
RubberBand: Cloud-based Hyperparameter Tuning
Ujval Misra∗
UC Berkeley

Richard Liaw∗

UC Berkeley
Lisa Dunlap
UC Berkeley

Romil Bhardwaj
UC Berkeley

Kirthevasan Kandasamy
UC Berkeley

Joseph E. Gonzalez
UC Berkeley

Ion Stoica
UC Berkeley

Alexey Tumanov
Georgia Institute of Technology

Abstract
Hyperparameter tuning is essential to achieving state-of-the-
art accuracy in machine learning (ML), but requires substan-
tial compute resources to perform. Existing systems primar-
ily focus on e�ectively allocating resources for a hyperparam-
eter tuning job under �xed resource constraints. We show
that the available parallelism in such jobs changes dynami-
cally over the course of execution and, therefore, presents
an opportunity to leverage the elasticity of the cloud.
In particular, we address the problem of minimizing the

�nancial cost of executing a hyperparameter tuning job, sub-
ject to a time constraint. We present RubberBand—the �rst
framework for cost-e�cient, elastic execution of hyperpa-
rameter tuning jobs in the cloud. RubberBand utilizes per-
formance instrumentation and cloud pricing to model job
completion time and cost prior to runtime, and generate a
cost-e�cient, elastic resource allocation plan. RubberBand is
able to e�ciently execute this plan and realize a cost reduc-
tion of up to 2x in comparison to static allocation baselines.

CCS Concepts • Computing methodologies →
Distributed computing methodologies; Machine
learning.

Keywords Hyperparameter Optimization, Distributed Ma-
chine Learning
ACM Reference Format:
Ujval Misra, Richard Liaw, Lisa Dunlap, Romil Bhardwaj,
Kirthevasan Kandasamy, Joseph E. Gonzalez, Ion Stoica, and Alexey
Tumanov. 2021. RubberBand: Cloud-based Hyperparameter Tuning.
In Sixteenth European Conference on Computer Systems (EuroSys
’21), April 26–28, 2021, Online, United Kingdom. ACM, New York,
NY, USA, 16 pages. h�ps://doi.org/10.1145/3447786.3456245
∗Equal contribution.

EuroSys ’21, April 26–28, 2021, Online, United Kingdom
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8334-9/21/04.
h�ps://doi.org/10.1145/3447786.3456245

T2

T6

G

PU
s

T1

T5
T8

T6

T8

Time Time

G

PU
s

T4

T3

T7

T2

T1

T5

T4

T3

T7

1 GPU

Figure 1. Elastic Hyperparameter Search. A comparison of a
static allocation (left) and an elastic allocation (right) for the same
tuning job. Each box represents the compute allocation to a trial for
a number of epochs. The highest quality trial (green) is eventually
allocated the entire cluster in the static allocation despite needing
fewer resources to complete training within constraints.

1 Introduction
As state-of-the-art deep learning (DL) models have grown
larger in the number of parameters [1, 2], so too have their
price tags [3]. Because the dominant cost of developing these
models lies in the process of hyperparameter tuning [4], it has
become critical to reduce the cost of commonly employed
hyperparameter tuning methods.
Hyperparameter tuning aims to determine the optimal

con�guration of hyperparameters of a model by repeatedly
training it with di�erent candidate con�gurations, and se-
lecting the one that yields the highest accuracy. Despite its
signi�cant cost, hyperparameter tuning is essential to maxi-
mizing the performance of a DL model, since the accuracy
of such models depends strongly on the choice of hyperpa-
rameters used [5, 6]. In this work, we therefore focus on the
fundamental problem of minimizing the cost of executing a
hyperparameter tuning job, subject to a time constraint.

To accelerate hyperparameter tuning jobs, state-of-the-art
early-stopping techniques reduce the amount of work per-
formed by terminating evaluation tasks expected to yield
inferior quality con�gurations prior to their completion [7–
10] or by dynamically deallocating compute resources (e.g.,
GPUs) from poorly performing hyperparameter con�gura-
tions before they �nish [11]. These techniques exploit the

327

This work is licensed under a Creative Commons Attribution International 4.0 License

https://creativecommons.org/licenses/by/4.0/

available parallelism in hyperparameter tuning workloads
to further reduce job completion time (JCT) through concur-
rent training and evaluation. However, such techniques thus
far [9–12] have focused exclusively on exploiting parallelism
over a �xed pool of compute resources.
In this paper, we demonstrate that early-stopping tech-

niques exhibit poor utilization when running over �xed re-
source pools due to the changing available parallelism of hy-
perparameter tuning workloads. These techniques reallocate
resources to a decreasing number of running candidates by
terminating the worst performers. This leads to a degradation
in cluster resource utilization since common parallel training
methods incur signi�cant communication overheads, and as
such scale sub-linearly with compute [13–15].
Building on this observation, we show that it is possible

to increase cluster utilization and reduce execution cost of
hyperparameter tuning, while preserving JCT and model
accuracy, by running it in the cloud. Leveraging the intrinsic
compute elasticity of cloud platforms enables dynamically
resizing of the provisioned cluster to adapt to the changing
parallelism available in the job. By front-loading expenditure,
we can allocate more resources to the earlier, highly parallel
stages of a job and fewer to subsequent ones. This results in
improved cluster utilization and a reduction in overall cost.
However, e�ciently leveraging elastic cloud resources

for hyperparameter tuning presents three key challenges.
The �rst is to accurately model the execution of the job in
the cloud, as a function of a resource allocation plan, which
de�nes the number of parallel compute resources to allocate
to each stage of the job. The second is to navigate the large
search space of such plans to �nd a feasible, low-cost solution.
The third is to cost-e�ciently schedule and place workers
over an elastically provisioned cluster at runtime.

First, the JCT and cost of a job are functions of its allocation
plan. However, modeling this relationship can be challenging
due to a variety of other factors that impact performance and
spending. In particular, JCT is also a function of (i) the DL
model’s training latency and scalability over cloud hardware,
(ii) cloud provider overheads, such as provisioning latency,
and (iii) the overall computation structure of the job.
Similarly, execution cost is a function of a variety of fac-

tors, including the price of each resource provisioned, price
of any ingress or egress datamovement, and the billingmodel
applied by the provider (e.g. per-instance or per-function)
[16–19]. These factors vary not only across the di�erent
cloud providers (e.g. AWS, GCP and Azure), but also across
the range of o�erings within a single provider’s ecosystem
(spanning instance types, resource pools, regions etc.). It is
therefore important to develop a comprehensive cost and
runtime model that appropriately parameterizes these char-
acteristics, to enable us to accurately evaluate the utility of
an elastic allocation plan for a particular job.
Second, the system must be able to generate a feasible,

low-cost allocation plan for a given job. Tuning a DL model

that scales sublinearly with compute will likely require the
solution to concentrate its spending and resources in the
earlier stages of the job with greater available parallelism.
Conversely, if the DL model being tuned scales relatively
well with compute, the optimal solution may indeed be a
static allocation, or even require late scale-up. The optimal
solution therefore depends on a number of factors, including
critically, the scalability of the model [15, 20]. The system
must su�ciently explore the search space to ensure a feasible,
cost-e�cient solution is found.

Third, naive worker placement can negatively a�ect train-
ing performance [21–25], resulting in higher job execution
costs. Parallel workers of a training job require co-location
to avoid incurring unnecessary network overheads. Worker
scheduling will therefore need to optimize placement co-
location and maximize cluster utilization.

To address these challenges, we designed RubberBand, the
�rst framework for cost-e�cient, elastic execution of hyper-
parameter tuning jobs in the cloud. We focus on optimizing
early-termination algorithms such as Successive Halving [7]
and Hyperband [8] due to their strong theoretical founda-
tions and relative popularity. Furthermore, because they are
declarative in nature, we can plan their execution o�ine.
RubberBand introduces a DAG-based execution model

that captures the various latencies and costs associated with
executing a job in the cloud, over a given resource allo-
cation plan. This model is parameterized by pro�ling DL
model training latency and resource provisioning overheads
prior to execution. RubberBand then searches for a feasible,
cost-e�cient resource allocation plan, utilizing the execu-
tion model to predict the end-to-end JCT and cost of the
input job for each candidate plan explored. During execu-
tion, RubberBand elastically scales the underlying cluster
according to the plan, dynamically allocates provisioned re-
sources fairly among trials and manages the placement of
individual workers for each trial. In summary, we make the
following contributions:

1. We develop a cost and latency model that synthesizes
pro�ling information about the input job and target
cloud resources to evaluate the bene�t of running hy-
perparameter tuning jobs over elastic resources.

2. We design and implement an elastic cost-minimizing
resource allocation and placement policy for time-
constrained hyperparameter tuning workloads.

3. We build a full system stack for hyperparameter tuning
in the cloud and evaluate it with state-of-the-art DL
models.

2 Background
The accuracy of a DLmodel can depend heavily on the choice
of its hyperparameters. Hyperparameters are values that af-
fect the learning dynamics of a model but are not directly
optimized by the training procedure. We refer to a set of

328

ᬽ�������F��F��
ᬽ�������F��F��
ᬽ��������F��F���
ᬽ�������F��F��
ᬽ�������F��F��
ᬽ��������F��F��

.PEFM�XJUI�
MFBSOJOH�SBUF�
ᬽ�XFJHIU�
EFDBZ�F

�����

�����
�����
�����

�����
�����

#VJME�.PEFM 5SBJO�$POGJHVSBUJPOT� 4FMFDU

Figure 2. A basic hyperparameter grid search. Each trial ini-
tializes a model on a sampled hyperparameter con�guration and
trains it until its performance has converged. The con�guration
corresponding to the highest accuracy is selected.

5�
5�
5�
5�
5�
5�

�����

�����
�����
�����

�����
�����

5�
5�

�����
�����

5�

5�
5�

5�

�����
�����

�����

�����

5�

5� �����

�����

4UBHF�� 4UBHF�� 4UBHF��

Figure 3. Successive Halving Procedure. An example of an
early-stopping job produced by Successive Halving (with a reduc-
tion factor of 2). Each rectangle represents a trial, and its width
indicates how many iterations it executes for in a stage.

hyperparameter values as a hyperparameter con�guration,
and the training/evaluation procedure associated with one
such con�guration as a trial. To improve DL model accuracy,
practitioners run hyperparameter tuning experiments or jobs,
which are composed of a collection of trials—each parameter-
ized by a con�guration sampled from a search space—with
the objective of identifying the con�guration that yields the
best validation accuracy or loss (Figure 2).
The hyperparameter search space itself is a multi-

dimensional distribution from which sample values of
each hyperparameter (e.g., learning rate, momentum) are
drawn. We note that both choosing the right search space
and the optimal process of sampling from it are ongoing
areas of research. For the scope of this work, we are not
concerned with the methods used to design or navigate this
space. Rather, we expect the user to provide a search space
and sampling method (e.g. random search) for selecting
hyperparameters.

During training, one can observe the progress and quality
of the model via intermediate training metrics, such as ac-
curacy or loss. These metrics generally exhibit diminishing
returns, meaning that their rate of improvement generally
decrease as training progresses. When evaluating multiple
con�gurations, candidates that do not initially perform well
can often be discarded after minimal training. However, be-
cause intermediate training metrics can be imperfect predic-
tors of �nal model quality at convergence, identifying and

training the best con�guration from the top tier candidates
can require an order of magnitude more resources [8].

Leveraging this insight, bandit-based hyperparameter tun-
ing algorithms [7, 8, 10] have been developed to aggressively
terminate poorly performing trials and reallocate available
resources to better-performing ones that promise higher ac-
curacy (Figure 3). These algorithms execute in sequential
stages, where each stage constitutes a number of trials run-
ning independently, followed by synchronous evaluation
and termination of the bottom-performing fraction. While a
parallelization scheme is not explicitly prescribed, parallel
execution is necessary in the context of real-world objectives
and constraints such as cost and time.1

2.1 Distributed, Parallel Hyperparameter Tuning
Executing a hyperparameter tuning job cost-e�ciently
within constraints necessitates the e�cient utilization
of parallel and distributed resources. This parallelization
can occur across two (nested) levels: distributed parallel
evaluation of multiple independent trials at the stage-level,
and distributed training at the trial-level.
Stage-level parallelism. Trials can be executed indepen-

dently in parallel within each stage. Two phenomena cause
the available parallelism at this level to change dynamically
over the course of execution. First, as trials are progressively
terminated at the end of each stage, fewer trials remain to be
executed, fundamentally decreasing the parallelism available
to be exploited. Second, the presence of stage-end synchro-
nization barriers introduces a potential source for stragglers
[9]. The scale of this e�ect changes in the reverse direction;
earlier stages maintain a larger set of running trials and are
therefore more prone to stragglers. Overall, however, the
impact of the �rst phenomenon tends to dominate: aggres-
sive termination of trials results in the available stage-level
parallelism declining by up to an order of magnitude with
each subsequent stage.
Trial-level parallelism. Deep learning models are fre-

quently trained using a distributed, data parallel strategy.
Due to the communication-heavy nature of this scheme,
training performance does not scale linearly with compute
allocated (Figure 4). In practice, performance scalability de-
pends on several variables. Those speci�c to the training pro-
cedure itself include the model architecture, training batch
size and the communication strategy used between data par-
allel workers (e.g. all-reduce, parameter server) [15, 20]. On
the other hand, hardware variables include the type of the
underlying compute resources utilized (CPUs, GPUs, TPUs,
etc.), the quantity of these resources co-located on a single
machine, the topology of the network and the communica-
tion bandwidth between machines .

1We focus our discussion on minimizing cost subject to a time constraint,
but note that many of the techniques presented extend naturally to the
related problem of minimizing job completion time subject to cost.

329

Figure 4. Scaling of deep learning models with increasing
GPUs. Deep learning models exhibit sub-linear scaling as more
resources are allocated. Throughput is normalized to throughput
with a single GPU.

Thus, existing techniques which naively reallocate all
freed resources to running trials [11] can su�er from poor
cluster utilization, as the available stage-level parallelism
decreases. We are therefore interested in capturing the per-
formance implications of these variables in an execution
model. Doing so would allow us to evaluate the utility of an
elastic allocation accurately and make better informed re-
source allocation decisions, given the speci�c characteristics
of individual jobs.
While modeling job execution is necessary to determine

the cost-optimal resource quantities to allocate, in practice
the realized utilization of a particular allocation is not guar-
anteed to be e�cient. Due to the structure of peer-to-peer
communication between workers in data parallel training,
placing workers on physically separate machines results in
cross-node network transfers, which has been comprehen-
sively shown to result in resource under-utilization [21–25].
Thus, a trial’s workers must be co-located together when
feasible, to ensure cluster resources are e�ciently utilized.
Thus, the e�ective utilization of cluster resources by a

distributed parallel hyperparameter tuning system is depen-
dent on its ability to accurately predict the performance
scalability of an input job’s model training procedure, utilize
the information to explore the allocation plan search space,
and lastly, account for the co-location requirement of trial
workers during execution.

2.2 Cloud Challenges and Opportunities
The cloud o�ers an elastic resource pool which can be dy-
namically scaled to adjust to the dynamically changing re-
source requirements of a job. Major cloud platforms charge
for compute at a per-second billing granularity [16–18], and
are able to service provisioning requests on the order of
seconds across their various o�erings. These properties en-
able cloud applications to make �ne-grained provisioning
decisions as their resource requirements vary, in order to
optimize expenditure.
The key challenge that arises from leveraging the cloud

to run hyperparameter tuning jobs is then integrating the
pricing characteristics and overheads of the cloud provider

PROVISIONED
(a)

TRIAL A

WORKER WORKER WORKER

A B

WORKER

WORKER WORKER

A B

WORKER WORKER

C C

(b)
PROVISIONED PROVISIONED DEPROVISIONED

A B CTRIAL B TRIAL C

Figure 5. Worker colocation during hyperparameter tun-
ing. A scattered placement of training workers across cluster re-
sources can lead to low training throughput. By colocating workers
and constraining the worker placement to use a minimal feasible set
of nodes, nodes can be easily deprovisioned without interrupting
the experiment, leading to more e�cient spending.

into an execution model to enable accurate analysis of elastic
resource allocation plans.
Cloud provider characteristics. Cloud providers main-

tain a diverse selection of compute o�erings [26] that to-
gether produce a rich trade-o� space between price and
performance. The choice of o�erings not only has impact
an individual trial’s training performance (as discussed in
Section 2.1), but also on resource allocation planning.
The space of pricing options further extends the cloud

cluster design space. Compute resources can be billed at
per-instance [16] and per-function call [19] granularities.
Per-instance pricing itself can be classi�ed into the cheaper,
pre-emptible spot and more expensive, uniterruptible on-
demand sub-categories.

Both the pricing characteristics and overheads attributed
to di�erent compute o�erings can impact the value in provi-
sioning or deprovisioning resources elastically. These vari-
ables must therefore be accounted for in conjunction with the
performance variables in Section 2.1, to produce a feasible,
cost-e�cient resource allocation plan for a given job.
By addressing these challenges, hyperparameter tuning

methods that leverage the elasticity provided by the cloud
can reduce execution costs without compromising on JCT
or model performance.

3 Cost-e�cient Hyperparameter Tuning
We are interested in optimizing a cost objective, subject to
a time constraint. In this section, we will overview basic
assumptions of our workload and discuss characteristics of
existing naive solutions that can be improved upon.
Training assumptions. We assume that each trial exe-

cutes an iterative training procedure, optimizing a common
objective (e.g. validation accuracy or loss). Each iteration
of this procedure returns intermediate training metrics and
yields control to the underlying trial scheduler. Between

330

Figure 6. Experiment speci�cation API. Simple API between
early-stopping algorithms and Rubberband. A single speci�cation
can express a successive halving job, whereas a collection of them
can specify Hyperband-based methods as a multi-job.

iterations, the model and training procedure can be check-
pointed, allowing the scheduler to pause, resume or termi-
nate trials. Trials themselves are capable of leveraging dis-
tributed, parallel resources (i.e. accelerators such as GPUs)
to reduce model training latency.

Additionally, we assume that all trials share the same scal-
ing function. In other words, we assume hyperparameters do
not have a substantial impact on training latency, and how
training performance scales with compute. We note that hy-
perparameters do not a�ect throughput in many important
real-world workloads, particularly those involving a �xed
model architecture (e.g., �ne-tuning). There are notable ex-
ceptions, including batch size and model architecture, which
we defer to future work.

Unlike prior work which may change e�ective batch size
with resource allocation [11], we assume that the batch size
of the trial is held constant across execution (aka strong scal-
ing) to a user-con�gured value. This ensures that the learning
dynamics of the model are not a�ected by the system’s re-
source allocation decisions [27]. To address GPU memory
limitations when using a large e�ective batch size over a
small resource allocation, we assume the job can leverage
gradient accumulation.
Provider assumptions. For simplicity, instance type is

provided by the user. We assume that compute instances of
the speci�ed type can be acquired from the cloud provider
in su�cient quantities (i.e. provisioning requests are always
served). Cloud provider prices and SLAs are treated as pa-
rameters and studied in Section 4.1.
We assume that the price of an instance is held constant

throughout an experiment. While this may not generally be
the case for cheaper instance types, prices of GPU-based in-
stances experience negligible variance over long time periods
[28, 29]. We also assume that billing occurs at a per-second
granularity (with a 60-second minimum charge), as is the
case for all major cloud providers [16–18].

3.1 Early-stopping Algorithms
In this work, we are interested in optimizing the cost of exe-
cuting early-stopping hyperparameter tuning methods. One
such method is Successive Halving [7], which is a commonly

used algorithm in a variety of production machine learning
systems [25, 30, 31].

Successive Halving (SHA) is a bandit-based approachwhich
terminates running trials in a stage-wise iterative fashion,
as shown in Figure 3. SHA assigns quantities of work (e.g.
training iterations, epochs, data samples etc.) to trials fairly
within a stage. The best 1

[trials are retained after each stage,
while the per-trial work assignment is simultaneously in-
creased by a factor of [. This exponential reduction in the
number of trials, coupled with the exponential increase in
the work per-trial results in a sharp decline in the overall
available parallelism.
We note that for declaratively-de�ned early-stopping al-

gorithms such as SHA, the structural characteristics of the
experiment are known prior to runtime. This presents an
opportunity to separate a declarative speci�cation from the
control �ow, and optimize the resource allocation to every
stage o�ine. Using the simple, yet su�ciently general exper-
iment speci�cation API outlined in Figure 6, we are able to
acquire the number of stages, the number of trials per-stage
and the amount of work (iterations) to be assigned per-trial
in each stage upfront.

3.2 Resource Allocation
Early-stopping methods specify the amount of work to be
done by each trial, but not how this work should be paral-
lelized. A naive method to minimize cost within the limita-
tions of using a �xed-size cluster, is to provision the smallest
static cluster such that the expected JCT of the input job
�ts within the time constraint. Parallel resources can then
be fairly allocated within each stage across running trials
(following the approach in previous systems [9, 25]). How-
ever, inelastic provisioning can result in under-utilization of
compute resources for two reasons.
Sublinear scaling. As illustrated in Section 2.1, allocat-

ing additional resources to trials leads to reduced e�ciency
because of sublinear scaling. In the initial stages, a large num-
ber of trials fairly share a relatively small number of parallel
resources, thus resulting in e�cient utilization. However, as
trials are subsequently pruned, resources are relinquished.
Since the cluster is �xed in size, the relinquished resources
cannot be deprovisioned and must be reallocated to the cur-
rent set of running trials. While this increases the throughput
of the bene�ciary trials, it can be more cost-e�ective to sim-
ply deprovision resources and operate at lower but more
e�cient throughput.
Synchronization. Secondly, jobs are executed in a

synchronous-parallel fashion. At the end of each stage, all
trials are compared in order to promote top performers
and terminate bottom performers. As a result of this
synchronization step, stages are prone to stragglers. With
a static allocation, several resources—held by completed
trials—may be left idle at the end of each stage.

331

4 Cloud-based Hyperparameter Tuning
A �ner-grained, elastic allocation plan is capable of alleviat-
ing the resource e�ciency concerns associated with using a
static cluster allocation (Section 3.2). Therefore, given a job
speci�cation and time constraint, we want to �nd a feasible,
cost-e�cient resource allocation plan over cloud resources
and execute the job without incurring unforeseen costs or
overheads. In this section we outline our solution to the
following three key challenges:
First, it is necessary to develop an execution model that

allows us to accurately evaluate the quality of a candidate
allocation plan. Such a model must synthesize (i) the DL
model’s training latency and scalability over cloud hard-
ware, (ii) cloud provider overheads, (iii) job speci�cation,
(iv) resource allocation plan, (v) and cloud provider pricing
characteristics. RubberBand models the execution of a job
as a directed acyclic graph ⌧ = (+ , ⇢) of tasks + (with as-
sociated latencies and costs) and task dependencies ⇢. This
provides an end-to-end representation of a job’s execution,
and can be used to predict its JCT and total cost.

Second, the search space of feasible allocation plans is ex-
ponentially large in the number of allocation decisions to be
made (i.e. the number of stages in the job). RubberBand there-
fore relies on a greedy heuristic planner, which leverages
the simulator as a black box to guide its search. The planner
outputs an allocation plan as a vector Æ0 2 N |⇢ | where |⇢ | is
the number of stages de�ned in the speci�cation and Æ08 is
the number of resources to be allocated to the job during the
execution of stage 8 (shared fairly between running trials).
Finally, the performance of the workload is sensitive to

the placement of trial workers on physical resources and
optimizing solely for locality can be expensive. RubberBand
compiles the allocation plan generated by the planner in
terms of resource quantities into a utilization-maximizing
placement plan, mapping trial workers to devices during
execution.

4.1 Modeling Variables
The performance of the DLmodel, overheads in the cloud and
provider pricing characteristics can impact the optimal re-
source allocation plan. We therefore parameterize our model
with various cost and performance variables to ensure Rub-
berBand can accurately and �exibly model a job’s execution.
We later utilize this model during allocation planning to
predict job completion time and cost.
Cost modeling. There are three primary modeling pa-

rameters that impact the total incurred job execution cost,
leading to di�erences in the optimal allocation plan.

Compute price determines the price of each allocable unit
of compute, per-unit time. Pricing is typically commensurate
with the number of co-located resources in the allocated
unit [16]. For example, one on-demand EC2 p3.2xlarge in-
stance with 1 GPU may cost ⇠$3 per-instance hour, whereas

a p3.16xlarge instance with 8 GPUs may cost ⇠$24 per-
instance hour.
While this billing model is the most common [16–18],

recent systems have introduced alternativemodels with �ner-
grained pricing granularity [19]. In such models users pay
per-function rather than per-instance, for only the speci�c
resources requested on the underlying hardware per-unit
time their function runs for. We therefore consider billing
granularity as a parameter to study the impact of recent
cloud trends on tuning workloads. In particular, we consider
the traditional per-instance billing granularity, along with
per-function granularity, which approximates newer models
that o�er �ner-grained pricing and compute elasticity.

We also consider data price, which determines how much
users pay per-GB of ingress data movement, such as for
reading training data from cloud storage. We note that data
movement is often free of cost (e.g. within an EC2 region).
However, users do not always have operational permission to
co-locate compute with data, and in such cases data access
can incur high costs. We treat it as a parameter for this
reason.
Performance modeling. There are three modeled

sources of latency: training latency, provider queuing delay,
and instance initialization latency.
Training latency re�ects (1) the initial latency of loading

checkpoints and establishing connections between peer-to-
peer training workers, and (2) the time it takes per step of
all-reduce SGD to occur. The causes of variance for this la-
tency measure can include, for example, variance in network
latency and variance in data loading. This value depends on
the batch size per update step. It also depends on the num-
ber of parallel training workers—we therefore capture this
latency as a function of the number of resources allocated.
Scaling latency captures queuing delay at the provider.

More speci�cally, it is the the time it takes from a job to
request a resource to it being provisioned and made ready
to access. Instance initialization latency re�ects additional
time for a provisioned resource to become ready for use
by the job—this includes time to install dependencies and
initialize cluster state. If these overheads are large in the
context of the time constraint, increasing the cluster size of
a job mid-execution is unlikely to be cost-e�cient. Under
such circumstances, an ideal allocation plan would minimize
these latent costs by avoiding mid-job scale-up.

4.2 Execution Model and Simulator
RubberBand’s simulator is parameterized by the modeling
variables discussed in Section 4.1. The instantiated simulator
is then responsible for synthesizing a DAG-based execution
model from a given input experiment speci�cation and re-
source allocation plan.
Each node in the DAG represents a task carried out by

either the job (e.g. training the DL model for a number of

332

spec = rb.EmptyExperimentSpec() \

.add_stage(num_trials=16, iters=16) \

.add_stage(num_trials=8, iters=32) \

.add_stage(num_trials=4, iters=64)

plan = rb.compile_plan(spec, model_profile, cloud_profile, deadline=4)

rb.execute(plan, trainer, search_space)

class ExperimentSpec:

def get_stage(self, stage_index: int) -> Tuple[int, int]:

"""Returns number of trials and iterations per-trial."""

def num_stages(self) -> int:

"""Returns number of stages."""

Figure 7. Example DAG representation. The plan generated
is represented by the simulator as a DAG of system and job tasks.
Each task has an associated cost and latency. This DAG is used to
simulate the latency and cost of executing a particular plan. DAG
node types are explained in Section 4.2.

iterations) or RubberBand’s execution layer itself. We enu-
merate the types of these nodes below. Edges between nodes
represent task dependencies.

1. SCALE: Represents a system task to provision a re-
source from the cloud provider.

2. INIT_INSTANCE: Represents a system task to ini-
tialize the instance after provisioning (e.g. installing
dependencies).

3. TRAIN: Represents a trial task to train a model for
the speci�ed number of iterations, given the speci�ed
number of resources. Each stage in the DAG consists
of one or more TRAIN nodes.

4. SYNC: Represents a synchronization barrier to evalu-
ate trial quality. This indicates the end of a stage.

DAG construction. The simulator constructs the DAG
by parsing the speci�cation and allocation plan together
stage-by-stage, extending dependency edges from the fron-
tier (i.e. nodes with out-degree of zero) in each step. For each
stage, cluster scaling nodes are �rst added if provisioning
new nodes is necessary. This is followed by adding parallel
training nodes and a synchronization node to end the stage.

If the resources provisioned preceding the stage being
parsed are insu�cient to meet the stage’s allocation require-
ment, a blocking SCALE node is added to extend the previ-
ous frontier, followed by the necessary number of parallel
INIT_INSTANCE nodes to su�ciently grow the cluster.
A parallel TRAIN node is then added for each trial that

can run in parallel. If the cluster is too small to run all tri-
als in parallel, each queued trial is represented by a TRAIN
node with a serial dependency on a previously run trial. For
example, a stage allocation of 1 resource would cause trials
to run serially, and would be appropriately represented as
sequentially linked nodes.
Stages are always concluded with a SYNC node, with all

nodes on the frontier (i.e. training nodes) added as depen-
dencies. An example DAG construction is illustrated in Fig-
ure Figure 7. In this example, the cluster was su�ciently
scaled in the �rst stage. Note that low latency events with
no cost (e.g. deprovisioning) are unrepresented. 2

Simulation. Each node type of the graph has a proba-
bility distribution associated with its latency and a derived
distribution associated with its cost. These distributions are
parameterized by the aforementioned modeling variables
(Section 4.1).

To predict JCT using this DAG, we sample latencies from
the distribution of each node and compute the critical path
(shown in Algorithm 1). We take a �xed number of samples
and output an average.

The estimated cost of a given plan depends on the billing
method. Per-function billing requires simply sampling the
cost distribution for each billable node and summing them
together. In per-instance billing we �rst sum non-compute
related costs. We then add the cost of compute separately
by determining the critical path within each stage. This is
necessary because compute resources can be held past the
lifetime of a trial (i.e. TRAIN node) due to stragglers.

4.3 Resource allocation planner
RubberBand’s resource allocation planner is responsible for
generating a feasible resource allocation plan that minimizes
the predicted execution cost.
To do so, the planner warm-starts its optimizer with a

feasible solution. This plan is then improved in a iterative-
greedy fashion by (1) generating a set of new candidates
from the current best, (2) predicting each of their JCT and
cost using RubberBand’s simulator, (3) selecting the best
candidate, and (4) iterating until the best candidate gener-
ated is no longer predicted to improve cost, or violates the
time-constraint. We outline these steps in Algorithm 2 and
elaborate below.
Candidate generation. In each greedy step, candidate

allocation vectors Æ01 ...Æ0 |⇢ | are generated from the current

2Node types can be easily added to capture additional latencies and costs.

333

best solution, Æ0⇤. Each candidate Æ08 is equivalent to Æ0⇤ at
every index, except at 8 , where the allocation from Æ0⇤ is
decremented by a step size. The step size is set to be the
smallest integer value such that the new stage allocation is
either a factor or multiple of the number of trials, to ensure
that resources can always be fairly divided.
Greedy selection. The planner selects the allocationwith

the largest predicted cost-marginal bene�t. This marginal
bene�t is calculated by:

<i =
⇠ (Æ0⇤) �⇠ (Æ08)
) (Æ08) �) (Æ0⇤) (1)

where Æ00 is a candidate vector, and) and ⇠ predict cost and
JCT respectively. We normalize cost reduction by the corre-
sponding increase in JCT to ensure a fair comparison across
candidates (since the step size varies to maintain invariants).

JCT and cost predictions are produced by the simulator, as
described in the previous section. Simulator invocations are
abstracted away in select_best_candidate (Algorithm 2).

Warm start. The plan optimizer must be warm-started
with a feasible solution. In practice, one can be easily found
by �rst solving the simpler problem of �nding the cost-
optimal static allocation. Since the search space is reduced
to a single dimension, we can enumerate candidate static
allocations from 1 to a large =, predict their costs and JCT,
and return the cheapest feasible choice.

Because the optimizer never generates a candidate by in-
creasing allocations, the initial solution constrains the maxi-
mum allocation to each stage. While this is often su�cient,
we expand the search space to evaluate more candidates by
invoking the optimizer on di�erent warm-start solutions (e.g.
1x, 2x, 3x the optimal static allocation size). Of the �nal set,
we choose the plan with minimum predicted cost.

Solution guarantees. Although this algorithm does not
guarantee �nding a cost-optimal solution, it does, however,
guarantee that the solution found is predicted to do no worse
than the warm-start solution. Since the optimizer can be
warm-started with the optimal static cluster allocation, it
can therefore be expected to always do just as well or better.
As we show in Section 6, in practice it improves upon the
cost of such allocations by an order of magnitude.

4.4 Placement Controller
During the execution of the workload, the placement con-
troller will realize the resource allocation plan by managing
the scheduling and coordinating the placement of trial work-
ers across provisioned resources. Speci�cally, the placement
controller will convert the resource quantity allocated to
each trial into physical resource assignments for its workers.
The output of this controller is a placement plan mapping
trial workers to the host addresses and worker GPUs.

The algorithm underlying the placement controller is de-
signed to maximize spatial locality given the available cluster

Algorithm 1: Simulate total plan duration
Input: Experiment spec ⇢, allocation plan Æ0, scaling

pro�le (, cloud pro�le ⇠ , number of samples =
Output: Simulated duration of plan
Function simulate_duration (⇢, Æ0, (,⇠,=)

⌧ to_dag(,⇠ (⇢, Æ0);
return 1

=
Õ=
8=1sample_duration(⌧)

Function sample_duration (⌧)
+ topological_sort(⌧);
;1 sample_latency(E0);
for i 2...= do

%8 predecessors(⌧, E8);
;8 sample_latency(E8) + maxE9 2%8 (; 9);

return ;=

Algorithm 2: Compile resource allocation plan
Input: experiment speci�cation ⇢, model scaling pro�le
(, cloud pro�le ⇠ , time-constraint C , warm-start plan Æ00

Output: resource allocation vector Æ0⇤
Function optimize_plan(⇢, (,⇠, C, Æ00)
Æ0⇤ Æ00;
while true do

� generate_candidates(Æ0⇤);
Æ0 select_best_candidate⇢,(,⇠ (�);
if cost improvement < X or violating C then

break;
Æ0⇤ Æ0;

return Æ0⇤

resources. Parallel workers of a trial should be either colo-
cated on a single machine or packed onto a minimal set of
nodes. By colocating workers, the distributed training algo-
rithm will avoid incurring unnecessary network overheads.

4.4.1 Placement Controller Algorithm
We assume that the total sum of allocations in an alloca-
tion vector is less than or equal to the size of the cluster,
meaning that the provisioned resources will be anticipated
and acquired ahead of time. We also assume a homogeneous
instance pool—all worker instances have the same number
of GPU resources and same type of GPUs. Under these as-
sumptions, the placement algorithm is given the following
parameters:

1. List of trials and their resource allocations
2. Previously generated physical placement plan
3. Current cluster state.
The algorithm �rst checks if the resource allocations are

the same as the current placement plan. If not, it will attempt
to place the trials with new resource allocations on the cluster.
For each trial to place, it will �rst try to assign the trial to
nodes that can �t the new allocation. If this does not su�ce,
trials with smaller allocations will be displaced to �t the trial.

334

Algorithm 3: Placement controller algorithm.
Input: Trial Allocation mapping �, the last placement

plan lastPlan, list of nodes nodes, list of trials that
have not con�rmed placement reserved

Output: A new placement plan placement
Function PlacementController

if � satis�ed by placement then
return placement

trialsToMove = trials in � not satis�ed by placement;
placement.remove_discrepancies(�);
for C trialsToMove.sort_by_alloc(descending) do

if placement.full() then
break

alloc = �[C];
while nodes.canFit(C .unit) do

node = nodes.get_best_�t(C .unit);
node.allocate(trial, resources=C .unit);
alloc -= C .unit() ;
if alloc == 0 then

break
for node nodes.sort(by=availSpace) do

displaced = node.tryMakeSpace(trial, �);
if displaced then

node.allocate(trial, resources=trial.unit);
alloc -= trial.unit ;
trialsToMove += displaced;

if alloc == 0 then
break

return placement

Each of these trials will have an opportunity to be placed;
placed trials cannot be displaced.

The algorithm then compares the proposed new allocation
plan to the current placement plan, identifying trials that
do not need to change in resource allocation. Then, upon a
best-e�ort basis, it will preserve those resource assignments
across scheduling epochs.
To achieve spatial locality, for each trial, the placement

scheduler ensures that trials that have a resource allocation
less than the node size is fully placed on the node. Otherwise,
the trial will acquire one or more nodes to itself. To avoid
resource over-subscription, the controller also maintains a
list of trial placements that have been reassigned but have not
been acquired yet. These resources are "locked" and cannot
be perturbed in this scheduling epoch.

5 Implementation
We implement RubberBand on top of a recent version of
Ray [32] (0.9.0), leveraging the framework’s actor API to or-
chestrate distributed training jobs, and its autoscaling API to
interact with the cloud provider. RubberBand runs a driver
process on the head node, consisting of a scheduler, place-
ment controller and cluster manager (Figure 8). This process
is responsible for coordinating the experiment’s execution.

 Executor

Planner

Scheduler

Cluster manager

Simulator

Profiler

 ExperimentSpec
 Constraint

Placement controller

Rubberband

Inputs
Model

Cloud compute layer

Ray

Figure 8. RubberBand system architecture. Pink arrows rep-
resent invocations, gray arrows represent object dependencies. The
planner compiles the experiment speci�cation to a resource alloca-
tion plan, based on the constraint and pro�ling information. The
produced allocation plan is executed by the executor.

Planning. Prior to execution, RubberBand runs a pro�l-
ing step for a con�gurable period of time to collect instru-
mentation data associated with model training and resource
management. Because DL model training involves extremely
repetitive operations with predictable performance, this can
be done on the order of minutes. This involves iteratively
scaling up the resource allocation to a trial by powers of
two and measuring training latencies for each allocation.
The data is aggregated to interpolate an estimated training
latency scaling function of the model, and either utilize the
mean or �t latency distributions for other various operations.
This information is then utilized in planning to simulate

the latency and cost of executing candidate resource allo-
cation plans. The simulator is initialized with the scaling
function and �tted latency distributions. The number of sam-
ples drawn for each plan simulation request is con�gured
to be small by default to ensure plans are generated quickly,
but can be increased to trade-o� planning performance for
better simulation results.
Trial life-cycle. A trial consists of one or more gang-

scheduled workers, each of which is responsible for man-
aging one model replica. One worker from this group is
additionally responsible for coordinating the trial’s training
procedure and reporting intermediate progress metrics back
to the driver. Each worker is a Ray Actor, running in its
own Python process. Workers are initialized by invoking
user-provided functions that instantiate a model, optimizer,
learning rate scheduler, dataset, and loss function, based on
the trial’s associated hyperparameter con�guration.

335

Model training is performed in iterations. The driver in-
vokes the trial’s training API method, which trains the model
on a �xed number of data samples and evaluates it on a vali-
dation dataset, returning the progress metrics produced. The
trial distributes trainingwork to its workers by leveraging Py-
Torch’s native distributed data parallel training module [33].

Between training iterations, trials can be checkpointed,
migrated and restored. Due to the symmetric nature of syn-
chronous distributed data parallel training, only one worker
needs to save its state. The checkpoint is constructed with
the state of the model, optimizer, learning rate schedule, and
other training metadata. It is then serialized and persisted
in Ray’s shared-memory object store, a reference to which
is returned to the driver. During trial migration, newly in-
stantiated workers use this reference to fetch the checkpoint
from the store and restore their state.
Scheduling and placement. RubberBand’s executor

comprises of a control loop that makes scheduling decisions
based on the experiment speci�cation, resource allocation
plan and the current state of running trials. Every iteration
of this loop, the scheduler has an opportunity to start,
continue running, pause or terminate a trial. The scheduler
is also able to request the cluster manager to provision new
resources or deprovision existing ones.
During execution of a stage, if the cluster size is greater

than or equal to the number of planned trials, the scheduler
runs all of them in parallel, allocating stage resources fairly
among them. However, if the cluster size is to small to do so,
each resource is assigned to a single trial until it is completed,
queuing unscheduled trials until resources are freed.

RubberBand uses Ray’s custom resource labels for actors
to control the placement of workers. To resize or reassign
resources to a trial, RubberBand checkpoints the state of the
trial, destroys all of its workers and creates new ones with
updated resource labels. The trial is then reassigned to the
new workers, where the training procedure is restored from
the checkpoint.
Clustermanagement.We extend Ray’s autoscaler to im-

plement a cluster manager which supports ad-hoc requests
to scale the cluster size and tracks the total cost of provi-
sioned compute during its lifetime . We use the boto [34]
API under-the-hood to provision and deprovision instances
from AWS EC2. We also use boto to fetch the price of an
instance prior to execution, and assume that this price holds
constant for the entire job duration.

The cluster manager utilizes a con�guration �le provided
by the user to service provisioning requests. This �le spec-
i�es the instance types and machine images (AMI) to be
used for both the driver and worker instances, as well as
any dependency installation scripts to run upon machine
initialization. Once a provisioned instance becomes available,
these scripts are automatically run by the manager. The node
is subsequently added to the active Ray cluster.

6 Evaluation
In this section, we (1) evaluate static and elastic policies over
various DL models and compute platform characteristics, in
simulation; (2) perform an ablation over the optimizations
made by components of RubberBand; and (3) demonstrate
up to 2x improvement in cost over static baselines end-to-
end, with negligible deviaion in cost or JCT from simulated
predictions.
We refer to RubberBand with no changes, as the elastic

policy. The static policy is implemented by replacing Rubber-
Band’s elastic resource allocation planner (described in Sec-
tion 4.3) with a static allocation baseline planner (described
in Section 3.2). This baseline method �nds the cost-optimal
static allocation that can execute the job within constraints.
All experiments which evaluate the static and elastic re-

source allocation policies are performed on SHA-generated
[7] experiment speci�cations. SHA parameters of note are
(1) the number of trials =, (2) the minimum number of train-
ing iterations to assign each trial A , (3) the maximum number
of training iterations to assign ' (to at least 1 trial) and (4) the
termination rate [(�xed to 2, unless otherwise speci�ed).

6.1 Simulated Experiments
In this section, we perform simulated experiments to evaluate
the cost-e�cacy of the two aforementioned policies on SHA-
basedworkloads.We leverage the parameterized cloudmodel
to investigate the e�ects of di�erent cloud characteristics
upon using each policy. Speci�cally, we aim to evaluate the
following factors on policy performance:

1. The impact of stragglers
2. Impact of the job size
3. Impact of the data I/O pricing
4. Impact of instance initialization latency on algorithm

performance

Each experiment has two sets of parameters: job pa-
rameters, which include parameters to SHA, scaling, time
constraint, and modeling parameters, which include cloud
provider characteristics and pro�ling latencies.

6.1.1 Impact of Stragglers
In this experiment, we measure the impact of stragglers on
the cost objective for the two billing models. We compare a
per-instance billing model (account for running time cost of
each started instance) to a per-function billing model (only
accounts for the cost of a utilized resource). We generate
a speci�cation using SHA(= = 64, A = 4,' = 508). We use
the scaling performance of a ResNet50 model [35] with a
batch size of 512 using a cluster of EC2 p3.8xlarge workers.
We generate stragglers by sampling training latency (per-
iteration) from a normal distribution with ` = 4 seconds,
and vary f from 1 to 10. Instance initialization latency is set
to a constant 0 seconds. Results are shown in Figure 9.

336

(a) Fixed-cluster policy (b) Elastic policy

Figure 9. Impact of stragglers on simulated cost under dif-
ferent billing regimes.We simulate a SHA job with 64 ResNet-50
models running over p3.8xlarge instances. Stragglers are simulated
by increasing variance of the training function latency distribution.
Execution under a pay-per-instance regime exhibits higher costs
due to under-utilization of resources at synchronization points,
regardless of allocation policy.

(a) ImageNet (b) CIFAR-10

Figure 10. Impact of data I/O pricing on overall experiment
cost for small and large datasets. The cost associated with I/O
dominates experiment cost when the dataset is large or when the
I/O pricing is high, resulting in little improvement relative to a
�xed-cluster baseline.

As seen in Figure 9, per-instance billing is an order
of magnitude more expensive than per-function billing
for both policies when there is large variance in training
time. This is stragglers lead to RubberBand having to hold
under-utilized resources at synchronization points. With
per-function billing this is not the case because resources
are released as soon as a trial completes its work.

6.1.2 Impact of data I/O pricing
In this experiment, wemeasure the impact of data I/O pricing
on the overall execution cost. We assume that the only data
transfer charged is that of downloading the dataset from an
external store (e.g. S3), and occurs once per-instance. We
compare the policies on both small and large datasets.
We generate a speci�cation again using SHA(= = 64, A =

4,' = 508). We also use the scaling performance of a
ResNet50 model with a batch size of 512 using a cluster of
AWS p3.8xlarge workers.

As illustrated in Figure 10, the bene�t of elastic allocation
is limited to jobs where the price of compute dominates the
total experiment cost. Downloading ImageNet, a dataset of
size 150GB, from S3 to a single EC2 instance at a price of just
$0.01 per GB costs $1.50. This cost multiplies in a distributed
environment where instances require local copies of data.

(a) Pay-per-instance (b) Pay-per-function

Figure 11. Simulated cost of executing SHAworkloadwhile
increasing the number of trials. The elastic cluster alloca-
tion/algorithm is able to reduce costs across di�erent trial counts,
regardless of the billing model.

As a result, when the majority of expenditure is on data
movement, the bene�t of elastic resource allocation is dimin-
ished. However, we note that the elastic policy never does
worse than the static one. In comparison, with CIFAR-10—a
dataset of size only 150MB—data movement cost is negligible.
We therefore observe a modest ⇠1.5x improvement in cost
even at the relatively expensive data price of $0.16 per-GB.

It is important to note that in typical cloud workloads, data
transfer is free of cost. However this is not always the case—
for example, in the case when transferring data between
physically separate datacenter regions [36].

6.1.3 Impact of Job Size
In this experiment, we measure how the cost-e�ciency of
the policies scale with job size. Speci�cally, we sweep the
number of trials being evaluated by the job. We use SHA(= =
:, A = 4,' = 508) where : is varied as illustrated in Figure 11.
We use the scaling performance of a ResNet50 model with a
batch size of 512, using a cluster of EC2 p3.8xlarge workers.
The time constraint is set to 20 minutes.

The results of this experiment are illustrated in Figure 11.
We see that across the various workloads, the elastic cluster
allocation policy always outperforms the �xed cluster base-
line. Furthermore, the di�erence in the total execution cost
increases as the number of trials increase. This is because
an increase in the number of trials to evaluate is directly
correlated with an increase in the overall available paral-
lelism to exploit. However, for the static policy to leverage
this increased parallelism in the earlier stages, it would have
to incur worse utilization in the later stages.

6.1.4 Impact of Initialization Latency
In this experiment, we measure the impact of di�erent ini-
tialization latencies on the cost objective, across di�erent
workload time constraints. Results are shown in Figure 12.

We use a per-instance billing model and use SHA(= =
512, A = 4,' = 4096) to generate the experiment speci�cation.
We also use the scaling performance of a ResNet50 model
with a batch size of 2048 using a cluster of AWS p3.8xlarge
workers. The mean training latency (per iteration) is set to

337

(a) 1s init latency (b) 10s init latency (c) 100s init latency

Figure 12. Simulated cost of executing SHA on 512 ResNet-50models over p3.8xlarge instances, with static and elastic policies.
In the presence of minimal initialization overheads, we observe up to a 3.5x reduction in cost with the elastic policy. When overheads exist,
the policy prices in the cost of scaling up and generates a di�erent plan, leading to higher costs.

12 seconds, while we sweep initialization latencies of 1, 10,
and 100 seconds. For each latency setting, we sweep the job’s
time constraint from 90 to 160 minutes.
In Figure 12, we see that as the initialization latency in-

creases, the cost advantage of the elastic policy relatively
decreases. For example, increasing from a 1s latency to 10s
has no impact on the static policy, but increases the cost of
the elastic policy by almost 2x (at the 90 minute time con-
straint). This is because such latencies reduce the e�cacy of
scaling to large cluster allocations.

Nevertheless, the elastic policy is still predicted to perform
an order of magnitude better at the tightest time constraints.

6.2 Ablation Experiment: Placement Controller
As seen in Table 1, we evaluate the bene�t of the placement
controller, which is designed to (1) co-locate parallel workers
of each trial on as few machines as possible, and (2) deprovi-
sioning resources safely by bin-packing trials prior to cluster
scale-down events.
All experiments in this section are run on EC2 using

p3.16xlarge instances, each of which provides 8 NVIDIA
Tesla V100 GPUs at the hourly price of $7.50-per-instance—
the price at time-of-writing. We utilize a single r5.4xlarge
instance to coordinate trials and host model checkpoints. 3
We use a �xed batch size of 2048 throughout the entire

experiment. At smaller resource scales, the model is unable
to process the entire batch size at once. Therefore, we use
gradient accumulation to ensure that the batch size does not
change during learning.
We benchmark the sample throughput of di�erent tri-

als using RubberBand on an end-to-end workload with and
without the placement controller. Without the placement
controller, RubberBand delegates placement of workers to
the underlying scheduler without indicating location pref-
erences. As seen in Table 1, placement allows throughput

3In practice, the price of CPU instances is negligible in comparison to that of
GPU instances, and is therefore ignored for the purposes of this evaluation.

GPUs Placement No Placement

1 749.58 ± 23.97 673.76 ± 13.92
2 1480.07 ± 152.23 947.76 ± 397.19
4 2773.04 ± 349.72 1209.51 ± 357.58

Table 1. Placement Controller sample throughput.We mea-
sure the sample throughput (samples per second) for a ResNet50
model with a batch size of 1024 across di�erent worker sizes on
a cluster of p3.16xlarge instances. We see that without placement
control sample throughput scales poorly, and is over 2x slower.

to scale almost linearly across resources (⇠3.8x), while the
placement-unaware baseline achieves only a ⇠1.8x speedup.

6.3 End-to-end Experiments
In a series of end-to-end experiments, we now evaluate (1)
how well RubberBand performs across various time con-
straints, and (2) how well RubberBand performs across vari-
ous deep learning models.

6.3.1 Adaptability across time constraints
In this experiment, we evaluate the cost-e�ciency of
RubberBand across various time constraints. We train a
ResNet101 model on CIFAR10 using a batch size of 1024,
and use SHA(= = 32, A = 1,' = 50,[= 3) to generate
the speci�cation. We set our instance initialization and
node scale-up latency to 15 seconds (using a warm pool of
instances). Across the board, RubberBand is able to reduce
costs across a variety of time constraints.
We compared the job execution costs between Rubber-

Band, the static cluster policy, and a naive elastic baseline
across various time constraints. The naive elastic baseline
used �nds the cost-optimal allocation plan within the con-
strained space of �xed allocations per-trial. That is, although
the cluster size is elastically adjusted, the number of re-
sources allocated to each trial remains constant across stages.
This is similar to a strategy described in prior work [9].

338

Max Time
(min) JCT (sim) Cost (sim) JCT (real) Cost (real) Acc (%)

Static 20 19:24 ± 00:00 $34.00 ± $0.00 19:15 ± 00:26 $33.21 ± $0.84 91.9 ± 0.7
Naive elastic 20 14:39 ± 00.00 $27.50 ± $0.00 ⇤ ⇤ ⇤
RubberBand 20 18:56 ± 00:02 $15.68 ± $0.02 18:47 ± 00:22 $15.67 ± $0.41 89.9 ± 1.3
Static 30 29:09 ± 00:02 $17.73 ± $0.00 29:37 ± 00:20 $17.99 ± $0.52 83.2 ± 6.4
Naive elastic 30 26:25 ± 00:00 $19.83 ± $0.00 ⇤ ⇤ ⇤
RubberBand 30 29:14 ± 00:00 $14.70 ± $0.00 27:32 ± 00:03 $14.06 ± $0.02 87.6 ± 1.1
Static 40 36:53 ± 00:02 $14.99 ± $0.02 35:45 ± 00:49 $14.59 ± $0.33 89.2 ± 0.8
Naive elastic 40 26:25 ± 00:00 $19.83 ± $0.00 ⇤ ⇤ ⇤
RubberBand 40 37:08 ± 00:02 $14.68 ± $0.02 36:05 ± 00:15 $14.16 ± $0.11 88.4 ± 0.6

Table 2. Cost to complete workload across various time constraints. We measure the cost of an end-to-end benchmark tuning
ResNet101 on an elastic cluster of on-demand p3.8xlarges with a variety of time constraints. Each experiment is run across 3 seeds.
RubberBand performance is able to match simulation and provide signi�cant cost improvements. Naive elastic experiments were not run
due to the prohibitively large number of resources required (e.g. 512 GPUs in the �rst stage of the 20-minute experiment).

Epoch range trials GPUs/trial Cluster Size

0-1 32 1 8
1-4 10 2 5
4-13 3 4 4
13-50 1 8 2

Table 3. Example cluster schedule for elastic training. Rub-
berBand will leverage a given allocation plan to create a cluster
resource schedule. Through this schedule, RubberBand is able to
dynamically adjust the number of resources allocated per trial,
leveraging information about the model’s scaling pro�le and the
underlying cloud environment.

Results are shown in Table 2.We also include the allocation
plan generated for the 20 minute time-constraint in Table 3
(the optimal static cluster size was 6 instances—a total of 24
GPUs). We make four observations regarding these results.
First, the error rate in both JCT and cost is low, showing

high �delity between simulation and reality. Second, across
all deadlines, all baselines demonstrated a statistically in-
signi�cant di�erence in accuracy.4 Any discrepancies are
expected to be a result of improper seeding.
Third, the naive elastic policy is outperformed by both

RubberBand and the static policy (at 30 minutes) in simula-
tion. This shows that elasticity applied naively, as proposed
in previous work [9], is ine�ective at reducing cost.
Last, we see that tighter constraints lead to a larger cost

deviation between RubberBand and baselines, as was demon-
strated in simulated experiments. Speci�cally, RubberBand
demonstrates a cost reduction of 53% on the 20 minute dead-
line over the �xed cluster allocation baseline, while demon-
strating a negligible di�erence at the 40 minute time con-
straint. This is expected, as the necessity of parallelization
decreases with a more lax constraint.
4While we do not attain state-of-the-art accuracy (94%), this is orthogonal
to the problem RubberBand solves, and can be remedied by simply applying
standard (compatible) techniques such as using an lr-schedule.

Model Time Fixed RubberBand

Resnet101 0:20:00 $33.21 ± $0.84 $15.67 ± $0.41
Resnet152 1:00:00 $35.53± $0.30 $26.54 ± $0.33
BERT 0:20:00 $36.43± $0.16 $29.17± $0.23

Table 4. Cost to complete workload across various models.
We compared the cost of executing a �xed cluster plan to Rubber-
Band across a variety of popular deep learning models/datasets:
Resnet101 on CIFAR10, Resnet152 on CIFAR100, and BERT on RTE.
Results are averaged across 3 runs. In each case, we are able to
leverage RubberBand to reduce costs on the given baseline.

6.3.2 Adaptability across DL models
We evaluate the behavior of RubberBand on a variety of deep
learning models and datasets. Speci�cally, we evaluate:

1. ResNet101 on CIFAR10
2. ResNet152 on CIFAR100
3. BERT on RTE
For each of these models, we measured their scaling pro-

�le on p3.8xlarge instances and compared the performance
of RubberBand against a �xed cluster baseline. We expect
that RubberBand will be able to reduce execution costs by
better utilizing resources. As seen in Table 4, RubberBand is
able to provide cost savings across all models by leveraging
information about the cloud platform and DL model.

7 Discussion and Related Work
RubberBand addresses the challenges of minimizing the cost
of a hyperparameter tuning job by leveraging elastic cloud
resources. In this section, we review literature related to this
problem and some potential avenues for future work.
Hyperparameter tuning algorithms. There has been

related work in both theory and practice for resource-
constrained hyperparameter tuning. On the theoretical front,
[7, 8, 37] address the problem of budgeted hyperparameter
tuning, but do so for an abstract notion of a "work budget",

339

which requires translation to space-time dimensions.
RubberBand supports such methods.

ASHA [9] and HyperSched [11] similarly attempt to prac-
tically adapt Successive Halving to the parallel setting, but
are primarily designed around the limitations of using a
�xed-size cluster. Namely, ASHA always samples new con-
�gurations when resources are freed during trial termina-
tion, whereas HyperSched employs a heuristic to determine
whether to sample a new con�guration or reallocate all freed
resources to remaining trials. Sampling new con�gurations
has been shown to be an ine�ective use of resources under
a time-constraint [11]. On the other hand, reallocating all
resources results in resource under-utilization.
Systems for hyperparameter tuning. Several systems

aim to scale hyperparameter tuning workloads [9, 30, 38, 39].
Vizier [30] is a scalable black-box optimization service used
to generate hyperparameter con�gurations, but is completely
agnostic to the execution layer. RubberBand has an execution
layer and is therefore synergistic with Vizier.
Determined AI’s production system [9, 39] supports the

elastic execution of ASHA. Similarly to RubberBand, the
allocation to a job is reduced over time, but the mechanism
for doing so is naive—the maximum size of the allocation is
ensured to be a �xed multiple of the number of remaining
trials from the originally spawned set. This can easily result
in sub-optimal utilization, as demonstrated in the evaluation.

Other systems similarly study the problem of scheduling
hyperparameter tuning jobs in the on-premise, multi-tenant
setting. Gandiva [23, 40] is a GPU cluster scheduling frame-
work that introduces new scheduling primitives for DL, and
aims to maximize global cluster e�ciency. Philly [24] is an-
other GPU cluster scheduler that similarly optimizes for
global cluster utilization. Tiresias [22] and Themis [25] aim
to address multi-tenant issue of fairness. Unlike RubberBand,
these systems are primarily designed for the on-premise,
multi-tenant GPU cluster setting.
Elasticity in DL. Recent work [41–44] has studied how

to leverage compute elasticity in related workloads. NumPy-
Wren [41] identi�es and exploits dynamic parallelism in lin-
ear algebra algorithms, including matrix multiplication (key
to DL) to increase compute e�ciency. One layer higher, [44]
and EDL [42] introduce elasticity in DL training workloads,
the latter in the context of multi-tenant clusters. TorchElastic
[43] similarly provides a interface for de�ning and executing
elastic jobs in a fault-tolerant manner. Cirrus [45] leverages
elasticity to scale end-to-end ML work�ows, but primarily
addresses interactive workloads.

These systems are related but leverage elasticity at a lower
level (i.e. matrix multiplication and single-model training),
rather than at the hyperparameter tuning layer.
DL performancemodeling. Prior work has studied how

to model neural network training performance, based on
neural architecture and hardware utilized [15, 20]. However,
such approaches are limited to speci�c architecture types. In

order to handle arbitrary DL model architectures, we instead
measure training performance empirically, since collection
of instrumentation data can be done in low time and cost,
relative to actual JCT and cost. However, prior performance
modeling work becomes more pertinent when it is infea-
sible to collect su�cient data. This includes, for example,
extensions to use-cases where performance is a function of
hyperparameters, or when the training procedure leverages
a batch size schedule.
Cloud autoscaling. There have been numerous e�orts

towards minimizing the cost of executing generic workloads
by dynamically autoscaling the underlying cloud cluster. Sev-
eral autoscaling systems observe and predict the resource
utilization of jobs [46–48], but do not leverage workload-
speci�c properties. Recent work [48] has explored autoscal-
ing jobs in datacenters to meet time constraints, but aims to
maximize overall datacenter utilization by reducing interfer-
ence between co-located jobs. Stratus [49] autoscales cluster
size and bin-packs tasks based on predicted JCT to minimize
the cost of executing tasks; however, resource requirement
determination is left to the user.
Other prior work [50] autoscales cluster size to optimize

the cost of executing several tasks with di�erent deadlines.
Hotspot [29] exploits pricing di�erences across regions to
migrate jobs when bene�cial, but such migrations are in-
e�ective for expensive GPU instance types. Resource type
selection in the cloud has also attracted recent attention.
Ernest [51] pro�les a sub-sample of the workload to build a
performance model of each job, while CherryPick [52] uses
bayesian optimization to learn from historical performance.
While some of these systems are able to leverage elas-

tic compute pools to execute jobs, they are unable to ac-
commodate all of the requirements of distributed DL work-
loads (such as supporting distributed job execution and co-
location), and do not exploit workload-speci�c characteris-
tics to optimize cost.

8 Conclusion
RubberBand utilizes performance instrumentation and cloud
pricing data to model job completion time and cost prior to
runtime, in order to generate a feasible, cost-e�cient, elastic
resource allocation plan. RubberBand is then able to e�-
ciently execute the plan it generates, dynamically scaling
and managing the cluster as required. We demonstrate a
reduction in cost of up to 2x on real-world hyperparame-
ter optimization jobs against �xed-cluster baselines, while
preserving JCT and model accuracy.

Acknowledgements
In addition to NSF CISE Expeditions Award CCF-1730628,
this research is supported by gifts from Amazon Web Ser-
vices, Ant Group, Ericsson, Facebook, Futurewei, Google,
Intel, Microsoft, Nvidia, Scotiabank, Splunk and VMware.

340

References
[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

BERT: Pre-training of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Je�rey Wu, Clemens Winter, Chris Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages
1877–1901. Curran Associates, Inc., 2020.

[3] Or Sharir, Barak Peleg, and Yoav Shoham. The cost of training nlp
models: A concise overview, 2020.

[4] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and
policy considerations for deep learning in NLP. CoRR, abs/1906.02243,
2019.

[5] Philipp Probst, Bernd Bischl, and Anne-Laure Boulesteix. Tunability:
Importance of hyperparameters of machine learning algorithms, 2018.

[6] Y. Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, M. Lewis, Luke Zettlemoyer, and Veselin Stoy-
anov. Roberta: A robustly optimized bert pretraining approach. ArXiv,
abs/1907.11692, 2019.

[7] Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm iden-
ti�cation and hyperparameter optimization. In Arti�cial Intelligence
and Statistics, pages 240–248, 2016.

[8] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and
Ameet Talwalkar. Hyperband: A novel bandit-based approach to
hyperparameter optimization. pages 1–52, 2018.

[9] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina,
Moritz Hardt, Benjamin Recht, and Ameet Talwalkar. Massively paral-
lel hyperparameter tuning. In Proceedings of Workshop on ML Systems
in The Thirty-second Annual Conference on Neural Information Process-
ing Systems (NIPS), 2018.

[10] Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: robust and
e�cient hyperparameter optimization at scale. CoRR, abs/1807.01774,
2018.

[11] Richard Liaw, Romil Bhardwaj, Lisa Dunlap, Yitian Zou, Joseph E.
Gonzalez, Ion Stoica, and Alexey Tumanov. Hypersched: Dynamic
resource reallocation for model development on a deadline. In Pro-
ceedings of the ACM Symposium on Cloud Computing, SoCC ’19, pages
61–73, New York, NY, USA, 2019. ACM.

[12] Ang Li, Ola Spyra, Sagi Perel, Valentin Dalibard, Max Jaderberg, Chen-
jie Gu, David Budden, Tim Harley, and Pramod Gupta. A Generalized
Framework for Population Based Training, page 1791–1799. Association
for Computing Machinery, New York, NY, USA, 2019.

[13] Cody Coleman, Daniel Kang, Deepak Narayanan, Luigi Nardi, Tian
Zhao, Jian Zhang, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei
Zaharia. Analysis of dawnbench, a time-to-accuracy machine learning
performance benchmark. SIGOPS Oper. Syst. Rev., 53(1):14–25, July
2019.

[14] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei
Zaharia. Pipedream: Generalized pipeline parallelism for dnn training.
In Proceedings of the 27th ACM Symposium on Operating Systems Prin-
ciples, SOSP ’19, page 1–15, New York, NY, USA, 2019. Association for
Computing Machinery.

[15] Hang Qi, Evan R. Sparks, and Ameet Talwalkar. Paleo: A performance
model for deep neural networks. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017.

[16] Amazon ec2 pricing - amazon web services. h�ps://aws.amazon.com/
ec2/pricing/. (Accessed on 03/11/2021).

[17] All pricing | compute engine documentation | google cloud. h�ps:
//cloud.google.com/compute/all-pricing. (Accessed on 03/11/2021).

[18] Pricing - windows virtual machine | microsoft azure. h�ps://azure.
microso�.com/en-us/pricing/details/virtual-machines/windows/. (Ac-
cessed on 03/11/2021).

[19] Aws lambda — pricing. h�ps://aws.amazon.com/lambda/pricing/. (Ac-
cessed on 03/11/2021).

[20] Z. Pei, C. Li, X. Qin, X. Chen, and G. Wei. Iteration time prediction
for cnn in multi-gpu platform: Modeling and analysis. IEEE Access,
7:64788–64797, 2019.

[21] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong
Guo. Optimus: An e�cient dynamic resource scheduler for deep
learning clusters. In EuroSys ’18: Thirteenth EuroSys Conference, page 14,
2018.

[22] Yun Shen, Enrico Mariconti, Pierre-Antoine Vervier, and Gianluca
Stringhini. Tiresias: Predicting security events through deep learning.
In 2018 ACM SIGSAC Conference on Computer and Communications
Security (CCS’18), page 14, 2018.

[23] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Si-
vathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,
Hanyu Zhao, Quanlu Zhang, Fan Yang, and Lidong Zhou. Gandiva:
Introspective cluster scheduling for deep learning. In USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI), pages
595–610, 2018.

[24] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie
Qian, Wencong Xiao, and Fan Yang. Analysis of large-scale multi-
tenant GPU clusters for DNN training workloads. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages 947–960, Renton,
WA, July 2019. USENIX Association.

[25] Kshiteej Mahajan, Arjun Singhvi, Arjun Balasubramanian, Varun Ba-
tra, Surya Teja Chavali, Shivaram Venkataraman, Aditya Akella, Amar
Phanishayee, and Shuchi Chawla. Themis: Fair and e�cient GPU clus-
ter scheduling formachine learningworkloads. volume abs/1907.01484,
2019.

[26] Amazon ec2 instance types - amazonweb services. h�ps://aws.amazon.
com/ec2/instance-types/. (Accessed on 03/11/2021).

[27] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail
Smelyanskiy, and Ping Tak Peter Tang. On large-batch training for
deep learning: Generalization gap and sharp minima, 2017.

[28] Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar
Phanishayee, , and Matei Zaharia. Analysis and exploitation of dy-
namic pricing in the public cloud for ml training. VLDB DISPA Work-
shop 2020.

[29] Supreeth Shastri and David Irwin. HotSpot: Automated Server Hopping
in Cloud Spot Markets, page 493–505. Association for Computing
Machinery, New York, NY, USA, 2017.

[30] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski,
John Karro, and D Sculley. Google vizier: A service for black-box
optimization. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1487–1495.
ACM, 2017.

[31] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E
Gonzalez, and Ion Stoica. Tune: A research platform for distributed
model selection and training. arXiv preprint arXiv:1807.05118, 2018.

[32] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I Jordan, et al. Ray: A distributed framework for emerging ai
applications. In 13th USENIX Symposium on Operating Systems Design

341

and Implementation (OSDI 18), pages 561–577, 2018.
[33] Distributeddataparallel — pytorch 1.6.0 documentation.

h�ps://pytorch.org/docs/stable/generated/torch.nn.parallel.
DistributedDataParallel.html. (Accessed on 10/09/2020).

[34] Boto3 documentation — boto3 docs 1.15.15 documentation. h�ps://
boto3.amazonaws.com/v1/documentation/api/latest/index.html. (Ac-
cessed on 10/09/2020).

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[36] Amazon s3 simple storage service pricing - amazon web services.
h�ps://aws.amazon.com/s3/pricing/. (Accessed on 03/11/2021).

[37] Ruben Martinez-Cantin. Bayesopt: A bayesian optimization library for
nonlinear optimization, experimental design and bandits. In Journal
of Machine Learning Research, pages 3735–3739, 2014.

[38] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and
Masanori Koyama. Optuna: A next-generation hyperparameter opti-
mization framework. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’19,
page 2623–2631, New York, NY, USA, 2019. Association for Computing
Machinery.

[39] Distributed deep learning and hyperparameter tuning platform | de-
termined ai. h�ps://determined.ai/. (Accessed on 10/08/2020).

[40] Shubham Chaudhary, Ramachandran Ramjee, Muthian Sivathanu,
Nipun Kwatra, and Srinidhi Viswanatha. Balancing e�ciency and
fairness in heterogeneous gpu clusters for deep learning. In Proceedings
of the Fifteenth European Conference on Computer Systems, EuroSys
’20, New York, NY, USA, 2020. Association for Computing Machinery.

[41] Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan Pu, Benjamin
Recht, Ion Stoica, Jonathan Ragan-Kelley, Eric Jonas, and Shivaram
Venkataraman. Serverless linear algebra. In Proceedings of the 11th
ACM Symposium on Cloud Computing, SoCC ’20, page 281–295, New
York, NY, USA, 2020. Association for Computing Machinery.

[42] Yidi Wu, Kaihao Ma, Xiao Yan, Zhi Liu, and James Cheng. Elastic deep
learning in multi-tenant gpu cluster. arXiv preprint arXiv:1909.11985,
2019.

[43] Torchelastic — pytorch/elastic master documentation. h�ps://pytorch.
org/elastic/0.2.1/index.html. (Accessed on 10/08/2020).

[44] AndrewOr, Haoyu Zhang, andMichael J Freedman. Resource elasticity
in distributed deep learning.

[45] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and
Randy Katz. Cirrus: a serverless framework for end-to-end ml work-
�ows. In Proceedings of the ACM Symposium on Cloud Computing,
pages 13–24, 2019.

[46] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. Resource central: Understanding
and predicting workloads for improved resource management in large
cloud platforms. In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17, page 153–167, New York, NY, USA, 2017.
Association for Computing Machinery.

[47] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes.
Cloudscale: Elastic resource scaling for multi-tenant cloud systems. In
Proceedings of the 2nd ACM Symposium on Cloud Computing, SOCC
’11, New York, NY, USA, 2011. Association for Computing Machinery.

[48] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-
e�cient and qos-aware cluster management. SIGPLAN Not.,
49(4):127–144, February 2014.

[49] Andrew Chung, Jun Woo Park, and Gregory R. Ganger. Stratus: Cost-
aware container scheduling in the public cloud. In Proceedings of the
ACM Symposium on Cloud Computing, SoCC ’18, page 121–134, New
York, NY, USA, 2018. Association for Computing Machinery.

[50] Ming Mao and Marty Humphrey. Auto-scaling to minimize cost and
meet application deadlines in cloud work�ows. In Proceedings of 2011

International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’11, New York, NY, USA, 2011. Association
for Computing Machinery.

[51] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin
Recht, and Ion Stoica. Ernest: E�cient performance prediction for
large-scale advanced analytics. In Proceedings of the 13th Usenix Con-
ference on Networked Systems Design and Implementation, NSDI’16,
page 363–378, USA, 2016. USENIX Association.

[52] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram
Venkataraman, Minlan Yu, and Ming Zhang. Cherrypick: Adaptively
unearthing the best cloud con�gurations for big data analytics. In
Proceedings of the 14th USENIX Conference on Networked Systems De-
sign and Implementation, NSDI’17, page 469–482, USA, 2017. USENIX
Association.

342

