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Abstract

We propose and analyse estimators for statistical functionals of one or more dis-
tributions under nonparametric assumptions. Our estimators are derived from the
von Mises expansion and are based on the theory of influence functions, which ap-
pear in the semiparametric statistics literature. We show that estimators based ei-
ther on data-splitting or a leave-one-out technique enjoy fast rates of convergence
and other favorable theoretical properties. We apply this framework to derive es-
timators for several popular information theoretic quantities, and via empirical
evaluation, show the advantage of this approach over existing estimators.

1 Introduction

Entropies, divergences, and mutual informations are classical information-theoretic quantities that
play fundamental roles in statistics, machine learning, and across the mathematical sciences. In
addition to their use as analytical tools, they arise in a variety of applications including hypothesis
testing, parameter estimation, feature selection, and optimal experimental design. In many of these
applications, it is important to estimate these functionals from data so that they can be used in down-
stream algorithmic or scientific tasks. In this paper, we develop a recipe for estimating statistical
functionals of one or more nonparametric distributions based on the notion of influence functions.

Entropy estimators are used in applications ranging from independent components analysis [15],
intrinsic dimension estimation [4] and several signal processing applications [9]. Divergence es-
timators are useful in statistical tasks such as two-sample testing. Recently they have also gained
popularity as they are used to measure (dis)-similarity between objects that are modeled as distribu-
tions, in what is known as the “machine learning on distributions” framework [5, 28]. Mutual infor-
mation estimators have been used in in learning tree-structured Markov random fields [19], feature
selection [25], clustering [18] and neuron classification [31]. In the parametric setting, conditional
divergence and conditional mutual information estimators are used for conditional two sample test-
ing or as building blocks for structure learning in graphical models. Nonparametric estimators for
these quantities could potentially allow us to generalise several of these algorithms to the nonpara-
metric domain. Our approach gives sample-efficient estimators for all these quantities (and many
others), which often outperfom the existing estimators both theoretically and empirically.

Our approach to estimating these functionals is based on post-hoc correction of a preliminary esti-
mator using the Von Mises Expansion [7, 36]. This idea has been used before in the semiparametric
statistics literature [3, 30]. However, most studies are restricted to functionals of one distribution
and have focused on a “data-split” approach which splits the samples for density estimation and
functional estimation. While the data-split (DS) estimator is known to achieve the parametric con-
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vergence rate for sufficiently smooth densities [3, 14], in practical settings, as we show in our simu-
lations, splitting the data results in poor empirical performance.

In this paper we introduce the method of influence function based nonparametric estimators to the
machine learning community and expand on this technique in several novel and important ways.
The main contributions of this paper are:

1. We propose a “leave-one-out” (LOO) technique to estimate functionals of a single distribution.
We prove that it has the same convergence rates as the DS estimator. However, the LOO estimator
has better empirical performance in our simulations since it makes efficient use of the data.

2. We extend both DS and LOO methods to functionals of multiple distributions and analyse their
convergence. Under sufficient smoothness both estimators achieve the parametric rate and the
DS estimator has a limiting normal distribution.

3. We prove a lower bound for estimating functionals of multiple distributions. We use this to
establish minimax optimality of the DS and LOO estimators under sufficient smoothness.

4. We use the approach to construct and implement estimators for various entropy, diver-
gence, mutual information quantities and their conditional versions. A subset of these
functionals are listed in Table 1 in the Appendix. Our software is publicly available at
github.com/kirthevasank/if-estimators.

5. We compare our estimators against several other approaches in simulation. Despite the generality
of our approach, our estimators are competitive with and in many cases superior to existing
specialised approaches for specific functionals. We also demonstrate how our estimators can be
used in machine learning applications via an image clustering task.

Our focus on information theoretic quantities is due to their relevance in machine learning applica-
tions, rather than a limitation of our approach. Indeed our techniques apply to any smooth functional.

History: We provide a brief history of the post-hoc correction technique and influence functions.
We defer a detailed discussion of other approaches to estimating functionals to Section 5. To our
knowledge, the first paper using a post-hoc correction estimator was that of Bickel and Ritov [2].
The line of work following this paper analysed integral functionals of a single one dimensional
density of the form

∫
ν(p) [2, 3, 11, 14]. A recent paper by Krishnamurthy et al. [12] also extends

this line to functionals of multiple densities, but only considers polynomial functionals of the form∫
pαqβ for densities p and q. All approaches above of use data splitting. Our work contributes to

this line of research in two ways: we extend the technique to a more general class of functionals and
study the empirically superior LOO estimator.

A fundamental quantity in the design of our estimators is the influence function, which appears both
in robust and semiparametric statistics. Indeed, our work is inspired by that of Robins et al. [30]
and Emery et al. [6] who propose a (data-split) influence-function based estimator for functionals of
a single distribution. Their analysis for nonparametric problems rely on ideas from semiparametric
statistics: they define influence functions for parametric models and then analyse estimators by
looking at all parametric submodels through the true parameter.

2 Preliminaries

Let X be a compact metric space equipped with a measure µ, e.g. the Lebesgue measure. Let
F and G be measures over X that are absolutely continuous w.r.t µ. Let f, g ∈ L2(X ) be the
Radon-Nikodym derivatives with respect to µ. We focus on estimating functionals of the form:

T (F ) = T (f) = φ

(∫
ν(f)dµ

)
or T (F,G) = T (f, g) = φ

(∫
ν(f, g)dµ

)
, (1)

where φ, ν are real valued Lipschitz functions that twice differentiable. Our framework permits
more general functionals (e.g. functionals based on the conditional densities), but we will focus on
this form for ease of exposition. To facilitate presentation of the main definitions, it is easiest to
work with functionals of one distribution T (F ). Define M to be the set of all measures that are
absolutely continuous w.r.t µ, whose Radon-Nikodym derivatives belong to L2(X ).
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Central to our development is the Von Mises expansion (VME), which is the distributional analog
of the Taylor expansion. For this we introduce the Gâteaux derivative which imposes a notion of
differentiability in topological spaces. We then introduce the influence function.

Definition 1. Let P,H ∈ M and U : M → R be any functional. The map U ′ : M → R
where U ′(H;P ) = ∂U(P+tH)

∂t |t=0 is called the Gâteaux derivative at P if the derivative exists and
is linear and continuous inH . U is Gâteaux differentiable at P if the Gâteaux derivative exists at P .

Definition 2. Let U be Gâteaux differentiable at P . A function ψ(·;P ) : X → R which satisfies
U ′(Q− P ;P ) =

∫
ψ(x;P )dQ(x), is the influence function of U w.r.t the distribution P .

By the Riesz representation theorem, the influence function exists uniquely since the domain of U is
a bijection of L2(X ) and consequently a Hilbert space. The classical work of Fernholz [7] defines
the influence function in terms of the Gâteaux derivative by,

ψ(x;P ) = U ′(δx − P ;P ) =
∂U((1− t)P + tδx)

∂t

∣∣∣
t=0

, (2)

where δx is the dirac delta function at x. While our functionals are defined only on non-atomic
distributions, we can still use (2) to compute the influence function. The function computed this
way can be shown to satisfy Definition 2.

Based on the above, the first order VME is,

U(Q) = U(P ) + U ′(Q− P ;P ) +R2(P,Q) = U(P ) +

∫
ψ(x;P )dQ(x) +R2(P,Q), (3)

where R2 is the second order remainder. Gâteaux differentiability alone will not be sufficient for
our purposes. In what follows, we will assign Q → F and P → F̂ , where F , F̂ are the true and
estimated distributions. We would like to bound the remainder in terms of a distance between F and
F̂ . For functionals T of the form (1), we restrict the domain to be only measures with continuous
densities, Then, we can control R2 using the L2 metric of the densities. This essentially means that
our functionals satisfy a stronger form of differentiability called Fréchet differentiability [7, 36] in
the L2 metric. Consequently, we can write all derivatives in terms of the densities, and the VME
reduces to a functional Taylor expansion on the densities (Lemmas 9, 10 in Appendix A):

T (q) = T (p) + φ′
(∫

ν(p)

)∫
(q − p)ν′(p) +R2(p, q)

= T (p) +

∫
ψ(x; p)q(x)dµ(x) +O(‖p− q‖22). (4)

This expansion will be the basis for our estimators.

These ideas generalise to functionals of multiple distributions and to settings where the functional
involves quantities other than the density. A functional T (P,Q) of two distributions has two
Gâteaux derivatives, T ′i (·;P,Q) for i = 1, 2 formed by perturbing the ith argument with the other
fixed. The influence functions ψ1, ψ2 satisfy, ∀P1, P2 ∈M,

T ′1(Q1 − P1;P1, P2) =
∂T (P1 + t(Q1 − P1), P2)

∂t

∣∣∣
t=0

=

∫
ψ1(u;P1, P2)dQ1(u), (5)

T ′2(Q2 − P2;P1, P2) =
∂T (P1, P2 + t(Q2 − P2))

∂t

∣∣∣
t=0

=

∫
ψ2(u;P1, P2)dQ2(u).

The VME can be written as,

T (q1, q2) = T (p1, p2) +

∫
ψ1(x; p1, p2)q1(x)dx+

∫
ψ2(x; p1, p2)q2(x)dx

+O(‖p1 − q1‖22) +O(‖p2 − q2‖22). (6)

3 Estimating Functionals

First consider estimating a functional of a single distribution, T (f) = φ(
∫
ν(f)dµ) from samples

Xn
1 ∼ f . We wish to find an estimator T̂ with low expected mean squared error (MSE) E[(T̂ −T )2].
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Using the VME (4), Emery et al. [6] and Robins et al. [30] suggest a natural estimator. If we use
half of the data Xn/2

1 to construct an estimate f̂ (1) of the density f , then by (4):

T (f)− T (f̂ (1)) =

∫
ψ(x; f̂ (1))f(x)dµ+O(‖f − f̂ (1)‖22).

As the influence function does not depend on (the unknown) F , the first term on the right hand side
is simply an expectation of ψ(X; f̂ (1)) w.r.t F . We can use the second half of the data Xn

n/2+1 to
estimate this expectation with its sample mean. This leads to the following preliminary estimator:

T̂
(1)
DS = T (f̂ (1)) +

1

n/2

n∑
i=n/2+1

ψ(Xi; f̂
(1)). (7)

We can similarly construct an estimator T̂ (2)
DS by using Xn

n/2+1 for density estimation and Xn/2
1 for

averaging. Our final estimator is obtained via T̂DS = (T̂
(1)
DS + T̂

(2)
DS )/2. In what follows, we shall

refer to this estimator as the Data-Split (DS) estimator. The DS estimator for functionals of one
distribution has appeared before in the statistics literature [2, 3, 30].

The rate of convergence of this estimator is determined by the O(‖f − f̂ (1)‖22) error in the VME
and the n−1 rate for estimating an expectation. Lower bounds from several literature [3, 14] confirm
minimax optimality of the DS estimator when f is sufficiently smooth. The data splitting trick is
common approach [3, 12, 14] as the analysis is straightforward. While in theory DS estimators enjoy
good rates of convergence, data splitting is unsatisfying from a practical standpoint since using only
half the data each for estimation and averaging invariably decreases the accuracy.

To make more effective use of the sample, we propose a Leave-One-Out (LOO) version of the above
estimator,

T̂LOO =
1

n

n∑
i=1

(
T (f̂−i) + ψ(Xi; f̂−i)

)
. (8)

where f̂−i is a density estimate using all the samples Xn
1 except for Xi. We prove that the LOO

Estimator achieves the same rate of convergence as the DS estimator but empirically performs much
better. Our analysis is specialised to the case where f̂−i is a kernel density estimate (Section 4).

We can extend this method to estimate functionals of two distributions. Say we have n i.i.d samples
Xn

1 from f and m samples Y m1 from g. Akin to the one distribution case, we propose the following
DS and LOO versions.

T̂
(1)
DS = T (f̂ (1), ĝ(1)) +

1

n/2

n∑
i=n/2+1

ψf (Xi; f̂
(1), ĝ(1)) +

1

m/2

m∑
j=m/2+1

ψg(Yj ; f̂
(1), ĝ(1)). (9)

T̂LOO =
1

max(n,m)

max(n,m)∑
i=1

(
T (f̂−i, ĝ−i) + ψf (Xi; f̂−i, ĝ−i) + ψg(Yi; f̂−i, ĝ−i)

)
. (10)

Here, ĝ(1), ĝ−i are defined similar to f̂ (1), f̂−i. For the DS estimator, we swap the samples to
compute T̂ (2)

DS and average. For the LOO estimator, if n > m we cycle through the points Y m1 until
we have summed over all Xn

1 or vice versa. T̂LOO is asymmetric when n 6= m. A seemingly natural
alternative would be to sum over all nm pairings of Xi’s and Yj’s. However, this is computationally
more expensive. Moreover, a straightforward modification of our proof in Appendix D.2 shows that
both approaches converge at the same rate if n and m are of the same order.

Examples: We demonstrate the generality of our framework by presenting estimators for several
entropies, divergences mutual informations and their conditional versions in Table 1 (Appendix H).
For many functionals in the table, these are the first computationally efficient estimators proposed.
We hope this table will serve as a good reference for practitioners. For several functionals (e.g.
conditional and unconditional Rényi-α divergence, conditional Tsallis-α mutual information) the
estimators are not listed only because the expressions are too long to fit into the table. Our software
implements a total of 17 functionals which include all the estimators in the table. In Appendix F we
illustrate how to apply our framework to derive an estimator for any functional via an example.
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As will be discussed in Section 5, when compared to other alternatives, our technique has several
favourable properties: the computational complexity of our method is O(n2) when compared to
O(n3) of other methods; for several functionals we do not require numeric integration; unlike most
other methods [28, 32], we do not require any tuning of hyperparameters.

4 Analysis

Some smoothness assumptions on the densities are warranted to make estimation tractable. We use
the Hölder class, which is now standard in nonparametrics literature.

Definition 3. LetX ⊂ Rd be a compact space. For any r = (r1, . . . , rd), ri ∈ N, define |r| =
∑
i ri

and Dr = ∂|r|

∂x
r1
1 ...∂x

rd
d

. The Hölder class Σ(s, L) is the set of functions on L2(X ) satisfying,

|Drf(x)−Drf(y)| ≤ L‖x− y‖s−r,

for all r s.t. |r| ≤ bsc and for all x, y ∈ X .

Moreover, define the Bounded Hölder Class Σ(s, L,B′, B) to be {f ∈ Σ(s, L) : B′ < f < B}.
Note that large s implies higher smoothness. Given n samples Xn

1 from a d-dimensional density
f , the kernel density estimator (KDE) with bandwidth h is f̂(t) = 1/(nhd)

∑n
i=1K

(
t−Xi
h

)
. Here

K : Rd → R is a smoothing kernel [35]. When f ∈ Σ(s, L), by selecting h ∈ Θ(n
−1

2s+d ) the KDE
achieves the minimax rate of OP (n

−2s
2s+d ) in mean squared error. Further, if f is in the bounded

Hölder class Σ(s, L,B′, B) one can truncate the KDE from below at B′ and from above at B and
achieve the same convergence rate [3]. In our analysis, the density estimators f̂ (1), f̂−i, ĝ

(1), ĝ−i are
formed by either a KDE or a truncated KDE, and we will make use of these results.

We will also need the following regularity condition on the influence function. This is satisfied for
smooth functionals including those in Table 1. We demonstrate this in our example in Appendix F.

Assumption 4. For a functional T (f) of one distribution, the influence function ψ satisfies,

E
[
(ψ(X; f ′)− ψ(X; f))2

]
∈ O(‖f − f ′‖2) as ‖f − f ′‖2 → 0.

For a functional T (f, g) of two distributions, the influence functions ψf , ψg satisfy,

Ef
[
(ψf (X; f ′, g′)− ψf (X; f, g))2

]
∈ O(‖f − f ′‖2 + ‖g − g′‖2) as ‖f − f ′‖2, ‖g − g′‖2 → 0.

Eg
[
(ψg(Y ; f ′, g′)− ψg(Y ; f, g))2

]
∈ O(‖f − f ′‖2 + ‖g − g′‖2) as ‖f − f ′‖2, ‖g − g′‖2 → 0.

Under the above assumptions, Emery et al. [6], Robins et al. [30] show that the DS estimator on a
single distribution achieves MSE E[(T̂DS−T (f))2] ∈ O(n

−4s
2s+d +n−1) and further is asymptotically

normal when s > d/2. Their analysis in the semiparametric setting contains the nonparametric
setting as a special case. In Appendix B we review these results with a simpler self contained
analysis that directly uses the VME and has more interpretable assumptions. An attractive property
of our proof is that it is agnostic to the density estimator used provided it achieves the correct rates.

For the LOO estimator (Equation (8)), we establish the following result.

Theorem 5 (Convergence of LOO Estimator for T (f)). Let f ∈ Σ(s, L,B,B′) and ψ satisfy
Assumption 4. Then, E[(T̂LOO − T (f))2] is O(n

−4s
2s+d ) when s < d/2 and O(n−1) when s ≥ d/2.

The key technical challenge in analysing the LOO estimator (when compared to the DS estimator)
is in bounding the variance as there are several correlated terms in the summation. The bounded
difference inequality is a popular trick used in such settings, but this requires a supremum on the in-
fluence functions which leads to significantly worse rates. Instead we use the Efron-Stein inequality
which provides an integrated version of bounded differences that can recover the correct rate when
coupled with Assumption 4. Our proof is contingent on the use of the KDE as the density estimator.
While our empirical studies indicate that T̂LOO’s limiting distribution is normal (Fig 2(c)), the proof
seems challenging due to the correlation between terms in the summation. We conjecture that T̂LOO

is indeed asymptotically normal but for now leave it to future work.
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We reiterate that while the convergence rates are the same for both DS and LOO estimators, the data
splitting degrades empirical performance of T̂DS as we show in our simulations.

Now we turn our attention to functionals of two distributions. When analysing asymptotics we will
assume that as n,m→∞, n/(n+m)→ ζ ∈ (0, 1). Denote N = n+m. For the DS estimator (9)
we generalise our analysis for one distribution to establish the theorem below.

Theorem 6 (Convergence/Asymptotic Normality of DS Estimator for T (f, g)). Let f, g ∈
Σ(s, L,B,B′) and ψf , ψg satisfy Assumption 4. Then, E[(T̂DS − T (f, g))2] is O(n

−4s
2s+d +m

−4s
2s+d )

when s < d/2 and O(n−1 + m−1) when s ≥ d/2. Further, when s > d/2 and when ψf , ψg 6= 0,
T̂DS is asymptotically normal,

√
N(T̂DS − T (f, g))

D−→ N
(

0,
1

ζ
Vf [ψf (X; f, g)] +

1

1− ζ
Vg [ψg(Y ; f, g)]

)
. (11)

The convergence rate is analogous to the one distribution case with the estimator achieving the
parametric rate under similar smoothness conditions. The asymptotic normality result allows us to
construct asymptotic confidence intervals for the functional. Even though the asymptotic variance
of the influence function is not known, by Slutzky’s theorem any consistent estimate of the variance
gives a valid asymptotic confidence interval. In fact, we can use an influence function based esti-
mator for the asymptotic variance, since it is also a differentiable functional of the densities. We
demonstrate this in our example in Appendix F.

The condition ψf , ψg 6= 0 is somewhat technical. When both ψf and ψg are zero, the first order
terms vanishes and the estimator converges very fast (at rate 1/n2). However, the asymptotic behav-
ior of the estimator is unclear. While this degeneracy occurs only on a meagre set, it does arise for
important choices, such as the null hypothesis f = g in two-sample testing problems.

Finally, for the LOO estimator (10) on two distributions we have the following result. Convergence
is analogous to the one distribution setting and the parametric rate is achieved when s > d/2.

Theorem 7 (Convergence of LOO Estimator for T (f, g)). Let f, g ∈ Σ(s, L,B,B′) and ψf , ψg
satisfy Assumption 4. Then, E[(T̂LOO − T (f, g))2] is O(n

−4s
2s+d + m

−4s
2s+d ) when s < d/2 and

O(n−1 +m−1) when s ≥ d/2.

For many functionals, a Hölderian assumption (Σ(s, L)) alone is sufficient to guarantee the rates in
Theorems 5,6 and 7. However, for some functionals (such as the α-divergences) we require f̂ , ĝ, f, g
to be bounded above and below. Existing results [3, 12] demonstrate that estimating such quantities
is difficult without this assumption.

Now we turn our attention to the question of statistical difficulty. Via lower bounds given by Birgé
and Massart [3] and Laurent [14] we know that the DS and LOO estimators are minimax optimal
when s > d/2 for functionals of one distribution. In the following theorem, we present a lower
bound for estimating functionals of two distributions.

Theorem 8 (Lower Bound for T (f, g)). Let f, g ∈ Σ(s, L) and T̂ be any estimator for T (f, g).
Define τ = min{8s/(4s+ d), 1}. Then there exists a strictly positive constant c such that,

lim inf
n→∞

inf
T̂

sup
f,g∈Σ(s,L)

E
[
(T̂ − T (f, g))2

]
≥ c

(
n−τ +m−τ

)
.

Our proof, given in Appendix E, is based on LeCam’s method [35] and generalises the analysis of
Birgé and Massart [3] for functionals of one distribution. This establishes minimax optimality of the
DS/LOO estimators for functionals of two distributions when s ≥ d/2. However, when s < d/2
there is a gap between our upper and lower bounds. It is natural to ask if it is possible to improve
on our rates in this regime. A series of work [3, 11, 14] shows that, for integral functionals of one
distribution, one can achieve the n−1 rate when s > d/4 by estimating the second order term in the
functional Taylor expansion. This second order correction was also done for polynomial functionals
of two distributions with similar statistical gains [12]. While we believe this is possible here, these
estimators are conceptually complicated and computationally expensive – requiring O(n3 + m3)
running time compared to the O(n2 +m2) running time for our estimator. The first order estimator
has a favorable balance between statistical and computational efficiency. Further, not much is known
about the limiting distribution of second order estimators.
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Figure 1: Comparison of DS/LOO estimators against alternatives on different functionals. The y-axis is the
error |T̂ − T (f, g)| and the x-axis is the number of samples. All curves were produced by averaging over 50
experiments. Discretisation in hyperparameter selection may explain some of the unsmooth curves.

5 Comparison with Other Approaches

Estimation of statistical functionals under nonparametric assumptions has received considerable at-
tention over the last few decades. A large body of work has focused on estimating the Shannon
entropy– Beirlant et al. [1] gives a nice review of results and techniques. More recent work in the
single-distribution setting includes estimation of Rényi and Tsallis entropies [17, 24]. There are also
several papers extending some of these techniques to divergence estimation [10, 12, 26, 27, 37].

Many of the existing methods can be categorised as plug-in methods: they are based on estimating
the densities either via a KDE or using k-Nearest Neighbors (k-NN) and evaluating the functional
on these estimates. Plug-in methods are conceptually simple but unfortunately suffer several draw-
backs. First, they typically have worse convergence rate than our approach, achieving the parametric
rate only when s ≥ d as opposed to s ≥ d/2 [19, 32]. Secondly, using either the KDE or k-NN,
obtaining the best rates for plug-in methods requires undersmoothing the density estimate and we
are not aware for principled approaches for selecting this smoothing parameter. In contrast, the
bandwidth used in our estimators is the optimal bandwidth for density estimation so we can select
it using a number of approaches, e.g. cross validation. This is convenient from a practitioners per-
spective as the bandwidth can be selected automatically, a convenience that other estimators do not
enjoy. Secondly, plugin methods based on the KDE always require computationally burdensome
numeric integration. In our approach, numeric integration can be avoided for many functionals of
interest (See Table 1).

Another line of work focuses more specifically on estimating f -Divergences. Nguyen et al. [22]
estimate f -divergences by solving a convex program and analyse the method when the likelihood
ratio of the densities belongs to an RKHS. Comparing the theoretical results is not straightforward
as it is not clear how to port the RKHS assumption to our setting. Further, the size of the convex
program increases with the sample size which is problematic for large samples. Moon and Hero [21]
use a weighted ensemble estimator for f -divergences. They establish asymptotic normality and the
parametric convergence rate only when s ≥ d, which is a stronger smoothness assumption than is
required by our technique. Both these works only consider f -divergences, whereas our method has
wider applicability and includes f -divergences as a special case.

6 Experiments

We compare the estimators derived using our methods on a series of synthetic examples. We com-
pare against the methods in [8, 20, 23, 26–29, 33]. Software for the estimators was obtained either
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Figure 2: Fig (a): Comparison of the LOO vs DS estimator on estimating the Conditional Tsallis divergence
in 4 dimensions. Note that the plug-in estimator is intractable due to numerical integration. There are no other
known estimators for the conditional tsallis divergence. Figs (b), (c): QQ plots obtained using 4000 samples
for Hellinger divergence estimation in 4 dimensions using the DS and LOO estimators respectively.

directly from the papers or from Szabó [34]. For the DS/LOO estimators, we estimate the density
via a KDE with the smoothing kernels constructed using Legendre polynomials [35]. In both cases
and for the plug in estimator we choose the bandwidth by performing 5-fold cross validation. The
integration for the plug in estimator is approximated numerically.

We test the estimators on a series of synthetic datasets in 1 − 4 dimension. The specifics of the
densities used in the examples and methods compared to are given in Appendix G. The results are
shown in Figures 1 and 2. We make the following observations. In most cases the LOO estimator
performs best. The DS estimator approaches the LOO estimator when there are many samples but
is generally inferior to the LOO estimator with few samples. This, as we have explained before is
because data splitting does not make efficient use of the data. The k-NN estimator for divergences
[28] requires choosing a k. For this estimator, we used the default setting for k given in the software.
As performance is sensitive to the choice of k, it performs well in some cases but poorly in other
cases. We reiterate that the hyper-parameter of our estimator (bandwidth of the kernel) can be
selected automatically using cross validation.

Next, we test the DS and LOO estimators for asymptotic normality on a 4-dimensional Hellinger
divergence estimation problem. We use 4000 samples for estimation. We repeat this experiment 200

times and compare the empiriical asymptotic distribution (i.e. the
√

4000(T̂ − T (f, g))/Ŝ values
where Ŝ is the estimated asymptotic variance) to aN (0, 1) distribution on a QQ plot. The results in
Figure 2 suggest that both estimators are asymptotically normal.

Image clustering: We demonstrate the use of our nonparametric divergence estimators in an image
clustering task on the ETH-80 datset [16]. Using our Hellinger divergence estimator we achieved an
accuracy of 92.47% whereas a naive spectral clustering approach achieved only 70.18%. When we
used a k-NN estimator for the Hellinger divergence [28] we achieved 90.04% which attests to the
superiority of our method. Since this is not the main focus of this work we defer this to Appendix G.

7 Conclusion
We generalise existing results in Von Mises estimation by proposing an empirically superior LOO
technique for estimating functionals and extending the framework to functionals of two distributions.
We also prove a lower bound for the latter setting. We demonstrate the practical utility of our
technique via comparisons against other alternatives and an image clustering application. An open
problem arising out of our work is to derive the limiting distribution of the LOO estimator.
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Appendix

A Auxiliary Results

Lemma 9 (VME and Functional Taylor Expansion). Let P,Q have densities p, q and let T (P ) =
φ(
∫
ν(p)). Then the first order VME of T (Q) around P reduces to a functional Taylor expansion

around p:

T (Q) = T (P ) + T ′(Q− P ;P ) +R2 = T (p) + φ′
(∫

ν(p)

)∫
ν′(p)(q − p) +R2 (12)

Proof. It is sufficient to show that the first order terms are equal.

T ′(Q− P ;P ) =
∂T ((1− t)P + tQ)

∂t

∣∣∣
t=0

=
∂

∂t
φ

(∫
ν((1− t)p+ tq)

) ∣∣
t=0

= φ′
(∫

ν((1− t)p+ tq)

)∫
ν′((1− t)p+ tq)(q − p)

∣∣
t=0

= φ′
(∫

ν(p)

)∫
ν′(p)(q − p)

Lemma 10 (VME and Functional Taylor Expansion - Two Distributions). Let P1, P2, Q1, Q2 be
distributions with densities p1, p2, q1, q2. Let T (P1, P2) =

∫
ν(p1, p2). Then,

T (Q1, Q2) = T (P1, P2) + T ′1(Q1 − P1;P1, P2) + T ′2(Q2 − P2;P1, P2) +R2 (13)

= T (P1, P2) + φ′
(∫

ν(p)

)(∫ ∂ν(p1(x), p2(x))

∂p1(x)
(q1 − p1)dx+∫

∂ν(p1(x), p2(x))

∂p2(x)
(q2 − p2)dx

)
+R2

Proof. Is similar to Lemma 9.

Lemma 11. Let f, g be two densities bounded above and below on a compact space. Then for all
a, b

‖fa − ga‖b ∈ O(‖f − g‖b)

Proof. Follows from the expansion,∫
|fa − ga|b =

∫
|ga(x) + a(f(x)− g(x))ga−1

∗ (x)− ga(x)|b ≤ ab sup |gb(a−1)
∗ (x)|

∫
|f − g|b.

Here g∗(x) takes an intermediate value between f(x) and g(x). In the second step we have used the
boundedness of f , g to bound f∗.

Finally, we will make use of the Efron Stein inequality stated below in our analysis.

Lemma 12 (Efron-Stein Inequality). Let X1, . . . , Xn, X
′
1, . . . , X

′
n be independent random vari-

ables where Xi, X
′
i ∈ Xi. Let Z = f(X1, . . . , Xn) and Z(i) = f(X1, . . . , X

′
i, . . . , Xn) where

f : X1 × · · · × Xn → R. Then,

V(Z) ≤ 1

2
E

[
n∑
i=1

(Z − Z(i))2

]
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B Review: DS Estimator on a Single Distribution

This section is intended to be a review of the data split estimator used in [30]. The estima-
tor was originally analysed in the semiparametric setting. However, in order to be self contained
we provide an h analysis that directly uses the Von Mises Expansion. We state our main result below.

Theorem 13. Suppose f ∈ Σ(s, L,B,B′) and ψ satisfies Assumption 4. Then, E[(T̂DS−T (f))2] is
O(n

−4s
2s+d ) when s < d/2 andO(n−1) when s > d/2. Further, when s > d/2 and when ψf , ψg 6= 0,

T̂DS is asymptotically normal.

√
n(T̂DS − T (f, g))

D−→ N
(

0,
1

ζ
Vf [ψf (X; f, g)] +

1

1− ζ
Vg [ψg(Y ; f, g)]

)
(14)

We begin the proof with a series of technical lemmas.

Lemma 14. The Influence Function has zero mean. i.e. EP [ψ(X;P )] = 0.

Proof. 0 = T ′(P − P ;P ) =
∫
ψ(x;P )dP (x).

Now we prove the following lemma on the preliminary estimator T̂ (1)
DS .

Lemma 15 (Conditional Bias and Variance). Let f̂ (1) be a consistent estimator for f in the L2

metric. Let T have bounded second derivatives and let supx ψ(x; f) and VX∼fψ(X; g) be bounded
for all g ∈M. Then, the bias of the preliminary estimator T̂ (1)

DS (7) conditioned on Xn/2
1 isO(‖f −

f̂ (1)‖22). The conditional variance is O(1/n).

Proof. First consider the conditional bias,

EXn
n/2+1

[
T̂

(1)
DS − T (f)|Xn/2

1

]
= EXn

n/2+1

T (f̂ (1)) +
2

n

n∑
i=n/2+1

ψ(Xi; f̂
(1))− T (f)|Xn/2

1


= T (f̂ (1)) + Ef

[
ψ(X; f̂ (1))

]
− T (f) ∈ O(‖f̂ (1) − f‖22). (15)

The last step follows from the boundedness of the second derivative from which the first order
functional Taylor expansion (4) holds. The conditional variance is,

VXn
n/2+1

[
T̂

(1)
DS |Xn/2

1

]
= VXn

n/2+1

 2

n

n∑
i=n/2+1

ψ(X; f̂ (1))
∣∣∣Xn/2

1

 =
2

n
Vf
[
ψ(X; f̂ (1))

]
∈ O(n−1).

(16)

Lemma 16 (Asymptotic Normality). Suppose in addition to the conditions in the lemma above we
also have Assumption 4 and ‖f̂ (1) − f‖2 ∈ oP (n−1/4) and ψ 6= 0. Then,

√
n(T̂DS − T (f))

D−→ N (0,Vfψ(X; f)).

Proof. We begin with the following expansion around f̂ (1),

T (f) = T (f̂ (1)) +

∫
ψ(u; f̂ (1))f(u)dµ(u) +O(‖f̂ (1) − f‖2). (17)

First consider T̂ (1)
DS . We can write√

n

2

(
T̂

(1)
DS − T (f)

)
=

√
n

2

T (f̂ (1)) +
2

n

n∑
i=n/2+1

ψ(Xi; f̂
(1))− T (f)

 (18)
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=

√
2

n

n∑
i=n/2+1

[
ψ(Xi; f̂

(1))− ψ(Xi; f)−
(∫

ψ(u; f̂ (1))f(u)du−
∫
ψ(u; f)f(u)du

)]

+

√
2

n

n∑
i=n/2+1

ψ(Xi; f) +
√
nO

(
‖f̂ (1) − f‖2

)
.

In the second step we used the VME in (17). In the third step, we added and subtracted
∑
i ψ(Xi; f)

and also added Eψ(·; f) = 0. Above, the third term is oP (1) as ‖f̂ (1)− f‖2 ∈ oP (n−1/4). The first
term which we shall denote by Qn can also be shown to be oP (1) via Chebyshev’s inequality. It is
sufficient to show P(|Qn| > ε|Xn/2

1 )→ 0. First note that,

V[Qn|Xn/2
1 ] = V

√ 2

n

n∑
i=n/2+1

(
ψ(Xi; f̂

(1))− ψ(Xi; f)−
(∫

ψ(u; f̂ (1))f(u)du−
∫
ψ(u; f)f(u)du

)) ∣∣∣Xn/2
1


= V

[
ψ(X; f̂ (1))− ψ(X; f)−

(∫
ψ(u; f̂ (1))f(u)du−

∫
ψ(u; f)f(u)du

) ∣∣∣Xn/2
1

]
≤ E

[(
ψ(X; f̂ (1))− ψ(X; f)

)2
]
∈ O(‖f̂ (1) − f‖2)→ 0, (19)

where the last step follows from Assumption 4. Now, P(|Qn| > ε|Xn
1 ) ≤ V(Qn|Xn/2

1 )/ε → 0.
Hence we have √

n

2
(T̂

(1)
DS − T (f)) =

√
2

n

n∑
i=n/2+1

ψ(Xi; f) + oP (1)

We can similarly show√
n

2
(T̂

(2)
DS − T (f)) =

√
2

n

n∑
i=n/2+1

ψ(Xi; f) + oP (1)

Therefore, by the CLT and Slutzky’s theorem,

√
n(T̂DS − T (f)) =

1√
2

(√
n

2
(T̂

(1)
DS − T (f)) +

√
n

2
(T̂

(2)
DS − T (f))

)
= n−1/2

n∑
i=1

ψ(Xi; f) + oP (1)
D−→ N (0,Vfψ(X; f)

We are now ready to prove Theorem 13. Note that the brunt of the work for the DS estimator was in
analysing the preliminary estimator T̂DS.

Proof of Theorem 13. We first note that in a Hölder class, with n samples the KDE achieves the rate
E‖p− p̂‖2 ∈ O(n

−2s
2s+d ). Then the bias of T̂DS is,

E
X
n/2
1

EXn
n/2+1

[
T̂

(1)
DS − T (f)|Xn/2

1

]
= E

X
n/2
1

[
O
(
‖f − f̂ (1)‖2

)]
∈ O

(
n
−2s
2s+d

)
It immediately follows that E

[
T̂DS − T (f)

]
∈ O

(
n
−2s
2s+d

)
. For the variance, we use Theorem 15

and the Law of total variance for T̂ (1)
DS ,

VXn1
[
T̂

(1)
DS

]
=

1

n
E
X
n/2
1

Vf
[
ψ(X; f̂ (1), ĝ)

]
+ +V

X
n/2
1

[
EXn

n/2+1

[
T̂DS − T (f)|Xn/2

1

]]
∈ O

(
1

n

)
+ E

X
n/2
1

[
O
(
‖f − f̂ (1)‖4

)]
∈ O

(
n−1 + n

−4s
2s+d

)
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In the second step we used the fact that VZ ≤ EZ2. Further, E
X
n/2
1

Vf
[
ψ(X; f̂ (1))

]
is bounded

since ψ is bounded. The variance of T̂DS can be bounded using the Cauchy Schwarz Inequality,

V
[
T̂DS

]
= V

[
T̂

(1)
DS + T̂

(2)
DS

2

]
=

1

4

(
VT̂ (1)

DS + VT̂ (2)
DS + 2Cov(T̂

(1)
DS , T̂

(2)
DS )

)
≤ max

(
VT̂ (1)

DS ,VT̂
(2)
DS

)
∈ O

(
n−1 + n

−4s
2s+d

)
Finally for asymptotic normality, when s > d/2, E‖f̂ (1) − f‖2 ∈ O(n

−s
2s+d ) ∈ o (n−1/4).

C Analysis of LOO Estimator

Proof of Theorem 5. First note that we can bound the mean squared error via the bias and variance
terms.

E[(T̂LOO − T (f))2] ≤ |ET̂LOO − T (f)|2 + E[(T̂LOO − ET̂LOO)2]

The bias is bounded via a straightforward conditioning argument.

E|T̂LOO − T (f)| = E[T (f̂−i) + ψ(Xi; f̂−i)− T (f)] = EX−i
[
EXi [T (f̂−i) + ψ(Xi; f̂−i)− T (f)]

]
= EX−i

[
O(‖f̂−i − f‖2)

]
≤ C1n

−2s
2s+d (20)

for some constant C1. The last step follows by observing that the KDE achieves the rate n
−2s
2s+d in

integrated squared error.

To bound the variance we use the Efron-Stein inequality. For this consider two sets of samples
Xn

1 = {X1, X2, . . . , Xn} and Xn
1
′ = {X ′1, X2, . . . , Xn} which are the same except for the first

point. Denote the estimators obtained using Xn
1 and Xn

1
′ by T̂LOO and T̂ ′LOO respectively. To apply

Efron-Stein we shall bound E[(T̂LOO − T̂ ′LOO)2]. Note that,

|T̂LOO − T̂ ′LOO| ≤
1

n
|ψ(X1; f̂−1)− ψ(X ′1; f̂−1)|+ 1

n

∑
i 6=1

|T (f̂−i)− T (f̂ ′−i)|

+
1

n

∑
i 6=1

|ψ(Xi; f̂−i)− ψ(Xi; f̂
′
−i)| (21)

The first term can be bounded by 2‖ψ‖∞/n using the boundedness of ψ. Each term inside the
summation in the second term in (21) can be bounded via,

|T (f̂−i)− T (f̂ ′−i)| ≤ Lφ
∫
|ν(f̂−i)− ν(f̂ ′−i)| ≤ LνLν

∫
|f̂−i − f̂ ′−i| (22)

≤ LφLν
∫

1

nhd

∣∣∣K (X1 − u
h

)
−K

(
X ′1 − u
h

) ∣∣∣du ≤ ‖K‖∞LφLν
n

.

The substitution (X1 − u)/h = z for integration eliminates the 1/hd. Here Lφ, Lν are the Lip-
schitz constants of φ, ν. To apply Efron-Stein we need to bound the expectation of the LHS over
X1, X

′
1, X2, . . . , Xn. Since the first two terms in (21) are bounded pointwise by O(1/n2) they are

also bounded in expectation. By Jensen’s inequality we can write,

|T̂LOO − T̂ ′LOO|2 ≤
12‖ψ‖2∞
n2

+
3‖K‖2∞L2

φL
2
ν

n2
+

3

n2

∑
i 6=1

|ψ(Xi; f̂−i)− ψ(Xi; f̂
′
−i)|

2

(23)

For the third, such a pointwise bound does not hold so we will directly bound the expectation.∑
16=i,j

E
[
|ψ(Xi; f̂−i)− ψ(Xi; f̂

′
−i)||ψ(Xj ; f̂−j)− ψ(Xj ; f̂

′
−j)|

]
(24)
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We then have,

E
[
(ψ(Xi; f̂−i)− ψ(Xi; f̂

′
−i))

2
]
≤ EX1,X′1

[
C

∫
|f̂−i − f̂ ′−i|2

]
≤ CB2

∫
1

n2h2d

(
K

(
x1 − u
h

)
−K

(
x′1 − u
h

))2

dx1dx′1u

≤ 2CB2‖K‖2∞
n2

I the first step we have used Assumption 4 and in the last step the substitutions (x1−xi)/h = u and
(x1 − xj)/h = v removes the 1/hd twice. Then, by applying Cauchy Schwarz each term inside the
summation in (24) is O(1/n2).

Since each term inside equation (24) isO(1/n2) and there are (n−1)2 terms it isO(1). Combining
all these results with equation (23) we get,

E[(T̂LOO − T̂ ′LOO)2] ∈ O
(

1

n2

)
Now, by applying the Efron-Stein inequality we get V(T̂LOO) ≤ C

2n . Therefore the mean squared
error E[(T − T̂LOO)2] ∈ O(n−

4s
2s+d + n−1) which completes the proof.

D Proofs of Results on Functionals of Two Distributions

D.1 DS Estimator

We generalise the results in Appendix B to analyse the DS estimator for two distributions. As
before we begin with a series of lemmas.

Lemma 17. The influence functions have zero mean. I.e.

EP1
[ψ1(X;P1;P2)] = 0 ∀P2 ∈M EP2

[ψ2(Y ;P1;P2)] = 0 ∀P1 ∈M (25)

Proof. 0 = T ′i (Pi − Pi;P1;P2) =
∫
ψi(u;P1, P2)dPi(u) for i = 1, 2.

Lemma 18 (Bias & Variance of (9)). Let f̂ (1), ĝ(1) be consistent estimators for f, g in the L2 sense.
Let T have bounded second derivatives and let supx ψf (x; f, g), supx ψg(x; f, g), Vfψ(X; f ′, g′),
Vgψg(X; f ′, g′) be bounded for all f, f ′, g, g′ ∈ M. Then the bias of T̂ (1)

DS conditioned on
X
n/2
1 , Y

m/2
1 is |T − E[T̂

(1)
DS |Xn/2

1 , Y
m/2
1 ] ∈ O(‖f − f̂ (1)‖2 + ‖g − ĝ(1)‖2). The conditional

variance is V[T̂
(1)
DS |Xn/2

1 , Y
m/2
1 ] ∈ O(n−1 +m−1).

Proof. First consider the bias conditioned on Xn/2
1 , Y

m/2
1 ,

E
[
T̂

(1)
DS − T (f, g)|Xn/2

1 , Y
m/2
1

]
= E

T (f̂ (1), ĝ(1)) +
2

n

n∑
i=n/2+1

ψf (Xi; f̂
(1), ĝ(1)) +

2

m

m∑
j=m/2+1

ψg(Yj ; f̂
(1), ĝ(1))− T (f, g)

∣∣∣∣∣Xn/2
1 , Y

m/2
1


= T (f̂ (1), ĝ(1)) +

∫
ψf (x; f̂ (1), ĝ(1))f(x)dµ(x) +

∫
ψg(x; f̂ (1), ĝ(1))g(x)dµ(x)− T (f, g)

= O
(
‖f − f̂ (1)‖2 + ‖g − ĝ(1)‖2

)
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The last step follows from the boundedness of the second derivatives from which the first order
functional Taylor expansion (6) holds. The conditional variance is,

V
[
T̂

(1)
DS |Xn/2

1 , Y
m/2
1

]
= V

[
1

n

2n∑
i=n+1

ψf (Xi; f̂
(1), ĝ(1))

∣∣∣Xn/2
1

]
+ V

 1

m

2m∑
j=m+1

ψg(Yj ; f̂
(1), ĝ(1))

∣∣∣Y m/21


=

1

n
Vf
[
ψf (X; f̂ (1), ĝ(1))

]
+

1

m
Vg
[
ψg(Y ; f̂ (1), ĝ(1))

]
∈ O

(
1

n
+

1

m

)
The last step follows from the boundedness of the variance of the influence functions.

The following lemma characterises conditions for asymptotic normality.

Lemma 19 (Asymptotic Normality). Suppose, in addition to the conditions in Theorem 18 above
and the regularity assumption 4 we also have ‖f̂ − f‖ ∈ oP (n−1/4), ‖ĝ − g‖ ∈ oP (m−1/4) and
ψf , ψg 6= 0. Then we have asymptotic Normality for T̂DS,

√
N(T̂DS − T (f, g))

D−→ N
(

0,
1

ζ
Vf [ψf (X; f, g)] +

1

1− ζ
Vg [ψg(Y ; f, g)]

)
(26)

Proof. We begin with the following expansions around (f̂ (1), ĝ(1)),

T (f, g) = T (f̂ (1), ĝ(1)) +

∫
ψf (u; f̂ (1), ĝ(1))f(u)du+

∫
ψg(u; f̂ (1), ĝ(1))g(u)du +

O
(
‖f − f̂ (1)‖2 + ‖g − ĝ(1)‖2

)
Consider T̂ (1)

DS . We can write√
N

2
(T̂

(1)
DS − T (f)) (27)

=

√
N

2

T (f̂ (1), ĝ(1)) +
2

n

n∑
i=n/2+1

ψf (Xi; f, g) +
2

m

m∑
j=m/2+1

ψg(Yj ; f, g)− T (f, g)


=

√
N

2

(
2

n

n∑
i=n/2+1

ψ(Xi; f̂
(1), ĝ(1)) +

2

m

m∑
j=m/2+1

ψ(Xj ; f̂
(1), ĝ(1))− Ef

[
ψ(X; f̂ (1), ĝ(1))

]

− Eg
[
ψ(X; f̂ (1), ĝ(1))

])
+
√
NO

(
‖f − f̂ (1)‖2 + ‖g − ĝ(1)‖2

)
=

√
2N

n
n−1/2

n∑
i=n/2+1

(
ψf (Xi; f̂

(1), ĝ(1))− ψf (Xi; f, g)− (Efψf (X; f̂ (1), ĝ(1)) + Efψf (X; f, g))
)

+

√
2N

m
m−1/2

m∑
j=m/2+1

(
ψg(Yj ; f̂

(1), ĝ(1))− ψg(Yj ; f, g)− (Egψg(Y ; f̂ (1), ĝ(1)) + Egψg(Y ; f, g))
)

+

√
2N

n
n−1/2

n∑
i=n/2+1

ψf (Xi; f, g) +

√
2N

m
m−1/2

m∑
j=m/2+1

ψg(Yj ; f, g) +

√
NO

(
‖f − f̂ (1)‖2 + ‖g − ĝ(1)‖2

)
The fifth term is oP (1) by the assumptions. The first and second terms are also oP (1) . To see this,
denote the first term by Qn.

V
[
Qn|Xn/2

1 , Y
m/2
1

]
=
N

n
Vf

 n∑
i=n/2+1

(
ψf (X; f̂ (1), ĝ(1))− ψf (X; f, g)− (Efψf (X; f̂ (1), ĝ(1)) + Efψf (X; f, g))

)
≤ N

n
Ef
[(
ψf (Xi; f̂

(1), ĝ(1))− ψf (Xi; f, g)
)2
]
→ 0
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where we have used the regularity assumption 4. Further, P(|Qn| > ε|Xn/2
1 , Y

m/2
1 ) ≤

V[Qn|Xn/2
1 , Y

m/2
1 ] ε → 0, hence the first term is oP (1). The proof for the second term is sim-

ilar. Therefore we have,√
N

2
(T̂

(1)
DS − T (f)) =

√
2N

n
n−1/2

n∑
i=n/2+1

ψf (Xi; f, g) +

√
2N

m
m−1/2

m∑
j=m/2+1

ψg(Yj ; f, g) + oP (1)

Using a similar argument on T̂ (2)
DS we get,√

N

2
(T̂

(2)
DS − T (f)) =

√
2N

n
n−1/2

n/2∑
i=1

ψf (Xi; f, g) +

√
2N

m
m−1/2

m/2∑
j=1

ψg(Yj ; f, g) + oP (1)

Therefore,

√
N(T̂

(2)
DS − T (f)) =

√
2

√2N

n
n−1/2

n∑
i=1

ψf (Xi; f, g) +

√
2N

m
m−1/2

m∑
j=1

ψg(Yj ; f, g)

 + oP (1)

=

√
N

n
n−1/2

2n∑
i=1

ψf (Xi; f, g) +

√
N

m
m−1/2

2m∑
j=1

ψg(Yj ; f, g) + oP (1)

By the CLT and Slutzky’s theorem this converges weakly to the RHS of (26).

We are now ready to prove the rates of convergence for the DS estimator in the Hölder class.

Proof of Theorem 13. . We first note that in a Hölder class, with n samples the KDE achieves the
rate E‖p− p̂‖2 ∈ O(n

−2s
2s+d ). Then the bias for the preliminary estimator T̂ (1)

DS is,

E
[
T̂

(1)
DS − T (f, g)|Xn/2

1 , Y
m/2
1

]
= E

X
n/2
1 ,Y

m/2
1

[
O
(
‖f − f̂ (1)‖2 + ‖g − ĝ(1)‖2

)]
∈ O

(
n
−2s
2s+d +m

−2s
2s+d

)
The same could be said about T̂ (2)

DS . It therefore follows that

E
[
T̂DS − T

]
= E

[
1

2

(
T̂

(1)
DS − T (f)

)
+

1

2

(
T̂

(2)
DS − T (f)

)]
∈ O

(
n
−2s
2s+d +m

−2s
2s+d

)
For the variance, we use Theorem 18 and the Law of total variance to first control VT̂ (1)

DS ,

V
[
T̂

(1)
DS

]
=

1

n
E
[
Vf
[
ψf (X; f̂ (1), ĝ(1))|Xn/2

1

]]
+

1

m
E
[
Vg
[
ψg(Y ; f̂ (1), ĝ(1))|Y m/21

]]
+ V

[
E
[
T̂LOO − T (f, g)|Xn/2

1 Y
m/2
1

]]
∈ O

(
1

n
+

1

m

)
+ E

[
O
(
‖f − f̂ (1)‖4 + ‖g − ĝ(1)‖4

)]
∈ O

(
n−1 +m−1 + n

−4s
2s+d +m

−4s
2s+d

)
In the second step we used the fact that VZ ≤ EZ2. Further, E

X
n/2
1

Vf
[
ψf (X; f̂ (1), ĝ(1))

]
,

E
Y
m/2
1

Vg
[
ψg(Y ; f̂ (1), ĝ(1))

]
are bounded since ψf , ψg are bounded. Then by applying the Cauchy

Schwarz inequality as before we get VT̂DS ∈ O
(
n−1 +m−1 + n

−4s
2s+d +m

−4s
2s+d

)
.

Finally when s > d/2, we have the required oP (n−1/4), oP (m−1/4) rates on ‖f̂ − f‖ and ‖ĝ − g‖
which gives us asymptotic normality.
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D.2 LOO Estimator

Proof of Theorem 7. Assume w.l.o.g that n > m. As before, the bias follows via conditioning.

E|T̂LOO − T (f, g)| = E[T (f̂−i, ĝ−i) + ψf (Xi; f̂−i, ĝ−i) + ψg(Yi; f̂−i, ĝ−i)− T (f, g)]

= E
[
O(‖f̂−i − f‖2 + ‖ĝ − g‖2)

]
≤ C1(n

−2s
2s+d +m

−2s
2s+d )

for some constant C1.

To bound the variance we use the Efron-Stein inequality. Consider the samples
{X1, . . . , Xn, Y1, . . . , Ym} and {X ′1, . . . , Xn, Y1, . . . , Ym} and denote the estimates obtained by
T̂LOO and T̂ ′LOO respectively. Recall that we need to bound E[(T̂LOO − T̂LOO)2]. Note that,

|T̂LOO − T̂ ′LOO| ≤
1

n
|ψf (X1; f̂−1, ĝ−1)− ψf (X ′1; f̂−1, ĝ−1)|+

1

n

∑
i 6=1

|T (f̂−i, ĝ−i)− T (f̂ ′−i, ĝ−i)|+ |ψf (Xi; f̂−i, ĝ−i)− ψf (Xi; f̂
′
−i, ĝ−i)|+ |ψg(Yi; f̂−i, ĝ−i)− ψg(Yi; f̂ ′−i, ĝ−i)|

The first term can be bounded by 2‖ψf‖∞/n using the boundedness of the influence function on
bounded densities. By using an argument similar to Equation (22) in the one distribution case, we
can also bound each term inside the summation of the second term via,

|T (f̂−i, ĝ−i)− T (f̂ ′−i, ĝ−i)| ≤
‖K‖∞LφLν

n

Then, by Jensen’s inequality we have,

|T̂LOO − T̂ ′LOO|2 ≤
8‖ψf‖2∞
n2

+
4‖K‖2∞L2

φL
2
ν

n2
+

4

n2

∑
i6=1

|ψf (Xi; f̂−i, ĝ−i)− ψf (Xi; f̂
′
−i, ĝ−i)|

2

+
4

n2

∑
i 6=1

|ψg(Yi; f̂−i, ĝ−i)− ψg(Yi; f̂ ′−i, ĝ−i)|

2

The third and fourth terms can be bound in expectation using a similar technique to bound the third
term in equation 22. Precisely, by using Assumption (4) and Cauchy Schwarz we get,

E
[
|ψf (Xi; f̂−i, ĝ−i)− ψf (Xi; f̂

′
−i, ĝ−i)||ψf (Xj ; f̂−j , ĝ−j)− ψf (Xj ; f̂

′
−j , ĝ−j)|

]
≤ 2CB2‖K‖2∞

n2

E
[
|ψg(Yi; f̂−i, ĝ−i)− ψg(Yi; f̂ ′−i, ĝ−i)||ψg(Yj ; f̂−j , ĝ−j)− ψg(Yj ; f̂ ′−j , ĝ−j)|

]
≤ 2CB2‖K‖2∞

n2

This leads us to a O(1/n2) bound for E[(T̂LOO − T̂ ′LOO)2],

E[(T̂LOO − T̂ ′LOO)2] ≤
8‖ψf‖2∞ + 4‖K‖2∞L2

φL
2
ν + 16CB2‖K‖2∞

n2

Now consider, the set of samples {X1, . . . , Xn, Y1, . . . , Ym} and {X1, . . . , Xn, Y
′
1 , . . . , Ym} and

denote the estimates obtained by T̂LOO and T̂ ′LOO respectively. Note that some of the Y instances
are repeated but each point occurs at most n/m times. The remaining argument is exactly the same
except that we need to account for this repetition. We have,

|T̂LOO − T̂ ′LOO| ≤
n

m

1

n
|ψf (X1; f̂−1, ĝ−1)− ψf (X ′1; f̂−1, ĝ−1)| +

n

m

1

n

∑
i 6=1

(
|T (f̂−i, ĝ−i)− T (f̂ ′−i, ĝ−i)|+

|ψf (Xi; f̂−i, ĝ−i)− ψf (Xi; f̂
′
−i, ĝ−i)| + |ψg(Yi; f̂−i, ĝ−i)− ψg(Yi; f̂ ′−i, ĝ−i)|

)
(28)

And hence,

E[(T̂LOO − T̂ ′LOO)2] ≤ ‖ψg‖
2
∞

m2
+
n2

m4
4‖K‖2∞L2

φL
2
ν +O

(
n4

m6

)
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where the last two terms of (28) are bounded by O(n4/m6) after squaring and then taking the
expectation. We have been a bit sloppy by bounding the difference by n/m and not dn/me but it is
clear that this doesn’t affect the rate.

Finally by the Efron Stein inequality we have

V(T̂LOO) ∈ O
(

1

n
+
n4

m5

)
which isO(1/n+ 1/m) if n and m are of the same order. This is the case if for instance there exists
ζl, ζu ∈ (0, 1) such that ζl ≤ n/m ≤ ζu.

Therefore the mean squared error is E[(T − T̂LOO)2] ∈ O(n−
4s

2s+d +m−
4s

2s+d +n−1 +m−1) which
completes the proof.

E Proof of Lower Bound (Theorem 8)

We will prove the lower bound in the bounded Hölder class Σ(s, L,B,B′) noting that the lower
bound also applies to Σ(s, L). Our main tool will be LeCam’s method where we reduce the estima-
tion problem to a testing problem. In the testing problem we construct a set of alternatives satisfying
certain separation properties from the null. For this we will use some technical results from Birgé
and Massart [3] and [12]. First we state LeCam’s method below adapted to our setting. We define
the squared Hellinger Divergence between two distributions P,Q with densities p, q to be

H2(P,Q) =

∫ (√
p(x)−

√
q(x)

)2
dx = 2− 2

∫
p(x)q(x)dx

Theorem 20. Let T : M ×M → R. Consider a parameter space Θ ⊂ M ×M such that
(f, g) ∈ Θ and (pλ, qλ) ∈ Θ for all λ in some index set Λ. Denote the distributions of f, g, pλ, qλ by
F,G, Pλ, Qλ respectively. Define P ×Q = 1

|Λ|
∑
λ∈Λ P

n
λ ×Qmλ . If, there exists (f, g) ∈ Θ, γ < 2

and β > 0 such that the following two conditions are satisfied

H2(Fn ×Gm, P ×Q) ≤ γ
T (pλ, qλ) ≥ T (f, g) + 2β ∀ λ ∈ Λ

then,

inf
T̂

sup
(f,g)∈Θ

P
(
|T̂ − T (f, g)| > β

) 1

2

(
1−

√
γ(1− γ/4)

)
> 0.

Proof. The proof is a straightforward modification of Theorem 2.2 of Tsybakov [35] which we
provide here for completeness.

Let Θ0 = {(p, q) ∈ Θ|T (p, q) ≤ T (f, g)} and Θ1 = {(p, q) ∈ Θ|T (p, q) ≥ T (f, g) + 2β}. Hence
(f, g) ∈ Θ0 and (pλ, qλ) ∈ Θ1 for all λ ∈ Λ. Given n samples from p′ and m samples from q′

consider the simple vs simple hypothesis testing problem of H0 : (p′, q′) ∈ Θ0 vs H1 : (p′, q′) ∈
Θ1. The probability of error pe of any test Ψ test is lower bounded by

pe ≥
1

2

(
1−

√
H2(Fn ×Gm, P ×Q)(1−H2(Fn ×Gm, P ×Q))/4

)
.

See Lemma 2.1, Lemma 2.3 and Theorem 2.2 of Tsybakov [35]. Therefore,

inf
ψ

sup
(p′,q′)∈Θ0,(p′′,q′′)∈Θ0

pe ≥
1

2

(
1−

√
γ(1− γ/4)

)
If we make an error in the testing problem the error in estimation is least β in the estimation problem
which completes the proof of the theorem.

Consider the set Γ = {−1, 1}` and a set of densities pγ = f(1 +
∑`
j=1 γjvj) indexed by each

γ ∈ Γ. Here f is itself a density and the vj’s are perturbations on f . We will also use the following
result from Birgé and Massart [3] which bounds the Hellinger divergence between the product
distribution Fn and the mixture product distribution Pn = 1

|Γ|
∑
γ∈Γ P

n
γ .

18



Proposition 21. Let {R1, . . . , R`} be a partition of [0, 1]d. Let ρj is zero except on Rj and satisfies
‖ρj‖∞ ≤ 1,

∫
ρjf = 0 and

∫
ρ2
jf = αj . Further, denote α =

∑
j ‖ρj‖∞, s = nα2 supj P (Rj)

and c = n supj αj . Then,

H2(Fn, Pn) ≤ n2

3

∑̀
j=1

α2
j .

We also use the following technical result from Krishnamurthy et al. [12] and adapt it to our setting.

Proposition 22 (Taken from [12]). Let R1, . . . , R` be a partition of [0, 1]d each having size `−1/d.
There exists functions u1, . . . , u` such that,

supp (uj) ⊂ {x|B(x, ε) ⊂ Rj},
∫
u2
j ∈ Θ(`−1),

∫
uj = 0,∫

ψf (x; f, g)uj(x) =

∫
ψg(x; f, g)uj(x) = 0, ‖Druj‖∞ ≤ `r/d ∀r s.t

∑
j

rj ≤ s+ 1

where B(x, ε) denotes an L2 ball around x with radius ε. Here ε is any number between 0 and 1.

Proof. For this we use an orthonormal system of q (> 4) functions on (0, 1)d satisfying φ1 = 1,
supp (φj) ⊂ [ε, 1 − ε]d for any ε > 0 and ‖Drφj‖∞ ≤ J for some J < ∞. Now for any given
functions η1, η2 we can find a function υ such that υ ∈ span({φj}),

∫
υφ1 =

∫
υη1 =

∫
υη2 = 0.

Write υ =
∑
i cjφj . Then Drυ =

∑
j cjD

rφj which implies ‖Drυ‖∞ ≤ K
√
q. Let ν(·) =

1
J
√
qυ(·). Clearly,

∫
ν2 is upper and lower bounded and ‖Drν‖∞ ≤ 1.

To construct the functions uj , we map (0, 1)d to Rj by appropriately scaling it. Then, uj(x) =

ν(m1/d(x−j)) where j is the point corresponding to 0 after mapping. Moreover let η1 be ψf (·; f, g)
constrained to Rj (and scaled back to fit (0, 1)d). Let η2 be the same with ψg . Now,

∫
Rj
u2
j =

1
`

∫
ν2 ∈ Θ(`−1). Also, clearly ‖Druj‖ ≤ mr/d. All 5 conditions above are satisfied.

We now have all necessary ingredients to prove the lower bound.

Proof of Theorem 8. To apply Theorem 20 we will need to construct the set of alternatives Λ which
contains tuples (pλ, qλ) that satisfy the conditions of Theorem 20. First apply Proposition 22 with
` = `1 to obtain the index set Γ̃ = {−1, 1}`1 and the functions u1, . . . , u`1 . Apply it again with
` = `2 to obtain the index set ∆ = {−1, 1}`2 and the functions v1, . . . , v`2 . Define Γ,∆ be the
following set of functions which are perturbed around f and g respectively,

Γ =
{
pγ = f +K1

`1∑
j=1

γjuj |γ ∈ Γ̃
}

∆ =
{
qδ = g +K2

`2∑
j=1

δjvj |δ ∈ ∆̃
}

Since the perturbations in Proposition 22 are condensed into the small Rj’s it invariably violates the
Hölder assumption. The scaling K1 and K2 are necessary to shrink the perturbation and ensure that
pγ , qδ ∈ Σ(s, L). By following essentially an identical argument to [12] (Section E.2) we have that
pγ ∈ Σ(s, L) ifK � `−s/d1 and qδ ∈ Σ(s, L) ifK2 � `−s/d2 . We will set `1 and `2 later on to obtain

the required rates. For future reference denote Pn = 1
|Γ|
∑
γ∈Γ P

n
γ and Qm =

(
1
|∆|
∑
δ∈∆Qmδ

)
.

Now our set of alternatives are formed by the product of Γ and ∆

Λ = Γ×∆ = {(pγ , qδ)|pγ ∈ Γ, qδ ∈ ∆}

First note that for any (pλ, qλ) = (pγ , qδ) ∈ Λ, by the second order functional Taylor expansion we
have,

T (pλ, qλ) = T (f, g) +

∫
ψf (x; f, g)pλ +

∫
ψg(x; f, g)qλ +R2
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By Lemma 17 and the construction the first order terms vanish since,∫
ψf (x; f, g)

f +K1

∑
j

γjuj

 = K1

∑
j

γj

∫
ψf (x; f, g)uj = 0.

The same is true for
∫
ψg(x; f, g). The second order term can be upper bounded by

R2 = φ′′
(∫

ν(f∗, g∗)

)(∫
∂2ν(f∗(x), g∗(x))

∂f2(x)
(pλ − f)2 +

∫
∂2ν(f∗(x), g∗(x))

∂g2(x)
(qλ − g)2+

2

∫
∂2ν(f∗(x), g∗(x))

∂g(x)∂g(x)
(pλ − f)(qλ − g)

)
≥ σmin

(
‖pλ − f‖2 + ‖qλ − g‖2

)
≥ σmin

(
K2

1 +K2
2

)
For the second step note that (f∗, g∗) lies in line segment between (pλ, qλ) and (f, g) and is therefore
both upper and lower bounded. Therefore, the Hessian evaluated at (f∗, g∗) is strictly positive
definite with some minimum eigenvalue σmin. For the third step we have used that (pλ − f, qλ −
g) = (K1

∑`1
j=1 γjuj ,K2

∑`2
j=1 δjvj) and that the uj’s are orthonormal and ‖uj‖2 = 1. This

establishes the 2β separation between the null and the alternative as required by Theorem 20 with
β = σmin(K2

1 +K2
2 )/2. Precisely,

T (pλ, qλ) ≥ T (f, g) +O(`
−2s/d
1 + `

−2s/d
2 )

Now we need to bound the Hellinger separation, between Fn × Gm and P ×Q. First note that by
our construction,

P ×Q =
1

|Λ|
∑
λ∈Λ

Pnλ ×Qmλ =

 1

|Γ|
∑
γ∈Γ

Pnγ

×( 1

|∆|
∑
δ∈∆

Qmδ

)
= Pn ×Qm

By the tensorization property of the Hellinger affinity we have,

H2(Fn ×Gm, P ×Q) = 2

(
1−

(
1− H2(Fn, Pn)

2

)(
1− H2(Gm, Qm)

2

))
≤ H2(Fn, Pn) +H2(Gm, Qm)

We now apply Proposition 21 to bound each Hellinger divergence. If we denote ρj(·) =
K1uj(·)/f(·) then we see that the ρj’s satisfy the conditions of the proposition and further
pγ = f(1 +

∑
j γjρj) allowing us to use the bound. Accordingly αj =

∫
ρ2
jf ≤ CK2

1/`1 for
some C. Hence,

H2(Fn, Pn) ≤ n2

3

m∑
j=1

α2
j ≤

Cn2K4
1

`1
∈ O(n2`

− 4s+d
d

1 ).

A similar argument yields H2(Gm, Qm) ∈ O(m2`
− 4s+d

d
2 ). If we pick `1 = n

2d
4s+d and `2 = m

2d
4s+d

and hence K1 = n
−2s
2s+d and K2 = m−

−2s
2s+d , then we have that the Hellinger separation is bounded

by a constant.

H2(Fn ×Gm, P ×Q) ≤ H2(Fn, Pn) +H2(Gm, Qm) ∈ O(1)

Further, the error is larger than β � Ks
1 +K2

2 � n
−4s
2s+d +m

−4s
2s+d .

The first part of the lower bound for τ = 8s/(4s+ d) is concluded by Markov’s inequality,

E
[
(T̂ − T (f, g))2]

(n−τ/2 +m−τ/2)2
≤ P

(
|T̂ − T (f, g)| > (n−τ/2 +m−τ/2)

)
> c

where we note that (n−τ/2 + m−τ/2)2 � n−τ + m−τ . The n−1 + m−1 lower bound is straight-
forward as as we cannot do better than the the parametric rate [2]. See [12] for an proof that uses a
contradiction argument in the setting n = m.
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F An Illustrative Example - The Conditional Tsallis Divergence

In this section we present a step by step guide on applying our framework to estimating any desired
functional. We choose the Conditional Tsallis divergence because pedagogically it is a good example
in Table 1 to illustrate the technique. By following a similar procedure, one may derive an estimator
for any desired functional. The estimators are derived in Section F.1 and in Section F.2 we discuss
conditions for the theoretical guarantees and asymptotic normality.

The Conditional Tsallis-α divergence (α 6= 0, 1) between X and Y conditioned on Z can be written
in terms of joint densities pXZ , pY Z .

CTα (pX|Z‖pY |Z ; pZ) = CTα (pXZ , pY Z) =

∫
pZ(z)

1

α− 1

(∫
pαX|Z(u, z)p1−α

Y |Z (u, z)du− 1

)
dz

=
1

1− α
+

1

α− 1

∫
pαXZ(u, z)pβY Z(u, z)dudz

where we have taken β = 1 − α. We have samples Vi = (Xi, Z1i) ∼ pXZ , i = 1, . . . , n and
Wj = (Yj , Z1j) ∼ pY Z , j = 1, . . . ,m We will assume pXZ , pY Z ∈ Σ(s, L,B′, B). For brevity,
we will write p = (pXZ , pY Z) and p̂ = (p̂XZ , p̂Y Z).

F.1 The Estimators

We first compute the influence functions of CTα and the use it to derive the DS/LOO estimators.

Proposition 23 (Influence Functions of CTα ). The influence functions of CTα w.r.t pXZ , pY Z are

ψXZ(X,Z1; pXZ , pY Z) =
α

α− 1

(
pXZ

α−1(X,Z1)pY Z
β(X,Z1)−

∫
pXZ

αpY Z
β

)
(29)

ψY Z(Y,Z2; pXZ , pY Z) = −
(
pXZ

α(Y, Z2)pY Z
β−1(Y,Z2)−

∫
pXZ

αpY Z
β

)
Proof. Recall that we can derive the influence functions via ψXZ(X,Z1; p) = CTα

′
XZ(δX,Z1

−
pXZ ; p), ψY Z(Y,Z2; p) = CTα

′
Y Z(δX,Z2 − pY Z ; p) where CTα

′
XZ , C

T
α
′
Y Z are the Gâteaux deriva-

tives of CTα w.r.t pXZ , pY Z respectively. Hence,

ψXZ(X,Z1) =
1

α− 1

∂

∂t

∫
((1− t)pXZ + tδXZ1

)αpY Z
β
∣∣∣
t=0

=
α

α− 1

∫
pXZ

α−1pY Z
β(δXZ1 − pXZ)

from which the result follows. Deriving ψY Z is similar. Alternatively, we can directly show that
ψXZ , ψY Z in Equation (29) satisfy Definition 2.

DS estimator: Use V n/21 ,W
m/2
1 to construct density estimates p̂(1)

XZ , p̂
(1)
Y Z for pXZ , pY Z . Then, use

V 2n
n/2+1,W

m
m/2+1 to add the sample means of the influence functions given in Theorem 23. This

results in our preliminary estimator,

ĈT (1)
α =

1

1− α
+

α

α− 1

2

n

n∑
i=n/2+1

(
p̂

(1)
XZ(Xi, Z1i)

p̂
(1)
Y Z(Xi, Z1i)

)α−1

− 2

m

m∑
j=m/2+1

(
p̂

(1)
XZ(Yj , Z2j)

p̂
(1)
Y Z(Yj , Z2j)

)α
(30)

The final estimate is ĈTα,DS = (Ĉ
T (1)
α + Ĉ

T (2)
α )/2 where ĈT (2)

α is obtained by swapping the two
samples.

LOO Estimator: Denote the density estimates of pXZ , pY Z without the ith sample by p̂XZ,−i and
p̂Y Z,−i. Then the LOO estimator is,

ĈTα,LOO =
1

1− α
+

α

α− 1

1

n

n∑
i=1

(
p̂XZ,−i(Xi, Z1i)

p̂Y Z(Xi, Z1i)

)α−1

−
(

p̂XZ(Yi, Z2i)

p̂Y Z,−i(Yi, Z2i)

)α
(31)
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F.2 Analysis and Asymptotic Confidence Intervals

We begin with a functional Taylor expansion of CTα (f, g) around (f0, g0). Since α, β 6= 0, 1, we
can bound the second order terms by O

(
‖f − f0‖2 + ‖g − g0‖2

)
.

CTα (f, g) = CTα (f0, g0) +
α

α− 1

∫
fα−1

0 gβ0 −
∫
fα0 g

β−1
0 +O

(
‖f − f0‖2 + ‖g − g0‖2

)
(32)

Precisely, the second order remainder is,

α2

α− 1

∫
fα−2
∗ gβ∗ (f − f0)2 − β

∫
fα∗ g

β−2
∗ (g − g0)2 +

αβ

α− 1

∫
fα−1
∗ gβ∗ (f − f0)(g − g0)

where (f∗, g∗) is in the line segment between (f, g) and (f0, g0). If f, g, f0, g0 are bounded
above and below so are f∗, g∗ and fa∗ g

b
∗ where a, b are coefficients depending on α. The first

two terms are respectively O
(
‖f − f0‖2

)
, O

(
‖g − g0‖2

)
. The cross term can be bounded via,∣∣∫ (f − f0)(g − g0)

∣∣ ≤ ∫ max{|f − f0|2, |g − g0|2} ∈ O(‖f − f0‖2 + ‖g − g0‖2).

As mentioned earlier, the boundedness of the densities give us the required rates given in Theorems 7
for both estimators.

For the DS estimator, to show asymptotic normality, we need to verify the conditions in Theorem 19.
We state it formally below, but prove it at the end of this section.

Corollary 24. Let pXY , pXZ ∈ Σ(s, L,B,B′). Then ĈTα,DS is asymptotically normal when pXZ 6=
pY Z and s > d/2.

Finally, to construct a confidence interval we need a consistent estimate of the asymptotic variance
: 1
ζVXZ [ψXZ(V ; p)] + 1

1−ζVY Z [ψY Z(W ; p)] where,

VXZ [ψXZ(X,Z1; pXZ , pY Z)] =

(
α

α− 1

)2
(∫

pXZ
2α−1pY Z

2β −
(∫

pXZ
αpY Z

β

)2
)

VY Z [ψY Z(Y,Z2; pXZ , pY Z)] =

(∫
pXZ

2αpY Z
2β−1 −

(∫
pXZ

αpY Z
β

)2
)

From our analysis above, we know that any functional of the form S(a, b) =
∫
pXZ

apY Z
b, a+ b =

1, a, b 6= 0, 1 can be estimated via a LOO estimate

Ŝ(a, b) =
1

n

n∑
i=1

a
p̂bY Z,−i(Vi)

p̂bXZ,−i(Vi)
+ b

p̂aXZ,−i(Wi)

p̂aY Z,−i(Wi)

where p̂XZ,−i, p̂Y Z,−i are the density estimates from V−i,W−i respectively. n/N is a consistent
estimator for ζ. This gives the following estimator for the asymptotic variance,

N

n

α2

(α− 1)2
Ŝ(2α− 1, 2β) +

N

m
Ŝ(2α, 2β − 1)− N(mα2 + n(α− 1)2)

nm(α− 1)2
Ŝ2(α, β).

The consistency of this estimator follows from the consistency of Ŝ(a, b) for S(a, b), Slutzky’s
theorem and the continuous mapping theorem.

Proof of Corollary 24. We now prove that the DS estimator satisfies the necessary conditions for
asymptotic normality. We begin by showing that CTα ’s influence functions satisfy the regularity
condition 4. We will show this for ψY Z . The proof for ψXZ is similar. Consider two pairs of
densities (f, g) (f ′, g′) on the (XZ, Y Z) spaces.∫

(ψXZ(u; f, g)− ψXZ(u; f ′, g′))
2
f

=
α2

(1− α)2

∫ (
fα−1gβ −

∫
fαgβ −

[
f ′α−1g′β −

∫
f ′αg′β

])2

f

22



≤ 2
α2

(1− α)2

[∫ (
fα−1gβ − f ′α−1g′β

)2
f +

(∫
fαgβ −

∫
f ′αg′β

)2
]

≤ 2
α2

(1− α)2

[∫ (
fα−1gβ − f ′α−1g′β

)2
f +

∫ (
fαgβ − f ′αg′β

)2]
≤ 4

α2

(1− α)2

[
‖gβ‖2∞

∫
(fα−1 − f ′α−1)2 + ‖f ′α−1‖2∞

∫
(gβ − g′β)2+

‖gβ‖2∞
∫

(fα − f ′α)2 + ‖f ′α‖2∞
∫

(gβ − g′β)2

]
∈ O

(
‖f − f ′‖2

)
+O

(
‖g − g′‖2

)
where, in the second and fourth steps we have used Jensen’s inequality. The last step follows from
the boundedness of all our densities and estimates and by lemma 11.

The bounded variance condition of the influence functions also follows from the boundedness of the
densities.

VpXZψXZ(V ; pXZ , pY Z) ≤ α2

(α− 1)2
EpXZ

[
pXZ

2α−2(X,Z1)pY Z
2β(X,Z1)

]
=

α2

(α− 1)2

∫
pXZ

2α−1pY Z
2β <∞

We can bound VpY ZψY Z similarly. For the fourth condition, note that when pXZ = pY Z ,

ψXZ(X,Z1; pXZ , pXZ) =
α

α− 1

(
pXZ

α+β−1(X,Z1)−
∫
pXZ

)
= 0,

and similarly ψY Z = 0. Otherwise, ψXZ depends explicitly on X,Z and is nonzero. Therefore we
have asymptotic normality away from pXZ = pY Z .

G Addendum to Experiments

G.1 Details on Simulations

In our simulations, for the first figure comparing the Shannon Entropy in Fig 1 we generated data
from the following one dimensional density,

f1(t) = 0.5 + 0.5t9

For this, with probability 1/2 we sample from the uniform distribution U(0, 1) on (0, 1) and other-
wise sample 10 points from U(0, 1) and pick the maximum. For the third figure in Fig 1 comparing
the KL divergence, we generate data from the one dimensional density

f2(t) = 0.5 +
0.5t19(1− t)19

B(20, 20)

where B(·, ·) is the Beta function. For this, with probability 1/2 we sample from U(0, 1) and
otherwise sample from a Beta(20, 20) distribution. The second and fourth figures of Fig 1 we
sampled from a 2 dimensional density where the first dimension was f1 and the second was U(0, 1).
The fifth and sixth were from a 2 dimensional density where the first dimension was f2 and the
second was U(0, 1). In all figures of Fig. 2, the first distribution was a 4-dimensional density where
all dimensions are f2. The latter was U(0, 1)4.

Methods compared to: In addition to the plug-in, DS and LOO estimators we perform compar-
isons with several other estimators. For the Shannon Entropy we compare our method to the k-NN
estimator of Goria et al. [8], the method of Stowell and Plumbley [33] which uses K − D parti-
tioning, the method of Noughabi and Noughabi [23] based on Vasicek’s spacing method and that
of Learned-Miller and John [15] based on Voronoi tessellation. For the KL divergence we compare
against the k-NN method of Pérez-Cruz [26] and that of Ramırez et al. [29] based on the power
spectral density representation using Szego’s theorem. For Rényi-α , Tsallis-α and Hellinger diver-
gences we compared against the k-NN method of Póczos et al. [28].
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(a) (b)

Figure 3: (a) Some sample images from the three categories apples, cows and cups. (b) The affinity matrix
used in clustering.

G.2 Image Clustering Task

Here we demonstrate a simple image clustering task using a nonparametric divergence estimator. For
this we use images from the ETH-80 dataset. The objective here is not to champion our approach
for image clustering against all methods for image clustering out there. Rather, we just wish to
demonstrate that our estimators can be easily and intuitively applied to many Machine Learning
problems.

We use the three categories Apples, Cows and Cups and randomly select 50 images from each
category. Some sample images are shown in Fig 3(a). We convert the images to grey scale and
extract the SIFT features from each image. The SIFT features are 128-dimensional but we project
it to 4 dimensions via PCA. This is necessary because nonparametric methods work best in low
dimensions. Now we can treat each image as a collection of features, and hence a sample from a 4
dimensional distribution. We estimate the Hellinger divergence between these “distributions”. Then
we construct an affinity matrix A where the similarity metric between the ith and j th image is given
by Aij = exp(−Ĥ2(Xi, Xj)). Here Xi and Xj denotes the projected SIFT samples from images
i and j and Ĥ(Xi, Xj) is the estimated Hellinger divergence between the distributions. Finally, we
run a spectral clustering algorithm on the matrix A.

Figure 3(b) depicts the affinity matrix A when the images were ordered according to their class
label. The affinity matrix exhibits block-diagonal structure which indicates that our Hellinger di-
vergence estimator can in fact identify patterns in the images. Our approach achieved a clustering
accuracy of 92.47%. When we used the k-NN based estimator of [28] we achieved an accuracy
of 90.04%. When we instead applied Spectral clustering naively, with Aij = exp(−L2(Pi, Pj)

2)
where L2(Pi, Pj) is the squared L2 distance between the pixel intensities we achieved an accu-
racy of 70.18%. We also tried Aij = exp(−αĤ2(Xi, Xj)) as the affinity for different choices of
α and found that our estimator still performed best. We also experimented with the Rényi-α and
Tsallis-α divergences and obtained similar results.

On the same note, one can imagine that these divergence estimators can also be used for a classifi-
cation task. For instance we can treat exp(−Ĥ2(Xi, Xj)) as a similarity metric between the images
and use it in a classifier such as an SVM.
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H Estimators for Some Information Theoretic Quantities

In this section, we present estimators for several common Information Theoretic quantities. The
definitions and estimators are in Table 1. The table presents the LOO estimators.

For several functionals (e.g. conditional and unconditional Rényi-α divergence, conditional
Tsallis-α mutual information and more) the estimators are not listed only because the expressions
are too long to fit into the table. Our software implements a total of 17 functionals which include all
the estimators in the table.

Functional LOO Estimator
Tsallis-α Entropy

1
α−1

(
1−

∫
pα
) 1

1−α + 1
n

∑
i

∫
p̂α−i − α

α−1
p̂α−1
−i (Xi)

Rényi-α Entropy
−1
α−1

log
∫
pα

α
α−1

+ 1
n

∑
i
−1
α−1

log
∫
p̂α−i − p̂α−1

−i (Xi)+

Shannon Entropy
−
∫
p log p

− 1
n

∑
i log p̂−i(Xi)

L2
2 Divergence∫
(pX − pY )2

2
n

∑
i p̂X,−i(Xi)− p̂Y (Xi)−

∫
(p̂X,−i − p̂Y )2 + 2

m

∑
j p̂X(Yj)− p̂Y,−j(Yj)

Hellinger Divergence
2− 2

∫
pX

1/2pY
1/2 2− 1

n

∑
i p̂
−1/2
X,−i(Xi)p̂

1/2
Y (Xi)− 1

m

∑
j p̂

1/2
X (Yj)p̂

−1/2
Y,−j (Yj)

Chi-Squared Divergence∫ (pX−pY )2

pX

−1 + 1
n

∑
i

p̂2Y (Xi)

p̂2
X,−i(Xi)

+ 2 1
m

∑
j

p̂Y,−j(Yj)
p̂X (Yj)

f -Divergence∫
φ( pX

pY
)pY

1
n

∑
i φ
′
(
p̂X,−i(Xi)
p̂Y (Xi)

)
+ 1

m

∑
j

(
φ
(
p̂Y,−j(Yj)
p̂X (Yj)

)
− p̂X (Yj)

p̂Y,−j(Yj)
φ
(

p̂X (Yj)

p̂Y,−j(Yj)

))
Tsallis-α Divergence
1

α−1

(∫
pX

αpY
1−α − 1

) 1
1−α + α

α−1
1
n

∑
i

(
p̂X,−i(Xi)
p̂Y (Xi)

)α−1

− 1
m

∑
j

(
p̂X (Yj)

p̂Y,−j(Yj)

)α
KL divergence∫
pX log pX

pY

1 + 1
n

∑
i log

p̂X,−i(Xi)
p̂Y (Xi)

− 1
m

∑
j

p̂X (Yj)

p̂Y,−j(Yj)

Conditional-Tsallis-α divergence∫
pZ

1
α−1

(∫
pαX|Zp

1−α
Y |Z − 1

) 1
1−α + α

α−1
1
n

∑
i

(
p̂XZ,−i(Vi)
p̂Y Z(Vi)

)α−1

− 1
m

∑
j

(
p̂XZ(Wj)

p̂Y Z,−j(Wj)

)α
Conditional-KL divergence∫

pZ
∫
pX|Z log

pX|Z
pY |Z

1 + 1
n

∑
i log

p̂XZ,−i(Vi)
p̂Y Z(Vi)

− 1
m

∑
j

p̂XZ(Wj)

p̂Y Z,−j(Wj)

Shannon Mutual Information∫
pXY log pXY

pXpY

1
n

∑
i log p̂XY,−i(Xi, Yi)− log p̂X,−i(Xi)− log p̂Y,−i(Yi)

Conditional Tsallis-α MI∫
pZ

1
α−1

(∫
pαX,Y |Zp

1−α
X|Zp

1−α
Y |Z − 1

) 1
1−α + 1

α−1
1
n

∑
i α
(

p̂XYZ,−i(Xi,Yi,Zi)p̂Z(Zi)

p̂XZ,−i(Xi,Zi)p̂Y Z,−i(Yi,Zi)

)α−1

−(1− α) 1
α−1

1
n

∑
i p̂
α−2
Z (Zi)

∫
p̂αXYZ,−i(·, ·, Zi)p̂

1−α
XZ,−i(·, Zi)

+ 1
α−1

1
n

∑
i(1− α)p̂−αXZ,−i(Xi, Zi)p̂

1−α
Z (Zi)

∫
p̂αXYZ,−i(Xi, ·, Zi)p̂

1−α
Y Z,−i(·, Zi)

+ 1
α−1

1
n

∑
i(1− α)p̂−αY Z,−i(Yi, Zi)p̂

α−1
Z (Zi)

∫
p̂αXYZ,−i(·, Yi, Zi)p̂

1−α
XZ,−i(·, ·)

Table 1: Definitions of functionals and the corresponding estimators. Here pX|Z , pXZ etc. are
conditional and joint distributions. For the conditional divergences we take Vi = (Xi, Z1i), Wj =
(Yj , Z2j) to be the samples from pXZ , pY Z respectively. For the mutual informations we have
samples (Xi, Yi) ∼ pXY and for the conditional versions we have (Xi, Yi, Zi) ∼ pXY Z .
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