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Abstract

Bayesian Optimization (BO) is commonly
used to optimize blackbox objective functions
which are expensive to evaluate. A common
approach is based on using Gaussian Process
(GP) to model the objective function. Ap-
plying GP to higher dimensional settings is
generally difficult due to the curse of dimen-
sionality for nonparametric regression. Ex-
isting works makes strong assumptions such
as the function is low-dimensional embedding
(Wang et al., 2013) or is axis-aligned addi-
tive (Kandasamy et al., 2015). In this pa-
per, we generalize the existing assumption to
a projected-additive assumption. Our gener-
alization provides the benefits of i) greatly
increasing the space of functions that can
be modeled by our approach, which covers
the previous works (Wang et al., 2013; Kan-
dasamy et al., 2015) as special cases, and ii)
efficiently handling the learning in a larger
model space. We prove that the regret for
projected-additive functions has only linear
dependence on the number of dimensions in
this general setting. Directly using projected-
additive GP (Gilboa et al., 2013) to BO re-
sults in a non-box constraint, which is not
easy to optimize. We tackle this problem by
proposing a restricted-projection-pursuit GP
for BO. We conduct experiments on synthetic
examples and scientific and hyper-parameter
tuning tasks in many cases. Our method out-
performs existing approaches even when the
function does not meet the projected additive
assumption. Last, we study the validity of
the additive and projected-additive assump-
tion in practice.
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2016 by the authors.

1 Introduction

Many applications in machine learning, science and en-
gineering can be treated as zeroth-order optimization
of a smooth function which is not analytically avail-
able and is usually expensive to evaluate. By querying
the underlying objective function f , the goal is to find
those points that have maximal function values.

Bayesian Optimization is a popular method to solve
zeroth-order optimization. A commonly-used ap-
proach is modeling the unknown objective function f
with a Gaussian Process (GP) (Mockus and Mockus,
1991). At time t, BO estimates the posterior GP
from queried points and constructs an acquisition func-
tion ϕt using upper confidence bound, Thompson sam-
pling, or other heuristics (Brochu et al., 2010). Then
BO maximizes ϕt to determine xt, the next point to
be queried. Acquisition functions such as upper confi-
dence bound also apply to the bandit setting and GP
assumptions. Gaussian process bandits and Bayesian
optimization (GPB/ BO) have been successfully ap-
plied in many applications (Brochu et al., 2010). Be-
sides Gaussian Process, other models including ran-
dom forests (Hutter et al., 2011) and deep neural net-
work (Snoek et al., 2015) are also applied to BO.
However, neither of them has the regret analysis with
asymptotic results.

Although there are many low dimensional applica-
tions (Wang et al., 2013) where existing algorithms
work well (typically dimension< 10), there are also im-
portant high dimensional applications (Yamins et al.,
2013; Gonzalez et al., 2014) for which satisfying high
dimensional optimization methods haven not been de-
veloped yet. High-dimensional BO is generally non-
trivial on both the statistical and computational sides.
On the statistical side, GPB/ BO is exponentially dif-
ficult in high dimensions with regard to query com-
plexity (Srinivas et al., 2010). In addition, there is the
computational cost of optimizing ϕt. Commonly used
algorithms require computational time that is expo-
nential in dimension. BO literature typically assumes



High Dimensional Bayesian Optimization via Restricted Projection Pursuit Models

that the cost for maximising ϕt is negligible in compar-
ison to the cost of evaluation of f . While this might be
true in some cases, in several cases we are constrained
in time to optimize ϕt, such as the parameter tunning
in machine learning applications (Snoek et al., 2012).

To address the difficulty of high dimensionality, the
low-dimensional assumption (Chen et al., 2012; Wang
et al., 2013; Djolonga et al., 2013) assumes the function
only varies within a low-dimensional subspace. On the
other hand, Kandasamy et al. (2015) make the addi-
tive assumption by assuming the function f is a sum of
functions of small, disjoint groups of dimensions. The
sum is high-dimensional while each term of the sum is
low-dimensional. The former approach limits a high-
dimensional function in a low dimensional embedding,
while the latter is restricted to an axis-aligned repre-
sentation. We seek to get the best of both of these
methods without their corresponding drawbacks.

In this paper, we make the following contributions.
First, we generalize the existing two assumptions to
a projected-additive assumption (Hastie and Tibshi-
rani, 1990) to handle a broader class of functions. The
additive assumption and the low-dimensional assump-
tion are special cases under the projected-additive
assumption. We show the regret has only linear
dependence on the dimension D when f is under
the project-additive assumption (Section 4). Sec-
ond, although Gilboa et al. (2013) study GPs with a
projected-additive approximation, it is non-trivial how
to directly apply Gilboa et al. (2013) to BO in prac-
tice. After projection, the size of the distorted function
domain could be exponentially increased which causes
difficulty for optimizing the acquisition functions. We
propose the restricted-projection-pursuit algorithm to
solve this difficulty (Section 4.1) with good empiri-
cal performance on both synthetic and real-world data
(Section 5). Last, we also study the case when f does
not meet these assumptions but still work in practice
with theoretical explanations (Section 6).

2 Preliminaries

We aim to maximize a function f : X → R where X is
a rectangular region in RD. Without loss of generality,
we assume X = [0, 1]D. We also assume that we are
not allowed to know the exact function formulation
but only know the function evaluation by querying at
x ∈ X and obtain a noisy observation y = f(x) + ε,
where ε is Gaussian white noise.

We denote the optimal point as x? = argmaxx∈X f(x).
At time t, we query point xt and incur the instanta-
neous regret rt = f(x?)−f(xt). In the bandit setting,
we are interested in minimizing the cumulative regret
RT =

∑T
t=1 rt =

∑T
t=1 (f(x?)− f(xt)), where T is

the total number of iterations. In the optimization
setting, we are interested in minimizing the simple re-
gret ST = mint≤T rt = f(x?)−maxt f(xt). Note that
ST ≤ 1

TRT , so any algorithm with asymptotic sublin-
ear cumulative regret also has vanishing simple regret.

In high-dimensional optimization problems, usually we
assume some smoothness conditions on f to make
the problem tractable. We assume f is sampled
from a zero mean Gaussian Process (Rasmussen and
Williams, 2006) with a covariance kernel κ : X ×X →
R and ε ∼ N (0, η2). Two commonly used kernels
are the squared exponential (SE) and Matérn kernels
(Rasmussen and Williams, 2006).

At each time t, we construct the acquisition func-
tion ϕt and maximize it to determine which point
xt to query. A common acquisition function used
in bandit problems is the Upper Confidence Bound
(UCB) (Cox and John, 1997). In this work, we fo-
cus on using the Gaussian Process Upper Confidence
Bound (GP-UCB) (Srinivas et al., 2010) to construct

ϕt. That is, ϕt(x) = µt−1(x) + β
1/2
t σt−1(x), and

xt = argmaxx ϕt(x). Here, µt−1 is the posterior GP
mean after t − 1 points, σt−1 is the posterior stan-

dard deviation and β
1/2
t is a coefficient to negotiate

the tradeoff between exploration and exploitation. We
follow Brochu et al. (2010) to use the Dividing Rect-
angles (DiRect) algorithm (Jones et al., 1993) to op-
timize the acquisition function. The time complexity
of DiRect is O(ε−D) if we want to achieve ε accuracy,
which makes high dimensional BO challenging given
the limited computational time in practice.

3 Additive Gaussian Process Models

To deal with high dimensional problems in the GP
framework, Duvenaud et al. (2011) use an additive ker-
nel. Kandasamy et al. (2015) use a group-additive ker-
nel for BO by assuming independence between groups
of dimensions. They demonstrate that it achieves sig-
nificant performance gains in high dimensions. In this
section, we briefly review the group-additive model
of Kandasamy et al. (2015) and abuse the word “ad-
ditive” to mean “group-additive” for simplicity.

Assume the function f can be decomposed into the
following group-additive form,

f(x) = f (1)(x(1)) + . . .+ f (M)(x(M)), (1)

and the mean and kernel functions can be decomposed
as well:

µ(x) = µ(1)(x(1)) + . . .+ µ(M)(x(M)) (2)

κ(x, x′) = κ(1)(x(1),x(1)′) + . . .+ κ(M)(x(M),x(M)′),



Chun-Liang Li, Kirthevasan Kandasamy, Barnabás Póczos, Jeff Schneider

where x(j) ∈ X (j) = [0, 1]dj are disjoint lower dimen-
sional components. For simplicity, assume dj = d for
all j, and thus D = Md.

Inference in Additive GPs: By (1), at time
t, given the noisy labels yt = {y1, . . . , yt} at points
Xt = {x1, . . . ,xt} and a query point x, infer the pos-
terior distribution of f(x) by calculating the posterior
distributions of f̃ (j) ≡ f (j)(x(j)) individually. For each
f̃ (j), the joint distribution can be written as

(
f̃ (j)

yt

)
∼ N

(
0,

[
κ(x(j),x(j)) κ(x(j),X

(j)
t )

κ(X
(j)
t ,x(j)) κ(Xt,Xt) + η2It

])
,

where the pth element of κ(X
(j)
t ,x(j)) ∈ Rt is

κ(x
(j)
p ,x(j)) and the (p, q)th element of κ(Xt,Xt) ∈

Rt×t is κ(xp,xq). Now, the posterior distribution

N
(
µ(j)(x(j)), σ(j)(x(j))

)
of f̃ (j) is,

f̃ (j)|x,Xt,yt ∼ N
(
κ(x(j),X

(j)
t )∆−1yt, (3)

κ(x(j),x(j))− κ(x(j),X
(j)
t )∆−1κ(Xt,x

(j))
)
,

where ∆ = κ(Xt,Xt) + η2It.

Additive Acquisition Function: Using the in-
ferred posterior distribution of f (j)(x(j)), define the
Additive Gaussian Process Upper Confidence Bound
(Add-GP-UCB) to be

ϕ̃t(x) = µt−1(x) + β
1/2
t

M∑
j=1

σ
(j)
t−1(x(j))

=

M∑
j=1

µ
(j)
t−1(x(j)) + β

1/2
t σ

(j)
t−1(x(j)). (4)

Then the optimization of the acquisition function
ϕ̃t(x) can be decomposed as

x
(j)
t = argmax

x(j)∈X (j)

µ
(j)
t−1(x(j)) + β

1/2
t σ

(j)
t−1(x(j)). (5)

To achieve ε accuracy, the time complexity of op-
timizing the Add-GP-UCB acquisition function is
O(Mε−d), which is more efficient than O(ε−D) of the
original UCB algorithm.

The algorithm is shown in Algorithm 1. Note that
Kandasamy et al. (2015) learn the decomposition and
hyperparameters every Ncyc iterations to make the al-
gorithm more efficient.

Algorithm 1 Add-GP-UCB
Input: Ninit, Ncyc, d, M
• D0 ← Uniformly sample Ninit points from X .
• for t = 1, 2, . . .

1. if (t mod Ncyc = 1), Learn the Kernel hy-
per parameters and the decomposition {Xj} by
maximising the GP marginal likelihood.

2. Get x
(j)
t via (5) for all j.

3. Get yt via querying f at xt.
4. Dt = Dt−1 ∪ {(xt, yt)}.

4 Projection Pursuit Model

In nonparametric regression, the projected-additive
assumption (Hastie and Tibshirani, 1990) is used to
generalize the additive assumption. Here, we general-
ize the projected-additive model used in Gilboa et al.
(2013) to a group version as follows,

f(x) = f (1)
(

(W(1))>x
)

+ . . .+ f (M)
(

(W(M))>x
)

µ(x) = µ(1)
(

(W(1))>x
)

+ . . .+ µ(M)
(

(W(M))>x
)

κ(x,x′) = κ(1)
(

(W(1))>x, (W(M))>x′
)

+ . . .+

κ(M)
(

(W(M))>x, (W(M))>x′
)
.

(6)

Let W denote the collection of W(j) ∈ RD×d. We
assume W ∈ RD×D, W is invertible and unknown to
us. In the following, we will use “projected-additive”
to denote the model in (6).

The proposed group-projected-additive model is a
generalization of several previously proposed models.
If W = I, the model is the additive model pro-
posed in Kandasamy et al. (2015). Also, the pro-
posed assumption cover the low-dimensional assump-
tion of Wang et al. (2013) as well.

Algorithm 2 PP-GP-UCB
Input: Ninit, Ncyc, d, M
• D0 ← Uniformly sample Ninit points from X .
• for t = 1, 2, . . .

1. Learn W on Dt−1 by Gilboa et al. (2013) and
get the projected data Zt−1.

2. Perform Step 1-2 in Algorithm 1 on Zt to get

z
(j)
t for all j and xt = (W−1)>zt.

3. Get yt via querying f at xt.
4. Dt = Dt−1 ∪ {(xt, yt)}.

Gilboa et al. (2013) proposed an efficient algorithm
called projection pursuit GP regression (PP-GP) to
approximate W. It partitions W into several vectors
wi and learn them individually via the state-space-
model using Expectation Maximization. The algo-
rithm utilizes the approximation inference with itera-
tion complexity that is linear time in number of data.
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In BO, the number of queries is usually limited, which
makes applying PP-GP feasible in practice. Observe
that the projection pursuit GP regression is equivalent
to applying the additive model in Section 3 on the
projected data Z = XW (Gilboa et al., 2013). Our
proposed approach, the PP-GP-UCB algorithm for
Bayesian Optimization, is described in Algorithm 2,
and we also provide a regret bound about its perfor-
mance in Theorem 2. Due to the space limits, we defer
all proofs to the Appendix. First we define the Maxi-
mum Information Gain (Srinivas et al., 2010).

Definition 1. (Maximum information gain) Let f ∼
GP(0, κ) and yi = f(xi) + εi, where εi ∼ N (0, η2).
Given A = {x1, · · · ,xT } ⊂ X , let fA = {f(xi)},
yA = fA + εA and I be the mutual information. The
maximum information gain γT after T round is

γT = max
A∈X ,|A|=T

I(yA; fA).

γT characterises the difficulty of the problem and cap-
tures the difficulty with dimensionality. For the SE
kernel, γT ∈ Õ((D log T )D+1). If it is a sum of SE ker-
nels, Kandasamy et al. (2015) show that it improves
to Õ(Ddd(log T )D+1).

Theorem 2. Suppose g(z) = f(x), where z = W>x
and g is constructed by sampling g(j) ∼ GP(0, κ(j))
for j = 1, . . . ,M and then summing them as (6). Sup-
pose also that we maximize the acquisition function

ϕ̃t(z) =
∑M
j=1 µ

(j)
t−1(z(j)) + β

1/2
t σ

(j)
t−1(z(j)) to within

Õ(t−1/2) accuracy at time step t with βt = Õ (d log t).
Under these conditions PP-GP-UCB attains simple

regret ST ∈ Õ
(√

DγT log T/T
)

with high probability,

where γT = O
(
Ddd(log T )d+1

)
for SE kernel.

4.1 Restricted Projection

In BO, we maximize a function within a box re-
gion X = [0, 1]D. The box constraints benefit the
additive model because we can optimize the acquisi-
tion function of each group x(i) independently under
the box constraints x(j) ∈ [0, 1]dj without considering
other groups of dimensions.

x(1)

x(2)

(a) Original Domain
x ∈ [0, 1]2

z(1)

z(2)

(b) Transformed Do-
main (W>)−1z ∈ [0, 1]2

Figure 1: Two-dimensional example of transformed
domains.
When we apply PP-GP-UCB to BO, the constraints of

z(1)

z(2)

(a) Partial Covered

z(1)

z(2)

(b) Outer Box

z(1)

z(2)

(c) Restricted
Projection

Figure 2: Two-dimensional example of the different
constraints

the projected data z is
(
(W>)−1z

)
∈ [0, 1]D, which is

not a box constraint. We are then not able to optimize
the acquisition function by optimizing each group of
dimensions z(i) independently, since all dimensions are
correlated. One example is shown in Figure 1. After
projection, the range of z(1) depends on the value of
z(2). Therefore, Algorithm 2 is not applicable without
resolving the issue of the transformed domain.

To deal with the non-box constraint problem, a possi-
ble approach is to create a new box constraint to cover
the transformed domain. If the new domain only par-
tially cover the transformed domain as shown in Fig-
ure 2(a), we may exclude the optimal point, which is
less preferable. Therefore, we use the outer-box do-
main, which creates a outer box to fully contain the
transformed domain as shown in Figure 2(b).

The problem with the outer-box domain is that we
have a larger domain than the original transformed do-
main, where the size may be exponentially increased
in dimensions. Here we focus on the ratio between
the sizes of the outer box and the original transformed
domain. For instance, if we use grid search to opti-
mize the acquisition function within the outer box in
Figure 2(b), then we waste a large number of queries
outside of the transformed region.

Observation We could treat the additive model as a
special case of projected-additive model with an iden-
tity matrix as the projection matrix. Informally speak-
ing, if the projection matrix is similar to the identity
matrix, the enhanced region induced by the outer-box
domain would be small. However, it is non-trivial to
put this constraint into Gilboa et al. (2013).

Inspired by the geometric observation, we propose to
use the restricted projection matrix, which consists
of two steps. We first use the projection matrix W
by Gilboa et al. (2013). We then define the restricted
projection matrix as

Ŵ = (1− α)W + αI, (7)

where α ∈ [0, 1].

If α = 1, it is the additive GP regression; if α = 0,
it is the projection-pursuit GP regression. From the
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geometric perspective, we optimize the marginal like-
lihood while consider the ratio of the size of the outer
box to determine α.

argmax
α

logP (yt|Xt; Ŵ)

subject to
|outer(XŴ)|
|XŴ|

≤ 1 + δ

Ŵ = (1− α)W + αI,

(8)

where |XW| = |W| is the size (volume) of the trans-

formed domain, and |outer(XW)| =
∏D
d=1 ‖wd‖1

is the size of the outer-box domain1, where wd is
the dth column of W. By controlling δ, we could
restrict the size of searching space when we opti-
mize the acquisition function. We call the constraint
|outer(XŴ)|/|XŴ| ≤ 1 + δ as δ-ratio constraint. The
example of the restricted projection is shown in Fig-
ure 2(c). Then we only need to optimize one single
variable α to control the increased domain, which is
simpler than solving W with δ-ratio constraint di-
rectly. In practice, we observe the grid search by check-
ing the constraint could bring us satisfactory empirical
performance.

We call the proposed algorithm Restricted-Projection-
Pursuit GP-UCB (RPP-GP-UCB). The pseudo-code
of the algorithm is shown in Algorithm 3.

Algorithm 3 RPP-GP-UCB
Input: Ninit, Ncyc, d, M , δ
• D0 ← Uniformly sample Ninit points from X .
• for t = 1, 2, . . .

1. if (t mod Ncyc = 1) Learn Ŵ with δ-ratio
constraint with warm start to make this step
more efficient and get the projected data
Zt−1.

2. Perform Step 1-2 in Algorithm 1 on Zt with

the domain outer(Ŵ) to get z
(j)
t for all j

and xt = (Ŵ−1)>zt.
3. Get yt via querying f at xt.
4. Dt = Dt−1 ∪ {(xt, yt)}.

5 Experiment

To make the experiment realistic and demonstrate the
efficacy of RPP-GP-UCB, we optimize the acquisi-
tion function under limited budget with DiRect as
used in Brochu et al. (2010). For RPP-GP-UCB, we
use Gilboa et al. (2013) to find W, and find α in (7) by
grid search in the range feasible to the constraint. For
grouping the dimensions in Add-GP-UCB and RPP-
GP-UCB , we create the M combinations randomly

1Note that the original domain is [0, 1]D.

and choose the one maximizing the marginal likeli-
hood, where M is the number of groups. For all GPB/
BO-based algorithms, we set Ninit = 10, Ncyc = 25.
In all experiments, we use SE kernels and maximize
the marginal likelihood P (yt|Xt; θ) to find the hyper-
parameters θ. For additive and projected-additive ker-
nels, we use the same hyperparameters for all the ker-
nels. We run each algorithm 50 times for each dataset
with different initializations and report the average re-
sults.

5.1 Synthetic Data

First we study the synthetic data to understand the
behavior of the proposed algorithm. We generate the
objective function f as follows. Let

fd′(z) = log
(
0.1× mvnpdf(z,v1, σ

2)+
0.1× mvnpdf(z,v2, σ

2) + 0.8× mvnpdf(z,v3, σ
2) ) ,

where σ2 = 0.01d′0.1 and mvnpdf(x, µ, σ2) is the
probability density at x of the multivariates Gaussian
distribution with mean µ and covariance function σ2I.
v1,v2,v3 are fixed points in Rd′ .

We then define f(x) = fd′(A
>
1 x) + · · · + fd′(A

>
Mx),

where Ai ∈ RD×d′ , x ∈ RD and D = Md′. We denote
A ∈ RD×D as the collection of Ai.

We study the cases when D = 50 and D = 100, with
d′ = D/2 and δ = 0.1. We then set A = I + S and
sample each element in S from Unif(−1/4,−1/4) and
Unif(−1/8,−1/8) for D = 50 and D = 100, respec-
tively to make A invertible. Also, we experiment with
Add-GP-UCB and RPP-GP-UCB for the following
values of group dimensionality d = {5, 10, 25}. Fi-
nally, we report the average simple regret of Add-GP-
UCB (ADD-d) and RPP-GP-UCB (RPP-d) with stan-
dard errors in Table 1 and 2. More experiment results
for other algorithms (Wang et al., 2013; Hutter et al.,
2011) can be found in Appendix.

From Table 1, for D = 50, neither Add-GP-UCB nor
RPP-GP-UCB are statistically expressive when we use
d = 5. When we increase d to 10 and 25, both Add-
GP-UCB and RPP-GP-UCB outperform GP-UCB .
Also, we could notice that d = 10 outperforms d = 25.
Although we set d = 25, which is equal to d′, optimiz-
ing in 25 dimensions is more difficult than optimizing
in 10 dimensions. The imperfect optimization of ϕt
and the difficulty of estimating functions in higher di-
mensions degrade the performance.

In Table 2, we have similar observations for D = 100.
It is worth noticing that optimizing acquisition func-
tion gets more difficult under higher dimensional set-
ting. When D = 100, both Add-GP-UCB and RPP-
GP-UCB perform better than GP-UCB for all values
of d.
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GP-UCB ADD-5 RPP-5 ADD-10 RPP-10 ADD-25 RPP-25
T = 500 103.9± 1.9 180.3± 10.1 151.1± 9.7 35.4± 2.2 30.2± 1.7 164.5± 9.4 152.4± 6.5
T = 1000 91.4± 1.3 153.4± 7.1 136.8± 8.0 31.3± 2.1 25.1± 1.9 77.8± 3.4 75.7± 2.4

Table 1: The simple regret results of the synthetic data with D = 50.

GP-UCB ADD-5 RPP-5 ADD-10 RPP-10 ADD-25 RPP-25
T = 500 114.1± 1.0 168.0± 8.1 150.6± 12.2 109.8± 3.6 98.9± 2.6 175.8± 3.7 159.0± 2.6
T = 1000 106.6± 0.9 92.6± 3.0 89.5± 5.0 41.5± 1.4 34.5± 1.1 85.8± 1.7 85.1± 1.5

Table 2: The simple regret results of the synthetic data with D = 100.

To study whether RPP-GP-UCB is significantly bet-
ter than Add-GP-UCB , we conduct the t-test at 95%
confidence level. The results are given in Tables 3
and 4. Note that when A is diagonal, f is additive.
Since A is similar to a diagonal matrix but with small
perturbations, we could still approximate the function
well. Therefore, it is not surprising that the perfor-
mance difference is not significant when we use large d
(e.g. d = 25). However, in terms of the average perfor-
mance, RPP-GP-UCB still brings us the performance
gain under this situation.

d = 5 d = 10 d = 25
T = 500 win win tie
T = 1000 win win tie

Table 3: RPP-GP-UCB versus Add-GP-UCB based
on t-test at 95% confidence level when D = 50. “win”
means that RPP-GP-UCB is better than Add-GP-
UCB at the 95% significance level.

d = 5 d = 10 d = 25
T = 500 tie win win
T = 1000 tie win tie

Table 4: RPP-GP-UCB versus Add-GP-UCB based
on t-test at 95% confidence level when D = 100.

Without any restriction on W (δ =∞), it is equivalent
to directly applying Gilboa et al. (2013) on BO. How-
ever, the average simple regret is more than 500 when
D = 50 and D = 100. We address the bad perfor-
mance to two reasons. First, without any restriction,
the size of the outer box is much larger, which causes
the algorithm query many points out of the original
domain. Second, we observe that W tends to overfit
the queried points due to the insufficient queries2.

5.1.1 Study of δ

Finally we sudy the trade-offs in choosing δ. In Ta-
ble 5, lager δ results in better performance because it
is more statistically expressive. If we are allowed to
use more DiRect evaluations, we could expect larger
δ could further improve the performance. When d is
large enough, such as d = 25, even the small δ could
be statistically expressive. So using larger δ is less effi-
cient because the algorithm searches a larger domain.

2It is also difficult to use any standard approach, such as
cross-validation, to avoid overfitting with limited queries.

Figure 3: The sample faces and non faces of VJ data.

Note that RPP-GP-UCB is still better than Add-GP-
UCB even though we use smaller δ. It demonstrates
the validity of the proposed algorithm.

d = 5 d = 10 d = 25
δ = 0 (ADD) 53.4± 7.1 31.3± 2.1 77.8± 3.4
δ = 0.05 144.8± 9.7 27.9± 1.8 73.3± 3.6
δ = 0.1 136.8± 9.7 25.1± 1.9 75.7± 2.4

Table 5: The simple regret of RPP-GP-UCB when
D = 50 and T = 1000

5.2 Real-world Data

Here we consider two real-world tasks, an astrophysical
simulation using data from the Sloan Digital Sky Sur-
vey (SDSS) (Tegmark et al, 2006) and face detection
using the Viola & Jones Cascade classifier (VJ) (Vi-
ola and Jones, 2001). The software of SDSS com-
putes the likelihood of a simulation based astrophysi-
cal model with cosmological parameters and spectrum
data. Higher likelihood could help cosmologists un-
derstand the links between these parameters and the
power spectra. Therefore, we wish to find the param-
eters to maximize the likelihood value. The software
uses 9 parameters. To emulate the real-world setting,
we augment it to 40 dimensions with dummy variables
and perturb the parameters with small correlations by
I40×40 + S, where S is sampled from Unif(−0.1, 0.1).
On the other hand, VJ is a machine learning parame-
ter tunning task for detecting whether an image con-
tains a face. The sampled faces are shown in Figure 3.
VJ uses K weak classifiers with K thresholds. If the
scores from K classifiers of images pass K thresholds,
it is classified as positive. We use the implementation
in OpenCV (Bradski and Kaehler, 2008) with K = 22
parameters without augmentation.

Since the SDSS simulation only takes 3-5 seconds, we
use 500 DiRect evaluations for SDSS. We use 1000
evaluations for VJ since the classification takes 30-40
seconds. We also compare with REMBO (Wang et al.,
2013) with low-dimensional assumption. For REMBO,
we use bD/4c low dimensions. For RPP-GP-UCB, we
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set δ = 0.05. The average results with standard er-
rors are shown in Figure 4, where ADD/RPP-d means
each group has d dimensions and REMBO-d assumes the
number of low dimensions is d.

In practice, the correlation between different dimen-
sions may be larger than the synthetic data used in
Section 5.1, then the additive model may not have sat-
isfactory performance by loosing some more informa-
tion. According to Figure 4, we could observe RPP-
GP-UCB with small δ significantly outperforms Add-
GP-UCB when they use the same d. Even when we use
d = 1 for RPP-GP-UCB , it could result in compet-
itive or better performance than Add-GP-UCB with
larger d, which justifies RPP-GP-UCB is more statisti-
cally expressive than other models. On the other hand,
REMBO does not have satisfactory performance. For
SDSS, even though D/4 is larger than the number of
the underlying low dimensions (9 dimensions). We ad-
dress the bad performance into the imperfect optimiza-
tion for acquisition functions, and the empirical choice
of the search domain used in Wang et al. (2013) is
too small to include the optimal point. For VJ, since
the underlying low dimensional assumption does not
hold, optimizing D/4 dimensions is not enough to get
satisfactory performance.
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Figure 4: The results on the real-world data (The
higher values are better).

6 Discussion

The additive assumption is usually non-realistic. How-
ever, Kandasamy et al. (2015) show that it still works
well in practice without a theoretical explanation. In
this section, we aim to provide some theoretical in-
sights to understand when the projected-additive as-
sumption works even though the objective function
does not meet the additive assumption. For simplic-
ity, we assume the number of dimension of each lower
dimensional group dj = 1 for all j, but one can easily
generalize the following results to dj > 1.

Assumption 3. Let f : X → R, where X = [0, 1]D.
Define f̃(z) = f(

√
Dz). The domain Z of f̃ is

[0, 1/
√
D]D, and ‖z‖ = ε, where ε < 1. Suppose that f̃

has bounded second-order and third-order derivatives.

Proposition 4. Under Assumption 3, there exists an
additive approximation g (1) modeling the first order
derivative such that maxz |f̃(z)− g(z)| = O(ε2).

Proposition 5. Under Assumption 3, there exists a
projected-additive approximation h (6) modeling the
first and second order derivatives such that |f̃(z) −
h(z)| = O(ε3).

Even though f(x) is not additive, if f(x) is not too
wiggly and has bounded high-order derivatives, which
is a common assumption in nonparametric regression,
then the additive model could be treated as a first-
order approximation and the projected-additive model
as a second-order approximation.

As we show in Section 5.1, since A is similar to an
identity matrix, the correlation between dimensions is
small. Therefore, by only utilizing the first-order ap-
proximation (Add-GP-UCB) could still result in sat-
isfactory performance. However, the correlation be-
tween different dimensions may be larger than the used
synthetic data, then we could see RPP-GP-UCB sig-
nificantly outperforms Add-GP-UCB in Figure 4 by
modeling the second-order information.

Next, we show that the difference between the
suboptimality that arises through the approxima-
tion of the function and the global optimal is bounded.

Assumption 6. The posterior mean function is de-
fined as µt(x) = κ(x,Xt) (κ(Xt,Xt) + ηI)

−1
yt at

time t. Let ỹt = {ỹ1, . . . , ỹt}, where |yi − ỹi| ≤ ε.
Suppose that |µt(x) − µ̃t(x)| < Cε, ∀x and t, where

µ̃t(x) = κ(x,Xt) (κ(Xt,Xt) + ηI)
−1

ỹt and C is a
constant.

Theorem 7. Assume g is constructed by sampling
from g ∼ GP(0, κ(·)), where κ is a SE kernel. Define
βt = Õ(d log t). Running GP-UCB with βt and the bi-
ased samples (xi, ỹi) instead of noisy samples (xi, yi),
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where ỹi = f(xi) + εi and yi = g(xi) + εi. Assum-
ing |f(x) − g(x)| ≤ ε, where ε is a constant, we then

obtain the simple regret bound Õ(
√
dγT√
T

+ ε) with high

probability.

Corollary 8. The simple regret of GP-UCB on func-

tion f can be bounded as Õ(
√
dγT√
T

+ ε).

Theorem 7 and Corollary 8 are intuitive by consider-
ing the case that the bias is exactly ε for every x, that
is g(x)−f(x) = ε. Then the difference between simple
regrets with original noisy samples and the biased sam-
ple should be 0 < ε. Therefore, if the approximation
error is small, Add-GP-UCB and PP-GP-UCB can
provide a satisfactory performance in practice, since
the imperfect optimization of ϕt in GP-UCB may
cause larger error than ε.

6.1 Validity of RPP-GP-UCB

We first consider the case when α = 0, which implies
W satisfies the δ-ratio constraint. Assume for simplic-
ity that the optimal point z∗ is not on the boundary of
the domain. Then the Hessian matrix H∗ of the f̃ at
z∗ is negative definite. If H∗ further has small enough
off-diagonal elements such that there exists a matrix
Q satisfying δ-ratio constraint and H∗ = −QQ>. In
turn, the following corollary holds.

Proposition 9. If f̃ satisfies Assumption 3, and
the Hessian matrix of f̃(z∗) can be decomposed as
−QQ>, where Q satisfies the δ-ratio constraint, there
exists a projected-additive approximation h such that
|f̃(z) − h(z)| = O(ε3), where ε = ‖z − z∗‖, and z∗ is
the optimal point of f̃ .

The mild-assumption in Corollary 9 is valid when the
correlation between different dimensions is small. A
special case is the additive function, where the corre-
lation between different dimensions is zero.

If α > 0, which means W does not satisfy the δ-ratio
constraint, which is possible when δ is small. From the
approximation perspectives as shown in Proposition 4
and Proposition 5, optimizing (8) is seeking for an in-
termediate approximation between the first-order and
the second-order approximation. The result could be
justified by Section 5.1.1 empirically. Even if we use
small δ, we could still get performance gain.

6.2 Practical Concern of δ

If we set δ to be large, then we still need to search in a
large domain. For example, the worst case is α = 1 if
δ is large enough. If we do not have enough com-
putational budget to optimize the acquisition func-
tion, then we can only use small δ in practice. Note
that δ determines how expressive our model is and

therefore characterises a bias variance tradeoff. If we
set δ smaller, we increase the bias of the estimated
W. However, note that the optimization of finding
W (Gilboa et al., 2013) is non-convex, and we are
only able to find the local optimum. When D is large,
it is impossible to reconstruct W ∈ RD×D using a
limited number of queries without any assumptions.
Therefore, (7) plays a role as regularization to reduce
the variance of estimating the transform matrix W
given δ.

Intuitively, the RPP-GP-UCB is inspired from the ge-
ometrical interpretation to reduce the search space; al-
gorithmically, RPP-GP-UCB seeks for a intermediates
between the first-order and second-order approxima-
tion and balanced the trade-off between the increased
search domain and the space of the function repre-
sentation; empirically, we demonstrate RPP-GP-UCB
outperforms existing approaches even though we use
small δ.

7 Conclusion

In this paper, we generalize the existing additive model
to projected additive model with regret analysis. We
propose RPP-GP-UCB to solve the difficulty of the
increased function domain, and demonstrate the effi-
cacy and validity of the proposed RPP-GP-UCB from
both theoretical and empirical sides. We provide a
theoretical study to justify the validity of the additive
and projected-additive model, which could be treated
as first-order and second-order approximation, respec-
tively. Even the function is not projected-additive, the
difference between achieved suboptimal and global op-
timal is bounded under certain conditions.

The empirical study on synthetic and real-world data
demonstrates the proposed RPP-GP-UCB outper-
forms the additive model (Kandasamy et al., 2015)
and low-dimensional assumption model (Wang et al.,
2013). In practice, we observe that even if the small δ,
which only model partial correlation between different
dimensions, could benefit a lot. On the other hand,
if the low dimensional assumption holds, Wang et al.
(2013) may have a promising result. However, it is
possible that it still has dozens of reduced dimensions.
As the empirical results suggest, RPP-GP-UCB could
still benefit the reduced low dimensional problem.

Our work provides a more expressive framework for
BO in high dimensions. Although we do not focus
on perfect learning for RPP-GP, it already gives us
a significant performance gain. However, we observe
that the better optimization for RPP-GP results in
better BO performance. Therefore, it worth studying
the better learning algorithm for RPP-GP to further
boost the performance.
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References

Bradski, G. and Kaehler, A. (2008). Learning
OpenCV. O’Reilly Media Inc.

Brochu, E., Cora, V. M., and de Freitas, N. (2010).
A Tutorial on Bayesian Optimization of Expensive
Cost Functions, with Application to Active User
Modeling and Hierarchical Reinforcement Learning.
CoRR.

Chen, B., Castro, R., and Krause, A. (2012).
Joint Optimization and Variable Selection of High-
dimensional Gaussian Processes. In Proceedings of
the International Conference on Machine Learning.

Cox, D. D. and John, S. (1997). Sdo: A statistical
method for global optimization. In Multidisciplinary
Design Optimization: State-of-the-Art.

Djolonga, J., Krause, A., and Cevher, V. (2013). High-
Dimensional Gaussian Process Bandits. In Advances
in Neural Information Processing Systems.

Duvenaud, D. K., Nickisch, H., and Rasmussen, C. E.
(2011). Additive gaussian processes. In Advances in
Neural Information Processing Systems.

Gilboa, E., Saatci, Y., Cunningham, J. P., and Gilboa,
E. (2013). Scaling multidimensional gaussian pro-
cesses using projected additive approximations. In
Proceedings of the International Conference on Ma-
chine Learning.

Gonzalez, J., Longworth, J., James, D., and Lawrence,
N. (2014). Bayesian Optimization for Synthetic
Gene Design. In NIPS Workshop on Bayesian Op-
timization in Academia and Industry.

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized
Additive Models. London: Chapman & Hall.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011).
Sequential model-based optimization for general al-
gorithm configuration. In Proceedings of the Inter-
national Conference on Learning and Intelligent Op-
timization.

Jones, D. R., Perttunen, C. D., and Stuckman, B. E.
(1993). Lipschitzian Optimization Without the Lip-
schitz Constant. Journal of Optimization Theory
and Applications.

Kandasamy, K., Schenider, J., and Póczos, B. (2015).
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