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Black-box Optimisation

Expensive Blackbox
          Function

Examples:
- Hyper-parameter Tuning
- ML estimation in Astrophysics
- Optimal policy in Autonomous Driving
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Black-box Optimisation

f : X → R is an expensive, black-box, noisy function.

Let x? = argmaxx f (x).

x

f(x)

Simple Regret after n evaluations

Sn = f (x?) − max
t=1,...,n

f (xt).
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Gaussian Process (Bayesian) Optimisation

Model f ∼ GP(0, κ).

Gaussian Process Upper Confidence Bound (GP-UCB)
(Srinivas et al. 2010).

x

f(x)

Construct upper conf. bound: ϕt(x) = µt−1(x) + β
1/2
t σt−1(x).
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Gaussian Process (Bayesian) Optimisation

Model f ∼ GP(0, κ).

Gaussian Process Upper Confidence Bound (GP-UCB)
(Srinivas et al. 2010).

x

f(x)

ϕt = µt−1 + β
1/2
t σt−1

xt

Maximise upper confidence bound.
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This work: What if we have cheap approximations to f ?

E.g. Hyper-parameter tuning: Train & validate with a subset of
the data.

Bandwidth (`) selection in kernel density estimation.
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Prior work in Multi-fidelity Methods

For specific applications, such as hyper-parameter tuning, active
learning, robotics etc. (Agarwal et al. 2011, Cutler et al. 2014,

Zhang & Chaudhuri 2015, Klein et al. 2015, Li et al. 2016)

Multi-fidelity optimisation (Huang et al. 2006, Forrester et al. 2007,

March & Wilcox 2012, Poloczek et al. 2016)

.. with theoretical guarantees (Kandasamy et al. 2016a, 2016b)

Prior work only focus on a finite number of approximations,

x⋆
f

f1, f2, f3 ≈ f which
are cheaper to evaluate.
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Why continuous approximations?

- Use an arbitrary amount of data?

- Iterative algorithms: use arbitrary number of iterations?

E.g. Train an ML model with N• data and T• iterations.
- But use N < N• data and T < T• iterations to approximate

cross validation performance at (N•,T•).

Approximations from a continuous 2D “fidelity space” (N,T ).
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Multi-fidelity Optimisation with Continuous Approximations
(Kandasamy et al. ICML 2017)

X
Z

A fidelity space Z and domain X
Z ← all (N,T ) values.

X ← all hyper-parameter values.

g : Z × X → R.
g([N,T ], x) ← cv accuracy when

training with N data for T iterations

at hyper-parameter x .

We wish to optimise f (x) = g(z•, x) where z• ∈ Z. z• = [N•,T•].

End Goal: Find x? = argmaxx f (x).

A cost function, λ : Z → R+.
λ(z) = λ(N,T ) = O(N2T ).

Z z•

λ(z)
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Multi-fidelity Simple Regret (Kandasamy et al. ICML 2017)

x⋆
X

g(z, x)

f(x)

z•
Z

Z z•

λ(z)

End Goal: Find x? = argmaxx f (x).

Simple Regret after capital Λ: S(Λ) = f (x?)− max
t: zt=z•

f (xt).

Λ← amount of a resource spent, e.g. computation time or money.

No reward for maximising low fidelities, but use cheap evaluations
at z 6= z• to speed up search for x?.
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BOCA: Bayesian Optimisation with Continuous Approximations
(Kandasamy et al. ICML 2017)

Model g ∼ GP(0, κ) and com-
pute posterior GP:

mean µt−1 : Z × X → R
std-dev σt−1 : Z × X → R+

(1) xt ← maximise upper confidence bound for f (x) = g(z•, x).

xt = argmax
x∈X

µt−1(z•, x) + β
1/2
t σt−1(z•, x)

(2) Zt ≈ {z•} ∪
{
z : σt−1(z , xt) ≥ γ(z)

=

(
λ(z)

λ(z•)

)q

ξ(z)

}
(3) zt = argmin

z∈Zt

λ(z) (cheapest z in Zt)
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Theoretical Results for BOCA

g ∼ GP(0, κ), κ : (Z × X )2 → R.

κ([z , x ], [z ′, x ′]) = κX (x , x ′) · κZ(z , z ′)

x⋆
X

g(z, x)

f(x)

z•
Z

“good”

large hZ

x⋆

g(z, x)

X

f(x)

z•
Z

“bad”

small hZ

E.g.: If κZ is an SE kernel, bandwidth hZ controls smoothness.
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Theoretical Results for BOCA

GP-UCB κX is an SE kernel, (Srinivas et al. 2010)

w.h.p S(Λ) .

√
vol(X )

Λ

BOCA κX , κZ are SE kernels, (Kandasamy et al. ICML 2017)

w.h.p ∀α > 0, S(Λ) .

√
vol(Xα)

Λ
+

√
vol(X )

Λ2−α

Xα =
{
x ; f (x?)− f (x) . Cα

1

hZ

}
If hZ is large (good approximations), vol(Xα)� vol(X ),
and BOCA is much better than GP-UCB.
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Experiment: SVM with 20 News Groups

Tune two hyper-parameters for the SVM.
Dataset has N• = 15K data and use T• = 100 iterations.
But can choose N ∈ [5K , 15K ] or T ∈ [20, 100] (2D fidelity space).

0.89

0.895

0.9

0.905

0.91

0.915

500 1000 1500 2000
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Take-aways

I BOCA: a multi-fidelity optimisation algorithm when you have
access to continuous approximations.

I Choose higher fidelity only after controlling
uncertainty/variance at lower fidelities.

I Theoretically/empirically outperforms strategies that ignore
the approximations or use only a finite number of fidelities.

Thank you.
Poster tonight @ Gallery #49.
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