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Abstract

In many scientific and engineering applications, we are tasked with the optimisation
of an expensive to evaluate black box function f . Traditional methods for this
problem assume just the availability of this single function. However, in many cases,
cheap approximations to f may be obtainable. For example, the expensive real
world behaviour of a robot can be approximated by a cheap computer simulation.
We can use these approximations to eliminate low function value regions cheaply
and use the expensive evaluations of f in a small but promising region and speedily
identify the optimum. We formalise this task as a multi-fidelity bandit problem
where the target function and its approximations are sampled from a Gaussian
process. We develop MF-GP-UCB, a novel method based on upper confidence
bound techniques. In our theoretical analysis we demonstrate that it exhibits
precisely the above behaviour, and achieves better regret than strategies which
ignore multi-fidelity information. MF-GP-UCB outperforms such naive strategies
and other multi-fidelity methods on several synthetic and real experiments.

1 Introduction

In stochastic bandit optimisation, we wish to optimise a payoff function f : X → R by sequentially
querying it and obtaining bandit feedback, i.e. when we query at any x ∈ X , we observe a possibly
noisy evaluation of f(x). f is typically expensive and the goal is to identify its maximum while
keeping the number of queries as low as possible. Some applications are hyper-parameter tuning in
expensive machine learning algorithms, optimal policy search in complex systems, and scientific
experiments [20, 23, 27]. Historically, bandit problems were studied in settings where the goal is
to maximise the cumulative reward of all queries to the payoff instead of just finding the maximum.
Applications in this setting include clinical trials and online advertising.

Conventional methods in these settings assume access to only this single expensive function of
interest f . We will collectively refer to them as single fidelity methods. In many practical problems
however, cheap approximations to f might be available. For instance, when tuning hyper-parameters
of learning algorithms, the goal is to maximise a cross validation (CV) score on a training set, which
can be expensive if the training set is large. However CV curves tend to vary smoothly with training
set size; therefore, we can train and cross validate on small subsets to approximate the CV accuracies
of the entire dataset. For a concrete example, consider kernel density estimation (KDE), where we
need to tune the bandwidth h of a kernel. Figure 1 shows the CV likelihood against h for a dataset of
size n = 3000 and a smaller subset of size n = 300. The two maximisers are different, which is to
be expected since optimal hyper-parameters are functions of the training set size. That said, the curve
for n = 300 approximates the n = 3000 curve quite well. Since training/CV on small n is cheap,
we can use it to eliminate bad values of the hyper-parameters and reserve the expensive experiments
with the entire dataset for the promising candidates (e.g. boxed region in Fig. 1).

In online advertising, the goal is to maximise the cumulative number of clicks over a given period. In
the conventional bandit treatment, each query to f is the display of an ad for a specific time, say one
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hour. However, we may display ads for shorter intervals, say a few minutes, to approximate its hourly
performance. The estimate is biased, as displaying an ad for a longer interval changes user behaviour,
but will nonetheless be useful in gauging its long run click through rate. In optimal policy search
in robotics and automated driving vastly cheaper computer simulations are used to approximate the
expensive real world performance of the system. Scientific experiments can be approximated to
varying degrees using less expensive data collection, analysis, and computational techniques.

In this paper, we cast these tasks as multi-fidelity bandit optimisation problems assuming the avail-
ability of cheap approximate functions (fidelities) to the payoff f . Our contributions are:
1. We present a formalism for multi-fidelity bandit optimisation using Gaussian Process (GP)

assumptions on f and its approximations. We develop a novel algorithm, Multi-Fidelity Gaussian
Process Upper Confidence Bound (MF-GP-UCB) for this setting.

2. Our theoretical analysis proves that MF-GP-UCB explores the space at lower fidelities and uses
the high fidelities in successively smaller regions to zero in on the optimum. As lower fidelity
queries are cheaper, MF-GP-UCB has better regret than single fidelity strategies.

3. Empirically, we demonstrate that MF-GP-UCB outperforms single fidelity methods on
a series of synthetic examples, three hyper-parameter tuning tasks and one inference
problem in Astrophysics. Our matlab implementation and experiments are available at
github.com/kirthevasank/mf-gp-ucb.

Related Work: Since the seminal work by Robbins [25], the multi-armed bandit problem has been
studied extensively in the K-armed setting. Recently, there has been a surge of interest in the
optimism under uncertainty principle for K armed bandits, typified by upper confidence bound
(UCB) methods [2, 4]. UCB strategies have also been used in bandit tasks with linear [6] and GP [28]
payoffs. There is a plethora of work on single fidelity methods for global optimisation both with
noisy and noiseless evaluations. Some examples are branch and bound techniques such as dividing
rectangles (DiRect) [12], simulated annealing, genetic algorithms and more [17, 18, 22]. A suite of
single fidelity methods in the GP framework closely related to our work is Bayesian Optimisation
(BO). While there are several techniques for BO [13, 21, 30], of particular interest to us is the
Gaussian process upper confidence bound (GP-UCB) algorithm of Srinivas et al. [28].

Many applied domains of research such as aerodynamics, industrial design and hyper-parameter
tuning have studied multi-fidelity methods [9, 11, 19, 29]; a plurality of them use BO techniques.
However none of these treatments neither formalise nor analyse any notion of regret in the multi-
fidelity setting. In contrast, MF-GP-UCB is an intuitive UCB idea with good theoretical properties.
Some literature have analysed multi-fidelity methods in specific contexts such as hyper-parameter
tuning, active learning and reinforcement learning [1, 5, 26, 33]. Their settings and assumptions are
substantially different from ours. Critically, none of them are in the more difficult bandit setting where
there is a price for exploration. Due to space constraints we discuss them in detail in Appendix A.3.

The multi-fidelity poses substantially new theoretical and algorithmic challenges. We build on GP-
UCB and our recent work on multi-fidelity bandits in theK-armed setting [16]. Section 2 presents our
formalism including a notion of regret for multi-fidelity GP bandits. Section 3 presents our algorithm.
The theoretical analysis is in Appendix C with a synopsis for the 2-fidelity case in Section 4. Section 6
presents our experiments. Appendix A.1 tabulates the notation used in the manuscript.

2 Preliminaries

We wish to maximise a payoff function f : X → R whereX ≡ [0, r]d. We can interact with f only by
querying at some x ∈ X and obtaining a noisy observation y = f(x)+ ε. Let x? ∈ argmaxx∈X f(x)
and f? = f(x?). Let xt ∈ X be the point queried at time t. The goal of a bandit strategy
is to maximise the sum of rewards

∑n
t=1 f(xt) or equivalently minimise the cumulative regret∑n

t=1 f? − f(xt) after n queries; i.e. we compete against an oracle which queries at x? at all t.

Our primary distinction from the classical setting is that we have access toM−1 successively accurate
approximations f (1), f (2), . . . , f (M−1) to the payoff f = f (M). We refer to these approximations as
fidelities. We encode the fact that fidelity m approximates fidelity M via the assumption, ‖f (M) −
f (m)‖∞ ≤ ζ(m), where ζ(1) > ζ(2) > · · · > ζ(M) = 0. Each query at fidelity m expends a cost
λ(m) of a resource, e.g. computational effort or advertising time, where λ(1) < λ(2) < · · · < λ(M).
A strategy for multi-fidelity bandits is a sequence of query-fidelity pairs {(xt,mt)}t≥0, where

2

https://github.com/kirthevasank/mf-gp-ucb


n=300
n=3000

x

ϕt

f

Figure 1: Left: Average CV log likelihood on datasets of size 300, 3000 on a synthetic KDE task. The crosses
are the maxima. Right: Illustration of GP-UCB at time t. The figure shows f(x) (solid black line), the UCB
ϕt(x) (dashed blue line) and queries until t− 1 (black crosses). We query at xt = argmaxx∈X ϕt(x) (red star).

(xn,mn) could depend on the previous query-observation-fidelity tuples {(xt,yt,mt)}n−1
t=1 . Here

yt = f (mt)(xt) + ε. After n steps we will have queried any of the M fidelities multiple times.

Some smoothness assumptions on f (m)’s are needed to make the problem tractable. A standard in the
Bayesian nonparametric literature is to use a Gaussian process (GP) prior [24] with covariance kernel
κ. In this work we focus on the squared exponential (SE) κσ,h and the Matérn κν,h kernels as they are
popularly used in practice and their theoretical properties are well studied. Writing z = ‖x− x′‖2,

they are defined as κσ,h(x, x′) = σ exp
(
−z2/(2h2)

)
, κν,h(x, x′) = 21−ν

Γ(ν)

(√
2νz
h

)ν
Bν

(√
2νz
h

)
,

where Γ, Bν are the Gamma and modified Bessel functions. A convenience the GP framework offers
is that posterior distributions are analytically tractable. If f ∼ GP(0, κ), and we have observations
Dn = {(xi, yi)}ni=1, where yi = f(xi) + ε and ε ∼ N (0, η2) is Gaussian noise, the posterior
distribution for f(x)|Dn is also Gaussian N (µn(x), σ2

n(x)) with

µn(x) = k>∆−1Y, σ2
n(x) = κ(x, x)− k>∆−1k. (1)

Here, Y ∈ Rn with Yi = yi, k ∈ Rn with ki = κ(x, xi) and ∆ = K + η2I ∈ Rn×n where
Ki,j = κ(xi, xj). In keeping with the above, we make the following assumptions on our problem.

Assumption 1. A1: The functions at all fidelities are sampled from GPs, f (m) ∼ GP(0, κ) for all
m = 1, . . . ,M . A2: ‖f (M) − f (m)‖∞ ≤ ζ(m) for all m = 1, . . . ,M . A3: ‖f (M)‖∞ ≤ B.

The purpose of A3 is primarily to define the regret. In Remark 7, Appendix A.4 we argue that these
assumptions are probabilistically valid, i.e. the latter two events occur with nontrivial probability
when we sample the f (m)’s from a GP. So a generative mechanism would keep sampling the functions
and deliver them when the conditions hold true. A point x ∈ X can be queried at any of the M
fidelities. When we query at fidelity m, we observe y = f (m)(x) + ε where ε ∼ N (0, η2).

We now present our notion of cumulative regret R(Λ) after spending capital Λ of a resource in the
multi-fidelity setting. R(Λ) should reduce to the conventional definition of regret for any single
fidelity strategy that queries only at M th fidelity. As only the optimum of f = f (M) is of interest
to us, queries at fidelities less than M should yield the lowest possible reward, (−B) according to
A3. Accordingly, we set the instantaneous reward qt at time to be −B if mt 6= M and f (M)(xt) if
mt = M . If we let rt = f? − qt denote the instantaneous regret, we have rt = f? +B if mt 6= M
and f?− f(xt) if mt = M . R(Λ) should also factor in the costs of the fidelity of each query. Finally,
we should also receive (−B) reward for any unused capital. Accordingly, we define R(Λ) as,

R(Λ) = Λf? −
[
N∑

t=1

λ(mt)qt +

(
Λ−

N∑

t=1

λ(mt)

)
(−B)

]
≤ 2BΛres +

N∑

t=1

λ(mt)rt, (2)

where Λres = Λ−∑N
t=1 λ

(mt). Here, N is the (random) number of queries at all fidelities within
capital Λ, i.e. the largest n such that

∑n
t=1 λ

(mt) ≤ Λ. According to (2) above, we wish to compete
against an oracle that uses all its capital Λ to query x? at the M th fidelity. R(Λ) is at best 0 when
we follow the oracle and at most 2ΛB. Our goal is a strategy that has small regret for all values of
(sufficiently large) Λ, i.e. the equivalent of an anytime strategy, as opposed to a fixed time horizon
strategy in the usual bandit setting. For the purpose of optimisation, we also define the simple regret
as S(Λ) = mint rt = f? −maxt qt. S(Λ) is the difference between f? and the best highest fidelity
query (and f? +B if we have never queried at fidelity M ). Since S(Λ) ≤ 1

ΛR(Λ), any strategy with
asymptotic sublinear regret limΛ→∞ 1

ΛR(Λ) = 0, also has vanishing simple regret.

Since, to our knowledge, this is the first attempt to formalise regret for multi-fidelity problems, the
definition for R(Λ) (2) necessitates justification. Consider a two fidelity robot gold mining problem
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where the second fidelity is a real world robot trial, costing λ(2) dollars and the first fidelity is a
computer simulation costing λ(1). A multi-fidelity algorithm queries the simulator to learn about
the real world. But it does not collect any actual gold during a simulation; hence no reward, which
according to our assumptions is −B. Meantime the oracle is investing this capital on the best
experiment and collecting ∼ f? gold. Therefore, the regret at this time instant is f? +B. However
we weight this by the cost to account for the fact that the simulation costs only λ(1). Note that lower
fidelities use up capital but yield the lowest reward. The goal however, is to leverage information
from these cheap queries to query prudently at the highest fidelity and obtain better regret.

That said, other multi-fidelity settings might require different definitions for R(Λ). In online advertis-
ing, the lower fidelities (displaying ads for shorter periods) would still yield rewards. In clinical trials,
the regret at the highest fidelity due to a bad treatment would be, say, a dead patient. However, a bad
treatment on a simulation may not warrant large penalty. We use the definition in (2) because it is
more aligned with our optimisation experiments: lower fidelities are useful to the extent that they
guide search on the expensive f (M), but there is no reward to finding the optimum of a cheap f (m).

A crucial challenge for a multi-fidelity method is to not get stuck at the optimum of a lower fidelity,
which is typically suboptimal for f (M). While exploiting information from the lower fidelities, it is
also important to explore sufficiently at f (M). In our experiments we demonstrate that naive strategies
which do not do so would get stuck at the optimum of a lower fidelity.

A note on GP-UCB: Sequential optimisation methods adopting UCB principles maintain a high
probability upper bound ϕt : X → R for f(x) for all x ∈ X [2]. For GP-UCB, ϕt takes the form
ϕt(x) = µt−1(x) + β

1/2
t σt−1(x) where µt−1, σt−1 are the posterior mean and standard deviation of

the GP conditioned on the previous t− 1 queries. The key intuition is that the mean µt−1 encourages
an exploitative strategy – in that we want to query where we know the function is high – and the
confidence band β1/2

t σt−1 encourages an explorative strategy – in that we want to query at regions
we are uncertain about f lest we miss out on high valued regions. We have illustrated GP-UCB in
Fig 1 and reviewed the algorithm and its theoretical properties in Appendix A.2.

3 MF-GP-UCB

The proposed algorithm, MF-GP-UCB, will also maintain a UCB for f (M) obtained via the previous
queries at all fidelities. Denote the posterior GP mean and standard deviation of f (m) conditioned
only on the previous queries at fidelity m by µ(m)

t , σ
(m)
t respectively (See (1)). Then define,

ϕ
(m)
t (x) = µ

(m)
t−1(x) + β

1/2
t σ

(m)
t−1(x) + ζ(m), ∀m, ϕt(x) = min

m=1,...,M
ϕ

(m)
t (x). (3)

For appropriately chosen βt, µ
(m)
t−1(x)+β

1/2
t σ

(m)
t−1(x) will upper bound f (m)(x) with high probability.

By A2, ϕ(m)
t (x) upper bounds f (M)(x) for allm. We haveM such upper bounds, and their minimum

ϕt(x) gives the best bound. Our next query is at the maximiser of this UCB, xt = argmaxx∈X ϕt(x).

Next we need to decide which fidelity to query at. Consider any m < M . The ζ(m) conditions
on f (m) constrain the value of f (M) – the confidence band β1/2

t σ
(m)
t−1 for f (m) is lengthened by

ζ(m) to obtain confidence on f (M). If β1/2
t σ

(m)
t−1(xt) for f (m) is large, it means that we have not

constrained f (m) sufficiently well at xt and should query at the mth fidelity. On the other hand,
querying indefinitely in the same region to reduce β1/2

t σ
(m)
t−1 in that region will not help us much as

the ζ(m) elongation caps off how much we can learn about f (M) from f (m); i.e. even if we knew
f (m) perfectly, we will only have constrained f (M) to within a ±ζ(m) band. Our algorithm captures
this simple intuition. Having selected xt, we begin by checking at the first fidelity. If β1/2

t σ
(1)
t−1(xt) is

smaller than a threshold γ(1), we proceed to the second fidelity. If at any stage β1/2
t σ

(m)
t−1(xt) ≥ γ(m)

we query at fidelity mt = m. If we proceed all the way to fidelity M , we query at mt = M . We will
discuss choices for γ(m) shortly. We summarise the resulting procedure in Algorithm 1.

Fig 2 illustrates MF-GP-UCB on a 2–fidelity problem. Initially, MF-GP-UCB is mostly exploring
X in the first fidelity. β1/2

t σ
(1)
t−1 is large and we are yet to constrain f (1) well to proceed to f (2). By

t = 14, we have constrained f (1) around the optimum and have started querying at f (2) in this region.
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Algorithm 1 MF-GP-UCB Inputs: kernel κ, bounds {ζ(m)}Mm=1, thresholds {γ(m)}Mm=1.

• For m = 1, . . . ,M : D(m)
0 ← ∅, (µ

(m)
0 , σ

(m)
0 )← (0, κ1/2).

• for t = 1, 2, . . .
1. xt ← argmaxx∈X ϕt(x). (See Equation (3))

2. mt = minm{m |β1/2
t σ

(m)
t−1(xt) ≥ γ(m) or m = M}. (See Appendix B, C for βt)

3. yt ← Query f (mt) at xt.

4. UpdateD(mt)
t ← D(mt)

t−1 ∪{(xt,yt)}. Obtain µ(mt)
t , σ

(mt)
t conditioned onD(mt)

t (See (1)).

x⋆xt

t = 6ϕ
(1)
t

ϕ
(2)
t

ϕt

f (1)

f (2)

x⋆xt

t = 14

f (1)

f (2)

β
1/2
t σ

(1)
t−1(x)

γ(1)

mt = 1

γ
(1)

mt = 2

Figure 2: Illustration of MF-GP-UCB for a 2-fidelity problem initialised with 5 random points at the first
fidelity. In the top figures, the solid lines in brown and blue are f (1), f (2) respectively, and the dashed lines are
ϕ

(1)
t , ϕ

(2)
t . The solid green line is ϕt = min(ϕ

(1)
t , ϕ

(2)
t ). The small crosses are queries from 1 to t− 1 and the

red star is the maximiser of ϕt, i.e. the next query xt. x?, the optimum of f (2) is shown in magenta. In the
bottom figures, the solid orange line is β1/2

t σ
(1)
t−1 and the dashed black line is γ(1). When β1/2

t σ
(1)
t−1(xt) ≤ γ(1)

we play at fidelity mt = 2 and otherwise at mt = 1. See Fig. 6 in Appendix B for an extended simulation.

Notice how ϕ
(2)
t dips to change ϕt in this region. MF-GP-UCB has identified the maximum with just

3 queries to f (2). In Appendix B we provide an extended simulation and discuss further insights.

Finally, we make an essential observation. The posterior for any f (m)(x) conditioned on previous
queries at all fidelities is not Gaussian due to the ζ(m) constraints (A2). However, |f (m)(x) −
µ

(m)
t−1(x)| < β

1/2
t σ

(m)
t−1(x) holds with high probability, since, by conditioning only on queries at the

mth fidelity we have Gaussianity for f (m)(x). Next we summarise our main theoretical contributions.

4 Summary of Theoretical Results

For pedagogical reasons we present our results for the M = 2 case. Appendix C contains statements
and proofs for general M . We also ignore constants and polylog terms when they are dominated
by other terms. .,� denote inequality and equality ignoring constants. We begin by defining the
Maximum Information Gain (MIG) which characterises the statistical difficulty of GP bandits.

Definition 2. (Maximum Information Gain) Let f ∼ GP(0, κ). Consider any A ⊂ Rd and let
Ã = {x1, . . . , xn} ⊂ A be a finite subset. Let fÃ, εÃ ∈ Rn be such that (fÃ)i = f(xi), (εÃ)i ∼
N (0, η2), and yÃ = fÃ + εÃ. Let I denote the Shannon Mutual Information. The Maximum
Information Gain of A is Ψn(A) = maxÃ⊂A,|Ã|=n I(yÃ; fÃ).

The MIG, which depends on the kernel κ and the set A, is an important quantity in our analysis. For a
given κ, it typically scales with the volume of A; i.e. if A = [0, r]d then Ψn(A) ∈ O(rdΨn([0, 1]d)).

For the SE kernel, Ψn([0, 1]d) ∈ O((log(n))d+1) and for Matérn, Ψn([0, 1]d) ∈ O(n
d(d+1)

2ν+d(d+1) ) [28].

Recall, N is the (random) number of queries by a multi-fidelity strategy within capital Λ at either
fidelity. Let nΛ = bΛ/λ(2)c be the (non-random) number of queries by a single fidelity method
operating only at the second fidelity. As λ(1) < λ(2), N could be large for an arbitrary multi-fidelity
method. However, our analysis reveals that for MF-GP-UCB, N is on the order of nΛ.
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Fundamental to the 2-fidelity problem is the set Xg = {x ∈ X ; f? − f (1)(x) ≤ ζ(1)}. Xg is a
high valued region for f (2)(x): for all x ∈ Xg, f (2)(x) is at most 2ζ(1) away from the optimum.
More interestingly, when ζ(1) is small, i.e. when f (1) is a good approximation to f (2), Xg will
be much smaller than X . This is precisely the target domain for this research. For instance,
in the robot gold mining example, a cheap computer simulator can be used to eliminate several
bad policies and we could reserve the real world trials for the promising candidates. If a multi-
fidelity strategy were to use the second fidelity queries only in Xg, then the regret will only have
Ψn(Xg) dependence after n high fidelity queries. In contrast, a strategy that only operates at the
highest fidelity (e.g. GP-UCB) will have Ψn(X ) dependence. In the scenario described above
Ψn(Xg)� Ψn(X ), and the multi-fidelity strategy will have significantly better regret than a single
fidelity strategy. MF-GP-UCB roughly achieves this goal. In particular, we consider a slightly inflated
set X̃g,ρ = {x ∈ X ; f? − f (1)(x) ≤ ζ(1) + ργ(1)}, of Xg where ρ > 0. The following result which
characterises the regret of MF-GP-UCB in terms of X̃g,ρ is the main theorem of this paper.

Theorem 3 (Regret of MF-GP-UCB – Informal). Let X = [0, r]d and f (1), f (2) ∼ GP(0, κ) satisfy
Assumption 1. Pick δ ∈ (0, 1) and run MF-GP-UCB with βt � d log(t/δ). Then, with probability
> 1− δ, for sufficiently large Λ and for all α ∈ (0, 1), there exists ρ depending on α such that,

R(Λ) . λ(2)
√
nΛβnΛΨnΛ(X̃g,ρ) + λ(1)

√
nΛβnΛΨnΛ(X ) + λ(2)

√
nαΛβnΛΨnαΛ

(X ) + λ(1)ξn,X̃g,ρ,γ(1)

As we will explain shortly, the latter two terms are of lower order. It is instructive to compare the
above rates against that for GP-UCB (see Theorem 4, Appendix A.2). By dropping the common
and subdominant terms, the rate for MF-GP-UCB is λ(2)Ψ

1/2
nΛ (X̃g,ρ) + λ(1)Ψ

1/2
nΛ (X ) whereas for

GP-UCB it is λ(2)Ψ
1/2
nΛ (X ). When λ(1) � λ(2) and vol(X̃g,ρ) � vol(X ) the rates for MF-GP-

UCB are very appealing. When the approximation worsens (Xg, X̃g,ρ become larger) and the costs
λ(1), λ(2) become comparable, the bound for MF-GP-UCB decays gracefully. In the worst case,
MF-GP-UCB is never worse than GP-UCB up to constant terms. Intuitively, the above result states
that MF-GP-UCB explores the entire X using f (1) but uses “most” of its queries to f (2) inside X̃g,ρ.

Now let us turn to the latter two terms in the bound. The third term is the regret due to the second
fidelity queries outside X̃g,ρ. We are able to show that the number of such queries is O(nαΛ) for
all α > 0 for an appropriate ρ. This strong result is only possible in the multi-fidelity setting. For
example, in GP-UCB the best bound you can achieve on the number of plays on a suboptimal set is
O(n

1/2
Λ ) for the SE kernel and worse for the Matérn kernel. The last term is due to the first fidelity

plays inside X̃g,ρ and it scales with vol(X̃g,ρ) and polylogarithmically with n, both of which are small.
However, it has a 1/poly(γ(1)) dependence which could be bad if γ(1) is too small: intuitively, if
γ(1) is too small then you will wait for a long time in step 2 of Algorithm 1 for β1/2

t σ
(1)
t−1 to decrease

without proceeding to f (2), incurring large regret (f? +B) in the process. Our analysis reveals that
an optimal choice for the SE kernel scales γ(1) � (λ(1)ζ(1)/(tλ(2)))1/(d+2) at time t. However this
is of little practical use as the leading constant depends on several problem dependent quantities such
as Ψn(Xg). In Section 5 we describe a heuristic to set γ(m) which worked well in our experiments.

Theorem 3 can be generalised to cases where the kernels κ(m) and observation noises η(m) are
different at each fidelity. The changes to the proofs are minimal. In fact, our practical implementation
uses different kernels. As with any nonparametric method, our algorithm has exponential dependence
on dimension. This can be alleviated by assuming additional structure in the problem [8, 15]. Finally,
we note that the above rates translate to bounds on the simple regret S(Λ) for optimisation.

5 Implementation Details
Our implementation uses some standard techniques in Bayesian optimisation to learn the kernel such
as initialisation with random queries and periodic marginal likelihood maximisation. The above
techniques might be already known to a reader familiar with the BO literature. We have elaborated
these in Appendix B but now focus on the γ(m), ζ(m) parameters of our method.

Algorithm 1 assumes that the ζ(m)’s are given with the problem description, which is hardly the
case in practice. In our implementation, instead of having to deal with M − 1, ζ(m) values we set
(ζ(1), ζ(2), . . . , ζ(M−1)) = ((M − 1)ζ, (M − 2)ζ, . . . , ζ) so we only have one value ζ. This for
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Figure 3: The simple regret S(Λ) against the spent capital Λ on synthetic functions. The title states the
function, its dimensionality, the number of fidelities and the costs we used for each fidelity in the experiment.
All curves barring DiRect (which is a deterministic), were produced by averaging over 20 experiments. The
error bars indicate one standard error. See Figures 8, 9 10 in Appendix D for more synthetic results. The last
panel shows the number of queries at different function values at each fidelity for the Hartmann-3D example.

instance, is satisfied if ‖f (m) − f (m−1)‖∞ ≤ ζ which is stronger than Assumption A2. Initially, we
start with small ζ. Whenever we query at any fidelity m > 1 we also check the posterior mean of
the (m − 1)th fidelity. If |f (m)(xt) − µ(m−1)

t−1 (xt)| > ζ, we query again at xt, but at the (m − 1)th

fidelity. If |f (m)(xt)− f (m−1)(xt)| > ζ, we update ζ to twice the violation. To set γ(m)’s we use
the following intuition: if the algorithm, is stuck at fidelity m for too long then γ(m) is probably too
small. We start with small values for γ(m). If the algorithm does not query above the mth fidelity for
more than λ(m+1)/λ(m) iterations, we double γ(m). We found our implementation to be fairly robust
even recovering from fairly bad approximations at the lower fidelities (see Appendix D.3).

6 Experiments
We compare MF-GP-UCB to the following methods. Single fidelity methods: GP-UCB; EI: the
expected improvement criterion for BO [13]; DiRect: the dividing rectangles method [12]. Multi-
fidelity methods: MF-NAIVE: a naive baseline where we use GP-UCB to query at the first fidelity a
large number of times and then query at the last fidelity at the points queried at f (1) in decreasing
order of f (1)-value; MF-SKO: the multi-fidelity sequential kriging method from [11]. Previous
works on multi-fidelity methods (including MF-SKO) had not made their code available and were
not straightforward to implement. Hence, we could not compare to all of them. We discuss this more
in Appendix D along with some other single and multi-fidelity baselines we tried but excluded in
the comparison to avoid clutter in the figures. In addition, we also detail the design choices and
hyper-parameters for all methods in Appendix D.

Synthetic Examples: We use the Currin exponential (d = 2), Park (d = 4) and Borehole (d = 8)
functions in M = 2 fidelity experiments and the Hartmann functions in d = 3 and 6 with M = 3
and 4 fidelities respectively. The first three are taken from previous multi-fidelity literature [32] while
we tweaked the Hartmann functions to obtain the lower fidelities for the latter two cases. We show
the simple regret S(Λ) against capital Λ for the Borehole and Hartmann-3D functions in Fig. 3 with
the rest deferred to Appendix D due to space constraints. MF-GP-UCB outperforms other methods.
Appendix D also contains results for the cumulative regret R(Λ) and the formulae for these functions.

A common occurrence with MF-NAIVE was that once we started querying at fidelity M , the regret
barely decreased. The diagnosis in all cases was the same: it was stuck around the maximum of f (1)

which is suboptimal for f (M). This suggests that while we have cheap approximations, the problem
is by no means trivial. As explained previously, it is also important to “explore” at the higher fidelities
to achieve good regret. The efficacy of MF-GP-UCB when compared to single fidelity methods is
that it confines this exploration to a small set containing the optimum. In our experiments we found
that MF-SKO did not consistently beat other single fidelity methods. Despite our best efforts to
reproduce this (and another) multi-fidelity method, we found them to be quite brittle (Appendix D.1).

The third panel of Fig. 3 shows a histogram of the number of queries at each fidelity after 184 queries
of MF-GP-UCB, for different ranges of f (3)(x) for the Hartmann-3D function. Many of the queries
at the low f (3) values are at fidelity 1, but as we progress they decrease and the second fidelity queries
increase. The third fidelity dominates very close to the optimum but is used sparingly elsewhere.
This corroborates the prediction in our analysis that MF-GP-UCB uses low fidelities to explore and
successively higher fidelities at promising regions to zero in on x?. (Also see Fig. 6, Appendix B.)

7



CPU Time (s)
0 2000 4000 6000 8000

C
V

(C
la
ss
ifi
ca
ti
o
n
)
E
rr
o
r

0.115

0.12

0.125

0.13

0.135

0.14

SVM-2D, M = 2, ntr = [500, 2000]
MF-GP-UCB

GP-UCB

EI

DiRect

MF-NAIVE

MF-SKO

CPU Time (s)
0 1000 2000 3000 4000 5000 6000 7000

C
V

(L
ea
st

S
q
u
a
re
s)

E
rr
o
r

0

0.2

0.4

0.6

0.8

1

SALSA-6D, M = 3, ntr = [2000, 4000, 8000]

CPU Time (s)
1000 2000 3000 4000 5000 6000 7000 8000

C
V

(C
la
ss
ifi
ca
ti
o
n
)
E
rr
o
r

0.1

0.15

0.2

0.25

0.3

0.35

V&J-22D, M = 2, ntr = [300, 3000]

Figure 4: Results on the hyper-parameter tuning experiments. The title states the experiment, dimensionality
(number of hyperparameters) and training set size at each fidelity. All curves were produced by averaging over
10 experiments. The error bars indicate one standard error. The lengths of the curves are different in time as we
ran each method for a pre-specified number of iterations and they concluded at different times.

Real Experiments: We present results on three hyper-parameter tuning tasks (results in Fig. 4), and
a maximum likelihood inference task in Astrophysics (Fig. 5). We compare methods on computation
time since that is the “cost” in all experiments. We include the processing time for each method in
the comparison (i.e. the cost of determining the next query).

Classification using SVMs (SVM): We trained an SVM on the magic gamma dataset using the
SMO algorithm to an accuracy of 10−12. The goal is to tune the kernel bandwidth and the soft margin
coefficient in the ranges (10−3, 101) and (10−1, 105) respectively on a dataset of size 2000. We set
this up as a M = 2 fidelity experiment with the entire training set at the second fidelity and 500
points at the first. Each query was 5-fold cross validation on these training sets.

Regression using Additive Kernels (SALSA): We used the regression method from [14] on the
4-dimensional coal power plant dataset. We tuned the 6 hyper-parameters –the regularisation penalty,
the kernel scale and the kernel bandwidth for each dimension– each in the range (10−3, 104) using
5-fold cross validation. This experiment used M = 3 and 2000, 4000, 8000 points at each fidelity.

Viola & Jones face detection (V&J): The V&J classifier [31], which uses a cascade of weak
classifiers, is a popular method for face detection. To classify an image, we pass it through each
classifier. If at any point the classifier score falls below a threshold, the image is classified negative. If
it passes through the cascade, then it is classified positive. One of the more popular implementations
comes with OpenCV and uses a cascade of 22 weak classifiers. The threshold values in OpenCV
are pre-set based on some heuristics and there is no reason to think they are optimal for a given face
detection task. The goal is to tune these 22 thresholds by optimising for them over a training set. We
modified the OpenCV implementation to take in the thresholds as parameters. As our domain X we
chose a neighbourhood around the configuration used in OpenCV. We set this up as a M = 2 fidelity
experiment where the second fidelity used 3000 images from the V&J face database and the first used
300. Interestingly, on an independent test set, the configurations found by MF-GP-UCB consistently
achieved over 90% accuracy while the OpenCV configuration achieved only 87.4% accuracy.
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Figure 5: Results on the supernova infer-
ence problem. The y-axis is the log likeli-
hood so higher is better. MF-NAIVE is not
visible as it performed very poorly.

Type Ia Supernovae: We use Type Ia supernovae data [7]
for maximum likelihood inference on 3 cosmological param-
eters, the Hubble constant H0 ∈ (60, 80), the dark matter
and dark energy fractions ΩM ,ΩΛ ∈ (0, 1). Unlike typical
parametric maximum likelihood problems, the likelihood
is only available as a black-box. It is computed using the
Robertson–Walker metric which requires a one dimensional
numerical integration for each sample in the dataset. We set
this up as a M = 3 fidelity task. The goal is to maximise the
likelihood at the third fidelity where the integration was per-
formed using the trapezoidal rule on a grid of size 106. For
the first and second fidelities, we used grids of size 102, 104

respectively. The results are given in Fig. 5.

Conclusion: We introduced and studied the multi-fidelity bandit under Gaussian Process assump-
tions. We present, to our knowledge, the first formalism of regret and the first theoretical results
in this setting. They demonstrate that MF-GP-UCB explores the space via cheap lower fidelities,
and leverages the higher fidelities on successively smaller regions hence achieving better regret than
single fidelity strategies. Experimental results demonstrate the efficacy of our method.
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Appendix

A Some Ancillary Material

A.1 Table of Notations

M The number of fidelities.
f, f (m) The payoff function and its mth fidelity approximation. f (M) = f .
λ(m) The cost for querying at fidelity m.
X The domain over which we are optimising f .

x?, f? The optimum point and value of the M th fidelity function.
A The complement of a set A ⊂ X . A = X\A.
|A| The cardinality of a set A ⊂ X if it is countable.
∨,∧ Logical Or and And respectively.

.,&,� Inequalities and equality ignoring constant terms.
qt, rt The instantaneous reward and regret respectively.

qt = f (M)(xt) if mt = M and −B if mt 6= M . rt = f? − qt.
R(Λ) The cumulative regret after spending capital Λ. See equation (2).
S(Λ) The simple regret after spending capital Λ. See second paragraph under equation (2).
ζ(m) A bound on the maximum difference between f (m) and f (M), ‖f (M)−f (m)‖∞ ≤ ζ(m).
µ

(m)
t The mean of the mth fidelity GP f (m) conditioned on D(m)

t at time t.
κ

(m)
t The covariance of the mth fidelity GP f (m) conditioned on D(m)

t at time t.
σ

(m)
t The standard deviatiation of the mth fidelity GP f (m) conditioned on D(m)

t at time t.
xt,yt The queried point and observation at time t.
mt The queried fidelity at time t.
D(m)
n The set of queries at the mth fidelity until time n {(xt,yt)}t:mt=m.
βt The coefficient trading off exploration and exploitation in the UCB. See Theorem 10.

ϕ
(m)
t (x) The upper confidence bound (UCB) provided by the mth fidelity on f (M)(x).

ϕ
(m)
t (x) = µ

(m)
t−1(x) + β

1/2
t σ

(m)
t−1(x) + ζ(m).

ϕt(x) The combined UCB provided by all fidelities on f (M)(x). ϕt(x) = minm ϕ
(m)
t (x).

γ(m) The parameter in MF-GP-UCB for switching from the mth fidelity to the (m+ 1)th .
R̃n The cumulative regret for the queries after n rounds, R̃n =

∑n
t=1 λ

(mt)rt.
T

(m)
n (A) The number of queries at fidelity m in subset A ⊂ X until time n.

T
(>m)
n (A) The number of queries at fidelities greater than m in any subset A ⊂ X until time n.
nΛ Number of plays by a strategy querying only at fidelity M within capital Λ.

nΛ = bΛ/λ(M)c.
Ψn(A) The maximum information gain of a set A ⊂ X after n queries in A. See Definition 2.
X (m) (X (m))Mm=1 is an entirely problem dependent partitioning of X . See Equation (5).
H(m)
τ (H(m)

τ )Mm=1 are partitionings of X . See Equation (5). The analysis of MF-GP-UCB
hinges on these partitionings.

H(m)
τ,n An additional n-dependent inflation ofH(m)

τ . See paragraph under equation (5).
Ĥ(m)
τ ,

̂
Hτ (m) The arms “above"/“below"H(m)

τ . Ĥ(m)
τ =

⋃M
`=m+1H

(`)
τ ,

̂
Hτ (m) =

⋃m−1
`=1 H

(`)
τ .

Xg,Xb The good set and bad sets for M = 2 fidelity problems. Xg = X (2) and Xb = X (1).
X̃g,ρ, X̃b,ρ The inflations of Xg,Xb for MF-GP-UCB.

X̃g,ρ = {x; f? − f (1)(x) ≤ ζ(1) + ργ}, and Ẍb,τ = X\Ẍg,τ .
Ωε(A) The ε–covering number of a subset A ⊂ X in the ‖ · ‖2 metric.

A.2 Review of GP-UCB

The following bounds the regret Rn for the GP-UCB algorithm of Srinivas et al. [28] after n time
steps. The algorithm is given in Algorithm 2.
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Theorem 4. (Theorems 2 in [28]) Let f ∼ GP(0, κ), f : X → R and κ satisfy Assumption 8. At each
query, we have noisy observations y = f(x) + ε where ε ∼ N (0, η2). Denote C1 = 8/ log(1 + η−2).

Pick δ ∈ (0, 1). If X = [0, r]d, run GP-UCB with βt = 2 log
(

2π2t2

3δ

)
+ 2d log

(
t2bdr

√
4ad
δ

)
.

Then,
P
(
∀n ≥ 1, Rn ≤

√
C1nβnΨn(X ) + 2

)
≥ 1− δ

Here Ψn(X ) is the Maximum Information Gain of X after n queries (see Definition 2).

Algorithm 2 GP-UCB
Input: kernel κ.
For t = 1, 2 . . .

• D0 ← ∅, (µ0, σ
2
0)← (0, κ).

• (µ0, κ0)← (0, κ)
• for t = 1, 2, . . .

1. xt ← argmaxx∈X µt−1(x) + β
1/2
t σt−1(x)

2. yt ← Query f at xt.
3. Dt = Dt−1 ∪ {(xt,yt)}.
4. Perform Bayesian posterior updates to obtain µt, σt (See Equation (1)).

A.3 More Related Work

Agarwal et al. [1] derive oracle inequalities for hyper-parameter tuning with ERM under computational
budgets. Our setting is more general as it applies to any bandit optimisation task. Sabharwal
et al. [26] present a UCB based idea for tuning hyper-parameters with incremental data allocation.
However, their theoretical results are for an idealised non-realisable algorithm. Cutler et al. [5]
study reinforcement learning with multi-fidelity simulators by treating each fidelity as a Markov
Decision Process. Finally, Zhang and Chaudhuri [33] study active learning when there is access to a
cheap weak labeler and an expensive strong labeler. All the work above study problems different to
optimisation. Further, none of them are in the bandit setting where there is a price for exploration.

A.4 Some Ancillary Results

We will use the following results in our analysis. The first is a standard Gaussian concentration result
and the second is an expression for the Information Gain in a GP from Srinivas et al. [28].

Lemma 5 (Gaussian Concentration). Let Z ∼ N (0, 1). Then P(Z > ε) ≤ 1
2 exp(−ε2/2).

Lemma 6 (Mutual Information in GP, [28] Lemma 5.3). Let f ∼ GP(0, κ), f : X → R and we
observe y = f(x) + ε where ε ∼ N (0, η2). Let A be a finite subset of X and fA, yA be the function
values and observations on this set respectively. Using the basic Gaussian properties they show that
the mutual information I(yA; fA) is,

I(yA; fA) =
1

2

n∑

t=1

log(1 + η−2σ2
t−1(xt)).

where σ2
t−1 is the posterior variance after observing the first t− 1 points.

We conclude this section with the following comment on our assumptions in Section 2.

Remark 7 (Validity of the Assumptions A1, A2, A3). It is sufficient to show that when the
functions f (m) are sampled from GP(0, κ), the latter constraints, i.e. ‖f (M)‖∞ ≤ B and
‖f (M) − f (m)‖∞ ≤ ζ(m) ∀m, occur with positive probability. Then, a generative mechanism
would repeatedly sample the f (m)’s from the GP and output them when the constraints are satisfied.
The claim is true for well behaved kernels. For instance, using Assumption 8 (Appendix C) we
can establish a high probability bound on the Lipschitz constant of the GP sample f (M). Since for

11



a given x ∈ X , P(−B < f (M)(x) < 0) is positive we just need to make sure that the Lipschitz
constant is not larger than B/diam(X ). This bounds ‖f (M)‖∞ < B. For the latter constraint, since
f (M) − f (m) ∼ GP(0, 2κ) is also a GP, the argument follows in an essentially similar fashion.

B Some Details on MF-GP-UCB

An Extended Simulation

In Figure 6 we provide an extended version of the simulation of Fig. 2 for a 2 fidelity example. Read
the caption under the simulation for more details.

More Implementation Details

Data dependent prior: In our experiments, following recommendations in Brochu et al. [3] all GP
methods were initialised with uniform random queries using an initialisation capital Λ0. For single
fidelity methods, we used it at the M th fidelity, whereas for MF-GP-UCB we used Λ0/2 at fidelity
1 and Λ0/2 at fidelity 2. After initialising the kernel in this manner, we update the kernel every 25
iterations of the method by maximising the GP marginal likelihood.

Choice of βt: βt, as specified in Theorems 4, 10 has unknown constants and tends to be too
conservative in practice. Following Kandasamy et al. [15] we use βt = 0.2d log(2t) which captures
the dominant dependencies on d and t.

Initial ζ, γ: We set both ζ, γ to 1% of the range of initial queries and update them as explained in
the main text.

Maximising ϕt: To determine xt we maximised ϕt using DiRect [12]. For other GP methods, the
EI, PI, GP-UCB acquisition functions were also maximised using DiRect.
MF-GP-UCB was fairly robust to the above choices except when Λ0 was set too low in which case,
all GP methods performed poorly on some experiments.

C Theoretical Analysis

In this section we present our main theoretical results. While it is self contained, the reader will
benefit from first reading the more intuitive discussion in Section 4. The goal in this section is to
bound R(Λ) for MF-GP-UCB . Recall,

R(Λ) = Λf? −
N∑

t=1

λ(mt)qt −
(

Λ−
N∑

t=1

λ(mt)

)
(−B)

=

(
Λ−

N∑

t=1

λ(mt)

)
(f? +B)

︸ ︷︷ ︸
r̃(Λ)

+

N∑

t=1

λ(mt)rt

︸ ︷︷ ︸
R̃(Λ)

,

where N is the random number of plays within capital Λ and qt, rt are the instantaneous reward and
regret as defined in Section 2. The first term r̃(Λ) is the residual quantity. It is an artefact of the
fact that after the (N + 1)th query, the spent capital would have exceeded Λ. It can be bounded by
r̃(Λ) ≤ 2Bλ(M) which is typically small. Our analysis will mostly be dealing with the latter term
R̃(Λ) for which we will first bound the quantity R̃n =

∑n
t=1 λ

(mt)rt after n time steps in terms of
n. Then, we will bound the random number of plays N within principal Λ. While N ≤ bΛ/λ(1)c is
a trivial bound, this will be too loose for our purpose. In fact, we will show that after a sufficiently
large number of time steps n, with high probability the number of plays at fidelities lower than M
will be sub-linear in n. Hence N ∈ O(nΛ) where nΛ = bΛ/λ(M)c is the number of plays by any
algorithm that operates only at the highest fidelity.

Our strategy to bound R̃n will be to identify a (possibly disconnected) measurable region of the space
Z which contains x? and has high value for the payoff function f (M)(x). Z will be determined by
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Figure 6: Illustration of MF-GP-UCB for a 2-fidelity problem initialised with 5 random points at
the first fidelity. In the top figures, the solid lines in brown and blue are f (1), f (2) respectively, and
the dashed lines are ϕ(1)

t , ϕ
(2)
t . The solid green line is ϕt = min(ϕ

(1)
t , ϕ

(2)
t ). The small crosses are

queries from 1 to t−1 and the red star is the maximiser of ϕt, i.e. the next query xt. x?, the optimum
of f (2) is shown in magenta. In the bottom figures, the solid orange line is β1/2

t σ
(1)
t−1 and the dashed

black line is γ(1). When β1/2
t σ

(1)
t−1(xt) ≤ γ(1) we play at fidelity mt = 2 and otherwise at mt = 1.

At the initial stages, MF-GP-UCB is mostly exploring X in the first fidelity. β1/2
t σ

(1)
t−1 is large and we

are yet to constrain f (1) well to proceed to m = 2. At t = 10, we have constrainted f (1) sufficiently
well at a region around the optimum. β1/2

t σ
(1)
t−1(xt) falls below γ(1) and we query at mt = 2. Notice

that once we do this (at t = 11), ϕ(2)
t dips to change ϕt in that region. At t = 14, MF-GP-UCB has

identified the maximum x? with just 4 queries to f (2). In the last figure, at t = 50, the algorithm
decides to explore at a point far away from the optimum. However, this query occurs in the first
fidelity since we have not sufficiently constrained f (1)(xt) in this region. The key idea is that it is not
necessary to query such regions at the second fidelity as the first fidelity alone is enough to conclude
that it is suboptimal. Herein lies the crux of our method. The region shaded in cyan in the last figure
is the good set Xg = {x; f (2)(x?)− f (1)(x) ≤ ζ(1)} discussed in Section 4. Our analysis predicts
that most second fidelity queries in MF-GP-UCB will be confined to this set with high probability
and the simulation corroborates this claim. In addition, observe that in a large portion of X , ϕt is
given by ϕ(1)

t except in a small neighborhood around x?, where it is given by ϕ(2)
t .
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the approximations provided via the lower fidelity evaluations. Denoting Z = X\Z , we decompose
R̃n as follows,

R̃n ≤ 2B

M−1∑

m=1

λ(m)T (m)
n (X )

︸ ︷︷ ︸
R̃n,1

+ λ(M)
∑

t:mt=M
xt∈Z

(
f? − f (M)(xt)

)

︸ ︷︷ ︸
R̃n,2

+ λ(M)
∑

t:mt=M
xt∈Z

(
f? − f (M)(xt)

)

︸ ︷︷ ︸
R̃n,3

.

(4)

R̃n,1 is the capital spent on the lower fidelity queries for which we receive no reward. R̃n,2 is
the regret due to fidelity M queries in Z and R̃n,3 is due to fidelity M queries outside Z . To
control R̃n,1 we will first bound T (m)

n (X ) for m < M . This will typically be small containing only
polylog(n)/poly(γ) and o(n) terms. The last two terms can be controlled using the MIGs Ψn of
Z,Z respectively (Definition 2). As we will see, R̃n,2 will be the dominant term in n in our final
expression since most of the fidelity M queries will be confined to Z . T (n)

M (Z) will be sublinear
in n and hence R̃n,3 will be of low order. When the lower fidelities allow us to eliminate a large
region of the space, vol(Z)� vol(Z) and consequently the maximum information gain of Z will be
much smaller than that of Z , Ψn(Z)� Ψn(Z). As we will see, this results in much better regret for
MF-GP-UCB in comparison to GP-UCB.

For the analysis, we will need the following regularity conditions on the kernel. It is satisfied for four
times differentiable kernels such as the SE and Matérn kernels with smoothness parameter ν > 2 [10].

Assumption 8. Let f ∼ GP(0, κ), where κ : [0, r]d× [0, r]d → R is a stationary kernel. The partial
derivatives of f satisfies the following high probability bound. There exists constants a, b > 0 such
that, for all J > 0,

∀ i ∈ {1, . . . , d}, P
(

sup
x

∣∣∣∂f(x)

∂xi

∣∣∣ > J

)
≤ ae−(J/b)2

.

For our proofs we will need to control the conditional variances for queries within a subset A ⊂ X .
To that end, we provide the lemma below.

Lemma 9. Let f ∼ GP(0, κ), f : X → R and each time we query at any x ∈ X we observe
y = f(x) + ε, where ε ∼ N (0, η2). Let A ⊂ X . Assume that we have queried f at n points, (xt)

n
t=1

of which s points are in A. Let σ2
t−1 denote the posterior variance at time t, i.e. after t− 1 queries.

Then,
∑
xt∈A σ

2
t−1(xt) ≤ 2

log(1+η−2)Ψs(A).

Proof Let As = {z1, z2, . . . , zs} be the queries inside A in the order they were queried. Now,
assuming that we have only queried insideA atAs, denote by σ̃t−1(·), the posterior standard deviation
after t− 1 such queries. Then,

∑

t:xt∈A
σ2
t−1(xt) ≤

s∑

t=1

σ̃2
t−1(zt) ≤

s∑

t=1

η2 σ̃
2
t−1(zt)

η2
≤

s∑

t=1

log(1 + η−2σ̃2
t−1(zt))

log(1 + η−2)

≤ 2

log(1 + η−2)
I(yAs ; fAs)

Queries outside A will only decrease the variance of the GP so we can upper bound the first sum
by the posterior variances of the GP with only the queries in A. The third step uses the inequality
u2/v2 ≤ log(1+u2)/ log(1+v2) with u = σ̃t−1(zt)/η and v = 1/η and the last step uses Lemma 6.
The result follows from the fact that Ψs(A) maximises the mutual information among all subsets of
size s.

We now proceed to the analysis. To avoid clutter in the notation we will use γ = γ(m) for all m.
Generalising this to different γ(m)’s is straightforward.
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Denote ∆(m)(x) = f?− f (m)(x)− ζ(m) and J (m)
η = {x ∈ X ; ∆(m)(x) ≤ η}. Let τ > 0, ρ > 1 be

given. Central to our analysis will be two partitionings (X (m))Mm=1 and (H(m)
τ )Mm=1 of X . The latter

depends on the parameter γ and the given τ, ρ. Let X (1) = J (1)

0 ,H(1)
τ = J (1)

max(τ,ργ). Then define,

X (m) = J (m)

0 ∩
(
m−1⋂

`=1

J (`)
0

)
for 2 ≤ m ≤M − 1, X (M) =

M−1⋂

`=1

J (`)
0 . (5)

H(m)
τ = J (m)

max(τ,ργ) ∩
(
m−1⋂

`=1

J (`)
max(τ,ργ)

)
for 2 ≤ m ≤M − 1, H(M)

τ =

M−1⋂

`=1

J (`)
max(τ,ργ).

In addition to the above, we will also find it useful to define the sets “above" H(m)
τ as Ĥ(m)

τ =⋃M
`=m+1H

(`)
τ and the sets “below" H(m)

τ as
̂
Hτ (m) =

⋃m−1
`=1 H

(`)
τ . Intuitively, H(m)

τ is the set
of points that MF-GP-UCB will query at the mth fidelity but exclude from higher fidelities due to
information from fidelity m.

̂
Hτ (m) is the set of points that can be excluded from queries at fidelities

m and beyond due to information from lower fidelities. Ĥ(m)
τ are points that need to be queried at

fidelities higher than m. In the 2 fidelity setting described in Section 4, the set Xg is X (2) and X̃g,ρ is
H(2)
τ . Finally, for any given α > 0 we will also defineH(m)

τ,n = {x ∈ X : B2(x, r
√
d/n

α
2d )∩H(m)

τ 6=
∅ ∧ x /∈ Ĥ(m)} to be an n-dependence inflation ofH(m)

τ,n . Here, B2(x, ε) is an L2 ball of radius ε
centred at x. The sets {H(m)

τ,n }Mm=1 depend on ρ, γ, τ, n and α. Notice that for any α > 0, as n→∞,
H(m)
τ,n → H(m)

τ . In addition to the above, denote the ε covering number of a set A ⊂ X in the
‖ · ‖2 metric by Ωε(A). Let T (m)

n (A) denote the number of queries in a subset A ⊂ X at fidelity m.
D(m)
n = {(xt,yt)}t:mt=m denotes the set of query-value pairs at the mth fidelity until time n. Our

main theorem is as follows.

Theorem 10. Let X ⊂ [0, r]d be compact and convex. Let f (m) ∼ GP(0, κ) ∀m, and satisfy
assumptions A2, A3. Let κ satisfy Assumption 8 with some constants a, b. Pick δ ∈ (0, 1) and run
MF-GP-UCB with

βt = 2 log

(
Mπ2t2

2δ

)
+ 4d log(t) + max

{
0 , 2d log

(
brd log

(
6Mad

δ

))}
.

For all α ∈ (0, 1), τ > 0, ρ > ρ0 = max{2, 1 +
√

(1 + 2/α)/(1 + d)} and sufficiently large Λ,

we have R(Λ) ∈ O
(∑M

m=1 λ
(m)

√
nΛβnΛΨnΛ(H(m)

τ,nΛ) +
diam(Ĥ(m)

τ )dpolylog(nΛ)
poly(γ)

)
. Here, nΛ =

bΛ/λ(M)c as before.
Precisely, there exists Λ0 such that for all Λ ≥ Λ0, with probability > 1− δ we have,

R(Λ) ≤ 2Bλ(M) + λ(M)

[√
2C1MnαΛΨ2MnαΛ

(

̂
H(M)) +

√
2C1nΛΨ2nΛ

(H(M)
τ,nΛ) +

π2

6

]

+ 2B

M−1∑

m=1

λ(m)

[
(m− 1)(2nαΛ) +

1

τ

(√
2C1nΛβ2nΛΨ2nΛ(H(m)

τ,nΛ) +
π2

6

)
+

Ωεn(Ĥ(m)
τ )

(
2η2

γ2
βn + 1

) ]
,

where C1 = 8/ log(1 + η2). For the SE kernel εn = γ√
8CSEβn

, and therefore Ωεn(Ĥ(m)) ∈
O
(

diam(Ĥ(m))d(log(n))d/2

γd

)
. For the Matérn kernel εn = γ2

8CMatβn
and therefore Ωεn(Ĥ(m)) ∈

O
(

diam(Ĥ(m))d(log(n))d

γ2d

)
. CSE , CMat are kernel dependent constants. As Λ→∞, nΛ →∞ and

henceH(m)
τ,nΛ → H(m)

τ for all m ∈ {1, . . . ,M} and α ∈ (0, 1).

Synopsis: Ignoring the common terms, constants and nαΛ terms, the regret for GP-UCB is

λ(M)
√
nΛΨnΛ

(X ) whereas for MF-GP-UCB it is
∑
m λ

(m)

√
nΛΨnΛ

(H(m)
τ,n ). In problems where
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H(m)
⌧H(m)
⌧

H(m)
⌧,nH(m)
⌧,n

m�1[

`=1

F (`)
n

m�1[

`=1

F (`)
n

bH(m)
⌧
bH(m)
⌧

r
p

d

n↵/2d

r
p

d

n↵/2d

Figure 7: Illustration of the sets {F (`)
n }m−1

`=1 with re-
spect to H(m)

τ . The grid represents a r
√
d/nα/2d cover-

ing of X . The yellow region is Ĥ(m)
τ . The area enclosed

by the solid red line (excluding Ĥ(m)
τ ) is H(m)

τ . H(m)
τ,n ,

shown by a dashed red line, is obtained by inflatingH(m)
τ by

r
√
d/nα/2d. The grey shaded region represents

⋃m−1
`=1 F

(`)
n .

By our definition,
⋃m−1
`=1 F

(`)
n contains the cells which are

entirely outsideH(m)
τ . However, the inflationH(m)

τ,n is such
that Ĥ(m)

τ ∪ H(m)
τ,n ∪

⋃m−1
`=1 F

(`)
n = X . As n → ∞,

H(m)
τ,n → H(m)

τ .

vol(H(m)
τ,n )� vol(H(m)

τ,n ), and λ(m) � λ(m+1) MF-GP-UCB achieves signficantly better regret than
GP-UCB. When the sets become larger (the approximation becomes worse) and the costs become

comparable the bound decays gracefully. The λ(m)
√
nαΛΨnαΛ

(H(m)
τ,n ) terms can be made arbitrarily

small by picking large enough ρ, provided H(m)
τ,n is still small relative to X . On the other hand the

diam(Ĥ(m)
τ )polylog(nΛ)/poly(γ) terms could be big if γ is too small. MF-GP-UCB requires that

γ will be chosen large enough so that the above term remains small relative to
√
nΛβnΛΨnΛ(H(m)

τ )

which is not too restrictive since we expect Ĥ(m)
τ to be much smaller thanH(m)

τ . Our analysis reveals
that an optimal choice for the SE kernel scales γ(m) � (λ(m)ζ(m)/(tλ(m+1)))1/(d+2) at time step t.
However this observation is of little practical consequence as the leading constant depends on several
problem dependent quantities such as Ψn(Xg). Our heuristics for setting γ seemed to work well in
practice (see Section 5).

Proof of Theorem 10. We will study MF-GP-UCB after n time steps regardless of the queried
fidelities and bound R̃n. Then we will bound the number of playsN within capital Λ. For the analysis,
at time n we will consider a r

√
d

2n
α
2d

-covering of the space X of size n
α
2 . For instance, if X = [0, r]d a

sufficient discretisation would be an equally spaced grid having nα/2d points per side. Let {ai,n}n
α
2

i=1

be the points in the covering, Fn = {Ai,n}n
α
2

i=1 be the cells in the covering, i.e. Ai,n is the set of
points which are closest to ai,n in the covering. Next we define another partitioning of the space
similar in spirit to (5) using this partitioning. First let F (1)

n = {Ai,n ∈ Fn : Ai,n ⊂ J (1)
max(τ,ργ)}.

Next,

F (m)
n =

{
Ai,n ∈ Fn : Ai,n ⊂ J

(m)

max(τ,ργ) ∧ Ai,n /∈
m−1⋃

`=1

F (`)
n

}
for 2 ≤ m ≤M − 1.

(6)

Note that F (m)
n ⊂ Fn. We define the following disjoint subsets {F (m)

n }M−1
m=1 of X via F (m)

n =⋃
Ai,n∈F (m)

n
Ai,n. We have illustrated

⋃m−1
`=1 F

(`)
n with respect toH(m)

τ in Figure 7. By noting that

H(1)
τ,n = H(1) we make the following observation,

T (m)
n (X ) ≤

m−1∑

`=1

T (m)
n (F (`)

n ) + T (m)
n (H(m)

τ,n ) + T (m)
n (Ĥ(m)). (7)

This follows by noting thatH(m)
τ,n ∪ Ĥ(m) ⊂ ⋃m−1

`=1 F
(`)
n (See Fig. 7). To control R̃n we will bound

control each of these terms individually. First we focus on Ĥ(m) for which we use the following
lemma. The proof is given in Section C.0.1.

Lemma 11. Let f ∼ GP(0, κ), f : X → R and we observe y = f(x) + ε where ε ∼ N (0, η2). Let
A ⊂ X such that its L2 diameter diam(A) ≤ D. Say we have n queries (xt)

n
t=1 of which s points

16



are in A. Then the posterior variance of the GP, κ′(x, x) at any x ∈ A satisfies

κ′(x, x) ≤
{

CSED
2 + η2

s if κ is the SE kernel,
CMatD + η2

s if κ is the Matérn kernel,

for appropriate constants CSE , CMat.

First consider the SE kernel. At time t consider any εn = γ√
8CSEβn

covering (Bi)
εn
i=1 of Ĥ(m).

The number of queries inside any Bi of this covering at time n will be at most 2η2

γ2 βn + 1. To see
this, assume we have already queried 2η2/γ2 + 1 times inside Bi at time t ≤ n. By Lemma 11 the
maximum variance in Ai can be bounded by

max
x∈Ai

κ
(m)
t−1(x, x) ≤ CSE(2εn)2 +

η2

T
(m)
t (Ai)

<
γ2

βn
.

Therefore, β1/2
t σ

(m)
t−1(x) ≤ β1/2

n σ
(m)
t−1(x) < γ and we will not query insideAi until time n. Therefore,

the number of mth fidelity queries is bounded by Ωεn(Ĥ(m))
(

2η2

γ2 βn + 1
)

. The proof for the Matérn

kernel follows similarly using εn = γ2

8CMatβn
. Next, we bound T (m)

n (H(m)
τ,n ) for which we will use

the following Lemma. The proof is given in Section C.0.2.

Lemma 12. For βt as given in Theorem 10, we have the following with probability > 1− 5δ/6.

∀m ∈ {1, . . . ,M}, ∀ t ≥ 1, ∆(m)(xt) = f? − f (m)(xt) ≤ 2βtσ
(m)
t−1(xt) + 1/t2.

First, we will analyse the quantity R̃(m)
n =

∑
t:mt=m

xt∈H(m)
τ,n

∆(m)(xt) for m < M . Lemma 12 gives us

R̃
(m)
n ≤ 2β

1/2
n
∑
σ

(m)
t−1(xt) + π2/6. Then, using Lemma 9 and Jensen’s inequality we have,

(
R̃(m)
n − π2

6

)2

≤ 4βt T
(m)
n (H(m)

τ,n )
∑

t:mt=m

xt∈H(m)
τ,n

(
σ

(m)
t−1

)2
(xt) ≤ C1βt T

(m)
n (H(m)

τ,n )Ψ
T

(m)
n (H(m)

τ,n )
(H(m)

τ,n ).

(8)

We therefore have, R̃(m)
n ≤

√
C1nβnΨn(H(m)

τ,n ) + π2/6 since trivially T (m)
n (H(m)

τ,n ) < n. However,

since ∆(m)(x) > τ for x ∈ H(m)
τ,n we have T (m)

n (H(m)
τ,n ) < 1

τ

(√
C1nβnΨn(H(m)

τ,n ) + π2/6
)

.

Remark 13. Since Ψn(·) is typically sublinear in n, it is natural to ask if we can recursively
apply this to obtain a tighter bound on T (m)

n (H(m)
τ,n ). For instance, since Ψn(·) is polylog(n) for

the SE kernel (Srinivas et al. [28], Theorem 5) by repeating the argument above once we get,

T
(m)
n (H(m)

τ,n ) ∈ O
(

1
τ3/2

√
C1n1/2polylog(n)βnΨτ−3/2n1/2polylog(n)(H(m)

τ,n )
)

. However, while this
improves the dependence on n it worsens the dependence on τ . In fact, using a discretisation
argument similar to that in Lemma 14 and the variance bound in Lemma 11, a polylog(n)/poly(τ)
bound can be shown, with the poly(τ) term being τd+2 for the SE kernel and τ2d+2 for the Matérn
kernel. In fact, the same argument can be applied to GP-UCB to show that the number of plays on a
τ -suboptimal set is polylog(n)/poly(τ). If we are to avoid this 1/poly(τ) dependence for GP-UCB
the best you can achieve for GP-UCB is a O(n1/2) rate for the SE kernel and O(n

1
2 +

d(d+1)
2ν+d(d+1) ) for

the Matérn kernel.

Finally, to control the first term in (7), we will bound T (>m)
n (F (m)

n ). To that end we provide the
following Lemma. The proof is given in Section C.0.3.

Lemma 14. Consider any Ai,n ∈ F (m)
n where F (m)

n is as defined in (6) for any α ∈ (0, 1). Let ρ, βt
be as given in Theorem 10, Then for all u ≥ max{3, (2(ρ− ρ0)η)−2/3} we have,

P(T (>m)
n (Ai,n) > u) ≤ δ

π2
· 1

u1+4/α
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We will use the above result with u = nα/2. Applying the union bound we have,

P
(
∀m ∈ {1, . . . ,M}, T (>m)

n (F (m)
n ) > |F (m)

n |nα/2
)
≤

M∑

m=1

P
(
T (>m)
n (F (m)

n ) > |F (m)
n |nα/2

)

≤
M∑

m=1

∑

Ai,n∈F (m)
n

P
(
T (>m)
n (Ai,n) > nα/2

)
≤

M∑

m=1

|F (m)
n | δ

π2

1

n2+α/2
≤ |Fn|

δ

π2

1

n2+α/2
=

δ

π2

1

n2

Applying the union bound once again, we have T (>m)
n (F (m)

n ) ≤ nα for all m and all n ≥
max{3, (2(ρ − ρ0)η)2/3}2/α with probability > 1 − δ/6. Henceforth, all statements we make
will make use of the results in Lemmas 11, 12 and 14 and will hold with probability > 1− δ.

First using equation (7) and noting T (m)
n (F (`)

n ) ≤ T
(>`)
n (F (`)

n ) for ` < m we bound T (m)
n (X ) for

m < M .

T (m)
n (X ) ≤ (m− 1)nα +

1

τ

(√
C1nβnΨn(H(m)

τ,n ) +
π2

6

)
+ Ωεn(Ĥ(m))

(
2η2

γ2
βn + 1

)
.

Using this bound we can control R̃n,1 in (4). To bound R̃n,2 and R̃n,3 we set Z = H(M)
τ,nΛ and use

Lemma 12 noting that when mt = M , rt = ∆(M)(xt). Using similar calculations to (8) and as

T
(M)
n (H(m)

τ,n ) ≤ n, we have R̃n,2 ≤
√
C1nβnΨn(H(m)

τ,n ) +
∑

xt∈Z 1/t2. Next, using Lemma 14

and observing Z = H(M)
τ,n ⊂

⋃M−1
`=1 F

(m)
n ⊂

̂
H(M), we have,

R̃n,3 =
∑

t:mt=M
xt∈Z

(
f? − f (M)(xt)

)
≤

∑

t:mt=M

xt∈
⋃M−1
`=1 F(m)

n

2β
1/2
t σ

(m)
t−1(xt) +

∑

xt∈Z

1

t2

≤
√
C1MnαβnΨMnα(

̂
H(M)) +

∑

xt∈Z

1

t2
.

Plugging these bounds back into (4), we obtain a bound on the regret similar to the one given in the
theorem except with n replaced by 2nΛ. The last step in the proof will be to show that for sufficiently
large Λ, N ≤ 2nΛ which will complete the proof. For this we turn back to our bounds for T (m)

n (X ),
m < M . Next, we can show that the following term upper bounds the number of queries at fidelities
less than M ,

(M − 1)nα +

M−1∑

m=1

1

τ

(√
2C1nΛβ2nΛ

Ψ2nΛ
(H(m)

τ,nΛ) +
π2

6

)
+

M−1∑

m=1

Ωεn(Ĥ(m))

(
2η2

γ2
βn + 1

)
.

Assume n0 is large enough so that n0 ≥ max{3, (2(ρ− ρ0)η)−2/3}2/α and for all n ≥ n0, n/2 is
larger than the above upper bound. We can find such an n0 since the bound is o(n). Therefore, for
all n ≥ n0, T (M)

n (X ) > n/2. Since our bounds hold with probability > 1 − δ uniformly over n
we can invert the above inequality to bound the number of plays N after capital Λ: N ≤ 2Λ/λ(M)

with probability > 1 − δ if Λ ≥ Λ0 = λ(M)(n0 + 1). The theorem follows with the observation
N ≥ nΛ =⇒ H(m)

τ,N ⊂ H
(m)
τ,nΛ =⇒ ΨN (H(m)

τ,N ) ≤ ΨN (H(m)
τ,nΛ) ≤ Ψ2nΛ

(H(m)
τ,nΛ).

C.0.1 Proof of Lemma 11

Since the posterior variance only decreases with more observations, we can upper bound κ′(x, x)
for any x ∈ A by considering its posterior variance with only the s observations in A. Next the
maximum variance within A occurs if we pick 2 points x1, x2 that are distance D apart and have all
observations at x1; then x2 has the highest posterior variance. Therefore, we will bound κ′(x, x) for
any x ∈ A with κ(x2, x2) in the above scenario. Let κ0 = κ(x, x) and κ(x, x′) = κ0φ(‖x− x′‖2),
where φ(·) ≤ 1 depends on the kernel. Denote the gram matrix in the scenario described above by
∆ = κ011

> + η2I . Then using the Sherman-Morrison formula, the posterior variance (1) can be
bounded via,

κ′(x, x) ≤ κ′(x2, x2) = κ(x2, x2)− [κ(x1, x2)1]
>

∆−1 [κ(x1, x2)1]
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= κ0 − κ0φ
2(D)1>


κ0

η2
I −

(
κ0

η2

)2

11>

1 + κ0

η2 s


1 = κ0 − κ0φ

2(D)


κ0

η2
s−

(
κ0

η2

)2

s2

1 + κ0

η2 s




= κ0 − κ0φ
2(D)

s
η2

κ0
+ s

=
1

1 + η2

κ0s

(
κ0 − κ0φ

2(D) +
η2

s

)

≤ κ0(1− φ2(D)) +
η2

s
.

For the SE kernel φ2(D) = exp
(
−D2

2h2

)2

= exp
(
−D2

h2

)
≤ 1 − D2

h2 . Plugging this into the bound

above retrieves the first result with CSE = κ0/h
2. For the Matérn kernel we use a Lipschtiz constant

LMat of φ. Then 1− φ2(D) = (1− φ(D))(1 + φ(D)) ≤ 2(φ(0)− φ(D)) ≤ 2LMatD. We get the
second result with CMat = 2κ0LMat. Since the SE kernel decays fast, we get a stronger result on its
posterior variance which translates to a better bound in our theorems.

C.0.2 Proof of Lemma 12

The first part of the proof mimics the arguments in Lemmas 5.6, 5.7 of Srinivas et al. [28]. By
assumption 8 and the union bound we can show,

P
(
∀m ∈ {1, . . . ,M}, ∀ i ∈ {1, . . . , d}, ∀x ∈ X ,

∣∣∣∂f
(m)(x)

∂xi

∣∣∣ < b log

(
6Mad

δ

))
≥ 1− δ

6
.

Now we construct a discretisation Ft ofX of size (νt)
d such that we have for all x ∈ X , ‖x−[x]t‖1 ≤

rd/νt. Here [x]t is the closest point to x in the discretisation. (Note that this is different from the
discretisation appearing in Theorem 10 even though we have used the same notation). By choosing
νt = t2brd

√
6Mad/δ and using the above we have

∀x ∈ X , |f (m)(x)− f (m)([x]t)| ≤ b log(6Mad/δ)‖x− [x]t‖1 ≤ 1/t2 (9)

for all f (m)’s with probability > 1− δ/6.

Noting that βt ≥ 2 log(M |Ft|π2t2/2δ) for the given choice of νt we have the following with
probability > 1− δ/3.

∀ t ≥ 1, ∀m ∈ {1, . . . ,M}, ∀ a ∈ Ft, |f (m)(a)− µ(m)
t−1(a)| ≤ β

1/2
t σ

(m)
t−1(a). (10)

The proof uses Gaussian concentration by only conditioning on D(m)
t . Note that instead of a fixed set

over all t, we change the set at which we have confidence based on the discretisation. Similarly we
can show that with probability > 1 − δ/3 we also have confidence on the decisions xt at all time
steps. Precisely,

∀ t ≥ 1, ∀m ∈ {1, . . . ,M}, |f (m)(xt)− µ(m)
t−1(xt)| ≤ β

1/2
t σ

(m)
t−1(xt). (11)

Using (9),(10) and (11) the following statements hold with probability > 1 − 5δ/6. First, using
assumption A2 we can upper bound f? by,

f? ≤ f (m)(x?) + ζ(m) ≤ f (m)([x?]t) + ζ(m) +
1

t2
≤ ϕ

(m)
t ([x?]t) +

1

t2
. (12)

Since the above holds for all m, we have f? ≤ ϕt([x?]t) + 1/t2. Now, we bound ∆(m)(xt).

∆(m)(xt) = f? − f (m)(xt)− ζ(m) ≤ ϕt([x?]t) +
1

t2
− f (m)(xt)− ζ(m)

≤ ϕt(xt)− f (m)(xt)− ζ(m) +
1

t2
≤ ϕ

(m)
t (xt)− µ(M)

t−1 (xt) + β
1/2
t σ

(M)
t−1 (xt)− ζ(m) +

1

t2

≤ 2β
1/2
t σ

(M)
t−1 (xt) +

1

t2
.
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C.0.3 Proof of Lemma 14

First, we will invoke the same discretisation used in the proof of Lemma 12 via which we have
ϕt([x?]t) ≥ f? − 1/t2 (12). (Therefore, Lemma 14 holds only with probability > 1 − δ/6,
but this event has already been accounted for in Lemma 12.) Let bi,n,t = argmaxx∈Ai,n ϕt(x)
be the maximiser of the upper confidence bound in Ai,n at time t. Now using the relaxation
xt ∈ Ai,n =⇒ ϕt(bi,n,t) > ϕt([x?]t) =⇒ ϕ

(m)
t (bi,n,t) > f? − 1/t2 and proceeding,

P(T (>m)
n (Ai,n) > u) ≤ P

(
∃t : u+ 1 ≤ t ≤ n, ϕ

(m)
t (bi,n,t) > f? − 1/t2 ∧ β

1/2
t σ

(m)
t−1(bi,n,t) < γ

)

≤
n∑

t=u+1

P
(
µ

(m)
t−1(bi,n,t)− f (m)(bi,n,t) > ∆(m)(bi,n,t)− β1/2

t σ
(m)
t−1(bi,n,t)− 1/t2 ∧

β
1/2
t σ

(m)
t−1(bi,n,t) < γ

)

≤
n∑

t=u+1

P
(
µ

(m)
t−1(bi,n,t)− f (m)(bi,n,t) > (ρ− 1)β

1/2
t σ

(m)
t−1(bi,n,t)− 1/t2

)

≤
n∑

t=u+1

PZ∼N (0,1)

(
Z > (ρ0 − 1)β

1/2
t

)
≤

n∑

t=u+1

1

2
exp

(
(ρ0 − 1)2

2
βt

)
(13)

≤ 1

2

(
δ

Mπ2

)(ρ0−1)2 n∑

t=u+1

t−(ρ0−1)2(2+2d) ≤ δ

Mπ2
u−(ρ0−1)2(2+2d)+1 ≤ δ

π2

1

u1+4/α
.

In the second step we have rearranged the terms and used the definition of ∆(m)(x). In the third step,

as Ai,n ⊂ J
(m)

max(τ,ργ), ∆(m)(bi,n,t) > ργ > ρβ
1/2
t σ

(m)
t−1(bi,n,t). In the fourth step we have used the

following facts, t > u ≥ max{3, (2(ρ − ρ0)η)−2/3}, Mπ2/2δ > 1 and σ(m)
t−1(bi,n,t) > η/

√
t to

conclude,

(ρ− ρ0)
η
√

4 log(t)√
t

>
1

t2
=⇒ (ρ− ρ0) ·

√
2 log

(
Mπ2t2

2δ

)
· η√

t
>

1

t2

=⇒ (ρ− ρ0)β
1/2
t σ

(m)
t−1(bi,n,t) >

1

t2
.

In the seventh step of (13) we have bound the sum by an integral and used ρ0 ≥ 2 twice. Finally, the
last step follows by ρ0 ≥ 1 +

√
(1 + 2/α)/(1 + d) and noting M ≥ 1.

D Addendum to Experiments

D.1 Other Baselines

For MF-NAIVE we limited the number of first fidelity evalutions to max
(

1
2

Λ
λ(1) , 500

)
where Λ was

the total budget used in the experiment. The 500 limit was set to avoid unnecessary computation –
for all of these problems, 500 queries are not required to find the maximum. While there are other
methods for multi-fidelity optimisation (discussed under Related Work) none of them had made their
code available nor were their methods straightforward to implement - this includes MF-SKO.

In addition to the baselines presented in the figures, we also compared our method to the following
methods. The first two are single fidelity and the last two are mutlti-fidelity methods.

• The probability of improvement (PI) criterion for BO. We found that in general either GP-UCB
or EI performed better.
• Querying uniformly at random at the highest fidelity and taking the maximum. On all problems

this performed worse than other methods.
• A variant of MF-NAIVE where instead of GP-UCB we queried at the first fidelity uniformly at

random. On some problems this did better than querying with GP-UCB, probably since unlike
GP-UCB it wasn’t stuck at the maximum of f (1). However, generally it performed worse.
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• The multi-fidelity method from Forrester et al. [9] also based on GPs. We found that this method
didn’t perform as desired: in particular, it barely queried beyond the first fidelity.

A straightforward way to incorporate lower fidelity information to GP-UCB and EI is to query at
lower fidelities and use them in learning the kernel κ by jointly maximising the marginal likelihood.
While the idea seems natural, we got mixed results in practice. On some problems this improved
the performance of all GP methods (including MF-GP-UCB), but on others all performed poorly.
One explanation is that while lower fidelities approximate function values, they are not always best
described by the same kernel. The results presented do not use lower fidelities to learn κ as it was
more robust. For MF-GP-UCB, each κ(m) was learned independently using only the queries at
fidelity m.

D.2 Description of Synthetic Experiments

The following are the descriptions of the synthetic functions used. The first three functions and their
approximations were taken from [32].

Currin exponential function: The domain is X = [0, 1]2. The second and first fidelity functions
are,

f (2)(x) =

(
1− exp

( −1

2x2

))(
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20

)
,

f (1)(x) =
1

4
f (2)(x1 + 0.05, x2 + 0.05) +

1

4
f (2)(x1 + 0.05,max(0, x2 − 0.05))+

1

4
f (2)(x1 − 0.05, x2 + 0.05) +

1

4
f (2)(x1 − 0.05,max(0, x2 − 0.05)).

Park function: The domain is X = [0, 1]4. The second and first fidelity functions are,

f (2)(x) =
x1

2

(√
1 + (x2 + x2

3)
x4

x2
1

− 1

)
+ (x1 + 3x4) exp(1 + sin(x3)),

f (1)(x) =

(
1 +

sin(x1)

10

)
f (2)(x)− 2x2

1 + x2
2 + x2

3 + 0.5.

Borehole function: The second and first fidelity functions are,

f (2)(x) =
2πx3(x4 − x6)

log(x2/x1)
(

1 + 2x7x3

log(x2/x1)x2
1x8

+ x3

x5

) , f (1)(x) =
5x3(x4 − x6)

log(x2/x1)
(

1.5 + 2x7x3

log(x2/x1)x2
1x8

+ x3

x5

) .

The domain of the function is [0.05, 0.15; 100, 50K; 63.07K, 115.6K;
990, 1110; 63.1, 116; 700, 820; 1120, 1680; 9855, 12045] but we first linear transform the vari-
ables to lie in [0, 1]8.

Hartmann-3D function: The M th fidelity function is f (M)(x) =∑4
i=1 αi exp

(
−∑3

j=1Aij(xj − Pij)2
)

where A,P ∈ R4×3 are fixed matrices given be-
low and α = [1.0, 1.2, 3.0, 3.2]. For the lower fidelities we use the same form except change α to
α(m) = α+ (M −m)δ where δ = [0.01,−0.01,−0.1, 0.1] and M = 3. The domain is X = [0, 1]3.

A =




3 10 30
0.1 10 35
3 10 30

0.1 10 35


 , P = 10−4 ×




3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828




Hartmann-6D function: The 6-D Hartmann takes the same form as above except A,P ∈ R4×6 are
as given below. We use the same modification to obtain the lower fidelities using M = 4.

A =




10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14


 , P = 10−4×




1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381
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Figure 8: The simple regret S(Λ) against the spent capitcal Λ on the synthetic functions. The title states the
function, its dimensionality, the number of fidelities and the costs we used for each fidelity in the experiment.
All curves barring DiRect (which is a deterministic), were produced by averaging over 20 experiments. The
error bars indicate one standard error.
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Figure 9: (a) illustrates the functions used in the Bad Currin Exponential experiment where we took f (1) =

−f (2) and (b) shows the simple regret for this experiment. See caption under Fig. 8 for more details.

D.3 More Results on Synthetic Experiments

Figure 8 shows the simple regret S(Λ) for the synthetic functions not presented in the main text.

It is natural to ask how MF-GP-UCB performs with bad approximations at lower fidelities. We
found that our implementation with the heuristics suggested in Section 5 to be quite robust. We
demonstrate this using the Currin exponential function, but using the negative of f (2) as the first
fidelity approximation, i.e. f (1)(x) = −f (2)(x). Figure 9 illustrates f (1), f (2) and gives the simple
regret S(Λ). Understandably, it loses to the single fidelity methods since the first fidelity queries
are wasted and it spends some time at the second fidelity recovering from the bad approximation.
However, it eventually is able to achieve low regret.

Finally, we present results on the cumulative regret for the synthetic functions in Figure 10.
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