LEVERAGING REVIEWS: LEARNING TO PRICE WITH BUYER AND SELLER UNCERTANTY

ECONOMICS \& COMPUTATION 2023

WENSHUO GUO (UC BERKELEY)
NIKA HAGHTALAB (UC BERKELEY)
KIRTHI KANDASAMY (UW-MADISON)
ELLEN VITERCIK (STANFORD)

- Many reasons: convenience, many options, reviews.

CUSTOMERS USE REVIEWS TO MAKE AN INFORMED PURCHASE

Cuisinart 422-24 Contour Stainless 10-Inch Open Skillet
Visit the Cuisinart Store
3,625 ratings

Groomer's Best Small Combo Brush for Cats and Small Dogs
Visit the Hartz Store
为 7,607 ratings

Paula's Choice Skin Perfecting 2\% BHA Liquid Salicylic Acid Exfoliant, Gentle Facial Exfoliator for Blackheads, Large Pores, Wrinkles \& Fine Lines, Travel Size, 1 Fluid Ounce PACKAGING MAY VARY
Visit the Paula's Choice Store

CUSTOMERS USE REVIEWS TO MAKE AN INFORMED PURCHASE

Cuisinart 422－24 Contour Stainless 10－Inch Open Skillet
Visit the Cuisinart Store
3， 625 ratings

Groomer＇s Best Small Combo Brush for Cats and Small Dogs Visit the Hartz Store
人 7，607 ratings

Paula＇s Choice Skin Perfecting 2\％BHA Liquid Salicylic Acid Exfoliant，Gentle Facial Exfoliator for Blackheads，Large Pores，Wrinkles \＆Fine Lines， Travel Size， 1 Fluid Ounce－ PACKAGING MAY VARY Visit the Paula＇s Choice Store全领 79,839 ratings

－But customers do not look at just the average rating．

FILTERING REVIEWS BY ‘CUSTOMER TYPE’

↔ Cuisinart MCP22－24N MultiClad Pro Triple Ply 10－ Inch，Open Skillet
Visit the Cuisinart Store
解领施 14，945 ratings

\uparrow
Cuisinart MCP22－24N MultiClad Pro Triple Ply 10－ Inch，Open Skillet
Visit the Cuisinart Store
领领 14,945 ratings
为 4.7 out of 5

Looking for specific info？

Q oven

Customer Reviews

大
By Cheryl A．Jarrett in the United States on April 20， 2022
．．．They warp in the oven．see more
令育 Warps
By Ricky K Workman in the United States on August 3， 2022 ．．．Warps at 350 degrees see more

See 20 matching customer reviews＞

Paula's Choice

Skin Perfecting 2\% BHA Liquid Exfoliant
$\star \star \star \star$ 1.1K Ask a question 254.6K

Oily \times Clear all

Viewing 1-6 of 189 reviews
$\star \star \star \star \star$
6 d ago
\checkmark Recommended

LITERALLY NEED

I didn't notice a major difference until I ran out of it, then my forehead started to break out again and my skin just looked dull. It's the only thing that gets rid of pimples that are painful and under the skin.

Helpful? $\Delta(3) \mid \nabla(1)$

HOW CAN REVIEWS BE HELPFUL?

- To buyers (customers):
- Understand if the product is right for them.
- E.g. Several positive reviews for stovetop cooking, but warps too frequently in the oven.
- To buyers (customers):
- Understand if the product is right for them.
- E.g. Several positive reviews for stovetop cooking, but warps too frequently in the oven.

- To sellers:

, Gauge the demand for the product \Longrightarrow set prices to maximize revenue.

- E.g. Several 5 star reviews! I should increase the price.
- To buyers (customers):
- Understand if the product is right for them.
- E.g. Several positive reviews for stovetop cooking, but warps too frequently in the oven.

- To sellers:

, Gauge the demand for the product \Longrightarrow set prices to maximize revenue.

- E.g. Several 5 star reviews! I should increase the price.
- Goal: Study how reviews can help both sides of the market.
- To buyers (customers):
- Understand if the product is right for them.
- E.g. Several positive reviews for stovetop cooking, but warps too frequently in the oven.

- To sellers:

, Gauge the demand for the product \Longrightarrow set prices to maximize revenue.

- E.g. Several 5 star reviews! I should increase the price.
- Goal: Study how reviews can help both sides of the market.
- Sellers will learn optimal price.
- Buyers will learn their value for goods.

POSTED PRICE MECHANISM

- A single seller who wishes to sell an item.

POSTED PRICE MECHANISM

- A single seller who wishes to sell an item.
- Each buyer has a type i. There is a distribution \mathscr{P} of buyer types.

POSTED PRICE MECHANISM

- A single seller who wishes to sell an item.
- Each buyer has a type i. There is a distribution \mathscr{P} of buyer types.
- All buyers of type i have value θ_{i} for the item.

POSTED PRICE MECHANISM

- A single seller who wishes to sell an item.
- Each buyer has a type i. There is a distribution \mathscr{P} of buyer types.
- All buyers of type i have value θ_{i} for the item.
- Seller posts a price p for the item. A buyer of type i will purchase if her value is larger than the price, i.e $\theta_{i} \geq p$.

- A single seller who wishes to sell an item.
- Each buyer has a type i. There is a distribution \mathscr{P} of buyer types.
- All buyers of type i have value θ_{i} for the item.
- Seller posts a price p for the item. A buyer of type i will purchase if her value is larger than the price, i.e $\theta_{i} \geq p$.
- Optimal price:

$$
p^{\star}=\underset{p}{\arg \max _{p} p \cdot \mathbb{P}_{i \sim \mathscr{P}}\left(\theta_{i} \geq p\right), ~}
$$

ISSUES

1. Seller wishes to maximize revenue, but may not know \mathscr{P}.

$$
p^{\star}=\arg \max p \cdot \mathbb{P}_{i \sim \mathscr{P}}\left(\theta_{i} \geq p\right)
$$

1. Seller wishes to maximize revenue, but may not know \mathscr{P}.

$$
p^{\star}=\arg \max _{p} p \cdot \mathbb{P}_{i \sim \mathscr{P}}\left(\theta_{i} \geq p\right)
$$

2. A buyer may know their type i, but not their value θ_{i}.

1. Seller wishes to maximize revenue, but may not know \mathscr{P}.

$$
p^{\star}=\arg \max _{p} p \cdot \mathbb{P}_{i \sim \mathscr{P}}\left(\theta_{i} \geq p\right)
$$

2. A buyer may know their type i, but not their value θ_{i}.

- Due to uncertainty about their value, buyers may not be willing to buy an item except at a low price.

PRIOR WORK ON SOCIAL LEARNING FROM REVIEWS

Chamley, 2004
Bose et al., 2006
Acemoglu et al., 2017
Crapis et al., 2017
Besbes and Scarsini, 2018
Ifrach et al., 2019
Boursier et al., 2020
Han and Anderson, 2020

1. Introduction
2. Problem set up $\&$ challenges
3. Algorithm \& theoretical results

FRAMEWORK FOR ONLINE LEARNING \& PRICING

- Proceeds over a sequence of rounds. On any given round there are reviews from previous rounds.

FRAMEWORK FOR ONLINE LEARNING \& PRICING

- Proceeds over a sequence of rounds. On any given round there are reviews from previous rounds.
- On each round t :

FRAMEWORK FOR ONLINE LEARNING \& PRICING

- Proceeds over a sequence of rounds. On any given round there are reviews from previous rounds.
- On each round t :
- Seller chooses a price p_{t} (based on past reviews).

FRAMEWORK FOR ONLINE LEARNING \& PRICING

- Proceeds over a sequence of rounds. On any given round there are reviews from previous rounds.
- On each round t :
- Seller chooses a price p_{t} (based on past reviews).
- A new buyer of type $i_{t} \sim \mathscr{P}$ arrives. She buys the item if she has reason to believe that her value is larger than the price p_{t} based on past reviews.
- Proceeds over a sequence of rounds. On any given round there are reviews from previous rounds.
- On each round t :
- Seller chooses a price p_{t} (based on past reviews).
- A new buyer of type $i_{t} \sim \mathscr{P}$ arrives. She buys the item if she has reason to believe that her value is larger than the price p_{t} based on past reviews.
- If buyer buys, she leaves a review based on her experience of using the item. Otherwise, no review.

FRAMEWORK FOR ONLINE LEARNING \& PRICING

- Proceeds over a sequence of rounds. On any given round there are reviews from previous rounds
- On each round t :
- Seller chooses a price p_{t} (based on past reviews).
- A new buyer of type $i \sim \mathscr{P}$ arrives. She buys the item if she has reason to believe that her value is larger than the price p_{t} based on past reviews.
- If buyer buys, she leaves a review based on her experience of using the item. Otherwise, no review.

LEAVING A REVIEW BASED ON EXPERIENCE

- A buyer has ex-ante value θ_{i} based on their type .

LEAVING A REVIEW BASED ON EXPERIENCE

- A buyer has ex-ante value θ_{i} based on their type .
- Buyer's ex-post value v is drawn from distribution \mathscr{D}_{i} such that $\mathbb{E}_{\mathscr{D}_{i}}[v]=\theta_{i}$.
- A buyer has ex-ante value θ_{i} based on their type .
- Buyer's ex-post value v is drawn from distribution \mathscr{D}_{i} such that $\mathbb{E}_{\mathscr{D}_{i}}[v]=\theta_{i}$.
- Ex-post value is the actual experience of the customer.
- Depends on exogenous factors that cannot be known at time of purchase.
- A buyer has ex-ante value θ_{i} based on their type .
- Buyer's ex-post value v is drawn from distribution \mathscr{D}_{i} such that $\mathbb{E}_{\mathscr{D}_{i}}[v]=\theta_{i}$.
- Ex-post value is the actual experience of the customer.
- Depends on exogenous factors that cannot be known at time of purchase.
- E.g manufacturing defects, mismatch between description and product
- A buyer has ex-ante value θ_{i} based on their type .
- Buyer's ex-post value v is drawn from distribution \mathscr{D}_{i} such that $\mathbb{E}_{\mathscr{D}_{i}}[v]=\theta_{i}$.
- Ex-post value is the actual experience of the customer.
- Depends on exogenous factors that cannot be known at time of purchase.
- E.g manufacturing defects, mismatch between description and product
- Review: If the buyers buy, they reveal their type and ex-post value (i,v) to the seller and future buyers. Otherwise, no review.

IS VALUE LARGER THAN PRICE BASED ON PAST REVIEWS?

1. Buyers may not be willing to pay a high price if they are uncertain about their (ex-ante) value.

IS VALUE LARGER THAN PRICE BASED ON PAST REVIEWS?

1. Buyers may not be willing to pay a high price if they are uncertain about their (ex-ante) value.
2. But buyers cannot be overly conservative.

- E.g: "I will only pay $\$ 0.01$ since I do not know my value exactly".

IS VALUE LARGER THAN PRICE BASED ON PAST REVIEWS?

1. Buyers may not be willing to pay a high price if they are uncertain about their (ex-ante) value.
2. But buyers cannot be overly conservative.

- E.g: "I will only pay $\$ 0.01$ since I do not know my value exactly".
- Revenue maximization would be hopeless with ultraconservative customers.
- Buyer on round t arrives with a threshold τ_{t}. Purchases if $p_{t} \leq \tau_{t}$.
- Buyer on round t arrives with a threshold τ_{t}. Purchases if $p_{t} \leq \tau_{t}$.
- This threshold is a function of past reviews.
- Buyer on round t arrives with a threshold τ_{t}. Purchases if $p_{t} \leq \tau_{t}$.
- This threshold is a function of past reviews.
- τ_{t} has to be at least a η-lower confidence bound on the value.
- Buyer on round t arrives with a threshold τ_{t}. Purchases if $p_{t} \leq \tau_{t}$.
- This threshold is a function of past reviews.
- τ_{t} has to be at least a η-lower confidence bound on the value. If $\Phi_{i, t}$ are the reviews from past customers of type i, then,

$$
\tau_{t} \geq \frac{1}{\left|\Phi_{i, t}\right|} \sum_{v \in \Phi_{i, t}} v-\sqrt{\frac{1}{\left|\Phi_{i, t}\right|} \log \left(\frac{t}{\eta}\right)}
$$

- Buyer on round t arrives with a threshold τ_{t}. Purchases if $p_{t} \leq \tau_{t}$.
- This threshold is a function of past reviews.
- τ_{t} has to be at least a η-lower confidence bound on the value. If $\Phi_{i, t}$ are the reviews from past customers of type i, then,

$$
\tau_{t} \geq \frac{1}{\left|\Phi_{i, t}\right|} \sum_{v \in \Phi_{i, t}} v-\sqrt{\frac{1}{\left|\Phi_{i, t}\right|} \log \left(\frac{t}{\eta}\right)}
$$

- Bounded pessimism: Customer is willing to take at least a small risk. She may over-estimate her value (i.e $\tau_{t}>\theta_{i}$) with some small probability η.
- Regret R_{T} after T rounds:

$$
R_{T}=T \operatorname{rev}\left(p^{\star}\right)-\sum_{t=1}^{T} p_{t} \cdot 1(\text { purchase on round } t)
$$

Optimal price when sellers know \mathscr{P} and customers know their values θ_{i}.

1. Introduction
2. Problem set up $\&$ challenges
3. Algorithm \& theoretical results

OVERVIEW OF ALGORITHM \& RESULTS

- Algorithm:

- Choose low prices early, and increase them gradually.

OVERVIEW OF ALGORITHM \& RESULTS

- Algorithm:

- Choose low prices early, and increase them gradually.
- Theoretical Results:
- Upper bound: $\tilde{\mathscr{O}}\left(d^{1 / 3} T^{2 / 3}\right)$ worst case regret, but $\tilde{\mathcal{O}}\left(T^{1 / 2}\right)$ regret when all types appear frequently.
- Matching lower bounds.

Seller wishes to set high prices on each round (to maximize current revenue).

CHALLENGES: PRICING AFFECTS LEARNING

- Seller wishes to set high prices on each round (to maximize current revenue).
- But higher prices \Longrightarrow no purchase \Longrightarrow no review.

CHALLENGES: PRICING AFFECTS LEARNING

- Seller wishes to set high prices on each round (to maximize current revenue).
- But higher prices \Longrightarrow no purchase \Longrightarrow no review.

1. Seller learning: Seller cannot gauge demand for the product.
2. Buyer learning: Future buyers cannot estimate their value.

- Even if buyers knew their values, seller needs to be conservative with pricing.

CHALLENGE 1: PRICING VS SELLER LEARNING

- Even if buyers knew their values, seller needs to be conservative with pricing.

CHALLENGE 1: PRICING VS SELLER LEARNING

- Even if buyers knew their values, seller needs to be conservative with pricing.

CHALLENGE 1: PRICING VS SELLER LEARNING

- Even if buyers knew their values, seller needs to be conservative with pricing.

CHALLENGE 1: PRICING VS SELLER LEARNING

- Even if buyers knew their values, seller needs to be conservative with pricing.

CHALLENGE 1: PRICING VS SELLER LEARNING

- Even if buyers knew their values, seller needs to be conservative with pricing.

CHALLENGE 1: PRICING VS SELLER LEARNING

- Even if buyers knew their values, seller needs to be conservative with pricing.

CHALLENGE 1: PRICING VS SELLER LEARNING

- Even if buyers knew their values, seller needs to be conservative with pricing.

- Set prices too high \Longrightarrow no feedback about low value types.

CHALLENGE 1: PRICING VS SELLER LEARNING

- Even if buyers knew their values, seller needs to be conservative with pricing.

- Set prices too high \Longrightarrow no feedback about low value types.
- Set prices too low \Longrightarrow low revenue.

CHALLENGE 1: PRICING VS SELLER LEARNING

- Even if buyers knew their values, seller needs to be conservative with pricing.

- Set prices too high \Longrightarrow no feedback about low value types.
- Set prices too low \Longrightarrow low revenue.
- Property: if $p_{t} \leq p^{\star}$, and buyers know values, sufficient feedback to learn p^{\star}.

CHALLENGE 2: PRICING VS BUYER LEARNING

- A buyer's purchase decision depends on how certain she is of her value. This in turn depends on previous reviews.

CHALLENGE 2：PRICING VS BUYER LEARNING

－A buyer＇s purchase decision depends on how certain she is of her value． This in turn depends on previous reviews．

	\＄47	\＄51	
Type	\＄39	\＄38	WW的\＄52
＂stovetop＂	的\＄42	的施的\＄44	的的的盛\＄46
	\＄	\＄	

```
Type
```


CHALLENGE 2: PRICING VS BUYER LEARNING

- A buyer's purchase decision depends on how certain she is of her value. This in turn depends on previous reviews.

CHALLENGE 2: PRICING VS BUYER LEARNING

- A buyer's purchase decision depends on how certain she is of her value. This in turn depends on previous reviews.

	$\hat{\sim} \hat{y} \hat{y} \hat{y}$ \$47
Type "stovetop"	
	\$42
"arill"	

CHALLENGE 2：PRICING VS BUYER LEARNING

－A buyer＇s purchase decision depends on how certain she is of her value． This in turn depends on previous reviews．

Type	
＂stovetop＂	
	动动动盛\＄57

CHALLENGE 2：PRICING VS BUYER LEARNING

－A buyer＇s purchase decision depends on how certain she is of her value． This in turn depends on previous reviews．

Type ＂stovetop＂	的的的的\＄47		动动动 $\$ 37$ 领会领 52 动合领 $\$ 46$ 领会 56
	动的成盛\＄39		
	令令为会\＄53		
	枵施施施\＄53		
＂grill＂			

CHALLENGE 2: PRICING VS BUYER LEARNING

- A buyer's purchase decision depends on how certain she is of her value. This in turn depends on previous reviews.

- Seller's dilemma: Only target "stovetop" buyers for high immediate revenue? Or also target "grill" customers for higher long term revenue?

Phase 1:

Phase 2:

Phase 1: (for a small number of rounds, $\sim \tilde{\Theta}\left(T^{1 / 3}\right)$ rounds)

Phase 2:

- Phase 1: (for a small number of rounds, $\sim \tilde{\Theta}\left(T^{1 / 3}\right)$ rounds)
- Offer item for free.

Phase 2:

- Phase 1: (for a small number of rounds, $\sim \tilde{\Theta}\left(T^{1 / 3}\right)$ rounds)
- Offer item for free.
- Observe iid samples from type distribution \mathscr{P}.
- Phase 2:
- Phase 1: (for a small number of rounds, $\sim \tilde{\Theta}\left(T^{1 / 3}\right)$ rounds)
- Offer item for free.
- Observe iid samples from type distribution \mathscr{P}.
- Eliminate types that did not appear often enough.
- Phase 2:
- Phase 1: (for a small number of rounds, $\sim \tilde{\Theta}\left(T^{1 / 3}\right)$ rounds)
- Offer item for free.
- Observe iid samples from type distribution \mathscr{P}.
- Eliminate types that did not appear often enough.
- $S_{0} \leftarrow$ remaining types.
- Phase 2:
- Phase 1: (for a small number of rounds, $\sim \tilde{\Theta}\left(T^{1 / 3}\right)$ rounds)
- Offer item for free.
- Observe iid samples from type distribution \mathscr{P}.
- Eliminate types that did not appear often enough.
- $S_{0} \leftarrow$ remaining types.
- Phase 2: (set $\left.S_{t}=S_{0}\right)$
- Phase 1: (for a small number of rounds, $\sim \tilde{\Theta}\left(T^{1 / 3}\right)$ rounds)
- Offer item for free.
- Observe iid samples from type distribution \mathscr{P}.
- Eliminate types that did not appear often enough.
- $S_{0} \leftarrow$ remaining types.
- Phase 2: (set $S_{t}=S_{0}$)
- On round t, set price p_{t} low enough that buyers in S_{t} will buy.
- Phase 1: (for a small number of rounds, $\sim \tilde{\Theta}\left(T^{1 / 3}\right)$ rounds)
- Offer item for free.
- Observe iid samples from type distribution \mathscr{P}.
- Eliminate types that did not appear often enough.
- $S_{0} \leftarrow$ remaining types.
- Phase 2: (set $S_{t}=S_{0}$)
- On round t, set price p_{t} low enough that buyers in S_{t} will buy.
- Update S_{l} : eliminate types which contribute too little to revenue.

PHASE 2

- S_{t} : customers we are targeting in the current round.
- S_{t} : customers we are targeting in the current round.
- Maintain η-confidence intervals for buyers' estimate of θ_{i} for each $i \in S_{t}$.

- S_{t} : customers we are targeting in the current round.
- Maintain η-confidence intervals for buyers' estimate of θ_{i} for each $i \in S_{t}$.

- Choose p_{t} to be the minimum LCB of these confidence intervals.
- S_{t} : customers we are targeting in the current round.
- Maintain η-confidence intervals for buyers' estimate of θ_{i} for each $i \in S_{t}$.

- Choose p_{t} to be the minimum LCB of these confidence intervals.
- Updating S_{t} : racing-like elimination used in Best Arm Identification.

WHY DO WE NEED A PHASE 1?

- Phase 1: offer the item for free, eliminate types that are infrequent.

WHY DO WE NEED A PHASE 1?

- Phase 1: offer the item for free, eliminate types that are infrequent.

WHY DO WE NEED A PHASE 1?

-Phase 1: offer the item for free, eliminate types that are infrequent.

- Low probability of appearance \Longrightarrow fewer reviews.

WHY DO WE NEED A PHASE 1?

-Phase 1: offer the item for free, eliminate types that are infrequent.

- Low probability of appearance \Longrightarrow fewer reviews.
- More uncertainty about their value.

WHY DO WE NEED A PHASE 1?

- Phase 1: offer the item for free, eliminate types that are infrequent.
- Low probability of appearance \Longrightarrow fewer reviews.
- More uncertainty about their value.
- Need to set a low price to target these buyers \Longrightarrow low revenue.

THEORETICAL RESULTS

Upper bound: After T rounds with d types,

THEORETICAL RESULTS

Upper bound: After T rounds with d types,

$$
\mathbb{E}\left[R_{T}\right] \lesssim \min \left(d^{1 / 3} T^{2 / 3}, \sqrt{\frac{T}{q_{\min }}}\right)
$$

$q_{\text {min }}$: lowest type probability

THEORETICAL RESULTS

Upper bound: After T rounds with d types,

$$
\mathbb{E}\left[R_{T}\right] \lesssim \min \left(d^{1 / 3} T^{2 / 3}, \sqrt{\frac{T}{q_{\min }}}\right)
$$

$q_{\text {min }}$: lowest type probability

Lower bound:

THEORETICAL RESULTS

Upper bound: After T rounds with d types,

$$
\mathbb{E}\left[R_{T}\right] \lesssim \min \left(d^{1 / 3} T^{2 / 3}, \sqrt{\frac{T}{q_{\min }}}\right)
$$

$q_{\text {min }}$: lowest type probability

Lower bound:

$$
\inf _{\text {algorithms }} \sup _{\text {problems }} \mathbb{E}\left[R_{T}\right] \gtrsim d^{1 / 3} T^{2 / 3}
$$

THEORETICAL RESULTS

Upper bound: After T rounds with d types,

$$
\mathbb{E}\left[R_{T}\right] \lesssim \min \left(d^{1 / 3} T^{2 / 3}, \sqrt{\frac{T}{q_{\min }}}\right)
$$

$q_{\text {min }}$: lowest type probability

Lower bound:

$$
\begin{aligned}
& \inf _{\text {algorithms }} \sup _{\text {problems }} \mathbb{E}\left[R_{T}\right] \gtrsim d^{1 / 3} T^{2 / 3} \\
& \inf _{\text {algorithms }} \sup _{q_{\min } \geq d^{-2 / 3} T^{-1 / 3}} \mathbb{E}\left[R_{T}\right] \gtrsim \sqrt{\frac{T}{q_{\min }}}
\end{aligned}
$$

THEORETICAL RESULTS

Upper bound: After T rounds with d types,

$$
\mathbb{E}\left[R_{T}\right] \lesssim \min \left(d^{1 / 3} T^{2 / 3}, \sqrt{\frac{T}{q_{\min }}}\right)
$$

$q_{\text {min }}$: lowest type probability

Lower bound:

$$
\begin{aligned}
& \inf _{\text {algorithms }} \sup _{\text {problems }} \mathbb{E}\left[R_{T}\right] \gtrsim d^{1 / 3} T^{2 / 3} \\
& \inf _{\text {algorithms }} \sup _{q_{\min } \geq d^{-2 / 3} T^{-1 / 3}} \mathbb{E}\left[R_{T}\right] \gtrsim \sqrt{\frac{T}{q_{\min }}}
\end{aligned}
$$

Lower bound proof: No algorithm can do significantly better than an algorithm which eliminates low probability types and then focuses on the rest.

Wenshuo Guo

Nika Haghtalab

Ellen Vitercik

THANK YOU!

- Challenges: Setting high prices for high instantaneous revenue \Longrightarrow Both buyer and seller cannot learn
\Longrightarrow Poor revenue in the long run
- Algorithm: Choose low prices early, and increase them gradually.
- Theoretical Results:
- Upper bound: $\tilde{\mathscr{O}}\left(d^{1 / 3} T^{2 / 3}\right)$ worst case regret, but $\tilde{\mathscr{O}}\left(T^{1 / 2}\right)$ regret when all types appear frequently.
- Matching lower bounds.

