
Neural Architecture Search
with Bayesian Optimisation and Optimal Transport

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabás Póczos, Eric P Xing
Carnegie Mellon University, Petuum Inc.

{kandasamy, willie, schneide, bapoczos, epxing}@cs.cmu.edu

Abstract
Bayesian Optimisation (BO) refers to a class of methods for global optimisation of
a function f which is only accessible via point evaluations. It is typically used in
settings where f is expensive to evaluate. A common use case for BO in machine
learning is model selection, where it is not possible to analytically model the gener-
alisation performance of a statistical model, and we resort to noisy and expensive
training and validation procedures to choose the best model. Conventional BO
methods have focused on Euclidean and categorical domains, which, in the context
of model selection, only permits tuning scalar hyper-parameters of machine learn-
ing algorithms. However, with the surge of interest in deep learning, there is an
increasing demand to tune neural network architectures. In this work, we develop
NASBOT, a Gaussian process based BO framework for neural architecture search.
To accomplish this, we develop a distance metric in the space of neural network
architectures which can be computed efficiently via an optimal transport program.
This distance might be of independent interest to the deep learning community as it
may find applications outside of BO. We demonstrate that NASBOT outperforms
other alternatives for architecture search in several cross validation based model
selection tasks on multi-layer perceptrons and convolutional neural networks.

1 Introduction

In many real world problems, we are required to sequentially evaluate a noisy black-box function
f with the goal of finding its optimum in some domain X . Typically, each evaluation is expensive
in such applications, and we need to keep the number of evaluations to a minimum. Bayesian
optimisation (BO) refers to an approach for global optimisation that is popularly used in such settings.
It uses Bayesian models for f to infer function values at unexplored regions and guide the selection
of points for future evaluations. BO has been successfully applied for many optimisation problems in
optimal policy search, industrial design, and scientific experimentation. That said, the quintessential
use case for BO in machine learning is model selection [14, 40]. For instance, consider selecting
the regularisation parameter λ and kernel bandwidth h for an SVM. We can set this up as a zeroth
order optimisation problem where our domain is a two dimensional space of (λ, h) values, and each
function evaluation trains the SVM on a training set, and computes the accuracy on a validation set.
The goal is to find the model, i.e. hyper-parameters, with the highest validation accuracy.

The majority of the BO literature has focused on settings where the domain X is either Euclidean
or categorical. This suffices for many tasks, such as the SVM example above. However, with
recent successes in deep learning, neural networks are increasingly becoming the method of choice
for many machine learning applications. A number of recent work have designed novel neural
network architectures to significantly outperform the previous state of the art [12, 13, 37, 45]. This
motivates studying model selection over the space of neural architectures to optimise for generalisation
performance. A critical challenge in this endeavour is that evaluating a network via train and validation
procedures is very expensive. This paper proposes a BO framework for this problem.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

While there are several approaches to BO, those based on Gaussian processes (GP) [35] are most
common in the BO literature. In its most unadorned form, a BO algorithm operates sequentially,
starting at time 0 with a GP prior for f ; at time t, it incorporates results of evaluations from 1, . . . , t−1
in the form of a posterior for f . It then uses this posterior to construct an acquisition function ϕt,
where ϕt(x) is a measure of the value of evaluating f at x at time t if our goal is to maximise f .
Accordingly, it chooses to evaluate f at the maximiser of the acquisition, i.e. xt = argmaxx∈X ϕt(x).
There are two key ingredients to realising this plan for GP based BO. First, we need to quantify the
similarity between two points x, x′ in the domain in the form of a kernel κ(x, x′). The kernel is
needed to define the GP, which allows us to reason about an unevaluated value f(x′) when we have
already evaluated f(x). Secondly, we need a method to maximise ϕt.

These two steps are fairly straightforward in conventional domains. For example, in Euclidean spaces,
we can use one of many popular kernels such as Gaussian, Laplacian, or Matérn; we can maximise
ϕt via off the shelf branch-and-bound or gradient based methods. However, when each x ∈ X is a
neural network architecture, this is not the case. Hence, our challenges in this work are two-fold.
First, we need to quantify (dis)similarity between two networks. Intuitively, in Fig. 1, network 1a is
more similar to network 1b, than it is to 1c. Secondly, we need to be able to traverse the space of
such networks to optimise the acquisition function. Our main contributions are as follows.
1. We develop a (pseudo-)distance for neural network architectures called OTMANN (Optimal

Transport Metrics for Architectures of Neural Networks) that can be computed efficiently via an
optimal transport program.

2. We develop a BO framework for optimising functions on neural network architectures called
NASBOT (Neural Architecture Search with Bayesian Optimisation and Optimal Transport). This
includes an evolutionary algorithm to optimise the acquisition function.

3. Empirically, we demonstrate that NASBOT outperforms other baselines on model selection tasks
for multi-layer perceptrons (MLP) and convolutional neural networks (CNN). Our python imple-
mentations of OTMANN and NASBOT are available at github.com/kirthevasank/nasbot.

Related Work: Recently, there has been a surge of interest in methods for neural architecture
search [1, 6, 8, 21, 25, 26, 30, 32, 36, 41, 51–54]. We discuss them in detail in the Appendix due to
space constraints. Broadly, they fall into two categories, based on either evolutionary algorithms (EA)
or reinforcement learning (RL). EA provide a simple mechanism to explore the space of architectures
by making a sequence of changes to networks that have already been evaluated. However, as we will
discuss later, they are not ideally suited for optimising functions that are expensive to evaluate. While
RL methods have seen recent success, architecture search is in essence an optimisation problem –
find the network with the lowest validation error. There is no explicit need to maintain a notion of
state and solve credit assignment [43]. Since RL is a fundamentally more difficult problem than
optimisation [16], these approaches need to try a very large number of architectures to find the
optimum. This is not desirable, especially in computationally constrained settings.

None of the above methods have been designed with a focus on the expense of evaluating a neural
network, with an emphasis on being judicious in selecting which architecture to try next. Bayesian
optimisation (BO) uses introspective Bayesian models to carefully determine future evaluations and
is well suited for expensive evaluations. BO usually consumes more computation to determine future
points than other methods, but this pays dividends when the evaluations are very expensive. While
there has been some work on BO for architecture search [2, 15, 28, 40, 44], they have only been
applied to optimise feed forward structures, e.g. Fig. 1a, but not Figs. 1b, 1c. We compare NASBOT
to one such method and demonstrate that feed forward structures are inadequate for many problems.

2 Set Up
Our goal is to maximise a function f defined on a space X of neural network architectures. When
we evaluate f at x ∈ X , we obtain a possibly noisy observation y of f(x). In the context of
architecture search, f is the performance on a validation set after x is trained on the training set. If
x? = argmaxX f(x) is the optimal architecture, and xt is the architecture evaluated at time t, we
want f(x?)−maxt≤n f(xt) to vanish fast as the number of evaluations n→∞. We begin with a
review of BO and then present a graph theoretic formalism for neural network architectures.

2.1 A brief review of Gaussian Process based Bayesian Optimisation
A GP is a random process defined on some domain X , and is characterised by a mean function
µ : X → R and a (covariance) kernel κ : X 2 → R. Given n observationsDn = {(xi, yi)}ni=1, where

2

https://github.com/kirthevasank/nasbot

0: ip
(235)

1: conv3, 16
(16)

2: conv3, 16
(256)

3: conv3, 32
(512)

4: conv5, 32
(1024)

5: max-pool, 1
(32)

6: fc, 16
(512)

7: softmax
(235)

8: op
(235)

(a)

0: ip
(235)

1: conv3, 16
(16)

2: conv3, 16
(256)

3: conv3, 16
(256)

4: conv3, 16
(256)

5: conv5, 32
(1024)

6: max-pool, 1
(32)

7: fc, 16
(512)

8: softmax
(235)

9: op
(235)

(b)

0: ip
(240)

1: conv7, 16
(16)

2: conv5, 32
(512)

3: conv3 /2, 16
(256)

4: conv3, 16
(256)

5: avg-pool, 1
(32)

6: max-pool, 1
(16)

7: max-pool, 1
(16)

8: fc, 16
(512)

12: fc, 16
(512)

9: conv3, 16
(256)

10: softmax
(120)

13: softmax
(120)

11: max-pool, 1
(16)

14: op
(240)

(c)

Figure 1: An illustration of some CNN
architectures. In each layer, i: indexes
the layer, followed by the label (e.g
conv3), and then the number of units
(e.g. number of filters). The input and
output layers are pink while the decision
(softmax) layers are green.
From Section 3: The layer mass is de-
noted in parentheses. The following are
the normalised and unnormalised dis-
tances d, d̄ . All self distances are 0,
i.e. d(G,G) = d̄(G,G) = 0. Unnor-
malised: d(a, b) = 175.1, d(a, c) =
1479.3, d(b, c) = 1621.4. Normalised:
d̄(a, b) = 0.0286, d̄(a, c) = 0.2395,
d̄(b, c) = 0.2625.

xi ∈ X , yi = f(xi) + εi ∈ R, and εi ∼ N (0, η2), the posterior process f |Dn is also a GP with mean
µn and covariance κn. Denote Y ∈ Rn with Yi = yi, k, k′ ∈ Rn with ki = κ(x, xi), k

′
i = κ(x′, xi),

and K ∈ Rn×n with Ki,j = κ(xi, xj). Then, µn, κn can be computed via,

µn(x) = k>(K + η2I)−1Y, κn(x, x′) = κ(x, x′)− k>(K + η2I)−1k′. (1)

For more background on GPs, we refer readers to Rasmussen and Williams [35]. When tasked with
optimising a function f over a domain X , BO models f as a sample from a GP. At time t, we have
already evaluated f at points {xi}t−1

i=1 and obtained observations {yi}t−1
i=1 . To determine the next point

for evaluation xt, we first use the posterior GP to define an acquisition function ϕt : X → R, which
measures the utility of evaluating f at any x ∈ X according to the posterior. We then maximise the
acquisition xt = argmaxX ϕt(x), and evaluate f at xt. The expected improvement acquisition [31],

ϕt(x) = E
[

max{0, f(x)− τt−1}
∣∣{(xi, yi)}t−1

i=1

]
, (2)

measures the expected improvement over the current maximum value according to the posterior GP.
Here τt−1 = argmaxi≤t−1 f(xi) denotes the current best value. This expectation can be computed in
closed form for GPs. We use EI in this work, but the ideas apply just as well to other acquisitions [3].

GP/BO in the context of architecture search: Intuitively, κ(x, x′) is a measure of similarity
between x and x′. If κ(x, x′) is large, then f(x) and f(x′) are highly correlated. Hence, the GP
effectively imposes a smoothness condition on f : X → R; i.e. since networks a and b in Fig. 1
are similar, they are likely to have similar cross validation performance. In BO, when selecting the
next point, we balance between exploitation, choosing points that we believe will have high f value,
and exploration, choosing points that we do not know much about so that we do not get stuck at a
bad optimum. For example, if we have already evaluated f(a), then exploration incentivises us to
choose c over b since we can reasonably gauge f(b) from f(a). On the other hand, if f(a) has high
value, then exploitation incentivises choosing b, as it is more likely to be the optimum than c.

2.2 A Mathematical Formalism for Neural Networks

Our formalism will view a neural network as a graph whose vertices are the layers of the network.
We will use the CNNs in Fig. 1 to illustrate the concepts. A neural network G = (L, E) is defined
by a set of layers L and directed edges E . An edge (u, v) ∈ E is a ordered pair of layers. In Fig. 1,
the layers are depicted by rectangles and the edges by arrows. A layer u ∈ L is equipped with
a layer label ``(u) which denotes the type of operations performed at the layer. For instance, in
Fig. 1a, ``(1) = conv3, ``(5) = max-pool denote a 3× 3 convolution and a max-pooling operation.
The attribute `u denotes the number of computational units in a layer. In Fig. 1b, `u(5) = 32 and
`u(7) = 16 are the number of convolutional filters and fully connected nodes.

In addition, each network has decision layers which are used to obtain the predictions of the
network. For a classification task, the decision layers perform softmax operations and output the
probabilities an input datum belongs to each class. For regression, the decision layers perform
linear combinations of the outputs of the previous layers and output a single scalar. All networks

3

have at least one decision layer. When a network has multiple decision layers, we average the output
of each decision layer to obtain the final output. The decision layers are shown in green in Fig. 1.
Finally, every network has a unique input layer uip and output layer uop with labels ``(uip) = ip and
``(uop) = op. It is instructive to think of the role of uip as feeding a data point to the network and the
role of uop as averaging the results of the decision layers. The input and output layers are shown in
pink in Fig. 1. We refer to all layers that are not input, output or decision layers as processing layers.

The directed edges are to be interpreted as follows. The output of each layer is fed to each of its
children; so both layers 2 and 3 in Fig. 1b take the output of layer 1 as input. When a layer has
multiple parents, the inputs are concatenated; so layer 5 sees an input of 16 + 16 filtered channels
coming in from layers 3 and 4. Finally, we mention that neural networks are also characterised by the
values of the weights/parameters between layers. In architecture search, we typically do not consider
these weights. Instead, an algorithm will (somewhat ideally) assume access to an optimisation oracle
that can minimise the loss function on the training set and find the optimal weights.

We next describe a distance d : X 2 → R+ for neural architectures. Recall that our eventual goal is
a kernel for the GP; given a distance d, we will aim for κ(x, x′) = e−βd(x,x′)p , where β, p ∈ R+,
as the kernel. Many popular kernels take this form. For e.g. when X ⊂ Rn and d is the L2 norm,
p = 1, 2 correspond to the Laplacian and Gaussian kernels respectively.

3 The OTMANN Distance
To motivate this distance, note that the performance of a neural network is determined by the amount
of computation at each layer, the types of these operations, and how the layers are connected. A
meaningful distance should account for these factors. To that end, OTMANN is defined as the
minimum of a matching scheme which attempts to match the computation at the layers of one
network to the layers of the other. We incur penalties for matching layers with different types of
operations or those at structurally different positions. We will find a matching that minimises these
penalties, and the total penalty at the minimum will give rise to a distance. We first describe two
concepts, layer masses and path lengths, which we will use to define OTMANN.

Layer masses: The layer masses `m : L → R+ will be the quantity that we match between the layers
of two networks when comparing them. `m(u) quantifies the significance of layer u. For processing
layers, `m(u) will represent the amount of computation carried out by layer u and is computed via the
product of `u(u) and the number of incoming units. For example, in Fig. 1b, `m(5) = 32× (16+16)
as there are 16 filtered channels each coming from layers 3 and 4 respectively. As there is no
computation at the input and output layers, we cannot define the layer mass directly as we did for the
processing layers. Therefore, we use `m(uip) = `m(uop) = ζ

∑
u∈PL `m(u) where PL denotes the

set of processing layers, and ζ ∈ (0, 1) is a parameter to be determined. Intuitively, we are using an
amount of mass that is proportional to the amount of computation in the processing layers. Similarly,
the decision layers occupy a significant role in the architecture as they directly influence the output.
While there is computation being performed at these layers, this might be problem dependent – there
is more computation performed at the softmax layer in a 10 class classification problem than in a
2 class problem. Furthermore, we found that setting the layer mass for decisions layers based on
computation underestimates their contribution to the network. Following the same intuition as we did
for the input/output layers, we assign an amount of mass proportional to the mass in the processing
layers. Since the outputs of the decision layers are averaged, we distribute the mass among all
decision layers; that is, if DL are decision layers, ∀u ∈ DL, `m(u) = ζ

|DL|
∑
u∈PL `m(u). In all

our experiments, we use ζ = 0.1. In Fig. 1, the layer masses for each layer are shown in parantheses.

Path lengths from/to uip/uop: In a neural network G, a path from u to v is a sequence of layers
u1, . . . , us where u1 = u, us = v and (ui, ui+1) ∈ E for all i ≤ s − 1. The length of this path is
the number of hops from one node to another in order to get from u to v. For example, in Fig. 1c,
(2, 5, 8, 13) is a path from layer 2 to 13 of length 3. Let the shortest (longest) path length from u to
v be the smallest (largest) number of hops from one node to another among all paths from u to v.
Additionally, define the random walk path length as the expected number of hops to get from u to v, if,
from any layer we hop to one of its children chosen uniformly at random. For example, in Fig. 1c, the
shortest, longest and random walk path lengths from layer 1 to layer 14 are 5, 7, and 5.67 respectively.
For any u ∈ L, let δsp

op(u), δlp
op(u), δrw

op (u) denote the length of the shortest, longest and random walk
paths from u to the output uop. Similarly, let δsp

ip (u), δlp
ip(u), δrw

ip (u) denote the corresponding lengths

4

conv3 conv5 max-pool avg-pool fc
conv3 0 0.2 ∞ ∞ ∞
conv5 0.2 0 ∞ ∞ ∞
max-pool ∞ ∞ 0 0.25 ∞
avg-pool ∞ ∞ 0.25 0 ∞
fc ∞ ∞ ∞ ∞ 0

Table 1: An example label mismatch
cost matrix M . There is zero cost for
matching identical layers, < 1 cost for
similar layers, and infinite cost for dis-
parate layers.

for walks from the input uip to u. As the layers of a neural network can be topologically ordered1, the
above path lengths are well defined and finite. Further, for any s ∈ {sp,lp,rw} and t ∈ {ip,op}, δst (u)
can be computed for all u ∈ L, in O(|E|) time (see Appendix A.3 for details).

We are now ready to describe OTMANN. Given two networks G1 = (L1, E1),G2 = (L2, E2) with
n1, n2 layers respectively, we will attempt to match the layer masses in both networks. We let
Z ∈ Rn1×n2

+ be such that Z(i, j) denotes the amount of mass matched between layer i ∈ G1 and
j ∈ G2. The OTMANN distance is computed by solving the following optimisation problem.

minimise
Z

φlmm(Z) + φnas(Z) + νstrφstr(Z) (3)

subject to
∑
j∈L2

Zij ≤ `m(i),
∑
i∈L1

Zij ≤ `m(j), ∀i, j

The label mismatch term φlmm, penalises matching masses that have different labels, while the
structural term φstr penalises matching masses at structurally different positions with respect to each
other. If we choose not to match any mass in either network, we incur a non-assignment penalty φnas.
νstr > 0 determines the trade-off between the structural and other terms. The inequality constraints
ensure that we do not over assign the masses in a layer. We now describe φlmm, φnas, and φstr.

Label mismatch penalty φlmm: We begin with a label penalty matrix M ∈ RL×L where L is
the number of all label types and M(x, y) denotes the penalty for transporting a unit mass from
a layer with label x to a layer with label y. We then construct a matrix Clmm ∈ Rn1×n2 with
Clmm(i, j) = M(``(i), ``(j)) corresponding to the mislabel cost for matching unit mass from each
layer i ∈ L1 to each layer j ∈ L2. We then set φlmm(Z) = 〈Z,Clmm〉 =

∑
i∈L1,j∈L2

Z(i, j)C(i, j)
to be the sum of all matchings from L1 to L2 weighted by the label penalty terms. This matrix M ,
illustrated in Table 1, is a parameter that needs to be specified for OTMANN. They can be specified
with an intuitive understanding of the functionality of the layers; e.g. many values in M are∞, while
for similar layers, we choose a value less than 1.

Non-assignment penalty φnas: We set this to be the amount of mass that is unassigned in both networks,
i.e. φnas(Z) =

∑
i∈L1

(
`m(i) −

∑
j∈L2

Zij
)

+
∑
j∈L2

(
`m(j) −

∑
i∈L1

Zij
)
. This essentially

implies that the cost for not assigning unit mass is 1. The costs in Table 1 are defined relative to
this. For similar layers x, y, M(x, y)� 1 and for disparate layers M(x, y)� 1. That is, we would
rather match conv3 to conv5 than not assign it, provided the structural penalty for doing so is small;
conversely, we would rather not assign a conv3, than assign it to fc. This also explains why we did
not use a trade-off parameter like νstr for φlmm and φnas – it is simple to specify reasonable values for
M(x, y) from an understanding of their functionality.

Structural penalty φstr: We define a matrix Cstr ∈ Rn1×n2 where Cstr(i, j) is small if layers i ∈ L1

and j ∈ L2 are at structurally similar positions in their respective networks. We then set φstr(Z) =
〈Z,Cstr〉. For i ∈ L1, j ∈ L2, we let Cstr(i, j) = 1

6

∑
s∈{sp, lp, rw}

∑
t∈{ip,op} |δst (i) − δst (j)| be the

average of all path length differences, where δst are the path lengths defined previously. We define
φstr in terms of the shortest/longest/random-walk path lengths from/to the input/output, because they
capture various notions of information flow in a neural network; a layer’s input is influenced by the
paths the data takes before reaching the layer and its output influences all layers it passes through
before reaching the decision layers. If the path lengths are similar for two layers, they are likely to be
at similar structural positions. Further, this form allows us to solve (3) efficiently via an OT program
and prove distance properties about the solution. If we need to compute pairwise distances for several
networks, as is the case in BO, the path lengths can be pre-computed in O(|E|) time, and used to
construct Cstr for two networks at the moment of computing the distance between them.

This completes the description of our matching program. In Appendix A, we prove that (3) can be
formulated as an Optimal Transport (OT) program [47]. OT is a well studied problem with several
efficient solvers [33]. Our theorem below, shows that the solution of (3) is a distance.

1A topological ordering is an ordering of the layers u1, . . . , u|L| such that u comes before v if (u, v) ∈ E .

5

Operation Description
dec_single Pick a layer at random and decrease the number of units by 1/8.
dec_en_masse Pick several layers at random and decrease the number of units by 1/8 for all of them.
inc_single Pick a layer at random and increase the number of units by 1/8.
inc_en_masse Pick several layers at random and increase the number of units by 1/8 for all of them.
dup_path Pick a random path u1, . . . , uk, duplicate u2, . . . , uk−1 and connect them to u1 and uk.
remove_layer Pick a layer at random and remove it. Connect the layer’s parents to its children if necessary.
skip Randomly pick layers u, v where u is topologically before v. Add (u, v) to E .
swap_label Randomly pick a layer and change its label.
wedge_layer Randomly remove an edge (u, v) from E . Create a new layer w and add (u,w), (w, v) to E .

Table 2: Descriptions of modifiers to transform one network to another. The first four change the number of
units in the layers but do not change the architecture, while the last five change the architecture.

Theorem 1. Let d(G1,G2) be the solution of (3) for networks G1,G2. Under mild regularity condi-
tions onM , d(·, ·) is a pseudo-distance. That is, for all networks G1,G2,G3, it satisfies, d(G1,G2) ≥ 0,
d(G1,G2) = d(G2,G1), d(G1,G1) = 0 and d(G1,G3) ≤ d(G1,G2) + d(G2,G3).

For what follows, define d̄(G1,G2) = d(G1,G2)/(tm(G1)+tm(G2)) where tm(Gi) =
∑
u∈Li

`m(u)

is the total mass of a network. Note that d̄ ≤ 1. While d̄ does not satisfy the triangle inequality, it
provides a useful measure of dissimilarity normalised by the amount of computation. Our experience
suggests that d puts more emphasis on the amount of computation at the layers over structure and
vice versa for d̄. Therefore, it is prudent to combine both quantities in any downstream application.
The caption in Fig. 1 gives d, d̄ values for the examples in that figure when νstr = 0.5.

We conclude this section with a couple of remarks. First, OTMANN shares similarities with Wasser-
stein (earth mover’s) distances which also have an OT formulation. However, it is not a Wasserstein
distance itself—in particular, the supports of the masses and the cost matrices change depending
on the two networks being compared. Second, while there has been prior work for defining various
distances and kernels on graphs, we cannot use them in BO because neural networks have additional
complex properties in addition to graphical structure, such as the type of operations performed at
each layer, the number of neurons, etc. The above work either define the distance/kernel between
vertices or assume the same vertex (layer) set [9, 23, 29, 38, 49], none of which apply in our setting.
While some methods do allow different vertex sets [48], they cannot handle layer masses and layer
similarities. Moreover, the computation of the above distances are more expensive than OTMANN.
Hence, these methods cannot be directly plugged into BO framework for architecture search.

In Appendix A, we provide additional material on OTMANN. This includes the proof of Theorem 1,
a discussion on some design choices, and implementation details such as the computation of the path
lengths. Moreover, we provide illustrations to demonstrate that OTMANN is a meaningful distance
for architecture search. For example, a t-SNE embedding places similar architectures close to each
other. Further, scatter plots showing the validation error vs distance on real datasets demonstrate that
networks with small distance tend to perform similarly on the problem.

4 NASBOT
We now describe NASBOT, our BO algorithm for neural architecture search. Recall that in order
to realise the BO scheme outlined in Section 2.1, we need to specify (a) a kernel κ for neural
architectures and (b) a method to optimise the acquisition ϕt over these architectures. Due to space
constraints, we will only describe the key ideas and defer all details to Appendix B.

As described previously, we will use a negative exponentiated distance for κ. Precisely, κ =

αe−βd + ᾱd−β̄d̄, where d, d̄ are the OTMANN distance and its normalised version. We mention
that while this has the form of popular kernels, we do not know yet if it is in fact a kernel. In our
experiments, we did not encounter an instance where the eigenvalues of the kernel matrix were
negative. In any case, there are several methods to circumvent this issue in kernel methods [42].

We use an evolutionary algorithm (EA) approach to optimise the acquisition function (2). For this,
we begin with an initial pool of networks and evaluate the acquisition ϕt on those networks. Then
we generate a set of Nmut mutations of this pool as follows. First, we stochastically select Nmut
candidates from the set of networks already evaluated such that those with higher ϕt values are more
likely to be selected than those with lower values. Then we modify each candidate, to produce a
new architecture. These modifications, described in Table 2, might change the architecture either by

6

Time (hours)
0 2 4 6 8

C
ro
ss

V
al
id
at
io
n
M
S
E

0.7

0.8

0.9

1

1.1

1.2

Blog Feedback, #workers = 2

Time (hours)
0 2 4 6 8

C
ro
ss

V
al
id
at
io
n
M
S
E

0.1

0.15

0.2

0.25

Indoor Location, #workers = 2

Time (hours)
0 2 4 6 8

C
ro
ss

V
al
id
at
io
n
M
S
E

0.6

0.7

0.8

0.9

1

Slice Localisation, #workers = 2

Time (hours)
0 2 4 6 8

C
ro
ss

V
al
id
at
io
n
M
S
E

10
-2

10
-1

Naval Propulsion, #workers = 2

Time (hours)
0 2 4 6 8

C
ro
ss

V
al
id
at
io
n
M
S
E

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Protein, #workers = 2

Time (hours)
0 1 2 3 4 5 6

C
ro
ss

V
al
id
at
io
n
M
S
E

0.7

0.8

0.9

1

1.1

News, #workers = 4

Time (hours)
0 2 4 6 8 10

C
ro
ss

V
al
id
at
io
n
E
rr
or

0.12

0.13

0.14

0.15

0.16

0.17

Cifar10, #workers = 4

EA
RAND

TreeBO
NASBOT

Figure 2: Cross validation results: In all figures, the x axis is time. The y axis is the mean squared error
(MSE) in the first 6 figures and the classification error in the last. Lower is better in all cases. The title of each
figure states the dataset and the number of parallel workers (GPUs). All figures were averaged over at least 5
independent runs of each method. Error bars indicate one standard error.

increasing or decreasing the number of computational units in a layer, by adding or deleting layers,
or by changing the connectivity of existing layers. Finally, we evaluate the acquisition on this Nmut
mutations, add it to the initial pool, and repeat for the prescribed number of steps. While EA works
fine for cheap functions, such as the acquisition ϕt which is analytically available, it is not suitable
when evaluations are expensive, such as training a neural network. This is because EA selects points
for future evaluations that are already close to points that have been evaluated, and is hence inefficient
at exploring the space. In our experiments, we compare NASBOT to the same EA scheme used to
optimise the acquisition and demonstrate the former outperforms the latter.

We conclude this section by observing that this framework for NASBOT/OTMANN has additional
flexibility to what has been described. If one wishes to tune over drop-out probabilities, regularisation
penalties and batch normalisation at each layer, they can be treated as part of the layer label, via an
augmented label penalty matrix M which accounts for these considerations. If one wishes to jointly
tune other scalar hyper-parameters (e.g. learning rate), they can use an existing kernel for euclidean
spaces and define the GP over the joint architecture + hyper-parameter space via a product kernel.
BO methods for early stopping in iterative training procedures [17–20, 22] can be easily incorporated
by defining a fidelity space. Using a line of work in scalable GPs [39, 50], one can apply our methods
to challenging problems which might require trying a very large number (∼100K) of architectures.
These extensions will enable deploying NASBOT in large scale settings, but are tangential to our
goal of introducing a BO method for architecture search.

5 Experiments
Methods: We compare NASBOT to the following baselines. RAND: random search; EA (Evolution-
ary algorithm): the same EA procedure described above. TreeBO [15]: a BO method which only
searches over feed forward structures. Random search is a natural baseline to compare optimisation
methods. However, unlike in Euclidean spaces, there is no natural way to randomly explore the space
of architectures. Our RAND implementation, operates in exactly the same way as NASBOT, except
that the EA procedure is fed a random sample from Unif(0, 1) instead of the GP acquisition each
time it evaluates an architecture. Hence, RAND is effectively picking a random network from the
same space explored by NASBOT; neither method has an unfair advantage because it considers a
different space. While there are other methods for architecture search, their implementations are
highly nontrivial and are not made available.

Datasets: We use the following datasets: blog feedback [4], indoor location [46], slice localisa-
tion [11], naval propulsion [5], protein tertiary structure [34], news popularity [7], Cifar10 [24]. The
first six are regression problems for which we use MLPs. The last is a classification task on images
for which we use CNNs. Table 3 gives the size and dimensionality of each dataset. For the first 6
datasets, we use a 0.6− 0.2− 0.2 train-validation-test split and normalised the input and output to
have zero mean and unit variance. Hence, a constant predictor will have a mean squared error of
approximately 1. For Cifar10 we use 40K for training and 10K each for validation and testing.

7

Method Blog
(60K, 281)

Indoor
(21K, 529)

Slice
(54K, 385)

Naval
(12K, 17)

Protein
(46K, 9)

News
(40K, 61)

Cifar10
(60K, 3K)

Cifar10
150K iters

RAND 0.780
± 0.034

0.115
±0.023

0.758
± 0.041

0.0103
± 0.002

0.948
± 0.024

0.762
±0.013

0.1342
± 0.002

0.0914
± 0.008

EA 0.806
± 0.040

0.147
± 0.010

0.733
± 0.041

0.0079
±0.004

1.010
± 0.038

0.758
±0.038

0.1411
± 0.002

0.0915
± 0.010

TreeBO 0.928
± 0.053

0.168
± 0.023

0.759
± 0.079

0.0102
± 0.002

0.998
± 0.007

0.866
± 0.085

0.1533
± 0.004

0.1121
± 0.004

NASBOT 0.731
±0.029

0.117
±0.008

0.615
±0.044

0.0075
±0.002

0.902
±0.033

0.752
±0.024

0.1209
±0.003

0.0869
±0.004

Table 3: The first row gives the number of samples N and the dimensionality D of each dataset in the form
(N,D). The subsequent rows show the regression MSE or classification error (lower is better) on the test set
for each method. The last column is for Cifar10 where we took the best models found by each method in 24K
iterations and trained it for 120K iterations. When we trained the VGG-19 architecture using our training
procedure, we got test errors 0.1718 (60K iterations) and 0.1018 (150K iterations).

Experimental Set up: Each method is executed in an asynchronously parallel set up of 2-4 GPUs,
That is, it can evaluate multiple models in parallel, with each model on a single GPU. When the
evaluation of one model finishes, the methods can incorporate the result and immediately re-deploy
the next job without waiting for the others to finish. For the blog, indoor, slice, naval and protein
datasets we use 2 GeForce GTX 970 (4GB) GPUs and a computational budget of 8 hours for each
method. For the news popularity dataset we use 4 GeForce GTX 980 (6GB) GPUs with a budget of
6 hours and for Cifar10 we use 4 K80 (12GB) GPUs with a budget of 10 hours. For the regression
datasets, we train each model with stochastic gradient descent (SGD) with a fixed step size of 10−5, a
batch size of 256 for 20K batch iterations. For Cifar10, we start with a step size of 10−2, and reduce
it gradually. We train in batches of 32 images for 60K batch iterations. The methods evaluate between
70-120 networks depending on the size of the networks chosen and the number of GPUs.

Results: Fig. 2 plots the best validation score for each method against time. In Table 3, we present
the results on the test set with the best model chosen on the basis of validation set performance. On
the Cifar10 dataset, we also trained the best models for longer (150K iterations). These results are in
the last column of Table 3. We see that NASBOT is the most consistent of all methods. The average
time taken by NASBOT to determine the next architecture to evaluate was 46.13s. For RAND, EA,
and TreeBO this was 26.43s, 0.19s, and 7.83s respectively. The time taken to train and validate
models was on the order of 10-40 minutes depending on the model size. Fig. 2 includes this time
taken to determine the next point. Like many BO algorithms, while NASBOT’s selection criterion is
time consuming, it pays off when evaluations are expensive. In Appendices B and C, we provide
additional details on the experiment set up and conduct synthetic ablation studies by holding out
different components of the NASBOT framework. We also illustrate some of the best architectures
found—on many datasets, common features were long skip connections and multiple decision layers.

Finally, we note that while our Cifar10 experiments fall short of the current state of the art [25, 26, 53],
the amount of computation in these work is several orders of magnitude more than ours (both the
computation invested to train a single model and the number of models trained). Further, they use
constrained spaces specialised for CNNs, while NASBOT is deployed in a very general model space.
We believe that our results can also be improved by employing enhanced training techniques such as
image whitening, image flipping, drop out, etc. For example, using our training procedure on the
VGG-19 architecture [37] yielded a test set error of 0.1018 after 150K iterations. However, VGG-19
is known to do significantly better on Cifar10. That said, we believe our results are encouraging and
lay out the premise for BO for neural architectures.

6 Conclusion

We described NASBOT, a BO framework for neural architecture search. NASBOT finds better
architectures for MLPs and CNNs more efficiently than other baselines on several datasets. A
key contribution of this work is the efficiently computable OTMANN distance for neural network
architectures, which may be of independent interest as it might find applications outside of BO. Our
code for NASBOT and OTMANN will be made available.

8

Acknolwedgements

We would like to thank Guru Guruganesh and Dougal Sutherland for the insightful discussions. This
research is partly funded by DOE grant DESC0011114, NSF grant IIS1563887, and the Darpa D3M
program. KK is supported by a Facebook fellowship and a Siebel scholarship.

References
[1] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architectures

using reinforcement learning. arXiv preprint arXiv:1611.02167, 2016.
[2] James Bergstra, Daniel Yamins, and David Daniel Cox. Making a science of model search: Hyperparameter

optimization in hundreds of dimensions for vision architectures. 2013.
[3] Eric Brochu, Vlad M. Cora, and Nando de Freitas. A Tutorial on Bayesian Optimization of Expensive Cost

Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning. CoRR,
2010.

[4] Krisztian Buza. Feedback prediction for blogs. In Data analysis, machine learning and knowledge
discovery, pages 145–152. Springer, 2014.

[5] Andrea Coraddu, Luca Oneto, Aessandro Ghio, Stefano Savio, Davide Anguita, and Massimo Figari.
Machine learning approaches for improving condition-based maintenance of naval propulsion plants.
Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime
Environment, 230(1):136–153, 2016.

[6] Corinna Cortes, Xavi Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott Yang. Adanet: Adaptive
structural learning of artificial neural networks. arXiv preprint arXiv:1607.01097, 2016.

[7] Kelwin Fernandes, Pedro Vinagre, and Paulo Cortez. A proactive intelligent decision support system for
predicting the popularity of online news. In Portuguese Conference on Artificial Intelligence, 2015.

[8] Dario Floreano, Peter Dürr, and Claudio Mattiussi. Neuroevolution: from architectures to learning.
Evolutionary Intelligence, 1(1):47–62, 2008.

[9] Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit distance. Pattern Analysis
and applications, 13(1):113–129, 2010.

[10] David Ginsbourger, Janis Janusevskis, and Rodolphe Le Riche. Dealing with asynchronicity in parallel
gaussian process based global optimization. In ERCIM, 2011.

[11] Franz Graf, Hans-Peter Kriegel, Matthias Schubert, Sebastian Pölsterl, and Alexander Cavallaro. 2d image
registration in ct images using radial image descriptors. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 607–614. Springer, 2011.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[13] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. Densely connected convolu-
tional networks. In CVPR, 2017.

[14] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In LION, 2011.

[15] Rodolphe Jenatton, Cedric Archambeau, Javier González, and Matthias Seeger. Bayesian optimization
with tree-structured dependencies. In International Conference on Machine Learning, 2017.

[16] Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. Contextual
decision processes with low bellman rank are pac-learnable. arXiv preprint arXiv:1610.09512, 2016.

[17] Kirthevasan Kandasamy, Gautam Dasarathy, Junier B Oliva, Jeff Schneider, and Barnabás Póczos. Gaussian
process bandit optimisation with multi-fidelity evaluations. In Advances in Neural Information Processing
Systems, pages 992–1000, 2016.

[18] Kirthevasan Kandasamy, Gautam Dasarathy, Junier B Oliva, Jeff Schneider, and Barnabas Poczos. Multi-
fidelity gaussian process bandit optimisation. arXiv preprint arXiv:1603.06288, 2016.

[19] Kirthevasan Kandasamy, Gautam Dasarathy, Barnabas Poczos, and Jeff Schneider. The multi-fidelity
multi-armed bandit. In Advances in Neural Information Processing Systems, pages 1777–1785, 2016.

[20] Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider, and Barnabas Poczos. Multi-fidelity Bayesian
Optimisation with Continuous Approximations. arXiv preprint arXiv:1703.06240, 2017.

[21] Hiroaki Kitano. Designing neural networks using genetic algorithms with graph generation system.
Complex systems, 4(4):461–476, 1990.

[22] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast bayesian optimization
of machine learning hyperparameters on large datasets. arXiv preprint arXiv:1605.07079, 2016.

[23] Risi Imre Kondor and John Lafferty. Diffusion kernels on graphs and other discrete input spaces. In ICML,
volume 2, pages 315–322, 2002.

[24] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images, 2009.
[25] Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang,

and Kevin Murphy. Progressive neural architecture search. arXiv preprint arXiv:1712.00559, 2017.

9

[26] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hierarchical
representations for efficient architecture search. arXiv preprint arXiv:1711.00436, 2017.

[27] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(Nov):2579–2605, 2008.

[28] Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. Towards
automatically-tuned neural networks. In Workshop on Automatic Machine Learning, pages 58–65, 2016.

[29] Bruno T Messmer and Horst Bunke. A new algorithm for error-tolerant subgraph isomorphism detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(5):493–504, 1998.

[30] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan Fink, Olivier Francon, Bala Raju,
Arshak Navruzyan, Nigel Duffy, and Babak Hodjat. Evolving deep neural networks. arXiv preprint
arXiv:1703.00548, 2017.

[31] J.B. Mockus and L.J. Mockus. Bayesian approach to global optimization and application to multiobjective
and constrained problems. Journal of Optimization Theory and Applications, 1991.

[32] Renato Negrinho and Geoff Gordon. Deeparchitect: Automatically designing and training deep architec-
tures. arXiv preprint arXiv:1704.08792, 2017.

[33] Gabriel Peyré and Marco Cuturi. Computational Optimal Transport. Available online, 2017.
[34] PS Rana. Physicochemical properties of protein tertiary structure data set, 2013.
[35] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. Adaptative computation

and machine learning series. University Press Group Limited, 2006.
[36] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Quoc Le, and Alex

Kurakin. Large-scale evolution of image classifiers. arXiv preprint arXiv:1703.01041, 2017.
[37] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-

tion. arXiv preprint arXiv:1409.1556, 2014.
[38] Alexander J Smola and Risi Kondor. Kernels and regularization on graphs. In Learning theory and kernel

machines, pages 144–158. Springer, 2003.
[39] Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. In Advances in

neural information processing systems, pages 1257–1264, 2006.
[40] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian Optimization of Machine Learning

Algorithms. In Advances in Neural Information Processing Systems, 2012.
[41] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies.

Evolutionary computation, 10(2):99–127, 2002.
[42] Dougal J Sutherland. Scalable, Active and Flexible Learning on Distributions. PhD thesis, Carnegie

Mellon University Pittsburgh, PA, 2015.
[43] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT press

Cambridge, 1998.
[44] Kevin Swersky, David Duvenaud, Jasper Snoek, Frank Hutter, and Michael A Osborne. Raiders of the

lost architecture: Kernels for bayesian optimization in conditional parameter spaces. arXiv preprint
arXiv:1409.4011, 2014.

[45] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.

[46] Joaquín Torres-Sospedra, Raúl Montoliu, Adolfo Martínez-Usó, Joan P Avariento, Tomás J Arnau, Mauri
Benedito-Bordonau, and Joaquín Huerta. Ujiindoorloc: A new multi-building and multi-floor database for
wlan fingerprint-based indoor localization problems. In Indoor Positioning and Indoor Navigation (IPIN),
2014 International Conference on, pages 261–270. IEEE, 2014.

[47] Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media, 2008.
[48] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels.

Journal of Machine Learning Research, 11(Apr):1201–1242, 2010.
[49] Walter D Wallis, Peter Shoubridge, M Kraetz, and D Ray. Graph distances using graph union. Pattern

Recognition Letters, 22(6-7):701–704, 2001.
[50] Andrew Wilson and Hannes Nickisch. Kernel interpolation for scalable structured gaussian processes

(kiss-gp). In International Conference on Machine Learning, pages 1775–1784, 2015.
[51] Lingxi Xie and Alan Yuille. Genetic cnn. arXiv preprint arXiv:1703.01513, 2017.
[52] Zhao Zhong, Junjie Yan, and Cheng-Lin Liu. Practical network blocks design with q-learning. arXiv

preprint arXiv:1708.05552, 2017.
[53] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint

arXiv:1611.01578, 2016.
[54] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures for

scalable image recognition. arXiv preprint arXiv:1707.07012, 2017.

10

A Additional Details on OTMANN

A.1 Optimal Transport Reformulation

We begin with a review optimal transport. Throughout this section, 〈·, ·〉 denotes the Frobenius dot
product. 1n,0n ∈ Rn denote a vector of ones and zeros respectively.

A review of Optimal Transport [47]: Let y1 ∈ Rn1
+ , y2 ∈ Rn2

+ be such that 1>n1
y1 = 1>n2

y2. Let
C ∈ Rn1×n2

+ . The following optimisation problem,

minimise
Z

〈Z,C〉 (4)

subject to Z > 0, Z1n2 = y1, Z>1n1 = y2.

is called an optimal transport program. One interpretation of this set up is that y1 denotes the supplies
at n1 warehouses, y2 denotes the demands at n2 retail stores, Cij denotes the cost of transporting a
unit mass of supplies from warehouse i to store j and Zij denotes the mass of material transported
from i to j. The program attempts to find transportation plan which minimises the total cost of
transportation 〈Z,C〉.
OT formulation of (3): We now describe the OT formulation of the OTMANN distance. In ad-
dition to providing an efficient way to solve (3), the OT formulation will allow us to prove the
metric properties of the solution. When computing the distance between G1,G2, for i = 1, 2,
let tm(Gi) =

∑
u∈Li

`m(u) denote the total mass in Gi, and n̄i = ni + 1 where ni = |Li|.
y1 = [{`m(u)}u∈L1 , tm(G2)] ∈ Rn̄1 will be the supplies in our OT problem, and y2 =
[{`m(u)}u∈L2 , tm(G1)] ∈ Rn̄2 will be the demands. To define the cost matrix, we augment the
mislabel and structural penalty matrices Clmm, Cstr with an additional row and column of zeros;
i.e. C ′lmm = [Clmm 0n1

;0>n̄2
] ∈ Rn̄1×n̄2 ; C ′str is defined similarly. Let C ′nas = [0n1,n2

1n1
;1>n2

0] ∈
Rn̄1×n̄2 . We will show that (3) is equivalent to the following OT program.

minimise
Z′

〈Z ′, C ′〉 (5)

subject to Z ′1n̄2 = y1, Z ′>1n̄1 = y2.

One interpretation of (5) is that the last row/column appended to the cost matrices serve as a non-
assignment layer and that the cost for transporting unit mass to this layer from all other layers is 1.
The costs for mislabelling was defined relative to this non-assignment cost. The costs for similar
layers is much smaller than 1; therefore, the optimiser is incentivised to transport mass among similar
layers rather than not assign it provided that the structural penalty is not too large. Correspondingly,
the cost for very disparate layers is much larger so that we would never match, say, a convolutional
layer with a pooling layer. In fact, the∞’s in Table 1 can be replaced by any value larger than 2 and
the solution will be the same. The following theorem shows that (3) and (5) are equivalent.

Theorem 2. Problems (3) and (5) are equivalent, in that they both have the same minimum and we
can recover the solution of one from the other.

Proof. We will show that there exists a bijection between feasible points in both problems with the
same value for the objective. First let Z ∈ Rn1×n2 be a feasible point for (3). Let Z ′ ∈ Rn̄1×n̄2

be such that its first n1 × n2 block is Z and, Zn̄1j =
∑n1

i=1 Zij , Zin̄2
=
∑n2

j=1 Zij , and Zn̄1,n̄2
=∑

ij Zij . Then, for all i ≤ n1,
∑
j Z
′
ij = `m(j) and

∑
j Z
′
n̄1j

Z ′ij =
∑
j `m(j) −

∑
ij Zij +

Zn̄1,n̄2
= tm(G2). We then have, Z ′1n̄2

= y1 Similarly, we can show Z ′>1n̄1
= y2. Therefore, Z ′

is feasible for (5). We see that the objectives are equal via simple calculations,
〈Z ′, C ′〉 = 〈Z ′, C ′lmm + C ′str〉+ 〈Z ′, C ′nas〉 (6)

= 〈Z,Clmm + Cstr〉+

n2∑
j=1

Z ′ij +

n1∑
i=1

Z ′ij

= 〈Z,Clmm〉+ 〈Z,Cstr〉+
∑
i∈L1

(
`m(i)−

∑
j∈L2

Zij
)

+
∑
j∈L2

(
`m(j)−

∑
i∈L1

Zij
)
.

The converse also follows via a straightforward argument. For given Z ′ that is feasible for (5), we
let Z be the first n1 × n2 block. By the equality constraints and non-negativity of Z ′, Z is feasible
for (3). By reversing the argument in (6) we see that the objectives are also equal.

11

0: ip
(100)

1: conv3, 16
(16)

2: conv3, 16
(256)

3: conv3, 32
(512)

4: max-pool, 1
(32)

5: fc, 16
(51)

6: softmax
(100)

7: op
(100)

0: ip
(100)

1: conv3, 16
(16)

2: conv3, 8
(128)

3: conv3, 8
(128)

4: conv3, 32
(512)

5: max-pool, 1
(32)

6: fc, 16
(51)

7: softmax
(100)

8: op
(100)

Figure 3: An example of 2 CNNs which have
d = d̄ = 0 distance. The OT solution matches the
mass in each layer in the network on the left to
the layer horizontally opposite to it on the right
with 0 cost. For layer 2 on the left, its mass is
mapped to layers 2 and 3 on the left. However,
while the descriptor of these networks is different,
their functional behaviour is the same.

A.2 Distance Properties of OTMANN

The following theorem shows that the solution of (3) is a pseudo-distance. This is a formal version of
Theorem 1 in the main text.

Theorem 3. Assume that the mislabel cost matrix M satisfies the triangle inequality; i.e. for all
labels x, y, z we have M(x, z) ≤ M(x, y) + M(y, z). Let d(G1,G2) be the solution of (3) for
networks G1,G2. Then d(·, ·) is a pseudo-distance. That is, for all networks G1,G2,G3, it satisfies,
d(G1,G2) > 0, d(G1,G2) = d(G2,G1), d(G1,G1) = 0 and d(G1,G3) ≤ d(G1,G2) + d(G2,G3).

Some remarks are in order. First, observe that while d(·, ·) is a pseudo-distance, it is not a distance; i.e.
d(G1,G2) = 0 ; G1 = G2. For example, while the networks in Figure 3 have different descriptors
according to our formalism in Section 2.2, their distance is 0. However, it is not hard to see that their
functionality is the same – in both cases, the output of layer 1 is passed through 16 conv3 filters and
then fed to a layer with 32 conv3 filters – and hence, this property is desirable in this example. It
is not yet clear however, if the topology induced by our metric equates two functionally dissimilar
networks. We leave it to future work to study equivalence classes induced by the OTMANN distance.
Second, despite the OT formulation, this is not a Wasserstein distance. In particular, the supports of
the masses and the cost matrices change depending on the two networks being compared.

Proof of Theorem 3. We will use the OT formulation (5) in this proof. The first three properties are
straightforward. Non-negativity follows from non-negativity of Z ′, C ′ in (5). It is symmetric since
the cost matrix for d(G2,G1) is C ′> if the cost matrix for d(G1,G2) is C and 〈Z ′, C ′〉 = 〈Z ′>, C ′>〉
for all Z ′. We also have d(G1,G1) = 0 since, then, C ′ has a zero diagonal.

To prove the triangle inequality, we will use a gluing lemma, similar to what is used in the proof
of Wasserstein distances [33]. Let G1,G2,G3 be given and m1,m2,m3 be their total masses. Let
the solutions to d(G1,G2) and d(G2,G3) be P ∈ Rn̄1×n̄2 and Q ∈ Rn̄2×n̄3 respectively. When
solving (5), we see that adding extra mass to the non-assignment layers does not change the objective,
as an optimiser can transport mass between the two layers with 0 cost. Hence, we can assume
w.l.o.g that (5) was solved with yi =

[
{`m(u)}u∈Li

,
(∑

j∈{1,2,3} tm(Gj) − tm(Gi)
)]
∈ Rn̄i for

i = 1, 2, 3, when computing the distances d(G1,G2), d(G1,G3), d(G2,G3); i.e. the total mass was
m1 +m2 +m3 for all three pairs. We can similarly assume that P,Q account for this extra mass, i.e.
Pn̄1n̄2

and Qn̄2n̄3
have been increased by m3 and m1 respectively from their solutions in (5).

To apply the gluing lemma, let S = Pdiag(1/y2)Q ∈ Rn̄1×n̄3 , where diag(1/y2) is a diagonal
matrix whose (j, j)th element is 1/(y2)j (note y2 > 0). We see that S is feasible for (5) when
computing d(G1,G3),

R1n̄3
= Pdiag(1/y2)Q1n̄3

= Pdiag(1/y2)y2 = P1n̄2
= y1.

Similarly, R>1n̄1
= y3. Now, let U ′, V ′,W ′ be the cost matrices C ′ in (5) when computing

d(G1,G2), d(G2,G3), and d(G1,G3) respectively. We will use the following technical lemma whose
proof is given below.
Lemma 4. For all i ∈ L1, j ∈ L2, k ∈ L3, we have W ′ik ≤ U ′ij + V ′jk.

12

Applying Lemma 4 yields the triangle inequality.

d(G1,G3) ≤ 〈R,W ′〉 =
∑

i∈L1,k∈L3

W ′ik
∑
j∈L2

PijQjk
(y2)j

≤
∑
i,j,k

(U ′ij + V ′jk)
PijQjk
(y2)j

=
∑
ij

U ′ijPij

(y2)j

∑
k

Qjk +
∑
jk

V ′jkQjk

(y2)j

∑
k

Pij

=
∑
ij

U ′ijPij +
∑
jk

V ′jkQjk = d(G1,G2) + d(G2,G3)

The first step uses the fact that d(G1,G3) is the minimum of all feasible solutions and the third step
uses Lemma 4. The fourth step rearranges terms and the fifth step uses P>1n̄1

= Q1n̄3
= y2.

Proof of Lemma 4. Let W ′ = W ′lmm + W ′str + W ′nas be the decomposition into the label
mismatch, structural and non-assignment parts of the cost matrices; define similar quantities
U ′lmm, U

′
str, U

′
nas, V

′
lmm, V

′
str, V

′
nas forU ′, V ′. Noting a ≤ b+c and d ≤ e+f implies a+d ≤ b+e+c+f ,

it is sufficient to show the triangle inquality for each component individually. For the label mis-
match term, (W ′lmm)ik ≤ (U ′lmm)ij + (V ′lmm)jk follows directly from the conditions on M by setting
x = ``(i), y = ``(j), z = ``(k), where i, j, k are indexing in L1,L2,L3 respectively.

For the non-assignment terms, when (W ′nas)ik = 0 the claim is true trivially. (W ′nas)ik = 1, either
when (i = n̄1, k ≤ n3) or (i ≤ n1, k = n̄3). In the former case, when j ≤ n2, (U ′nas)jk = 1 and
when j = n̄2, (V ′nas)n̄2 = 1 as k ≤ n3. We therefore have, (W ′nas)ik = (U ′nas)ij + (V ′nas)jk = 1. A
similar argument shows equality for the (i ≤ n1, k = n̄3) case as well.

Finally, for the structural terms we note thatW ′str can be written asW ′str =
∑
tW

′(t) as canU ′(t), T ′(t).
Here t indexes over the choices for the types of distances considered, i.e. t ∈ {sp, lp, rw} × {ip, op}.
It is sufficient to show (W ′(t))ik ≤ (U ′(t))ij + (T ′(t))jk. This inequality takes the form,

|δ(t)
1i − δ

(t)
3k | ≤ |δ

(t)
1i − δ

(t)
2j |+ |δ

(t)
2j − δ

(t)
3k |.

Where δ(t)
g` refers to distance type t in network g for layer s. The above is simply the triangle

inequality for real numbers. This concludes the proof of Lemma 4.

A.3 Implementation & Design Choices

Masses on the decision & input/output layers: It is natural to ask why one needs to model the
mass in the decision and input/output layers. For example, a seemingly natural choice is to use 0
for these layers. Using 0 mass, is a reasonable strategy if we were to allow only one decision layer.
However, when there are multiple decision layers, consider comparing the following two networks:
the first has a feed forward MLP with non-linear layers, the second is the same network but with an
additional linear decision layer u, with one edge from uip to u and an edge from u to uop. This latter
models the function as a linear + non-linear term which might be suitable for some problems unlike
modeling it only as a non-linear term. If we do not add layer masses for the input/output/decision
layers, then the distance between both networks would be 0 - as there will be equal mass in the FF
part for both networks and they can be matched with 0 cost.

Algorithm 1: Compute δrw
op (u) for all u ∈ L

Require: G = (L, E), L is topologically sorted in S.
1: δrw

op (uop) = 0, δrw
op (u) = nan ∀u 6= uop.

2: while S is not empty do
3: u← pop_last(S)
4: ∆← {δrw

op (c) : c ∈ children(u)}
5: δrw

op (u)← 1 + average(∆)
6: end while
7: Return δrw

op .

13

c3 c5 c7 mp ap fc sm
c3 0 0.2 0.3
c5 0.2 0 0.2
c7 0.3 0.2 0
mp 0 0.25
ap 0.25 0
fc 0
sm 0

Table 4: The label mismatch cost matrix M
we used in our CNN experiments. M(x, y) de-
notes the penalty for transporting a unit mass
from a layer with label x to a layer with label y.
The labels abbreviated are conv3, conv5, conv7,
max-pool, avg-pool, fc, and softmax in order.
A blank indicates∞ cost. We have not shown the
ip and op layers, but they are similar to the fc
column, 0 in the diagonal and∞ elsewhere.

re cr <rec> lg ta lin
re 0 .1 .1 .25 .25
cr .1 0 .1 .25 .25

<rec> .1 .1 0 .25 .25
lg .25 .25 .25 0 .1
ta .25 .25 .25 .1 0
lin 0

Table 5: The label mismatch cost matrix M we
used in our MLP experiments. The labels abbre-
viated are relu, crelu, <rec>, logistic, tanh,
and linear in order. <rec> is place-holder for
any other rectifier such as leaky-relu, softplus,
elu. A blank indicates∞ cost. The design here
was simple. Each label gets 0 cost with itself. A
rectifier gets 0.1 cost with another rectifier and 0.25
with a sigmoid; vice versa for all sigmoids. The
rest of the costs are infinity. We have not shown the
ip and op, but they are similar to the lin column,
0 in the diagonal and∞ elsewhere.

Computing path lengths δts: Algorithm 1 computes all path lengths in O(|E|) time. Note that
topological sort of a connected digraph also takes O(|E|) time. The topological sorting ensures that
δrw

op is always computed for the children in step 4. For δsp
op, δ

lp
op we would replace the averaging of ∆

in step 5 with the minimum and maximum of ∆ respectively.

For δrw
ip we make the following changes to Algorithm 1. In step 1, we set δrw

ip (uip) = 0, in step 3,
we pop_first and ∆ in step 4 is computed using the parents. δsp

ip , δ
lp
ip are computed with the same

procedure but by replacing the averaging with minimum or maximum as above.

Label Penalty Matrices: The label penalty matrices used in our NASBOT implementation, de-
scribed below, satisfy the triangle inequality condition in Theorem 3.

CNNs: Table 4 shows the label penalty matrix M for used in our CNN experiments with labels
conv3, conv5, conv7, max-pool, avg-pool, softmax, ip, op. convk denotes a k×k convolution
while avg-pool and max-pool are pooling operations. In addition, we also use res3, res5, res7
layers which are inspired by ResNets. A resk uses 2 concatenated convk layers but the input to
the first layer is added to the output of the second layer before the relu activation – See Figure 2
in He et al. [12]. The layer mass for resk layers is twice that of a convk layer. The costs for the res
in the label penalty matrix is the same as the conv block. The cost between a resk and convj is
M(resk, convj) = 0.9×M(convk, convj) + 0.1× 1; i.e. we are using a convex combination of
the conv costs and the non-assignment cost. The intuition is that a resk is similar to convk block
except for the residual addition.

MLPs: Table 5 shows the label penalty matrix M for used in our MLP experiments with labels
relu, crelu, leaky-relu, softplus, elu, logistic, tanh, linear, ip, op. Here the first seven
are common non-linear activations; relu, crelu, leaky-relu, softplus, elu rectifiers while
logistic and tanh are sigmoidal activations.

Other details: Our implementation of OTMANN differs from what is described in the main
text in two ways. First, in our CNN experiments, for a fc layer u, we use 0.1 × `m(u) ×
〈#-incoming-channels〉 as the mass, i.e. we multiply it by 0.1 from what is described in the main text.
This is because, in the convolutional and pooling channels, each unit is an image where as in the
fc layers each unit is a scalar. One could, in principle, account for the image sizes at the various
layers when computing the layer masses, but this also has the added complication of depending on
the size of the input image which varies from problem to problem. Our approach is simpler and yields
reasonable results.

14

Secondly, we use a slightly different form for Cstr. First, for i ∈ L1, j ∈ L2, we let Call
str (i, j) =

1
6

∑
s∈{sp, lp, rw}

∑
t∈{ip,op} |δst (i) − δst (j)| be the average of all path length differences; i.e. Call

str
captures the path length differences when considering all layers. For CNNs, we similarly construct
matrices Cconv

str , Cpool
str , C fc

str, except they only consider the convolutional, pooling and fully connected
layers respectively in the path lengths. For Cconv

str , the distances to the output (from the input) can be
computed by zeroing outgoing (incoming) edges to layers that are not convolutional. We can similarly
construct Cpool

str and C fc
str only counting the pooling and fully connected layers. Our final cost matrix

for the structural penalty is the average of these four matrices, Cstr = (Call
str +Cconv

str +Cpool
str +C fc

str)/4.
For MLPs, we adopt a similar strategy by computing matrices Call

str , C
rec
str , C

sig
str with all layers, only

rectifiers, and only sigmoidal layers and let Cstr = (Call
str + C rec

str + Csig
str)/3. The intuition is that by

considering certain types of layers, we are accounting for different types of information flow due to
different operations.

A.4 Some Illustrations of the OTMANN Distance

We illustrate that OTMANN computes reasonable distances on neural network architectures via a
two-dimensional t-SNE visualisation [27] of the network architectures based. Given a distance matrix
between m objects, t-SNE embeds them in a d dimensional space so that objects with small distances
are placed closer to those that have larger distances. Figure 4 shows the t-SNE embedding using
the OTMANN distance and its noramlised version. We have indexed 13 networks in both figures in
a-n and displayed their architectures in Figure 5. Similar networks are placed close to each other
indicating that OTMANN induces a meaningful topology among neural network architectures.

Next, we show that the distances induced by OTMANN are correlated with validation error perfor-
mance. In Figure 6 we provide the following scatter plot for networks trained in our experiments
for the Indoor, Naval and Slice datasets. Each point in the figure is for pair of networks. The x-axis
is the OTMANN distance between the pair and the y-axis is the difference in the validation error
on the dataset. In each figure we used 300 networks giving rise to 45K pairwise points in each
scatter plot. As the figure indicates, when the distance is small the difference in performance is
close to 0. However, as the distance increases, the points are more scattered. Intuitively, one should
expect that while networks that are far apart could perform similarly or differently, similar networks
should perform similarly. Hence, OTMANN induces a useful topology in the space of architectures
that is smooth for validaiton performance on real world datasets. This demonstrates that it can be
incorporated in a BO framework to optimise a network based on its validation error.

B Implementation of NASBOT

Here, we describe our BO framework for NASBOT in full detail.

B.1 The Kernel

As described in the main text, we use a negative exponentiated distance as our kernel. Precisely, we
use,

κ(·, ·) = αe−
∑

i βid
p
i (·,·) + ᾱe−

∑
i β̄id̄

p̄
i (·,·). (7)

Here, di, d̄i, are the OTMANN distance and its normalised counterpart developed in Section 3,
computed with different values for νstr ∈ {νstr,i}i. βi, β̄i manage the relative contributions of di, d̄i,
while (α, ᾱ) manage the contributions of each kernel in the sum. An ensemble approach of the
above form, instead of trying to pick a single best value, ensures that NASBOT accounts for the
different topologies induced by the different distances di, d̄i. In the experiments we report, we used
{νstr,i}i = {0.1, 0.2, 0.4, 0.8}, p = 1 and p̄ = 2. Our experience suggests that NASBOT was not
particularly sensitive to these choices expect when we used only very large or only very small values
in {νstr,i}i.

NASBOT, as described above has 11 hyper-parameters of its own; α, ᾱ, {(βi, β̄i)}4i=1 and the GP
noise variance η2. While maximising the GP marginal likelihood is a common approach to pick
hyper-parameters, this might cause over-fitting when there are many of them. Further, as training
large neural networks is typically expensive, we have to content with few observations for the GP

15

10 8 6 4 2 0 2
10

8

6

4

2

0

2

4

ab
c

d
ef

g
h

i

jk

mn

t-SNE: OTMANN Distance

6 4 2 0 2 4 6 8

10

8

6

4

2

0

2

4

6 a
b c

d ef

gh

i

j
k

m
n

t-SNE: Normalised OTMANN Distance

Figure 4: Two dimensional t-SNE embeddings of 100 randomly generated CNN architectures based
on the OTMANN distance (top) and its normalised version (bottom). Some networks have been
indexed a-n in the figures; these network architectures are illustrated in Figure 5. Networks that
are similar are embedded close to each other indicating that the OTMANN induces a meaningful
topology among neural network architectures.

16

#0 ip,
(100) [1]

#1 conv3, 16,
(16) [1]

#2 conv3, 16,
(256) [1]

#3 conv3, 32,
(512) [1]

#4 max-pool,
(32) [1]

#5 fc, 16,
(51) [2]

#6 softmax,
(100) [x]

#7 op,
(100) [x]

a
#0 ip,

(110) [1]

#1 res5, 16,
(16) [1]

#2 conv3, 9,
(144) [1]

#3 res3, 9,
(144) [1]

#4 avg-pool,
(16) [1]

#5 avg-pool,
(16) [1]

#6 conv3, 32,
(576) [1]

#8 fc, 20,
(128) [2]

#7 avg-pool,
(32) [1]

#9 fc, 18,
(36) [x]

#10 softmax,
(110) [x]

#11 op,
(110) [x]

b

#0 ip,
(113) [1]

#1 conv3, 18,
(18) [1]

#2 conv3, 18,
(324) [1]

#3 conv3, 32,
(576) [1]

#4 avg-pool,
(18) [1]

#5 max-pool,
(32) [1]

#6 fc, 14,
(70) [2]

#7 fc, 14,
(44) [2]

#8 fc, 16,
(51) [2]

#9 softmax,
(37) [x]

#10 softmax,
(37) [x]

#11 softmax,
(37) [x]

#12 op,
(113) [x]

c

#0 ip,
(284) [1]

#1 conv3, 18,
(18) [1]

#2 conv3, 20,
(20) [1]

#3 conv3, 18,
(324) [1]

#4 conv3, 41,
(738) [1]

#5 avg-pool,
(18) [1]

#6 conv3, 41,
(820) [1]

#7 max-pool,
(18) [1]

#8 avg-pool,
(18) [1]

#9 max-pool,
(41) [1]

#10 fc, 32,
(57) [2]

#12 fc, 32,
(172) [2]

#11 max-pool,
(41) [1]

#13 fc, 25,
(102) [2]

#19 fc, 22,
(125) [x]

#14 fc, 25,
(102) [2]

#15 fc, 25,
(80) [x]

#16 fc, 19,
(47) [x]

#17 fc, 22,
(55) [x]

#18 fc, 19,
(47) [x]

#20 softmax,
(71) [x]

#21 softmax,
(71) [x]

#22 softmax,
(71) [x]

#23 softmax,
(71) [x]

#24 op,
(284) [x]

#0 ip,
(459) [1]

#1 conv3, 16,
(16) [1]

#2 conv3, 16,
(16) [1]

#3 res5, 16,
(256) [1]

#4 conv3, 16,
(256) [1]

#5 avg-pool,
(16) [1]

#6 conv3, 16,
(256) [1]

#7 conv5, 32,
(512) [1]

#8 res3, 32,
(512) [1]

#9 conv3, 32,
(512) [1]

#18 fc, 36,
(288) [2]

#10 avg-pool,
(16) [1]

#11 conv3, 32,
(1024) [1]

#12 avg-pool,
(32) [1]

#13 avg-pool,
(32) [1]

#16 fc, 32,
(153) [2]

#14 avg-pool,
(32) [1]

#15 avg-pool,
(32) [1]

#17 fc, 36,
(115) [2]

#22 softmax,
(459) [x]

#19 fc, 36,
(129) [x]

#20 fc, 36,
(259) [x]

#21 fc, 36,
(129) [x]

#23 op,
(459) [x]

d
#0 ip,

(63764) [1]

#1 conv3, 56,
(56) [1]

#2 conv3, 56,
(3136) [1]

#3 max-pool,
(56) [1]

#4 conv3, 112,
(6272) [2]

#5 conv3, 128,
(14336) [2]

#6 max-pool,
(128) [2]

#7 conv3, 128,
(16384) [4]

#8 conv3, 128,
(16384) [4]

#9 conv3, 128,
(16384) [4]

#10 avg-pool,
(128) [4]

#11 conv3, 256,
(32768) [8]

#12 conv3, 256,
(65536) [8]

#13 max-pool,
(256) [8]

#14 conv3, 576,
(147456) [16]

#15 conv3, 512,
(294912) [16]

#16 max-pool,
(512) [16]

#17 fc, 128,
(6553) [32]

#18 fc, 256,
(3276) [x]

#19 fc, 512,
(13107) [x]

#20 softmax,
(63764) [x]

#21 op,
(63764) [x]

#0 ip,
(264) [1]

#1 conv3, 16,
(16) [1]

#2 conv3, 18,
(18) [1]

#3 conv3, 16,
(256) [1]

#4 conv3, 36,
(576) [1]

#5 max-pool,
(16) [1]

#6 conv3, 36,
(648) [1]

#7 max-pool,
(16) [1]

#8 avg-pool,
(16) [1]

#9 max-pool,
(36) [1]

#10 max-pool,
(36) [1]

#11 fc, 28,
(44) [2]

#13 fc, 28,
(134) [2]

#12 max-pool,
(36) [1]

#14 fc, 28,
(100) [2]

#15 fc, 28,
(100) [2]

#21 fc, 28,
(168) [x]

#16 fc, 28,
(100) [2]

#17 fc, 32,
(89) [x]

#18 fc, 32,
(89) [x]

#19 fc, 28,
(78) [x]

#22 softmax,
(66) [x]

#20 fc, 25,
(70) [x]

#23 softmax,
(66) [x]

#24 softmax,
(66) [x]

#25 softmax,
(66) [x]

#26 op,
(264) [x]

g
h

#0 ip,
(93661) [1]

#1 conv3, 64,
(64) [1]

#2 conv3, 64,
(4096) [1]

#3 max-pool,
(64) [1]

#4 conv5, 144,
(9216) [2]

#5 conv7, 144,
(20736) [2]

#6 conv7, 128,
(18432) [2]

#7 max-pool,
(144) [2]

#8 max-pool,
(144) [2]

#9 max-pool,
(128) [2]

#11 conv3, 128,
(34816) [4]

#10 conv3, 128,
(18432) [4]

#12 conv3, 128,
(16384) [4]

#13 conv3, 128,
(16384) [4]

#14 conv3, 128,
(16384) [4]

#15 conv3, 128,
(16384) [4]

#16 max-pool,
(128) [4]

#17 max-pool,
(128) [4]

#18 conv3, 256,
(32768) [8]

#19 conv3, 256,
(32768) [8]

#21 max-pool,
(544) [8]

#20 conv3, 288,
(73728) [8]

#22 conv3, 512,
(278528) [16]

#23 conv3, 512,
(262144) [16]

#24 max-pool,
(512) [16]

#25 conv5, 128,
(65536) [32]

#26 fc, 128,
(1638) [32]

#27 fc, 256,
(3276) [x]

#28 fc, 512,
(13107) [x]

#29 softmax,
(93661) [x]

#30 op,
(93661) [x]

i

#0 ip,
(76459) [1]

#1 conv3, 56,
(56) [1]

#2 conv3, 63,
(3528) [1]

#3 avg-pool,
(56) [1]

#4 max-pool,
(63) [1]

#5 conv3, 112,
(6272) [2]

#6 conv3, 112,
(7056) [2]

#7 conv3, 128,
(14336) [2]

#8 conv3, 128,
(14336) [2]

#9 max-pool,
(128) [2]

#10 max-pool,
(128) [2]

#13 conv3, 112,
(28672) [4]

#11 conv3, 128,
(16384) [4]

#12 conv3, 128,
(16384) [4]

#14 conv3, 112,
(12544) [4]

#15 avg-pool,
(112) [4]

#16 conv3, 256,
(28672) [8]

#17 conv3, 288,
(73728) [8]

#18 max-pool,
(288) [8]

#19 conv3, 648,
(186624) [16]

#20 conv3, 512,
(331776) [16]

#21 max-pool,
(512) [16]

#22 fc, 128,
(6553) [32]

#23 fc, 256,
(3276) [x]

#24 fc, 512,
(13107) [x]

#25 softmax,
(76459) [x]

#26 op,
(76459) [x]

j
#0 ip,

(8179) [1]

#1 conv7, 72,
(72) [1]

#2 conv5, 144,
(10368) [1, /2]

#3 conv3, 63,
(4536) [1, /2]

#4 conv3, 81,
(5832) [1]

#5 conv3, 71,
(5112) [1]

#6 avg-pool,
(72) [1]

#7 avg-pool,
(144) [2]

#8 fc, 79,
(1137) [2]

#9 max-pool,
(63) [2]

#10 max-pool,
(81) [1]

#11 max-pool,
(71) [1]

#12 avg-pool,
(72) [2]

#18 fc, 48,
(1036) [4]

#13 softmax,
(2726) [x]

#25 softmax,
(2726) [x]

#22 fc, 63,
(1839) [4]

#14 conv3, 110,
(8910) [2, /2]

#15 avg-pool,
(81) [2]

#16 conv3, 142,
(21584) [2]

#17 conv3, 126,
(8946) [2]

#27 op,
(8179) [x]

#19 conv3, 87,
(9570) [4]

#23 fc, 63,
(1304) [4]

#20 max-pool,
(142) [2]

#21 max-pool,
(126) [2]

#24 fc, 55,
(693) [4]

#26 softmax,
(2726) [x]

k

#0 ip,
(5427) [1]

#1 conv7, 64,
(64) [1]

#2 conv7, 128,
(8192) [1, /2]

#3 conv3, 56,
(3584) [1, /2]

#4 conv3, 64,
(4096) [1]

#5 conv3, 64,
(4096) [1]

#6 avg-pool,
(64) [1]

#7 avg-pool,
(64) [1]

#8 max-pool,
(128) [2]

#9 fc, 63,
(806) [2]

#10 max-pool,
(56) [2]

#11 avg-pool,
(64) [1]

#12 avg-pool,
(64) [1]

#13 max-pool,
(64) [1]

#14 avg-pool,
(64) [2]

#15 avg-pool,
(64) [2]

#24 fc, 56,
(1030) [4]

#16 softmax,
(1809) [x]

#27 softmax,
(1809) [x]

#26 fc, 64,
(2816) [4]

#17 conv3, 128,
(8192) [2]

#19 conv3, 128,
(16384) [2]

#18 max-pool,
(64) [2]

#21 max-pool,
(192) [2]

#20 res3, 56,
(3584) [4]

#28 op,
(5427) [x]

#22 fc, 64,
(409) [4]

#23 max-pool,
(128) [2]

#25 softmax,
(1809) [x]

m

#0 ip,
(28787) [1]

#1 conv3, 56,
(56) [1]

#2 max-pool,
(56) [1]

#3 max-pool,
(56) [1]

#4 conv5, 63,
(3528) [2, /2]

#5 avg-pool,
(56) [2]

#6 res5, 62,
(3906) [4]

#7 conv5, 56,
(3136) [4]

#8 conv5, 56,
(3136) [4]

#9 res7, 92,
(5704) [4]

#10 avg-pool,
(56) [4]

#11 avg-pool,
(56) [4]

#12 avg-pool,
(56) [4]

#13 res3, 128,
(11776) [4, /2]

#14 avg-pool,
(56) [8]

#20 res3, 224,
(41216) [8, /2]

#15 avg-pool,
(56) [8]

#16 res3, 128,
(16384) [8]

#17 conv3, 128,
(16384) [8]

#24 avg-pool,
(280) [16]

#18 avg-pool,
(56) [16]

#19 res3, 224,
(28672) [8, /2]

#21 fc, 448,
(2508) [32]

#22 res3, 256,
(57344) [16]

#23 res3, 256,
(57344) [16]

#25 softmax,
(9595) [x]

#26 max-pool,
(256) [16]

#27 max-pool,
(256) [16]

#28 fc, 448,
(12544) [32]

#32 op,
(28787) [x]

#29 fc, 448,
(22937) [32]

#30 softmax,
(9595) [x]

#31 softmax,
(9595) [x]

n

#0 ip,
(20613) [1]

#1 conv3, 56,
(56) [1]

#2 max-pool,
(56) [1]

#3 max-pool,
(56) [1]

#4 conv5, 63,
(3528) [2, /2]

#5 avg-pool,
(56) [2]

#6 max-pool,
(56) [2]

#7 res5, 62,
(3906) [4]

#8 conv5, 56,
(6272) [4]

#9 conv5, 56,
(3136) [4]

#10 res7, 92,
(5704) [4]

#11 max-pool,
(56) [4]

#12 avg-pool,
(56) [4]

#13 res3, 128,
(11776) [4, /2]

#14 avg-pool,
(56) [8]

#15 avg-pool,
(56) [8]

#16 res3, 128,
(16384) [8]

#17 conv3, 128,
(16384) [8]

#26 avg-pool,
(280) [16]

#18 avg-pool,
(56) [16]

#19 avg-pool,
(128) [8]

#20 res3, 224,
(28672) [8, /2]

#21 fc, 392,
(2195) [32]

#22 res3, 256,
(32768) [16]

#23 conv3, 224,
(50176) [16]

#24 softmax,
(6871) [x]

#25 max-pool,
(256) [16]

#31 op,
(20613) [x]

#27 fc, 448,
(11468) [32]

#28 fc, 448,
(12544) [32]

#29 softmax,
(6871) [x]

#30 softmax,
(6871) [x]

f
e

Figure 5: Illustrations of the nextworks indexed a-n in Figure 4.

17

Figure 6: Each point in the scatter plot indicates the log distance between two architectures (x axis)
and the difference in the validation error (y axis), on the Indoor, Naval and Slice datasets. We used
300 networks, giving rise to ∼ 45K pairwise points. On all datasets, when the distance is small,
so is the difference in the validation error. As the distance increases, there is more variance in the
validation error difference. Intuitively, one should expect that while networks that are far apart could
perform similarly or differently, networks with small distance should perform similarly.

in practical settings. Our solution is to start with a (uniform) prior over these hyper-parameters and
sample hyper-parameter values from the posterior under the GP likelihood [40], which we found to
be robust. While it is possible to treat νstr itself as a hyper-parameter of the kernel, this will require
us to re-compute all pairwise distances of networks that have already been evaluated each time we
change the hyper-parameters. On the other hand, with the above approach, we can compute and store
distances for different νstr,i values whenever a new network is evaluated, and then compute the kernel
cheaply for different values of α, ᾱ, {(βi, β̄i)}i.

B.2 Optimising the Acquisition

We use a evolutionary algorithm (EA) approach to optimise the acquisition function (2). We begin
with an initial pool of networks and evaluate the acquisition ϕt on those networks. Then we generate
a set of Nmut mutations of this pool as follows. First, we stochastically select Nmut candidates from
the set of networks already evaluated such that those with higher ϕt values are more likely to be
selected than those with lower values. Then we apply a mutation operator to each candidate, to
produce a modified architecture. Finally, we evaluate the acquisition on this Nmut mutations, add it to
the initial pool, and repeat for the prescribed number of steps.

Mutation Operator: To describe the mutation operator, we will first define a library of modifications
to a neural network. These modifications, described in Table 6, might change the architecture either
by increasing or decreasing the number of computational units in a layer, by adding or deleting layers,
or by changing the connectivity of existing layers. They provide a simple mechanism to explore the
space of architectures that are close to a given architecture. The one-step mutation operator takes a
given network and applies one of the modifications in Table 6 picked at random to produce a new
network. The k-step mutation operator takes a given network, and repeatedly applies the one-step
operator k times – the new network will have undergone k changes from the original one. One can also
define a compound operator, which picks the number of steps probabilistically. In our implementation
of NASBOT, we used such a compound operator with probabilities (0.5, 0.25, 0.125, 0.075, 0.05);
i.e. it chooses a one-step operator with probability 0.5, a 4-step operator with probability 0.075, etc.
Typical implementations of EA in Euclidean spaces define the mutation operator via a Gaussian (or
other) perturbation of a chosen candidate. It is instructive to think of the probabilities for each step in
our scheme above as being analogous to the width of the Gaussian chosen for perturbation.

Sampling strategy: The sampling strategy for EA is as follows. Let {zi}i, where zi ∈ X be
the points evaluated so far. We sample Nmut new points from a distribution π where π(zi) ∝
exp(g(zi)/σ). Here g is the function to be optimised (for NASBOT, ϕt at time t). σ is the standard
deviation of all previous evaluations. As the probability for large g values is higher, they are more
likely to get selected. σ provides normalisation to account for different ranges of function values.

18

Operation Description
dec_single Pick a layer at random and decrease the number of units by 1/8.

dec_en_masse First topologically order the networks, randomly pick 1/8 of the layers (in order)
and decrease the number of units by 1/8. For networks with eight layers or fewer
pick a 1/4 of the layers (instead of 1/8) and for those with four layers or fewer pick
1/2.

inc_single Pick a layer at random and increase the number of units by 1/8.
inc_en_masse Choose a large sub set of layers, as for dec_en_masse, and increase the number of

units by 1/8.
dup_path This modifier duplicates a random path in the network. Randomly pick a node u1

and then pick one of its children u2 randomly. Keep repeating to generate a path
u1, u2, . . . , uk−1, uk until you decide to stop randomly. Create duplicate layers
ũ2, . . . , ũk−1 where ũi = ui for i = 2, . . . , k − 1. Add these layers along with
new edges (u1, ũ2), (ũk−1, uk), and (ũj , ũj+1) for j = 2, . . . , k − 2.

remove_layer Picks a layer at random and removes it. If this layer was the only child (parent) of
any of its parents (children) u, then adds an edge from u (one of its parents) to one
of its children (u).

skip Randomly picks layers u, v where u is topologically before v and (u, v) /∈ E . Add
(u, v) to E .

swap_label Randomly pick a layer and change its label.
wedge_layer Randomly pick any edge (u, v) ∈ E . Create a new layer w with a random label

``(w). Remove (u, v) from E and add (u,w), (w, v). If applicable, set the number
of units `u(w) to be (`u(u) + `u(v))/2.

Table 6: Descriptions of modifiers to transform one network to another. The first four change the number of
units in the layers but do not change the architecture, while the last five change the architecture.

Since our candidate selection scheme at each step favours networks that have high acquisition value,
our EA scheme is more likely to search at regions that are known to have high acquisition. The
stochasticity in this selection scheme and the fact that we could take multiple steps in the mutation
operation ensures that we still sufficiently explore the space. Since an evaluation of ϕt is cheap, we
can use many EA steps to explore several architectures and optimise ϕt.

Other details: The EA procedure is also initialised with the same initial pools in Figures 20, 21. In
our NASBOT implementation, we increase the total number of EA evaluations nEA at rate O(

√
t)

where t is the current time step in NASBOT. We set Nmut to be O(
√
nEA). Hence, initially we are

only considering a small neighborhood around the initial pool, but as we proceed along BO, we
expand to a larger region, and also spend more effort to optimise ϕt.

Considerations when performing modifications: The modifications in Table 6 is straightforward
in MLPs. But in CNNs one needs to ensure that the image sizes are the same when concatenating
them as an input to a layer. This is because strides can shrink the size of the image. When we perform
a modification we check if this condition is violated and if so, disallow that modification. When a skip

modifier attempts to add a connection from a layer with a large image size to one with a smaller one,
we add avg-pool layers at stride 2 so that the connection can be made (this can be seen, for e.g. in
the second network in Fig. 8).

B.3 Other Implementation Details

Initialisation: We initialise NASBOT (and other methods) with an initial pool of 10 networks. These
networks are illustrated in Fig. 20 for CNNs and Fig. 21 for MLPs at the end of the document. These
are the same networks used to initialise the EA procedure to optimise the acquisition. All initial
networks have feed forward structure. For the CNNs, the first 3 networks have structure similar to the
VGG nets [37] and the remaining have blocked feed forward structures as in He et al. [12]. We also
use blocked structures for the MLPs with the layer labels decided arbitrarily.

Domain: For NASBOT, and other methods, we impose the following constraints on the search space.
If the EA modifier (explained below) generates a network that violates these constraints, we simply
skip it.

• Maximum number of layers: 60

19

• Maximum mass: 108

• Maximum in/out degree: 5

• Maximum number of edges: 200

• Maximum number of units per layer: 1024

• Minimum number of units per layer: 8

Layer types: We use the layer types detailed in Appendix A.3 for both CNNs and MLPs. For CNNs,
all pooling operations are done at stride 2. For convolutional layers, we use either stride 1 or 2
(specified in the illustrations). For all layers in a CNN we use relu activations.

Parallel BO: We use a parallelised experimental set up where multiple models can be evaluated in
parallel. We handle parallel BO via the hallucination technique in Ginsbourger et al. [10].

Finally, we emphasise that many of the above choices were made arbitrarily, and we were able to
get NASBOT working efficiently with our first choice for these parameters/specifications. Note that
many end-to-end systems require specification of such choices.

C Addendum to Experiments

C.1 Baselines

RAND: Our RAND implementation, operates in exactly the same way as NASBOT, except that the
EA procedure (Sec. B.2) is fed a random sample from Unif(0, 1) instead of the GP acquisition each
time it evaluates an architecture. That is, we follow the same schedule for nEA and Nmut as we did for
NASBOT . Hence RAND has the opportunity to explore the same space as NASBOT, but picks the
next evaluation randomly from this space.

EA: This is as described in Appendix B except that we fix Nmut = 10 all the time. In our experiments
where we used a budget based on time, it was difficult to predict the total number of evaluations so as
to set Nmut in perhaps a more intelligent way.

TreeBO: As the implementation from Jenatton et al. [15] was not made available, we wrote our own.
It differs from the version described in the paper in a few ways. We do not tune for a regularisation
penalty and step size as they do to keep it line with the rest of our experimental set up. We set the
depth of the network to 60 as we allowed 60 layers for the other methods. We also check for the other
constraints given in Appendix B before evaluating a network. The original paper uses a tree structured
kernel which can allow for efficient inference with a large number of samples. For simplicity, we
construct the entire kernel matrix and perform standard GP inference. The result of the inference is
the same, and the number of GP samples was always below 120 in our experiments so a sophisticated
procedure was not necessary.

C.2 Details on Training

In all methods, for each proposed network architecture, we trained the network on the train data set,
and periodically evaluated its performance on the validation data set. For MLP experiments, we
optimised network parameters using stochastic gradient descent with a fixed step size of 10−5 and a
batch size of 256 for 20,000 iterations. We computed the validation set MSE every 100 iterations;
from this we returned the minimum MSE that was achieved. For CNN experiments, we optimised
network parameters using stochastic gradient descent with a batch size of 32. We started with a
learning rate of 0.01 and reduced it gradually. We also used batch normalisation and trained the
model for 60, 000 batch iterations. We computed the validation set classification error every 4000
iterations; from this we returned the minimum classification error that was achieved.

After each method returned an optimal neural network architecture, we again trained each optimal
network architecture on the train data set, periodically evaluated its performance on the validation data
set, and finally computed the MSE or classification error on the test data set. For MLP experiments,
we used the same optimisation procedure as above; we then computed the test set MSE at the iteration
where the network achieved the minimum validation set MSE. For CNN experiments, we used the
same optimisation procedure as above, except here the optimal network architecture was trained

20

for 120,000 iterations; we then computed the test set classification error at the iteration where the
network achieved the minimum validation set classification error.

C.3 Optimal Network Architectures and Initial Pool

Here we illustrate and compare the optimal neural network architectures found by different methods.
In Figures 8-11, we show some optimal network architectures found on the Cifar10 data by NASBOT,
EA, RAND, and TreeBO, respectively. We also show some optimal network architectures found for
these four methods on the Indoor data, in Figures 12-15, and on the Slice data, in Figures 16-19. A
common feature among all optimal architectures found by NASBOT was the presence of long skip
connections and multiple decision layers.

In Figure 21, we show the initial pool of MLP network architectures, and in Figure 20, we show the
initial pool of CNN network architectures. On the Cifar10 dataset, VGG-19 was one of the networks
in the initial pool. While all methods beat VGG-19 when trained for 24K iterations (the number
of iterations we used when picking the model), TreeBO and RAND lose to VGG-19 (see Section 5
for details). This could be because the performance after shorter training periods may not exactly
correlate with performance after longer training periods.

C.4 Ablation Studies and Design Choices

We conduct experiments comparing the various design choices in NASBOT. Due to computational
constraints, we carry them out on synthetic functions.

In Figure 7a, we compare NASBOT using only the normalised distance, only the unnormalised
distance, and the combined kernel as in (7). While the individual distances performs well, the
combined form outperforms both.

Next, we modify our EA procedure to optimise the acquisition. We execute NASBOT using only the
EA modifiers which change the computational units (first four modifiers in Table 6), then using the
modifiers which only change the structure of the networks (bottom 5 in Table 6), and finally using all
9 modifiers, as used in all our experiments. The combined version outperforms the first two.

Finally, we experiment with different choices for p and p̄ in (7). As the figures indicate, the
performance was not particularly sensitive to these choices.

Below we describe the three synthetic functions f1, f2, f3 used in our synthetic experiments. f3

applies for CNNs while f1, f2 apply for MLPs. Here am denotes the average mass per layer, degi

is the average in degree the layers, dego is the average out degree, δ is the shortest distance from
uip to uop, str is the average stride in CNNS, frac_conv3 is the fraction of layers that are conv3,
frac_sigmoid is the fraction of layers that are sigmoidal.

f0 = exp(−0.001 ∗ |am− 1000|) + exp(−0.5 ∗ |degi − 5|) + exp(−0.5 ∗ |dego − 5|)+
exp(−0.1 ∗ |δ − 5|) + exp(−0.1 ∗ ||L| − 30|) + exp(−0.05 ∗ ||E| − 100|)

f1 = f0 + exp(−3 ∗ |str− 1.5|) + exp(−0.3 ∗ ||L| − 50|)+
exp(−0.001 ∗ |am− 500|) + frac_conv3

f2 = f0 + exp(−0.001 ∗ |am− 2000|) + exp(−0.1 ∗ ||E| − 50|) + frac_sigmoid

f3 = f0 + frac_sigmoid

D Additional Discussion on Related Work

Historically, evolutionary (genetic) algorithms (EA) have been the most common method used for
designing architectures [8, 21, 26, 30, 36, 41, 51]. EA techniques are popular as they provide a simple
mechanism to explore the space of architectures by making a sequence of changes to networks that
have already been evaluated. However, as we will discuss later, EA algorithms, while conceptually
and computationally simple, are typically not best suited for optimising functions that are expensive
to evaluate. A related line of work first sets up a search space for architectures via incremental
modifications, and then explores this space via random exploration, MCTS, or A* search [6, 25, 32].

21

Number of evaluations
0 50 100 150 200

N
eg
at
iv
e
m
ax

im
u
m

va
lu
e

-6

-5.5

-5

-4.5

-4

Ablation study on Kernel Design (f1)

Only Normalised

Only Unnormalised

Combined

(a)
Number of evaluations

0 50 100 150 200

N
eg
at
iv
e
m
ax

im
u
m

va
lu
e

-4.5

-4

-3.5

-3

-2.5

Ablation study on EA modifiers (f2)

Only Computational

Only Structural

Combined

(b)
Number of evaluations

0 50 100 150 200

N
eg
at
iv
e
m
ax

im
u
m

va
lu
e

-3.5

-3

-2.5

-2

Comparison of p, p̄ values (f3)

p = 1, p̄ = 1
p = 1, p̄ = 2
p = 2, p̄ = 1
p = 2, p̄ = 2

(c)

Figure 7: We compare NASBOT for different design choices in our framework. (a): Comparison of NASBOT
using only the normalised distance e−βd̄, only the unnormalised distance d−βd, and the combination e−βd+e−β̄d̄.
(b): Comparison of NASBOT using only the EA modifiers which change the computational units (top 4 in
Table 6), modifiers which only change the structure of the networks (bottom 5 in Table 6), and all 9 modifiers.
(c): Comparison of NASBOT with different choices for p and p̄. In all figures, the x axis is the number of
evaluations and the y axis is the negative maximum value (lower is better). All figures were produced by
averaging over at least 10 runs.

Some of the methods above can only optimise among feed forward structures, e.g. Fig. 1a, but cannot
handle spaces with arbitrarily structured networks, e.g. Figs. 1b, 1c.

The most successful recent architecture search methods that can handle arbitrary structures have
adopted reinforcement learning (RL) [1, 52–54]. However, architecture search is in essence an
optimisation problem – find the network with the highest function value. There is no explicit need
to maintain a notion of state and solve the credit assignment problem in RL [43]. Since RL is
fundamentally more difficult than optimisation [16], these methods typically need to try a very large
number of architectures to find the optimum. This is not desirable, especially in computationally
constrained settings.

22

0: ip
(328008)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: max-pool
(64)

4: conv3, 128
(8192)

5: conv3, 128
(16384)

6: max-pool
(128)

7: conv3, 128
(16384)

8: conv3, 128
(16384)

9: conv3, 128
(16384)

10: conv3, 128
(16384)

11: max-pool
(128)

12: max-pool
(128)

13: conv3, 256
(32768)

14: conv3, 224
(28672)

15: conv3, 224
(57344)

16: conv3, 288
(64512)

17: conv3, 256
(57344)

18: max-pool
(288)

19: conv3, 288
(73728)

20: conv3, 576
(165888)

21: max-pool
(288)

22: conv3, 576
(331776)

23: conv3, 576
(165888)

24: conv3, 576
(165888)

25: max-pool
(576)

26: conv3, 576
(331776)

27: conv3, 576
(331776)

28: fc, 144
(8294)

29: conv3, 576
(331776)

30: conv3, 576
(331776)

31: avg-pool
(576)

32: softmax
(109336)

33: conv3, 576
(331776)

34: max-pool
(576)

36: fc, 144
(16588)

43: op
(328008)

35: conv3, 576
(331776)

37: max-pool
(576)

38: softmax
(109336)

39: fc, 126
(7257)

40: fc, 252
(3175)

41: fc, 504
(12700)

42: softmax
(109336)

0: ip
(159992)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: max-pool
(64)

4: conv3, 128
(8192)

5: conv3, 128
(16384)

6: max-pool
(128)

7: avg-pool
(128)

8: conv3, 128
(16384)

9: avg-pool
(128)

10: conv3, 128
(16384)

11: avg-pool
(128)

12: conv3, 128
(16384)

24: conv7, 512
(327680)

13: conv3, 128
(16384)

14: max-pool
(128)

15: conv3, 256
(32768)

19: max-pool
(384)

16: conv3, 256
(65536)

17: res3, 256
(65536)

18: conv3, 256
(65536)

20: conv5, 448
(172032)

21: conv3, 512
(229376)

22: conv3, 512
(262144)

23: conv3, 512
(262144)

25: max-pool
(512)

26: fc, 128
(6553)

27: fc, 256
(3276)

28: fc, 448
(11468)

29: softmax
(159992)

30: op
(159992)

0: ip
(198735)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: max-pool
(64)

4: conv3, 128
(8192)

5: conv3, 128
(16384)

6: max-pool
(128)

7: max-pool
(128)

8: conv3, 128
(16384)

9: conv3, 128
(16384)

10: max-pool
(128)

11: conv3, 128
(16384)

12: max-pool
(128)

13: conv3, 128
(16384)

14: conv3, 512
(65536)

15: max-pool
(128)

16: conv3, 576
(294912)

17: conv3, 256
(32768)

18: conv3, 256
(32768)

19: conv3, 576
(331776)

20: conv3, 256
(65536)

21: conv3, 256
(65536)

22: max-pool
(576)

23: conv3, 256
(65536)

25: max-pool
(512)

24: fc, 128
(7372)

26: fc, 256
(3276)

27: conv3, 512
(262144)

28: fc, 512
(13107)

29: conv3, 576
(294912)

30: softmax
(99367)

31: conv3, 576
(331776)

37: op
(198735)

32: max-pool
(576)

33: fc, 128
(7372)

34: fc, 256
(3276)

35: fc, 512
(13107)

36: softmax
(99367)

0: ip
(329217)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: avg-pool
(64)

4: max-pool
(64)

5: avg-pool
(64)

6: conv3, 128
(8192)

7: avg-pool
(64)

8: conv3, 128
(16384)

9: avg-pool
(64)

10: avg-pool
(64)

11: max-pool
(128)

12: avg-pool
(64)

13: avg-pool
(64)

14: conv3, 144
(18432)

46: fc, 128
(13926)

41: fc, 128
(7372)

15: conv3, 128
(18432)

16: conv3, 128
(16384)

17: conv3, 128
(16384)

18: max-pool
(128)

19: conv3, 256
(32768)

20: conv3, 256
(65536)

21: conv3, 256
(65536)

22: conv3, 288
(73728)

23: conv3, 256
(65536)

24: conv3, 256
(73728)

25: conv3, 256
(73728)

26: max-pool
(256)

27: max-pool
(256)

28: max-pool
(256)

29: max-pool
(256)

30: conv3, 512
(131072)

31: conv3, 512
(131072)

32: conv3, 512
(131072)

33: conv3, 512
(131072)

35: conv3, 512
(524288)

34: conv3, 512
(262144)

36: conv3, 512
(262144)

37: conv3, 512
(262144)

38: max-pool
(512)

39: conv3, 512
(262144)

40: conv3, 512
(262144)

43: max-pool
(1024)

42: res3 /2, 512
(262144)

44: fc, 512
(6553)

45: max-pool
(512)

47: softmax
(109739)

48: conv3, 128
(65536)

49: fc, 512
(6553)

55: op
(329217)

50: fc, 128
(1638)

51: softmax
(109739)

52: fc, 256
(3276)

53: fc, 512
(13107)

54: softmax
(109739)

Figure 8: Optimal network architectures found with NASBOT on Cifar10 data.

23

0: ip
(93762)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: max-pool
(64)

4: conv3, 128
(8192)

5: conv3, 128
(16384)

6: max-pool
(128)

7: avg-pool
(128)

8: conv3, 128
(16384)

9: conv3, 128
(32768)

10: conv3, 128
(16384)

11: max-pool
(128)

12: conv3, 256
(32768)

13: conv3, 256
(65536)

14: conv3, 256
(65536)

15: max-pool
(256)

16: conv3, 512
(131072)

17: conv3, 512
(262144)

18: conv3, 512
(262144)

19: max-pool
(512)

20: fc, 128
(6553)

21: fc, 256
(3276)

22: fc, 512
(13107)

23: softmax
(93762)

24: op
(93762)

0: ip
(119700)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: max-pool
(64)

4: conv3, 128
(8192)

5: conv3, 128
(16384)

6: avg-pool
(128)

7: max-pool
(128)

8: conv3, 128
(16384)

9: conv3, 128
(16384)

10: conv3, 128
(16384)

11: avg-pool
(128)

12: conv3, 256
(32768)

13: conv3, 256
(65536)

14: conv3, 256
(65536)

15: max-pool
(256)

16: conv3, 512
(131072)

17: conv3, 512
(262144)

18: conv3, 512
(262144)

19: conv3, 512
(262144)

20: max-pool
(512)

21: max-pool
(512)

22: fc, 128
(6553)

23: fc, 128
(6553)

24: fc, 512
(6553)

25: fc, 256
(3276)

26: softmax
(59850)

27: fc, 512
(13107)

29: op
(119700)

28: softmax
(59850)

0: ip
(127421)

1: conv3, 63
(63)

2: conv3, 72
(4536)

3: max-pool
(72)

4: conv3, 144
(10368)

5: conv3, 144
(20736)

6: max-pool
(144)

7: conv3, 128
(18432)

8: conv3, 128
(16384)

9: conv3, 128
(16384)

10: conv3, 128
(16384)

11: max-pool
(128)

12: conv3, 256
(32768)

13: conv3, 256
(65536)

14: conv3, 256
(65536)

15: conv3, 256
(65536)

16: max-pool
(256)

17: conv3, 512
(131072)

18: conv3, 512
(262144)

19: res5 /2, 512
(262144)

20: conv3, 512
(262144)

21: max-pool
(512)

22: fc, 128
(6553)

23: fc, 256
(3276)

24: fc, 512
(13107)

25: softmax
(127421)

26: op
(127421)

0: ip
(93354)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: max-pool
(64)

4: avg-pool
(64)

5: conv3, 128
(8192)

7: max-pool
(208)

6: conv3, 144
(18432)

8: conv3, 128
(26624)

9: conv3, 128
(16384)

10: conv3, 128
(16384)

11: max-pool
(128)

12: conv3, 256
(32768)

13: conv3, 256
(65536)

14: conv3, 256
(65536)

15: max-pool
(256)

16: conv3, 512
(131072)

17: conv3, 512
(262144)

18: conv3, 512
(262144)

19: max-pool
(512)

20: fc, 128
(6553)

21: fc, 256
(3276)

22: fc, 512
(13107)

23: softmax
(93354)

24: op
(93354)

Figure 9: Optimal network architectures found with EA on Cifar10 data.

24

0: ip
(126517)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: max-pool
(64)

4: conv3, 128
(8192)

5: conv3, 128
(16384)

6: max-pool
(128)

7: conv3, 128
(16384)

8: conv3, 128
(16384)

9: conv3, 128
(16384)

10: conv3, 128
(16384)

11: max-pool
(128)

12: conv3, 256
(32768)

13: res5, 256
(65536)

14: conv3, 256
(65536)

15: conv3, 256
(65536)

16: max-pool
(256)

17: conv3, 512
(131072)

18: conv3, 512
(262144)

19: conv3, 512
(262144)

20: conv3, 512
(262144)

21: max-pool
(512)

22: fc, 128
(6553)

23: fc, 256
(3276)

24: fc, 512
(13107)

25: softmax
(126517)

26: op
(126517)

0: ip
(58790)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: max-pool
(64)

4: conv3, 128
(8192)

5: conv3, 128
(16384)

6: max-pool
(128)

7: conv3, 128
(16384)

8: conv3, 128
(16384)

9: max-pool
(128)

10: conv5, 256
(32768)

11: conv3, 256
(65536)

12: max-pool
(256)

13: avg-pool
(256)

14: conv3, 512
(131072)

16: max-pool
(768)

15: conv3, 512
(262144)

17: max-pool
(512)

18: fc, 128
(9830)

19: fc, 128
(6553)

20: fc, 256
(3276)

21: softmax
(29395)

22: fc, 512
(13107)

24: op
(58790)

23: softmax
(29395)

0: ip
(95388)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: max-pool
(64)

4: conv3, 128
(8192)

5: res5, 128
(16384)

6: conv5, 128
(16384)

7: conv3, 128
(16384)

8: max-pool
(128)

9: conv3, 128
(16384)

10: conv3, 128
(16384)

11: conv3, 128
(16384)

12: max-pool
(128)

13: conv3, 256
(32768)

14: conv3, 256
(65536)

15: conv3, 256
(65536)

16: max-pool
(256)

17: conv3, 512
(131072)

18: conv3, 512
(262144)

19: conv3, 512
(262144)

20: max-pool
(512)

21: fc, 128
(6553)

22: fc, 256
(3276)

23: fc, 512
(13107)

24: softmax
(95388)

25: op
(95388)

0: ip
(86799)

1: conv3, 64
(64)

2: conv3, 64
(64)

3: conv3, 64
(4096)

4: conv3, 64
(4096)

5: max-pool
(64)

6: max-pool
(64)

7: conv3, 128
(8192)

8: conv3, 128
(8192)

9: conv3, 128
(32768)

10: max-pool
(128)

11: conv3, 128
(16384)

12: conv3, 128
(16384)

13: max-pool
(128)

14: conv3, 256
(32768)

15: conv3, 256
(65536)

16: max-pool
(256)

17: conv3, 512
(131072)

18: res5, 512
(262144)

19: conv3, 512
(262144)

20: max-pool
(512)

21: fc, 128
(6553)

22: fc, 256
(3276)

23: fc, 512
(13107)

24: softmax
(86799)

25: op
(86799)

Figure 10: Optimal network architectures found with RAND on Cifar10 data.

25

0: ip
(131815)

1: conv3, 72
(72)

2: conv3, 72
(5184)

3: max-pool
(72)

4: conv3, 144
(10368)

5: conv3, 162
(23328)

6: max-pool
(162)

7: conv3, 144
(23328)

8: conv3, 144
(20736)

9: conv3, 144
(20736)

10: max-pool
(144)

11: conv3, 252
(36288)

12: conv3, 256
(64512)

13: conv3, 256
(65536)

14: max-pool
(256)

15: conv3, 512
(131072)

16: conv5, 512
(262144)

17: conv3, 576
(294912)

18: conv3, 576
(331776)

19: max-pool
(576)

20: fc, 144
(8294)

21: fc, 288
(4147)

22: fc, 504
(14515)

23: softmax
(131815)

24: op
(131815)

0: ip
(128156)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: max-pool
(64)

4: conv3, 128
(8192)

5: conv3, 128
(16384)

6: max-pool
(128)

7: conv3, 128
(16384)

8: conv5, 128
(16384)

9: conv3, 128
(16384)

10: conv3, 128
(16384)

11: conv3, 128
(16384)

12: max-pool
(128)

13: conv3, 256
(32768)

14: conv3, 256
(65536)

15: conv3, 256
(65536)

16: conv3, 256
(65536)

17: max-pool
(256)

18: conv3, 512
(131072)

19: conv3, 512
(262144)

20: conv3, 512
(262144)

21: conv3, 512
(262144)

22: max-pool
(512)

23: fc, 128
(6553)

24: fc, 256
(3276)

25: fc, 512
(13107)

26: softmax
(128156)

27: op
(128156)

0: ip
(49833)

1: conv3, 63
(63)

2: conv3, 56
(3528)

3: max-pool
(56)

4: conv3, 112
(6272)

5: conv3, 112
(12544)

6: max-pool
(112)

7: conv3, 112
(12544)

8: conv3, 112
(12544)

9: max-pool
(112)

10: conv3, 256
(28672)

11: conv3, 196
(50176)

12: max-pool
(196)

13: conv3, 448
(87808)

14: conv3, 576
(258048)

15: max-pool
(576)

16: fc, 144
(8294)

17: fc, 256
(3686)

18: fc, 512
(13107)

19: softmax
(49833)

20: op
(49833)

0: ip
(104727)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: max-pool
(64)

4: conv3, 128
(8192)

5: conv3, 128
(16384)

6: max-pool
(128)

7: conv3, 128
(16384)

8: conv3, 128
(16384)

9: conv3, 128
(16384)

10: max-pool
(128)

11: conv3, 224
(28672)

12: conv3, 256
(57344)

13: conv3, 256
(65536)

14: max-pool
(256)

15: conv5, 448
(114688)

16: conv3, 448
(200704)

17: conv3, 512
(229376)

18: conv3, 512
(262144)

19: max-pool
(512)

20: fc, 128
(6553)

21: fc, 256
(3276)

22: softmax
(104727)

23: op
(104727)

Figure 11: Optimal network architectures found with TreeBO on Cifar10 data.

26

#0 ip, 64, (28891)

#1 crelu, 144, (144)

#2 softplus, 576, (82944)

#6 logistic, 256, (69632)

#9 linear, 256, (14445)

#3 leaky-relu, 72, (41472)

#4 logistic, 128, (73728)#5 elu, 64, (4608)

#7 logistic, 256, (16384)

#8 linear, 256, (14445)

#10 op, 512, (28891)

#0 ip, 64, (542390)

#1 elu, 128, (128)

#2 elu, 256, (32768)

#3 logistic, 512, (131072)

#27 logistic, 512, (393216)

#29 linear, 512, (542390)

#4 crelu, 512, (262144)

#5 logistic, 512, (262144)

#6 logistic, 512, (262144)#7 crelu, 512, (262144)

#8 elu, 512, (262144)#9 crelu, 512, (262144)

#10 tanh, 512, (262144)#11 elu, 512, (262144)

#23 tanh, 324, (259200)

#12 softplus, 64, (32768)#13 tanh, 512, (262144)

#16 logistic, 72, (9216)

#14 softplus, 512, (262144)

#15 softplus, 64, (32768)

#17 relu, 128, (8192) #18 logistic, 128, (9216)

#19 tanh, 576, (73728) #20 relu, 128, (16384)

#21 leaky-relu, 576, (331776) #22 relu, 288, (36864)

#26 leaky-relu, 512, (589824)

#24 tanh, 648, (209952)

#25 leaky-relu, 576, (373248)

#28 logistic, 512, (262144)

#30 op, 512, (542390)

#0 ip, 64, (423488)

#1 elu, 128, (128)

#2 elu, 256, (32768)

#3 linear, 512, (211744)

#25 tanh, 576, (700416)

#4 logistic, 512, (131072)

#21 tanh, 512, (262144)

#27 op, 512, (423488)

#5 logistic, 512, (262144)#6 logistic, 512, (262144)

#7 leaky-relu, 512, (262144)#8 leaky-relu, 512, (262144)

#9 leaky-relu, 576, (294912)

#10 tanh, 64, (32768)

#11 leaky-relu, 512, (262144)

#12 tanh, 512, (294912)

#20 crelu, 256, (81920)

#13 tanh, 512, (262144)

#14 tanh, 64, (32768)#15 relu, 64, (32768)

#16 relu, 64, (4096)

#17 relu, 128, (16384)

#18 logistic, 256, (32768)#19 logistic, 256, (32768)

#22 crelu, 512, (131072)

#23 elu, 504, (258048)

#24 tanh, 576, (290304)

#26 linear, 512, (211744)

#0 ip, 64, (206092)

#1 relu, 112, (112)#2 relu, 112, (112)#3 relu, 112, (112)

#4 relu, 224, (25088)

#20 logistic, 512, (417792)

#5 logistic, 448, (50176)

#8 linear, 512, (103046)

#6 logistic, 392, (87808)

#7 logistic, 441, (98784)#9 logistic, 496, (416640)

#10 leaky-relu, 62, (27342)

#22 op, 512, (206092)

#11 leaky-relu, 496, (246016)

#12 logistic, 512, (253952)

#19 logistic, 256, (192512)

#13 tanh, 128, (7936)

#14 leaky-relu, 64, (31744)

#18 softplus, 256, (159744)

#21 linear, 512, (103046)

#17 softplus, 128, (32768)

#15 tanh, 64, (4096)

#16 tanh, 128, (8192)

Figure 12: Optimal network architectures found with NASBOTon Indoor data.

#0 ip, 64, (232665)

#1 relu, 128, (128)

#2 relu, 256, (32768)

#3 logistic, 512, (131072)

#14 crelu, 512, (262144)

#4 logistic, 512, (262144)

#5 elu, 512, (262144)

#6 elu, 512, (262144)

#13 crelu, 256, (196608)

#7 tanh, 576, (294912)

#8 tanh, 64, (36864)

#9 softplus, 64, (4096)

#10 softplus, 128, (8192)

#11 logistic, 128, (16384)

#12 logistic, 256, (32768)

#15 tanh, 512, (262144)

#16 tanh, 512, (262144)

#17 linear, 512, (232665)

#18 op, 512, (232665)

#0 ip, 64, (9121)

#1 leaky-relu, 128, (128)

#2 leaky-relu, 128, (128)#3 leaky-relu, 224, (28672)

#4 crelu, 126, (16128)#5 logistic, 64, (14336)

#9 linear, 256, (9121)

#6 logistic, 72, (4608)

#7 crelu, 126, (9072)

#8 crelu, 144, (18144)

#10 op, 256, (9121)

#0 ip, 64, (12209)

#1 relu, 144, (144)

#2 relu, 252, (36288)

#7 linear, 256, (12209)

#3 tanh, 72, (18144)

#6 logistic, 144, (54720)

#4 tanh, 64, (4608)

#5 leaky-relu, 128, (8192)

#8 op, 256, (12209)

#0 ip, 64, (30336)

#1 softplus, 128, (128)

#2 softplus, 128, (128)#3 softplus, 256, (32768)

#4 softplus, 256, (32768)#5 crelu, 160, (40960)

#8 tanh, 64, (20480)

#6 softplus, 64, (10240)

#7 softplus, 64, (4096)

#12 elu, 128, (24576)

#9 crelu, 64, (4096)

#10 tanh, 128, (8192)

#11 tanh, 128, (16384)

#13 elu, 112, (14336)

#14 elu, 256, (28672)

#15 elu, 256, (65536)

#16 linear, 256, (30336)

#17 op, 256, (30336)

Figure 13: Optimal network architectures found with EA on Indoor data.

27

#0 ip, 64, (7795)

#1 relu, 128, (128)

#2 relu, 256, (32768)

#7 linear, 256, (7795)

#3 logistic, 64, (16384)

#4 logistic, 64, (4096)

#5 crelu, 128, (8192)

#6 crelu, 128, (16384)

#8 op, 256, (7795)

#0 ip, 64, (133952)

#1 crelu, 128, (128)

#2 crelu, 256, (32768)

#3 crelu, 512, (131072)

#4 crelu, 64, (32768)

#5 crelu, 64, (4096)

#6 crelu, 64, (4096)

#19 tanh, 256, (81920)

#7 logistic, 64, (4096)

#8 logistic, 64, (4096)

#9 logistic, 64, (4096)

#10 logistic, 128, (8192)

#11 logistic, 128, (16384)

#12 logistic, 128, (16384)

#13 leaky-relu, 128, (16384)

#14 leaky-relu, 128, (16384)

#15 leaky-relu, 128, (16384)

#16 leaky-relu, 256, (32768)

#17 leaky-relu, 256, (65536)

#18 leaky-relu, 256, (65536)

#20 tanh, 256, (65536)

#21 tanh, 256, (65536)

#22 tanh, 512, (131072)

#23 tanh, 512, (262144)

#24 tanh, 512, (262144)

#25 linear, 512, (133952)

#26 op, 512, (133952)

#0 ip, 64, (68428)

#1 relu, 128, (128) #2 relu, 128, (128)

#3 relu, 256, (32768) #4 leaky-relu, 64, (8192)

#10 linear, 512, (22809)

#5 leaky-relu, 512, (131072)

#11 leaky-relu, 64, (20480)

#13 tanh, 128, (49152)

#6 tanh, 128, (8192)

#7 logistic, 512, (262144) #8 softplus, 256, (32768)

#9 leaky-relu, 64, (32768)

#18 op, 512, (68428)

#12 tanh, 128, (8192)

#14 softplus, 256, (32768)

#15 softplus, 256, (65536)

#16 linear, 512, (22809)#17 linear, 512, (22809)

#0 ip, 64, (68006)

#1 crelu, 128, (128)

#2 crelu, 256, (32768)

#15 linear, 512, (22668)

#3 elu, 512, (131072)

#4 logistic, 512, (262144)

#5 leaky-relu, 64, (32768)

#6 leaky-relu, 64, (32768) #7 leaky-relu, 64, (4096)

#8 tanh, 144, (9216) #9 tanh, 144, (9216)

#10 linear, 512, (22668)

#11 softplus, 288, (41472)#12 softplus, 288, (41472)

#16 op, 512, (68006)

#13 softplus, 288, (82944)#14 linear, 512, (22668)

Figure 14: Optimal network architectures found with RAND on Indoor data.

#0 ip, 64, (19993)

#1 relu, 256, (256)

#2 logistic, 512, (131072)

#3 elu, 56, (28672)

#4 elu, 128, (7168)

#5 tanh, 256, (32768)

#6 linear, 256, (19993)

#7 op, 512, (19993)

#0 ip, 64, (15146)

#1 leaky-relu, 128, (128)

#2 leaky-relu, 216, (27648)

#3 leaky-relu, 256, (55296)

#4 softplus, 164, (41984)

#5 tanh, 81, (13284)

#6 relu, 162, (13122)

#7 linear, 256, (15146)

#8 op, 256, (15146)

#0 ip, 64, (100)

#1 softplus, 128, (128)

#2 linear, 256, (100)

#3 op, 256, (100)

#0 ip, 64, (632)

#1 leaky-relu, 56, (56)

#2 crelu, 112, (6272)

#3 linear, 256, (632)

#4 op, 256, (632)

Figure 15: Optimal network architectures found with TreeBO on Indoor data.

28

#0 ip, 64, (72512)

#1 crelu, 128, (128)

#2 crelu, 256, (32768)

#11 linear, 512, (72512)

#3 tanh, 512, (131072)

#4 tanh, 512, (262144)

#5 leaky-relu, 64, (32768)

#10 elu, 224, (172032)

#6 leaky-relu, 64, (4096)

#7 logistic, 128, (8192)

#8 logistic, 128, (16384)

#9 elu, 256, (65536)

#12 op, 512, (72512)

#0 ip, 64, (425996)

#1 elu, 128, (128)

#2 elu, 256, (32768)

#3 tanh, 512, (131072)

#4 tanh, 512, (262144)

#21 tanh, 512, (524288)

#23 linear, 512, (425996)

#5 leaky-relu, 512, (262144) #6 leaky-relu, 448, (229376)

#7 leaky-relu, 448, (229376)

#20 relu, 512, (524288)

#8 leaky-relu, 448, (200704)

#9 logistic, 512, (229376) #10 logistic, 512, (229376)

#11 softplus, 512, (524288)

#12 softplus, 64, (32768)

#13 tanh, 64, (4096)

#14 tanh, 128, (8192)

#15 crelu, 128, (16384)

#16 logistic, 256, (32768)

#19 relu, 512, (327680)

#17 logistic, 256, (65536)

#18 leaky-relu, 512, (131072)

#22 tanh, 512, (262144)

#24 op, 512, (425996)

#0 ip, 64, (192791)

#1 elu, 110, (110)

#2 elu, 448, (49280)

#3 tanh, 448, (200704)

#7 relu, 49, (24696)

#18 linear, 512, (192791)

#4 tanh, 448, (200704)

#5 tanh, 56, (25088)

#6 relu, 56, (28224)

#8 relu, 98, (4802)

#9 logistic, 128, (18816)

#17 tanh, 512, (570368)

#10 logistic, 128, (16384)

#11 logistic, 256, (32768)

#12 softplus, 256, (65536)

#13 softplus, 224, (57344)

#14 tanh, 504, (112896)

#15 tanh, 512, (258048)

#16 tanh, 512, (262144)

#19 op, 512, (192791)

#0 ip, 64, (136204)

#1 crelu, 128, (128)

#2 crelu, 288, (36864)

#13 tanh, 512, (458752)

#14 linear, 512, (136204)

#3 tanh, 512, (147456)

#4 tanh, 448, (229376)

#5 softplus, 448, (200704)

#6 tanh, 252, (112896)

#7 softplus, 64, (16128)

#8 logistic, 64, (4096)

#9 logistic, 128, (8192)

#10 elu, 128, (16384)

#11 elu, 256, (65536)

#12 tanh, 256, (65536)

#15 op, 512, (136204)

Figure 16: Optimal network architectures found with NASBOTon Slice data.

#0 ip, 64, (7795)

#1 elu, 128, (128)

#2 logistic, 256, (32768)

#7 linear, 256, (7795)

#3 tanh, 64, (16384)

#4 tanh, 64, (4096)

#5 softplus, 128, (8192)

#6 softplus, 128, (16384)

#8 op, 256, (7795)

#0 ip, 64, (15180)

#1 softplus, 128, (128)

#2 softplus, 128, (128)#3 softplus, 256, (32768)

#4 softplus, 256, (32768)

#9 crelu, 128, (32768)

#5 logistic, 64, (16384)

#6 logistic, 64, (16384)#7 logistic, 64, (4096)

#8 crelu, 128, (16384)

#10 linear, 256, (15180)

#11 op, 256, (15180)

#0 ip, 64, (386265)

#1 crelu, 128, (128)

#2 crelu, 256, (32768)

#3 tanh, 512, (131072)

#4 tanh, 512, (262144)

#5 relu, 512, (262144)

#6 relu, 512, (262144)#7 relu, 512, (262144)

#20 tanh, 512, (786432)

#8 elu, 512, (262144)

#9 logistic, 512, (262144)

#10 elu, 512, (262144)

#11 elu, 64, (32768)

#12 tanh, 64, (4096)

#13 tanh, 128, (8192)

#14 softplus, 128, (16384)

#15 softplus, 256, (32768)

#16 logistic, 256, (65536)

#17 logistic, 512, (131072)

#18 leaky-relu, 512, (262144)

#19 leaky-relu, 512, (262144)

#21 tanh, 512, (262144)

#22 linear, 512, (386265)

#23 op, 512, (386265)

#0 ip, 64, (10664)

#1 leaky-relu, 144, (144)

#2 leaky-relu, 256, (36864)

#3 tanh, 64, (16384)

#4 tanh, 64, (16384)#5 tanh, 64, (4096)

#6 elu, 128, (16384)

#7 elu, 128, (16384)

#8 linear, 256, (10664)

#9 op, 256, (10664)

Figure 17: Optimal network architectures found with EA on Slice data.

29

#0 ip, 64, (11096)

#1 leaky-relu, 112, (112)

#2 leaky-relu, 224, (25088)

#3 tanh, 56, (12544)

#4 elu, 128, (28672)#5 tanh, 64, (3584)

#7 elu, 128, (32768)

#6 tanh, 128, (8192)

#8 linear, 256, (11096)

#9 op, 256, (11096)

#0 ip, 64, (41432)

#1 tanh, 112, (112)

#2 crelu, 224, (25088)

#10 linear, 512, (41432)

#3 tanh, 512, (114688)

#8 tanh, 256, (90112)

#9 relu, 256, (122880)

#4 tanh, 64, (32768)

#5 elu, 64, (4096)

#6 logistic, 128, (8192)

#7 logistic, 128, (16384)

#11 op, 512, (41432)

#0 ip, 64, (371982)

#1 elu, 144, (144)

#2 elu, 288, (41472)

#21 tanh, 512, (335872)

#3 elu, 512, (147456)

#4 logistic, 512, (262144)

#5 logistic, 512, (262144)

#6 logistic, 512, (262144)

#7 relu, 512, (262144)

#8 relu, 64, (32768)

#9 relu, 64, (4096)

#10 tanh, 64, (4096)

#11 tanh, 128, (8192)

#12 tanh, 128, (16384)

#13 leaky-relu, 128, (16384)

#14 leaky-relu, 256, (32768)

#15 logistic, 256, (65536)

#23 tanh, 512, (393216)

#16 logistic, 512, (131072)

#17 logistic, 512, (393216)

#18 softplus, 512, (262144)

#19 softplus, 512, (262144)

#20 softplus, 512, (262144)

#22 tanh, 512, (262144)

#24 linear, 512, (371982)

#25 op, 512, (371982)

#0 ip, 64, (40153)

#1 relu, 128, (128)

#2 relu, 224, (28672)

#8 tanh, 256, (196608)

#3 logistic, 512, (114688)

#4 logistic, 64, (32768)

#5 crelu, 64, (4096)

#6 crelu, 128, (8192)

#7 tanh, 128, (16384)

#9 linear, 256, (40153)

#10 op, 512, (40153)

Figure 18: Optimal network architectures found with RAND on Slice data.

#0 ip, 64, (8179)

#1 elu, 184, (184)

#2 tanh, 202, (37168)

#3 crelu, 220, (44440)

#4 linear, 256, (8179)

#5 op, 256, (8179)

#0 ip, 64, (15704)

#1 elu, 128, (128)

#2 elu, 256, (32768)

#3 relu, 56, (14336)

#4 relu, 112, (6272)

#5 tanh, 126, (14112)

#6 elu, 216, (27216)

#7 tanh, 288, (62208)

#8 linear, 256, (15704)

#9 op, 512, (15704)

#0 ip, 64, (4361)

#1 elu, 193, (193)

#2 elu, 225, (43425)

#3 linear, 256, (4361)

#4 op, 256, (4361)

#0 ip, 64, (10908)

#1 crelu, 144, (144)

#2 crelu, 256, (36864)

#3 elu, 64, (16384)

#4 elu, 126, (8064)

#5 tanh, 126, (15876)

#6 tanh, 252, (31752)

#7 linear, 256, (10908)

#8 op, 512, (10908)

Figure 19: Optimal network architectures found with TreeBO on Slice data.

30

0: ip
(57704)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: m ax-pool, 1
(64)

4: conv3, 128
(8192)

5: conv3, 128
(16384)

6: m ax-pool, 1
(128)

7: conv3, 128
(16384)

8: conv3, 128
(16384)

9: m ax-pool, 1
(128)

10: conv3, 256
(32768)

11: conv3, 256
(65536)

12: m ax-pool, 1
(256)

13: conv3, 512
(131072)

14: conv3, 512
(262144)

15: m ax-pool, 1
(512)

16: fc, 128
(6553)

17: fc, 256
(3276)

18: fc, 512
(13107)

19: softm ax
(57704)

20: op
(57704)

0: ip
(92111)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: m ax-pool, 1
(64)

4: conv3, 128
(8192)

5: conv3, 128
(16384)

6: m ax-pool, 1
(128)

7: conv3, 128
(16384)

8: conv3, 128
(16384)

9: conv3, 128
(16384)

10: m ax-pool, 1
(128)

11: conv3, 256
(32768)

12: conv3, 256
(65536)

13: conv3, 256
(65536)

14: m ax-pool, 1
(256)

15: conv3, 512
(131072)

16: conv3, 512
(262144)

17: conv3, 512
(262144)

18: m ax-pool, 1
(512)

19: fc, 128
(6553)

20: fc, 256
(3276)

21: fc, 512
(13107)

22: softm ax
(92111)

23: op
(92111)

0: ip
(126517)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: m ax-pool, 1
(64)

4: conv3, 128
(8192)

5: conv3, 128
(16384)

6: m ax-pool, 1
(128)

7: conv3, 128
(16384)

8: conv3, 128
(16384)

9: conv3, 128
(16384)

10: conv3, 128
(16384)

11: m ax-pool, 1
(128)

12: conv3, 256
(32768)

13: conv3, 256
(65536)

14: conv3, 256
(65536)

15: conv3, 256
(65536)

16: m ax-pool, 1
(256)

17: conv3, 512
(131072)

18: conv3, 512
(262144)

19: conv3, 512
(262144)

20: conv3, 512
(262144)

21: m ax-pool, 1
(512)

22: fc, 128
(6553)

23: fc, 256
(3276)

24: fc, 512
(13107)

25: softm ax
(126517)

26: op
(126517)

0: ip
(57735)

1: conv7, 64
(64)

2: m ax-pool, 1
(64)

3: conv3 /2, 64
(4096)

4: conv3, 64
(4096)

5: conv3 /2, 128
(8192)

6: conv3, 128
(16384)

7: conv3 /2, 256
(32768)

8: conv3, 256
(65536)

9: conv3 /2, 512
(131072)

10: conv3, 512
(262144)

11: avg-pool, 1
(512)

12: fc, 1024
(52428)

13: softm ax
(57735)

14: op
(57735)

0: ip
(92551)

1: conv7, 64
(64)

2: m ax-pool, 1
(64)

3: conv3 /2, 64
(4096)

4: conv3, 64
(4096)

5: conv3, 64
(4096)

6: conv3 /2, 128
(8192)

7: conv3, 128
(16384)

8: conv3, 128
(16384)

9: conv3 /2, 256
(32768)

10: conv3, 256
(65536)

11: conv3, 256
(65536)

12: conv3 /2, 512
(131072)

13: conv3, 512
(262144)

14: conv3, 512
(262144)

15: avg-pool, 1
(512)

16: fc, 1024
(52428)

17: softm ax
(92551)

18: op
(92551)

0: ip
(31659)

1: conv7, 64
(64)

2: m ax-pool, 1
(64)

3: conv3 /2, 64
(4096)

4: conv3, 64
(4096)

5: conv3, 64
(4096)

6: conv3, 64
(4096)

7: conv3 /2, 128
(8192)

8: conv3, 128
(16384)

9: conv3, 128
(16384)

10: conv3, 128
(16384)

11: conv3 /2, 256
(32768)

12: conv3, 256
(65536)

13: conv3, 256
(65536)

14: conv3, 256
(65536)

15: avg-pool, 1
(256)

16: fc, 512
(13107)

17: softm ax
(31659)

18: op
(31659)

0: ip
(127367)

1: conv7,64
(64)

2: m ax-pool, 1
(64)

3: conv3 /2, 64
(4096)

4: conv3,64
(4096)

5: conv3,64
(4096)

6: conv3,64
(4096)

7: conv3 /2, 128
(8192)

8: conv3, 128
(16384)

9: conv3, 128
(16384)

10: conv3, 128
(16384)

11: conv3 /2, 256
(32768)

12: conv3, 256
(65536)

13: conv3, 256
(65536)

14: conv3, 256
(65536)

15: conv3 /2, 512
(131072)

16: conv3, 512
(262144)

17: conv3, 512
(262144)

18: conv3, 512
(262144)

19: avg-pool, 1
(512)

20: fc, 1024
(52428)

21: softm ax
(127367)

22: op
(127367)

0: ip
(22919)

1: conv7, 64
(64)

2: m ax-pool, 1
(64)

3: res3 /2, 64
(4096)

4: res3 /2, 128
(8192)

5: res3 /2, 256
(32768)

6: res3 /2, 512
(131072)

7: avg-pool, 1
(512)

8: fc, 1024
(52428)

9: softm ax
(22919)

10: op
(22919)

0: ip
(57735)

1: conv7, 64
(64)

2: m ax-pool, 1
(64)

3: res3 /2, 64
(4096)

4: res3, 64
(4096)

5: res3 /2, 128
(8192)

6: res3, 128
(16384)

7: res3 /2, 256
(32768)

8: res3, 256
(65536)

9: res3 /2, 512
(131072)

10: res3, 512
(262144)

11: avg-pool, 1
(512)

12: fc, 1024
(52428)

13: softm ax
(57735)

14: op
(57735)

0: ip
(92551)

1: conv7, 64
(64)

2: m ax-pool, 1
(64)

3: res3 /2, 64
(4096)

4: res3, 64
(4096)

5: res3, 64
(4096)

6: res3 /2, 128
(8192)

7: res3, 128
(16384)

8: res3, 128
(16384)

9: res3 /2, 256
(32768)

10: res3, 256
(65536)

11: res3, 256
(65536)

12: res3 /2, 512
(131072)

13: res3, 512
(262144)

14: res3, 512
(262144)

15: avg-pool, 1
(512)

16: fc, 1024
(52428)

17: softm ax
(92551)

18: op
(92551)

Figure 20: Initial pool of CNN network architectures. The first 3 networks have structure similar to the VGG
nets [37] and the remaining have blocked feed forward structures as in He et al. [12].

31

0 ip, 64,
(7795)

1 relu, 128,
(128)

2 relu, 256,
(32768)

3 logistic, 64,
(16384)

4 logistic, 64,
(4096)

5 softplus, 128,
(8192)

6 softplus, 128,
(16384)

7 linear, 256,
(7795)

8 op, 256,
(7795)

0 ip, 64,
(25817)

1 softplus, 128,
(128)

2 softplus, 256,
(32768)

3 logistic, 512,
(131072)

4 logistic, 64,
(32768)

5 elu, 64,
(4096)

6 elu, 128,
(8192)

7 tanh, 128,
(16384)

8 tanh, 256,
(32768)

9 linear, 256,
(25817)

10 op, 512,
(25817)

0 ip, 64,
(58585)

1 crelu, 128,
(128)

2 crelu, 256,
(32768)

3 logistic, 512,
(131072)

4 logistic, 512,
(262144)

5 elu, 64,
(32768)

6 elu, 64,
(4096)

7 tanh, 128,
(8192)

8 tanh, 128,
(16384)

9 softplus, 256,
(32768)

10 softplus, 256,
(65536)

11 linear, 512,
(58585)

12 op, 512,
(58585)

0 ip, 64,
(21721)

1 elu, 128,
(128)

2 elu, 256,
(32768)

3 elu, 64,
(16384)

4 elu, 64,
(4096)

5 tanh, 64,
(4096)

6 tanh, 64,
(4096)

7 tanh, 128,
(8192)

8 tanh, 128,
(16384)

9 leaky-relu, 128,
(16384)

10 leaky-relu, 128,
(16384)

11 leaky-relu, 256,
(32768)

12 leaky-relu, 256,
(65536)

13 linear, 256,
(21721)

14 op, 256,
(21721)

0 ip, 64,
(97907)

1 crelu, 128,
(128)

2 crelu, 256,
(32768)

3 tanh, 512,
(131072)

4 tanh, 512,
(262144)

5 leaky-relu, 512,
(262144)

6 leaky-relu, 64,
(32768)

7 logistic, 64,
(4096)

8 logistic, 128,
(8192)

9 softplus, 128,
(16384)

10 softplus, 256,
(32768)

11 tanh, 256,
(65536)

12 tanh, 512,
(131072)

13 linear, 512,
(97907)

14 op, 512,
(97907)

0 ip, 64,
(202764)

1 softplus, 128,
(128)

2 softplus, 256,
(32768)

3 tanh, 512,
(131072)

4 tanh, 512,
(262144)

5 relu, 512,
(262144)

6 relu, 512,
(262144)

7 logistic, 512,
(262144)

8 logistic, 64,
(32768)

9 crelu, 64,
(4096)

10 crelu, 128,
(8192)

11 tanh, 128,
(16384)

12 tanh, 256,
(32768)

13 elu, 256,
(65536)

14 elu, 512,
(131072)

15 logistic, 512,
(262144)

16 logistic, 512,
(262144)

17 linear, 512,
(202764)

18 op, 512,
(202764)

0 ip, 64,
(185152)

1 elu, 128,
(128)

2 elu, 256,
(32768)

3 elu, 512,
(131072)

4 logistic, 512,
(262144)

5 logistic, 512,
(262144)

6 logistic, 64,
(32768)

7 relu, 64,
(4096)

8 relu, 64,
(4096)

9 relu, 128,
(8192)

10 tanh, 128,
(16384)

11 tanh, 128,
(16384)

12 tanh, 256,
(32768)

13 crelu, 256,
(65536)

14 crelu, 256,
(65536)

15 crelu, 512,
(131072)

16 logistic, 512,
(262144)

17 logistic, 512,
(262144)

18 logistic, 512,
(262144)

19 linear, 512,
(185152)

20 op, 512,
(185152)

0 ip, 64,
(307622)

1 relu, 128,
(128)

2 relu, 256,
(32768)

3 logistic, 512,
(131072)

4 logistic, 512,
(262144)

5 crelu, 512,
(262144)

6 crelu, 512,
(262144)

7 tanh, 512,
(262144)

8 tanh, 512,
(262144)

9 softplus, 512,
(262144)

10 softplus, 64,
(32768)

11 logistic, 64,
(4096)

12 logistic, 128,
(8192)

13 elu, 128,
(16384)

14 elu, 256,
(32768)

15 tanh, 256,
(65536)

16 tanh, 512,
(131072)

17 leaky-relu, 512,
(262144)

18 leaky-relu, 512,
(262144)

19 logistic, 512,
(262144)

20 logistic, 512,
(262144)

21 linear, 512,
(307622)

22 op, 512,
(307622)

0 ip, 64,
(132313)

1 softplus, 128,
(128)

2 softplus, 256,
(32768)

3 softplus, 512,
(131072)

4 softplus, 64,
(32768)

5 softplus, 64,
(4096)

6 softplus, 64,
(4096)

7 logistic, 64,
(4096)

8 logistic, 64,
(4096)

9 logistic, 64,
(4096)

10 logistic, 128,
(8192)

11 logistic, 128,
(16384)

12 logistic, 128,
(16384)

13 relu, 128,
(16384)

14 relu, 128,
(16384)

15 relu, 128,
(16384)

16 relu, 256,
(32768)

17 relu, 256,
(65536)

18 relu, 256,
(65536)

19 tanh, 256,
(65536)

20 tanh, 256,
(65536)

21 tanh, 256,
(65536)

22 tanh, 512,
(131072)

23 tanh, 512,
(262144)

24 tanh, 512,
(262144)

25 linear, 512,
(132313)

26 op, 512,
(132313)

0 ip, 64,
(342438)

1 elu, 128,
(128)

2 elu, 256,
(32768)

3 elu, 512,
(131072)

4 logistic, 512,
(262144)

5 logistic, 512,
(262144)

6 logistic, 512,
(262144)

7 softplus, 512,
(262144)

8 softplus, 64,
(32768)

9 softplus, 64,
(4096)

10 tanh, 64,
(4096)

11 tanh, 128,
(8192)

12 tanh, 128,
(16384)

13 relu, 128,
(16384)

14 relu, 256,
(32768)

15 relu, 256,
(65536)

16 logistic, 256,
(65536)

17 logistic, 512,
(131072)

18 logistic, 512,
(262144)

19 crelu, 512,
(262144)

20 crelu, 512,
(262144)

21 crelu, 512,
(262144)

22 tanh, 512,
(262144)

23 tanh, 512,
(262144)

24 tanh, 512,
(262144)

25 linear, 512,
(342438)

26 op, 512,
(342438)

Figure 21: Initial pool of MLP network architectures.

32

	Introduction
	Set Up
	A brief review of Gaussian Process based Bayesian Optimisation
	A Mathematical Formalism for Neural Networks

	The OTMANN Distance
	NASBOT
	Experiments
	Conclusion
	Additional Details on OTMANN
	Optimal Transport Reformulation
	Distance Properties of OTMANN
	Implementation & Design Choices
	Some Illustrations of the OTMANN Distance

	Implementation of NASBOT
	The Kernel
	Optimising the Acquisition
	Other Implementation Details

	Addendum to Experiments
	Baselines
	Details on Training
	Optimal Network Architectures and Initial Pool
	Ablation Studies and Design Choices

	Additional Discussion on Related Work

