛ
(H(M)

nΛ
)

nΛ

+
π2

3nΛ

.

8.2.1 PROOF OF LEMMA 11

The first part of the proof mimics the arguments in Lemmas 5.6, 5.7 of Srinivas et al. (2010). By
Assumption 1 for any given m ∈ {1, . . . ,M} and i ∈ {1, . . . , d} we have,

PGP

(∣∣∣∂f (m)(x)

∂xi

∣∣∣ > b

√
log
(6Mad

ξA2δ

) )
≤ ξA2δ

6Md

Then, by the union bound and Lemma 7 we have,

P
(
∀m ∈ {1, . . . ,M}, ∀ i ∈ {1, . . . , d}, ∀x ∈ X ,

∣∣∣∂f (m)(x)

∂xi

∣∣∣ < b

√
log
(6Mad

ξA2δ

))
≥ 1− δ

6
.

Now we construct a discretisation Ft ofX of size (νt)
d such that we have for all x ∈ X , ‖x−[x]t‖1 ≤

rd/νt. Here [x]t is the closest point to x in the discretisation. (Note that this is different from the
discretisation appearing in Theorem 6 even though we have used the same notation). By choosing
νt = t2brd

√
log(6Mad/(ξA2δ)) and using the above we have

∀x ∈ X , |f (m)(x)− f (m)([x]t)| ≤ b log(6Mad/δ)‖x− [x]t‖1 ≤ 1/t2 (29)

for all f (m)’s with probability > 1− δ/6.
Noting that βt ≥ 2 log(M |Ft|π2t2/2δ) for the given choice of νt we have the following with

probability > 1− δ/3.

∀ t ≥ 1, ∀m ∈ {1, . . . ,M}, ∀ a ∈ Ft, |f (m)(a)− µ(m)
t−1(a)| ≤ β

1/2
t σ

(m)
t−1(a). (30)
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The proof mimics that of Lemma 9 using the same conditioning argument. However, instead of
a fixed set over all t, we change the set at which we have confidence based on the discretisation.
Similarly we can show that with probability > 1− δ/3 we also have confidence on the decisions xt
at all time steps. Precisely,

∀ t ≥ 1, ∀m ∈ {1, . . . ,M}, |f (m)(xt)− µ(m)
t−1(xt)| ≤ β

1/2
t σ

(m)
t−1(xt). (31)

Using (29),(30) and (31) the following statements hold with probability > 1− 5δ/6. First we can
upper bound f? by,

f? ≤ f (m)(x?) + ζ(m) ≤ f (m)([x?]t) + ζ(m) +
1

t2
≤ ϕ

(m)
t ([x?]t) +

1

t2
. (32)

Since the above holds for all m, we have f? ≤ ϕt([x?]t) + 1/t2. Now, using similar calculations
as (13) we bound ∆(m)(xt).

∆(m)(xt) = f? − f (m)(xt)− ζ(m)

≤ ϕt([x?]t) +
1

t2
− f (m)(xt)− ζ(m) ≤ ϕt(xt)− f (m)(xt)− ζ(m) +

1

t2

≤ ϕ
(m)
t (xt)− µ(m)

t−1(xt) + β
1/2
t σ

(m)
t−1(xt)− ζ(m) +

1

t2
≤ 2β

1/2
t σ

(m)
t−1(xt) +

1

t2
.

8.2.2 PROOF OF LEMMA 12

Since the posterior variance only decreases with more observations, we can upper bound κ′(x, x)
for any x ∈ A by considering its posterior variance with only the s observations in A. Further the
maximum variance within A occurs if we pick 2 points x1, x2 that are distance D apart and have all
observations at x1; then x2 has the highest posterior variance. Therefore, we will bound κ′(x, x) for
any x ∈ A with κ(x2, x2) in the above scenario. Let κ0 = κ(x, x) and κ(x, x′) = κ0φ(‖x− x′‖2),
where φ(·) ≤ 1 depends on the kernel. Denote the gram matrix in the scenario described above by
∆ = κ011

> + η2I . Then using the Sherman-Morrison formula on the posterior variance (2),

κ′(x, x) ≤ κ′(x2, x2) = κ(x2, x2)− [κ(x1, x2)1]>∆−1 [κ(x1, x2)1]

= κ0 − κ2
0φ

2(D)1>
[
κ011

> + η2I
]−1

1

= κ0 − κ0φ
2(D)1>

κ0

η2
I −

(
κ0
η2

)2
11>

1 + κ0
η2 s

1

= κ0 − κ0φ
2(D)

κ0

η2
s−

(
κ0
η2

)2
s2

1 + κ0
η2 s


= κ0 − κ0φ

2(D)
s

η2

κ0
+ s

=
1

1 + η2

κ0s

(
κ0 − κ0φ

2(D) +
η2

s

)
≤ κ0(1− φ2(D)) +

η2

s
.
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For the SE kernel φ2(D) = exp
(
−D2

2h2

)2
= exp

(
−D2

h2

)
≤ 1 − D2

h2 . Plugging this into the bound

above retrieves the first result with CSE = κ0/h
2. For the Matérn kernel we use a Lipschtiz constant

LMat of φ. Then 1− φ2(D) = (1− φ(D))(1 + φ(D)) ≤ 2(φ(0)− φ(D)) ≤ 2LMatD. We get the
second result with CMat = 2κ0LMat. Since the SE kernel decays fast, we get a stronger result on its
posterior variance which translates to a better bound in our theorems.

8.2.3 PROOF OF LEMMA 13

First, we will invoke the same discretisation used in the proof of Lemma 11 via which we have
ϕt([x?]t) ≥ f? − 1/t2 (32). (Therefore, Lemma 13 holds only with probability > 1 − δ/6, but
this event has already been accounted for in Lemma 11.) Let bi,n,t = argmaxx∈Ai,n ϕt(x) be the
maximiser of the upper confidence bound in Ai,n at time t. Note that the discretisation is fixed ahead
of time and bi,n,t is deterministic given the data {(xt,mt, yt)}t−1

i=1 at time t. Now using the relaxation
xt ∈ Ai,n =⇒ ϕt(bi,n,t) > ϕt([x?]t) =⇒ ϕ

(m)
t (bi,n,t) > f? − 1/t2 and proceeding,

P(T
(>m)
n′ (Ai,n) > u) ≤ 1

ξA2
PGP

(
∃t : u+ 1 ≤ t ≤ n, ϕ

(m)
t (bi,n,t) > f? − 1/t2 ∧ (33)

β
1/2
t σ

(m)
t−1(bi,n,t) < γ(m)

)
≤ 1

ξA2

n′∑
t=u+1

PGP
(
µ

(m)
t−1(bi,n,t)− f (m)(bi,n,t) > ∆(m)(bi,n,t)− β1/2

t σ
(m)
t−1(bi,n,t)− 1/t2 ∧

β
1/2
t σ

(m)
t−1(bi,n,t) < γ(m)

)
≤ 1

ξA2

n′∑
t=u+1

PGP
(
µ

(m)
t−1(bi,n,t)− f (m)(bi,n,t) > 2β

1/2
t σ

(m)
t−1(bi,n,t)− 1/t2

)
≤ 1

ξA2

n′∑
t=u+1

PZ∼N (0,1)

(
Z > β

1/2
t

)
≤

n′∑
t=u+1

1

ξA2

1

2
exp

(
−βt

2

)

≤ 1

ξA2

1

2

(
2ξA2δ

Mπ2

) n′∑
t=u+1

t−2 ≤ δ

Mπ2

1

u

In the second step we have rearranged the terms and used the definition of ∆(m)(x). In the third step,
as Ai,n ⊂ J

(m)
max(τ,ργ), we have ∆(m)(bi,n,t) > 3γ(m) > 3β

1/2
t σ

(m)
t−1(bi,n,t). The last step bounds the

sum by an integral. For the fourth step, we have used, t > u ≥ 1/(3η)2/3, βt > 2 log(Mπ2t2/2δ) >

(3/2)2, and σ(m)
t−1(bi,n,t) > η/

√
t to conclude,

t >
1

(3η)2/3
=⇒ 3t3/2

2
>

1

2η
=⇒ t3/2β

1/2
t >

1

2η
=⇒ 2β

1/2
t σ

(m)
t−1 >

1

t2
.

9. Conclusion

We introduced and studied the multi-fidelity bandit problem under Gaussian Process assumptions.
Our theorems demonstrate that MF-GP-UCB explores the space using the cheap lower fidelities,
and uses the higher fidelity queries on successively smaller regions, hence performing better than
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single fidelity strategies. Via experiments on synthetic functions, three hyper-parameter tuning tasks,
and an astrophysical maximum likelihood estimation problem, we demonstrate the efficacy of our
method and more generally, the utility of the multi-fidelity framework. Our Matlab implementation
and experiments can be downloaded from github.com/kirthevasank/mf-gp-ucb.

Going forward we wish to study multi-fidelity optimisation under different model assumptions,
and extend the algorithm when we have to deal with approximations from structured fidelity spaces.
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Appendix A. Addendum to Experiments

A.1 Some Implementation Details of other Baselines

For MF-NAIVE we limited the number of first fidelity evalutions to max
(

1
2

Λ
λ(1) , 500

)
where Λ was

the total budget used in the experiment. The 500 limit was set to avoid unnecessary computation –
for all of these problems, 500 queries are not required to find the maximum. While there are other
methods for multi-fidelity optimisation (discussed under Related Work) none of them had made their
code available nor were their methods straightforward to implement - this includes MF-SKO.

A straightforward way to incorporate lower fidelity information to GP-UCB and EI is to share the
same kernel parameters. This way, the kernel κ can be learned by by jointly maximising the marginal
likelihood. While the idea seems natural, we got mixed results in practice. On some problems this
improved the performance of all GP methods (including MF-GP-UCB), but on others all performed
poorly. One explanation is that while lower fidelities approximate function values, they are not
always best described by the same kernel. The results presented do not use lower fidelities to learn
κ as it was more robust. For MF-GP-UCB, each κ(m) was learned independently using only the
queries at fidelity m.

In addition to the baselines presented in the figures, we also compared our method to the following
methods. The first two are single fidelity and the last two are mutlti-fidelity methods.

• The probability of improvement (PI) criterion for BO (Brochu et al., 2010). We found that in
general either GP-UCB or EI performed better.

• Querying uniformly at random at the highest fidelity and taking the maximum. On all problems
this performed worse than other methods.

• A variant of MF-NAIVE where instead of GP-UCB we queried at the first fidelity uniformly at
random. On some problems this did better than querying with GP-UCB, probably since unlike
GP-UCB it was not stuck at the maximum of f (1). However, generally it performed worse.

• The multi-fidelity method from Forrester et al. (2007) also based on GPs. We found that this
method did not perform as desired: in particular, it barely queried beyond the first fidelity.
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A.2 Description of Synthetic Experiments

The following are the descriptions of the synthetic functions used. The first three functions and their
approximations were taken from Xiong et al. (2013).

Currin exponential function: The domain is the two dimensional unit cube X = [0, 1]2. The
second and first fidelity functions are,

f (2)(x) =

(
1− exp

(
−1

2x2

))(
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20

)
,

f (1)(x) =
1

4
f (2)(x1 + 0.05, x2 + 0.05) +

1

4
f (2)(x1 + 0.05,max(0, x2 − 0.05))+

1

4
f (2)(x1 − 0.05, x2 + 0.05) +

1

4
f (2)(x1 − 0.05,max(0, x2 − 0.05)).

Park function: The domain is X = [0, 1]4. The second and first fidelity functions are,

f (2)(x) =
x1

2

(√
1 + (x2 + x2

3)
x4

x2
1

− 1

)
+ (x1 + 3x4) exp(1 + sin(x3)),

f (1)(x) =

(
1 +

sin(x1)

10

)
f (2)(x)− 2x2

1 + x2
2 + x2

3 + 0.5.

Borehole function: The second and first fidelity functions are,

f (2)(x) =
2πx3(x4 − x6)

log(x2/x1)
(

1 + 2x7x3

log(x2/x1)x2
1x8

+ x3
x5

) ,
f (1)(x) =

5x3(x4 − x6)

log(x2/x1)
(

1.5 + 2x7x3

log(x2/x1)x2
1x8

+ x3
x5

) .
The domain of the function is [0.05, 0.15; 100, 50K; 63.07K, 115.6K; 990, 1110; 63.1, 116; 700, 820;
1120, 1680; 9855, 12045]. We first linearly transform the variables to lie in [0, 1]8.

Hartmann-3D function: The M th fidelity function is f (M)(x) =
∑4

i=1 αi exp
(
−
∑3

j=1Aij(xj −
Pij)

2
)

where A,P ∈ R4×3 are fixed matrices given below and α = [1.0, 1.2, 3.0, 3.2]. For the
lower fidelities we use the same form except changing α to α(m) = α + (M −m)δ where δ =
[0.01,−0.01,−0.1, 0.1] and M = 3. The domain is X = [0, 1]3.

A =


3 10 30

0.1 10 35
3 10 30

0.1 10 35

 , P = 10−4 ×


3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828


Hartmann-6D function: The 6-D Hartmann function takes the same form as the 3-D case except
A,P ∈ R4×6 are as given below. We use the same modifications as above to obtain the lower
fidelities using M = 4.

A =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 , P = 10−4×


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381
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Appendix B. Other Material

B.1 Some Ancillary Results

The following results were used in our analysis. The first is a standard Gaussian concentration result
and the second is an expression for the Information Gain in a GP from Srinivas et al. (2010).
Lemma 14 (Gaussian Concentration). Let Z ∼ N (0, 1). Then P(Z > ε) ≤ 1

2 exp(−ε2/2).

Lemma 15 (Mutual Information in GP, Srinivas et al. (2010), Lemma 5.3). Let f ∼ GP(0, κ),
f : X → R and we observe y = f(x) + ε where ε ∼ N (0, η2). Let A be a finite subset of X and
fA, yA be the function values and observations on this set respectively. Using the basic Gaussian
properties it can be shown that the mutual information I(yA; fA) is,

I(yA; fA) =
1

2

n∑
t=1

log(1 + η−2σ2
t−1(xt)).

where σ2
t−1 is the posterior GP variance after observing the first t− 1 points.

B.2 A Table of Notations and Abbreviations
The following table summarises the notation and abbreviations used in the manuscript. The table
continues to multiple pages.

Notation Description
EGP ,PGP Expectations and probabilities when f (1), . . . , f (M) are sampled from GP(0, κ).

E,P Expectations and probabilities under the prior, which includes condition A2 after
f (1), . . . , f (M) are sampled from GP(0, κ).

ξA2 A lower bound on the probability that condition A2 holds when f (1), . . . , f (M)

are sampled, see (5).
Q The function which controls the probability on the supremum of a GP, see As-

sumption 2.
M The number of fidelities.

f, f (m) The payoff function and its mth fidelity approximation. f (M) = f .
Λ Λ typically denotes the capital of some resource which is expended upon each

evaluation of at any fidelity.
λ(m) The cost, i.e. amount of capital expended, of querying at fidelity m.
N The random number of queries at any fidelity within capital Λ.

N = max{n ≥ 1 :
∑n

t=1 λ
(mt) ≤ Λ}

X The domain over which we are optimising f .
x?, f? The optimum point and value of the M th fidelity function.
A The complement of a set A ⊂ X . A = X\A.
|A| The cardinality of a set A ⊂ X if it is countable.
∨,∧ Logical Or and And respectively.

.,&,� Inequalities and equality ignoring constant terms.
qt, rt The instantaneous reward and regret respectively.

qt = f (M)(xt) if mt = M and −∞ if mt 6= M . rt = f? − qt.
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S(Λ) The simple regret after spending capital Λ. S(Λ) = f? −mint=1,...,N f(xt).
ζ(m) The bound on the maximum difference between f (m) and f (M),

‖f (M) − f (m)‖∞ ≤ ζ(m).
µ

(m)
t The mean of the mth fidelity GP f (m) conditioned on D(m)

t at time t.
κ

(m)
t The covariance of the mth fidelity GP f (m) conditioned on D(m)

t at time t.
σ

(m)
t The standard deviatiation of the mth fidelity GP f (m) conditioned on D(m)

t

at time t.
xt, yt The queried point and observation at time t.
mt The queried fidelity at time t.
D(m)
n The set of queries at the mth fidelity until time n {(xt, yt)}t:mt=m.
βt The coefficient trading off exploration and exploitation in the UCB.

See Theorems 5 and 6.
ϕ

(m)
t (x) The upper confidence bound (UCB) provided by the mth fidelity on f (M)(x).

ϕ
(m)
t (x) = µ

(m)
t−1(x) + β

1/2
t σ

(m)
t−1(x) + ζ(m).

ϕt(x) The combined UCB provided by all fidelities on f (M)(x).
ϕt(x) = minm ϕ

(m)
t (x).

γ(m) The parameter in MF-GP-UCB for switching from the mth fidelity to the (m+ 1)th.
R̃n The M th fidelity cumulative regret after n rounds. See (11)

T
(m)
n (A) The number of queries at fidelity m in subset A ⊂ X until time n.

T
(>m)
n (A) Number of queries at fidelities greater than m in any subset A ⊂ X until time n.
nΛ nΛ = bΛ/λ(M)c. Number of plays by a strategy querying only at fidelity M

within capital Λ; also a lower bound on N , the number of plays by a multi-fidelity
strategy.

nΛ An upper bound on N , the number of plays by a multi-fidelity strategy within
capital Λ. nΛ = bΛ/λ(1)c.

Ψn(A) The maximum information gain of a set A ⊂ X after n queries in A. See
Definition 1.

∆(m)(x) ∆(m)(x) = f? − f (m) − ζ(m).
J (m)
η The points in X whose f (m) value is within ζ(m) + η of the optimum f?.

J (m)
η = {x ∈ X ; ∆(m)(x) ≤ η} .

H(m) (H(m))Mm=1 is a partitioning of X . See Equation (6). The analysis of MF-GP-UCB
hinges on these partitioning.

Ĥ(m), Ĥ(m) The arms “above”/“below”H(m). Ĥ(m) =
⋃M
`=m+1H(`), Ĥ(m) =

⋃m−1
`=1 H(`).

H(m)
n An n-dependent dilation ofH(m) in the continuous setting. See Section 5.3.

Ĥ(m), Ĥ(m) The arms “above”/“below”H(m). Ĥ(m) =
⋃M
`=m+1H(`), Ĥ(m) =

⋃m−1
`=1 H(`).

X ?g The good set for M = 2 fidelity problems. X ?g = {x ∈ X ; f? − f (1)(x) ≤ ζ(1)}.
Xg The inflated good set for MF-GP-UCB. Xg = {x; f? − f (1)(x) ≤ ζ(1) + 3γ}.

Ωε(A) The ε–covering number of a subset A ⊂ X in the ‖ · ‖2 metric.
Λ1,Λ2 The minimum capitals that need to be expended before the bound on S(Λ) hold in

Theorems 5 and 6.
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Abbreviation Description
UCB Upper Confidence Bound
BO Bayesian Optimisation

GP-UCB Gaussian Process Upper Confidence Bound (Srinivas et al., 2010)
MF-GP-UCB Multi-fidelity Gaussian Process Upper Confidence Bound

EI (Gaussian Process) Expected Improvement (Jones et al., 1998)
MF-SKO Multi-fidelity Sequential Kriging Optimisation (Huang et al., 2006)

MF-NAIVE Naive multi-fidelity method described in Section 7.
DiRect DIviding RECTangles (Jones et al., 1993)

SE Squared Exponential (in reference to the kernel)
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Kawaguchi, K., Kaelbling, L. P., & Lozano-Pérez, T. (2015). Bayesian Optimization with Exponential
Convergence. In Nips.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.
SCIENCE, 220.

Klein, A., Bartels, S., Falkner, S., Hennig, P., & Hutter, F. (2015). Towards efficient Bayesian
Optimization for Big Data. In Bayesopt.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2017). Hyperband: A novel

194



MULTI-FIDELITY GAUSSIAN PROCESS BANDIT OPTIMISATION

bandit-based approach to hyperparameter optimization. The Journal of Machine Learning
Research, 18(1), 6765–6816.

Li, S., Karatzoglou, A., & Gentile, C. (2016). Collaborative filtering bandits. In Proceedings of the
39th international acm sigir conference on research and development in information retrieval
(pp. 539–548).

Martinez-Cantin, R., de Freitas, N., Doucet, A., & Castellanos, J. (2007). Active Policy Learning for
Robot Planning and Exploration under Uncertainty. In Proceedings of robotics: Science and
systems.

Mockus, J. (1994). Application of Bayesian approach to numerical methods of global and stochastic
optimization. Journal of Global Optimization.

Munos, R. (2011). Optimistic Optimization of Deterministic Functions without the Knowledge of its
Smoothness. In Nips.

Parkinson, D., Mukherjee, P., & Liddle, A. R. (2006). A Bayesian Model Selection Analysis of
WMAP3. Physical Review.

Poloczek, M., Wang, J., & Frazier, P. (2017). Multi-information source optimization. In Advances in
neural information processing systems (pp. 4288–4298).

Rasmussen, C., & Williams, C. (2006). Gaussian Processes for Machine Learning. University Press
Group Limited.

Robbins, H. (1952). Some aspects of the sequential design of experiments. Bulletin of the American
Mathematical Society.

Sabharwal, A., Samulowitz, H., & Tesauro, G. (2015). Selecting near-optimal learners via incremental
data allocation. In Aaai.

Seeger, M., Kakade, S., & Foster, D. (2008). Information Consistency of Nonparametric Gaussian
Process Methods. IEEE Transactions on Information Theory.

Sen, R., Kandasamy, K., & Shakkottai, S. (2018). Multi-Fidelity Black-Box Optimization with
Hierarchical Partitions. In International conference on machine learning.

Sen, R., Kandasamy, K., & Shakkottai, S. (2019). Noisy blackbox optimization using multi-fidelity
queries: A tree search approach. In The 22nd international conference on artificial intelligence
and statistics (pp. 2096–2105).

Shang, X., Kaufmann, E., & Valko, M. (2017). Adaptive black-box optimization got easier: Hct
only needs local smoothness. In European workshop on reinforcement learning.

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian Optimization of Machine
Learning Algorithms. In Neural information processing systems.

Song, J., Chen, Y., & Yue, Y. (2018). A general framework for multi-fidelity bayesian optimization
with gaussian processes. ArXiv, abs/1811.00755.

Srinivas, N., Krause, A., Kakade, S., & Seeger, M. (2010). Gaussian Process Optimization in the
Bandit Setting: No Regret and Experimental Design. In International conference on machine
learning.

195



KANDASAMY, DASARATHY, OLIVA, SCHNEIDER, PÓCZOS
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