Multi-fidelity Bayesian Optimisation with Continuous Approximations

Kirthevasan Kandasamy

Gautam Dasarathy

Jeff Schneider

Barnabás Póczos

ICML '17

 $f: \mathcal{X} \to \mathbb{R}$ is an expensive, black-box, noisy function.

 $f: \mathcal{X} \to \mathbb{R}$ is an expensive, black-box, noisy function.

 $f: \mathcal{X} \to \mathbb{R}$ is an expensive, black-box, noisy function. Let $x_{\star} = \operatorname{argmax}_{x} f(x)$.

 $f:\mathcal{X} \to \mathbb{R}$ is an expensive, black-box, noisy function. Let $x_\star = \operatorname{argmax}_{\mathsf{x}} f(x)$.

Simple Regret after n evaluations

$$S_n = f(x_*) - \max_{t=1,\ldots,n} f(x_t).$$

Model $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$.

Gaussian Process Upper Confidence Bound (GP-UCB)

(Srinivas et al. 2010).

Model $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$.

Gaussian Process Upper Confidence Bound (GP-UCB)

(Srinivas et al. 2010).

Model $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$.

Gaussian Process Upper Confidence Bound (GP-UCB)

(Srinivas et al. 2010).

Construct upper conf. bound: $\varphi_t(x) = \mu_{t-1}(x) + \beta_t^{1/2} \sigma_{t-1}(x)$.

Model $f \sim \mathcal{GP}(\mathbf{0}, \kappa)$.

Gaussian Process Upper Confidence Bound (GP-UCB)

(Srinivas et al. 2010). f(x) $\varphi_t = \mu_{t-1} + \beta_t^{1/2} \sigma_{t-1}$ x

Maximise upper confidence bound.

This work: What if we have cheap approximations to f?

This work: What if we have cheap approximations to f?

E.g. Hyper-parameter tuning: Train & validate with a subset of the data.

Bandwidth (ℓ) selection in kernel density estimation.

For specific applications, such as hyper-parameter tuning, active learning, robotics etc. (Agarwal et al. 2011, Cutler et al. 2014,

Zhang & Chaudhuri 2015, Klein et al. 2015, Li et al. 2016)

For specific applications, such as hyper-parameter tuning, active learning, robotics etc. (Agarwal et al. 2011, Cutler et al. 2014,

Zhang & Chaudhuri 2015, Klein et al. 2015, Li et al. 2016)

Multi-fidelity optimisation

(Huang et al. 2006, Forrester et al. 2007, March & Wilcox 2012, Poloczek et al. 2016)

For specific applications, such as hyper-parameter tuning, active learning, robotics etc. (Agarwal et al. 2011, Cutler et al. 2014,

Zhang & Chaudhuri 2015, Klein et al. 2015, Li et al. 2016)

Multi-fidelity optimisation (Huang et al. 2006, Forrester et al. 2007, March & Wilcox 2012, Poloczek et al. 2016)

.. with theoretical guarantees (Kandasamy et al. 2016a, 2016b)

For specific applications, such as hyper-parameter tuning, active learning, robotics etc. (Agarwal et al. 2011, Cutler et al. 2014,

Zhang & Chaudhuri 2015, Klein et al. 2015, Li et al. 2016)

Multi-fidelity optimisation

(Huang et al. 2006, Forrester et al. 2007, March & Wilcox 2012, Poloczek et al. 2016)

.. with theoretical guarantees

(Kandasamy et al. 2016a, 2016b)

Prior work only focus on a finite number of approximations,

For specific applications, such as hyper-parameter tuning, active learning, robotics etc. (Agarwal et al. 2011, Cutler et al. 2014,

Zhang & Chaudhuri 2015, Klein et al. 2015, Li et al. 2016)

Multi-fidelity optimisation

(Huang et al. 2006, Forrester et al. 2007, March & Wilcox 2012, Poloczek et al. 2016)

.. with theoretical guarantees

(Kandasamy et al. 2016a, 2016b)

Prior work only focus on a finite number of approximations,

 $f_1, f_2, f_3 \approx f$ which are cheaper to evaluate.

- Use an arbitrary amount of data?

- Use an arbitrary amount of data?
- Iterative algorithms: use arbitrary number of iterations?

- Use an arbitrary amount of data?
- Iterative algorithms: use arbitrary number of iterations?

E.g. Train an ML model with N_{ullet} data and T_{ullet} iterations.

- Use an arbitrary amount of data?
- Iterative algorithms: use arbitrary number of iterations?
- E.g. Train an ML model with N_{\bullet} data and T_{\bullet} iterations.
 - But use $N < N_{\bullet}$ data and $T < T_{\bullet}$ iterations to approximate cross validation performance at $(N_{\bullet}, T_{\bullet})$.

- Use an arbitrary amount of data?
- Iterative algorithms: use arbitrary number of iterations?
- E.g. Train an ML model with N_{\bullet} data and T_{\bullet} iterations.
 - But use $N < N_{\bullet}$ data and $T < T_{\bullet}$ iterations to approximate cross validation performance at $(N_{\bullet}, T_{\bullet})$.

Approximations from a *continuous* 2D "fidelity space" (N, T).

A fidelity space ${\mathcal Z}$ and domain ${\mathcal X}$

 $\mathcal{Z} \leftarrow \text{all } (N, T) \text{ values.}$

 $\mathcal{X} \leftarrow$ all hyper-parameter values.

A fidelity space ${\mathcal Z}$ and domain ${\mathcal X}$

 $\mathcal{Z} \leftarrow \mathsf{all} \; (N, T) \; \mathsf{values}.$

 $\mathcal{X} \leftarrow \text{all hyper-parameter values}.$

 $g: \mathcal{Z} \times \mathcal{X} \to \mathbb{R}$.

 $g([N, T], x) \leftarrow \text{cv}$ accuracy when training with N data for T iterations at hyper-parameter x.

A fidelity space ${\mathcal Z}$ and domain ${\mathcal X}$

 $\mathcal{Z} \leftarrow \mathsf{all} \; (N, T) \; \mathsf{values}.$

 $\mathcal{X} \leftarrow \text{all hyper-parameter values}.$

 $g: \mathcal{Z} \times \mathcal{X} \to \mathbb{R}$.

 $g([N, T], x) \leftarrow \text{cv}$ accuracy when training with N data for T iterations at hyper-parameter x.

We wish to optimise $f(x) = g(z_{\bullet}, x)$ where $z_{\bullet} \in \mathcal{Z}$. $z_{\bullet} = [N_{\bullet}, T_{\bullet}]$.

A fidelity space ${\mathcal Z}$ and domain ${\mathcal X}$

 $\mathcal{Z} \leftarrow \mathsf{all}\ (N,T)\ \mathsf{values}.$

 $\mathcal{X} \leftarrow$ all hyper-parameter values.

 $g: \mathcal{Z} \times \mathcal{X} \to \mathbb{R}$.

 $g([N, T], x) \leftarrow \text{cv}$ accuracy when training with N data for T iterations at hyper-parameter x.

We wish to optimise $f(x) = g(z_{\bullet}, x)$ where $z_{\bullet} \in \mathcal{Z}$. $z_{\bullet} = [N_{\bullet}, T_{\bullet}]$.

End Goal: Find $x_{\star} = \operatorname{argmax}_{x} f(x)$.

Multi-fidelity Optimisation with Continuous Approximations

(Kandasamy et al. ICML 2017)

A fidelity space ${\mathcal Z}$ and domain ${\mathcal X}$

 $\mathcal{Z} \leftarrow \mathsf{all}\ (N,T)\ \mathsf{values}.$

 $\mathcal{X} \leftarrow \text{all hyper-parameter values}.$

 $g: \mathcal{Z} \times \mathcal{X} \to \mathbb{R}$.

 $g([N, T], x) \leftarrow \text{cv}$ accuracy when training with N data for T iterations at hyper-parameter x.

We wish to optimise $f(x) = g(z_{\bullet}, x)$ where $z_{\bullet} \in \mathcal{Z}$. $z_{\bullet} = [N_{\bullet}, T_{\bullet}]$.

End Goal: Find $x_{\star} = \operatorname{argmax}_{x} f(x)$.

A cost function, $\lambda : \mathcal{Z} \to \mathbb{R}_+$. $\lambda(z) = \lambda(N, T) = \mathcal{O}(N^2 T)$.

Multi-fidelity Simple Regret

(Kandasamy et al. ICML 2017)

End Goal: Find $x_* = \operatorname{argmax}_x f(x)$.

Multi-fidelity Simple Regret

(Kandasamy et al. ICML 2017)

End Goal: Find $x_* = \operatorname{argmax}_x f(x)$.

Simple Regret after capital Λ : $S(\Lambda) = f(x_*) - \max_{t: z_t = z_{\bullet}} f(x_t)$.

 $\Lambda \leftarrow$ amount of a resource spent, e.g. computation time or money.

Multi-fidelity Simple Regret

End Goal: Find $x_* = \operatorname{argmax}_x f(x)$.

Simple Regret after capital
$$\Lambda$$
: $S(\Lambda) = f(x_*) - \max_{t: z_t = z_{\bullet}} f(x_t)$.

 $\Lambda \leftarrow$ amount of a resource spent, e.g. computation time or money.

No reward for maximising low fidelities, but use cheap evaluations at $z \neq z_{\bullet}$ to speed up search for x_{\star} .

(Kandasamy et al. ICML 2017)

(Kandasamy et al. ICML 2017)

Model $g \sim \mathcal{GP}(0, \kappa)$ and compute posterior \mathcal{GP} :

$$\begin{array}{ll} \text{mean} & \mu_{t-1}: \mathcal{Z} \times \mathcal{X} \to \mathbb{R} \\ \text{std-dev} & \sigma_{t-1}: \mathcal{Z} \times \mathcal{X} \to \mathbb{R}_+ \end{array}$$

(Kandasamy et al. ICML 2017)

Model $g \sim \mathcal{GP}(0, \kappa)$ and com-

$$\begin{array}{ll} \text{mean} & \mu_{t-1} : \mathcal{Z} \times \mathcal{X} \to \mathbb{R} \\ \text{std-dev} & \sigma_{t-1} : \mathcal{Z} \times \mathcal{X} \to \mathbb{R}_+ \end{array}$$

(1)
$$x_t \leftarrow \text{maximise upper confidence bound for } f(x) = g(z_{\bullet}, x).$$

$$x_t = \underset{x \in \mathcal{X}}{\operatorname{argmax}} \quad \mu_{t-1}(z_{\bullet}, x) + \beta_t^{1/2} \sigma_{t-1}(z_{\bullet}, x)$$

(Kandasamy et al. ICML 2017)

Model $g \sim \mathcal{GP}(0, \kappa)$ and compute posterior \mathcal{GP} :

$$\begin{array}{ll} \mathsf{mean} & \mu_{t-1} : \mathcal{Z} \times \mathcal{X} \to \mathbb{R} \\ \mathsf{std-dev} & \sigma_{t-1} : \mathcal{Z} \times \mathcal{X} \to \mathbb{R}_+ \end{array}$$

(1)
$$x_t \leftarrow \text{maximise upper confidence bound for } f(x) = g(z_{\bullet}, x).$$

$$x_t = \underset{x \in \mathcal{X}}{\operatorname{argmax}} \quad \mu_{t-1}(z_{\bullet}, x) + \beta_t^{1/2} \sigma_{t-1}(z_{\bullet}, x)$$

(Kandasamy et al. ICML 2017)

Model $g \sim \mathcal{GP}(0, \kappa)$ and compute posterior \mathcal{GP} :

mean $\mu_{t-1}: \mathcal{Z} \times \mathcal{X} \to \mathbb{R}$ std-dev $\sigma_{t-1}: \mathcal{Z} \times \mathcal{X} \to \mathbb{R}_+$

- (1) $x_t \leftarrow \text{maximise upper confidence bound for } f(x) = g(z_{\bullet}, x).$ $x_t = \underset{x \in \mathcal{X}}{\operatorname{argmax}} \quad \mu_{t-1}(z_{\bullet}, x) + \beta_t^{1/2} \sigma_{t-1}(z_{\bullet}, x)$
- (2) $\mathcal{Z}_t \approx \{z_{\bullet}\} \cup \left\{z : \sigma_{t-1}(z, x_t) \geq \gamma(z)\right\}$
- (3) $z_t = \underset{z \in \mathcal{Z}_t}{\operatorname{argmin}} \lambda(z)$ (cheapest z in \mathcal{Z}_t)

(Kandasamy et al. ICML 2017)

Model $g \sim \mathcal{GP}(0, \kappa)$ and compute posterior \mathcal{GP} :

mean $\mu_{t-1}: \mathcal{Z} \times \mathcal{X} \to \mathbb{R}$ std-dev $\sigma_{t-1}: \mathcal{Z} \times \mathcal{X} \to \mathbb{R}_+$

- (1) $x_t \leftarrow \text{maximise upper confidence bound for } f(x) = g(z_{\bullet}, x).$ $x_t = \underset{x \in \mathcal{X}}{\operatorname{argmax}} \quad \mu_{t-1}(z_{\bullet}, x) + \beta_t^{1/2} \sigma_{t-1}(z_{\bullet}, x)$
- (2) $\mathcal{Z}_t \approx \{z_{\bullet}\} \cup \left\{z : \sigma_{t-1}(z, x_t) \geq \gamma(z)\right\}$
- (3) $z_t = \underset{z \in \mathcal{Z}_t}{\operatorname{argmin}} \lambda(z)$ (cheapest z in \mathcal{Z}_t)

BOCA: Bayesian Optimisation with Continuous Approximations

(Kandasamy et al. ICML 2017)

Model $g \sim \mathcal{GP}(0, \kappa)$ and compute posterior \mathcal{GP} :

mean $\mu_{t-1}: \mathcal{Z} \times \mathcal{X} \to \mathbb{R}$ std-dev $\sigma_{t-1}: \mathcal{Z} \times \mathcal{X} \to \mathbb{R}_+$

- (1) $x_t \leftarrow \text{maximise upper confidence bound for } f(x) = g(z_{\bullet}, x).$ $x_t = \underset{x \in \mathcal{X}}{\operatorname{argmax}} \quad \mu_{t-1}(z_{\bullet}, x) + \beta_t^{1/2} \sigma_{t-1}(z_{\bullet}, x)$
- (2) $\mathcal{Z}_t \approx \{z_{\bullet}\} \cup \left\{z : \sigma_{t-1}(z, x_t) \geq \gamma(z)\right\}$
- (3) $z_t = \underset{z \in \mathcal{Z}_t}{\operatorname{argmin}} \lambda(z)$ (cheapest z in \mathcal{Z}_t)

BOCA: Bayesian Optimisation with Continuous Approximations

(Kandasamy et al. ICML 2017)

Model $g \sim \mathcal{GP}(0, \kappa)$ and compute posterior \mathcal{GP} :

$$\begin{array}{ll} \text{mean} & \mu_{t-1} : \mathcal{Z} \times \mathcal{X} \to \mathbb{R} \\ \text{std-dev} & \sigma_{t-1} : \mathcal{Z} \times \mathcal{X} \to \mathbb{R}_+ \end{array}$$

- (1) $x_t \leftarrow \text{maximise upper confidence bound for } f(x) = g(z_{\bullet}, x).$ $x_t = \underset{x \in \mathcal{X}}{\operatorname{argmax}} \quad \mu_{t-1}(z_{\bullet}, x) + \beta_t^{1/2} \sigma_{t-1}(z_{\bullet}, x)$
- (2) $\mathcal{Z}_t \approx \{z_{\bullet}\} \cup \left\{z : \sigma_{t-1}(z, x_t) \geq \gamma(z)\right\}$
- (3) $z_t = \underset{z \in \mathcal{Z}_t}{\operatorname{argmin}} \lambda(z)$ (cheapest z in \mathcal{Z}_t)

BOCA: Bayesian Optimisation with Continuous Approximations

(Kandasamy et al. ICML 2017)

Model $g \sim \mathcal{GP}(0, \kappa)$ and compute posterior \mathcal{GP} :

$$\begin{array}{ll} \text{mean} & \mu_{t-1} : \mathcal{Z} \times \mathcal{X} \to \mathbb{R} \\ \text{std-dev} & \sigma_{t-1} : \mathcal{Z} \times \mathcal{X} \to \mathbb{R}_+ \end{array}$$

- (1) $x_t \leftarrow \text{maximise upper confidence bound for } f(x) = g(z_{\bullet}, x).$ $x_t = \underset{x \in \mathcal{X}}{\operatorname{argmax}} \quad \mu_{t-1}(z_{\bullet}, x) + \beta_t^{1/2} \sigma_{t-1}(z_{\bullet}, x)$
- (2) $\mathcal{Z}_t \approx \{z_{\bullet}\} \cup \left\{z : \sigma_{t-1}(z, x_t) \geq \gamma(z) = \left(\frac{\lambda(z)}{\lambda(z_{\bullet})}\right)^q \xi(z)\right\}$
- (3) $z_t = \underset{z \in \mathcal{Z}_t}{\operatorname{argmin}} \lambda(z)$ (cheapest z in \mathcal{Z}_t)

$$g \sim \mathcal{GP}(\mathbf{0}, \kappa), \quad \kappa : (\mathcal{Z} \times \mathcal{X})^2 \to \mathbb{R}.$$

$$\kappa([z, x], [z', x']) = \kappa_{\mathcal{X}}(x, x') \cdot \kappa_{\mathcal{Z}}(z, z')$$

$$g \sim \mathcal{GP}(\mathbf{0}, \kappa), \quad \kappa : (\mathcal{Z} \times \mathcal{X})^2 \to \mathbb{R}.$$

$$\kappa([z, x], [z', x']) = \kappa_{\mathcal{X}}(x, x') \cdot \kappa_{\mathcal{Z}}(z, z')$$

$$g \sim \mathcal{GP}(\mathbf{0},\kappa), \quad \kappa: (\mathcal{Z} \times \mathcal{X})^2 \to \mathbb{R}.$$

$$\kappa([z,x],[z',x']) = \kappa_{\mathcal{X}}(x,x') \cdot \kappa_{\mathcal{Z}}(z,z')$$

$$g(z,x)$$

$$g(z,x)$$

$$f(x)$$

$$\mathcal{Z}$$

$$x$$
"good"
$$g(z,x)$$

$$\mathcal{Z}$$

$$x$$
"bad"
$$g(z,x)$$

$$x$$
small $h_{\mathcal{Z}}$

E.g.: If $\kappa_{\mathcal{Z}}$ is an SE kernel, bandwidth $h_{\mathcal{Z}}$ controls smoothness.

GP-UCB
$$\kappa_{\mathcal{X}}$$
 is an SE kernel, (Srinivas et al. 2010) w.h.p $S(\Lambda) \lesssim \sqrt{\frac{\mathrm{vol}(\mathcal{X})}{\Lambda}}$

GP-UCB
$$\kappa_{\mathcal{X}}$$
 is an SE kernel, (Srinivas et al. 2010) w.h.p $S(\Lambda) \lesssim \sqrt{\frac{\mathrm{vol}(\mathcal{X})}{\Lambda}}$

BOCA
$$\kappa_{\mathcal{X}}, \kappa_{\mathcal{Z}}$$
 are SE kernels, (Kandasamy et al. ICML 2017) w.h.p $\forall \alpha > 0, \quad S(\Lambda) \lesssim \sqrt{\frac{\operatorname{vol}(\mathcal{X}_{\alpha})}{\Lambda}} + \sqrt{\frac{\operatorname{vol}(\mathcal{X})}{\Lambda^{2-\alpha}}}$ $\mathcal{X}_{\alpha} = \left\{x; \quad f(x_{\star}) - f(x) \lesssim C_{\alpha} \frac{1}{h_{\mathcal{Z}}}\right\}$

GP-UCB
$$\kappa_{\mathcal{X}}$$
 is an SE kernel, (Srinivas et al. 2010) w.h.p $S(\Lambda) \lesssim \sqrt{\frac{\mathrm{vol}(\mathcal{X})}{\Lambda}}$

BOCA
$$\kappa_{\mathcal{X}}, \kappa_{\mathcal{Z}}$$
 are SE kernels, (Kandasamy et al. ICML 2017) w.h.p $\forall \alpha > 0, \quad S(\Lambda) \lesssim \sqrt{\frac{\operatorname{vol}(\mathcal{X}_{\alpha})}{\Lambda}} + \sqrt{\frac{\operatorname{vol}(\mathcal{X})}{\Lambda^{2-\alpha}}}$ $\mathcal{X}_{\alpha} = \left\{x; \quad f(x_{\star}) - f(x) \lesssim C_{\alpha} \frac{1}{h_{\mathcal{Z}}}\right\}$

If $h_{\mathcal{Z}}$ is large (good approximations), $\operatorname{vol}(\mathcal{X}_{\alpha}) \ll \operatorname{vol}(\mathcal{X})$, and BOCA is much better than GP-UCB.

Experiment: SVM with 20 News Groups

Tune two hyper-parameters for the SVM. Dataset has $N_{\bullet}=15K$ data and use $T_{\bullet}=100$ iterations. But can choose $N\in[5K,15K]$ or $T\in[20,100]$ (2D fidelity space).

Experiment: SVM with 20 News Groups

Tune two hyper-parameters for the SVM. Dataset has $N_{\bullet}=15K$ data and use $T_{\bullet}=100$ iterations. But can choose $N\in[5K,15K]$ or $T\in[20,100]$ (2D fidelity space).

Take-aways

- ▶ BOCA: a multi-fidelity optimisation algorithm when you have access to continuous approximations.
- Choose higher fidelity only after controlling uncertainty/variance at lower fidelities.
- ► Theoretically/empirically outperforms strategies that ignore the approximations or use only a finite number of fidelities.

Take-aways

- ▶ BOCA: a multi-fidelity optimisation algorithm when you have access to continuous approximations.
- Choose higher fidelity only after controlling uncertainty/variance at lower fidelities.
- ► Theoretically/empirically outperforms strategies that ignore the approximations or use only a finite number of fidelities.

Thank you.

Poster tonight @ Gallery #49.