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» Many reasons: convenience, many options, reviews.
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» But customers do not look at just the average rating.
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FILTERING REVIEWS BY ‘CUSTOMER TYPE ‘

M Cuisinart MCP22-24N MultiClad Pro Triple Ply 10- Looking for specific info?
Inch, Open Skillet
Visit the Cuisinart Store [ Q 0ven|

=" ki v 14,945 ratings

e

Yriririris 4.7 out of 5

Customer Reviews

Yoy Warped
By Cheryl A. Jarrett in the United States = on April 20, 2022
...They warp in the oven. see more

Yoy ey e veve Warps
By Ricky K Workman in the United States == on August 3, 2022
...Warps at 350 degrees see more

See 20 matching customer reviews >




FILTERING REVIEWS BY ‘CUSTOMER TYPE'

Paula's Choice
Skin Perfecting 2% BHA Liquid Exfoliant

%k kK ¥r 1.1K Ask a question W 254.6K

m gﬁ%l-l'gg O\ Sort v Rating v Verified Purchases Non-Incentivized Reviews Only @ Skin Concerns v Age Range Vv
< Oily X Qg Clear all
W  SKIN PERFECTING
J 2% BHA Liquid Viewing 1-6 of 189 reviews
Exfoliant
o L % %k %k k LITERALLY NEED
l Al Skin Types 6 d ago | didn’t notice a major difference until | ran out of it, then my forehead started to break out again and my skin just
x Mif.?oiigso:f:ffs' v Recommended looked dull. It’s the only thing that gets rid of pimples that are painful and under the skin.
A e ey Helpful? A (3) | ¥ (1)
m 118 ml/ 4 1l. oz

1. 8.0.0.0.1 A MUST IN MY WEEKLY ROUTINE
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» To buyers (customers):

» Understand if the product is right for them.

» E.g.Several positive reviews for stovetop cooking, but warps too frequently in the oven.

» To sellers:

» Gauge the demand for the product = set prices to maximize revenue.
» E.g.Several 5 star reviews! | should increase the price.
» Goal: Study how reviews can help both sides of the market.
» Sellers will learn optimal price.

» Buyers will learn their value for goodes.
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POSTED PRICE MECHANISM

» A single seller who wishes to sell an item.
» Each buyer has a type i. There is a distribution & of buyer types.
» All buyers of type i have value 0. for the item.

» Seller posts a price p for the item. A buyer of type i will purchase if her

D

value is larger than the price, i.e 6. > p.

Pinp (1 = 2)

» Optimal price:

p* =argmaxp - P;_g(6; > p)
p

d Type
9, Values
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ISSUES i

1. Seller wishes to maximize revenue, but P
may not know <.

p* =argmaxp - P, (0, > p) I
P
) o Type
9, Values

2. A buyer may know their type i, but not their value 6.

» Due to uncertainty about their value, buyers may not be willing to buy an
item except at a low price.
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» Proceeds over a sequence of rounds. On any given round there are reviews
from previous rounds

» On each round :
» Seller chooses a price p, (based on past reviews).

» A new buyer of type i ~ & arrives. She buys the item if she has reason to
believe that her value is larger than the price p, based on past reviews.

» If buyer buys, she leaves a review based on her experience of using the
item. Otherwise, no review.
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» A buyer has ex-ante value 0. based on their type .

» Buyer's ex-post value v is drawn from distribution &, such that kg, [v] = 0,

» Ex-post value is the actual experience of the customer.
» Depends on exogenous factors that cannot be known at time of purchase.

» E.g manufacturing defects, mismatch between description and product

» Review: If the buyers buy, they reveal their type and ex-post value (i, v) to the
seller and future buyers. Otherwise, no review.
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IS VALUE LARGER THAN PRICE BASED ON PAST REVIEWS?

1. Buyers may not be willing to pay a high price if they are uncertain about
their (ex-ante) value.

2. But buyers cannot be overly conservative.
» E.g: “l will only pay $0.01 since | do not know my value exactly”.

» Revenue maximization would be hopeless with ultraconservative
customers.

14
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» Buyer on round 7 arrives with a threshold z,. Purchases if p, < 7.

- This threshold is a function of past reviews.

» 7, has to be at least a 77-lower confidence bound on the value.

It ©, , are the reviews from past customers of type i, then,

1 1 !
T, > Z v — log (—)
‘(Di,t‘ | D; ;| H

veD. L

» Bounded pessimism: Customer is willing to take at least a small risk. She
may over-estimate her value (i.e 7, > ¢) with some small probability 7.



REGRET

» Regret R, after T rounds:

T
R, = Trev(p™) — Zpt- 1(purchase on round )

=1

Optimal price when sellers know & and

customers know their values 6.

16
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OVERVIEW OF ALGORITHM & RESULTS

» Algorithm:

» Choose low prices early, and increase them gradually.

» Theoretical Results:

» Upper bound: 0 (d1/3T2/3) worst case regret, but 0 (Tl/z) regret when all
types appear frequently.

» Matching lower bounds.

18
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CHALLENGES: PRICING AFFECTS LEARNING

» Seller wishes to set high prices on each round (to maximize current revenue).

» But higher prices = no purchase = no review.
1. Seller learning: Seller cannot gauge demand for the product.

2. Buyerlearning: Future buyers cannot estimate their value.

19
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20

» Even if buyers knew their values, seller needs to be conservative with pricing.

Pip (1)

T

D, p* Values ($)

» Set prices too high = no feedback about low value types.
» Set prices too low = low revenue.

» Property: if p. < p*, and buyers know values, sufficient feedback to learn p ™.



CHALLENGE 2: PRICING VS BUYER LEARNING

21




CHALLENGE 2: PRICING VS BUYER LEARNING

21

» A buyer’s purchase decision depends on how certain she is of her value.
This in turn depends on previous reviews.



CHALLENGE 2: PRICING VS BUYER LEARNING &

» A buyer’s purchase decision depends on how certain she is of her value.
This in turn depends on previous reviews.

PrPr Ty I ey $47 YrirTroiryy $51 Yrirvryryy $37
TYPe et vy $39 Trvrvrvrel $38 Trirvriryy $52

'stovetop” yryryrvlryy $42 Yrirvraryr $44 Wririrvryy $46
T Tr vy $53 Twirvryrvr $45 YorvrYrvr vy $56

Type I Tr vy $53
"grill” WY YT Ir Yo $57



CHALLENGE 2: PRICING VS BUYER LEARNING &

» A buyer’s purchase decision depends on how certain she is of her value.
This in turn depends on previous reviews.

LI YTy Yy 47 Yryryryryr 51 Yryryryryr $37 New stovetop user:
TYPe ey rvr $39 Wi vrvre $38 WirTrir vy $52

'StovetoP” yr vy $42 Wb TrrYy $44 Wik Yriry $46

T Tr vy $53 Twirvryrvr $45 YorvrYrvr vy $56 —sﬁlm

Type I Tr vy $53
"grill” WY YT Ir Yo $57



CHALLENGE 2: PRICING VS BUYER LEARNING &

» A buyer’s purchase decision depends on how certain she is of her value.
This in turn depends on previous reviews.

LI YTy Yy 47 Yryryryryr 51 Yryryryryr $37 New stovetop user:
TYPE o sdede v $39 Frvirvirvrvy $38 Trirvryrer $52  "lwill pay up to $42

'SEOVRtOP” vy frv $42 Yrir Aoty 644 Frdrdrdroy s46  forthispan' -
Pt fed §53 ArArddery $45 A 656 —————

$44.5

Type I Tr vy $53
"grill” WY YT Ir Yo $57



CHALLENGE 2: PRICING VS BUYER LEARNING &

» A buyer’s purchase decision depends on how certain she is of her value.
This in turn depends on previous reviews.

LI YTy Yy 47 Yryryryryr 51 Yryryryryr $37 New stovetop user:
C TYPE e $39 Frdrvryitr $38 Yrvrvrvrdr $52  "Iwillpay up to $42
StOVEtop” vy $42 Wr Aoy 644 rrdrdriys4s  forthispan

T I YT $53 TWwr vy $45 YWiririryr $56

estimated value
$44.5

New grill user:

Type I Tr vy $53
"grill” WY YT Ir Yo $57




CHALLENGE 2: PRICING VS BUYER LEARNING &

» A buyer’s purchase decision depends on how certain she is of her value.
This in turn depends on previous reviews.

LI YTy Yy 47 Yryryryryr 51 Yryryryryr $37 New stovetop user:
C TYPE e $39 Frdrvryitr $38 Yrvrvrvrdr $52  "Iwillpay up to $42
StOVEtop” vy $42 Wr Aoy 644 rrdrdriys4s  forthispan

T I YT $53 TWwr vy $45 YWiririryr $56

estimated value
$44.5

New grill user:

Type W YT r Yy $53 "I will pay up to $33
"grill" ﬁﬁﬁﬁi} $57 For this pan"




CHALLENGE 2: PRICING VS BUYER LEARNING &

» A buyer’s purchase decision depends on how certain she is of her value.
This in turn depends on previous reviews.

LI YTy Yy 47 Yryryryryr 51 Yryryryryr $37 New stovetop user:
C TYPE e $39 Frdrvryitr $38 Yrvrvrvrdr $52  "Iwillpay up to $42
StOVEtop” vy $42 Wr Aoy 644 rrdrdriys4s  forthispan

T I YT $53 TWwr vy $45 YWiririryr $56

$44 5 estimated value
New grill user:
Type YT Y Ty Yy $53 "l will pay up to $33
"grill" ﬁﬁﬁi}i} $57 For this pan"
E $5| 5 estimated-:value

» Seller’s dilemma: Only target “stovetop” buyers for high immediate revenue?
Or also target “grill” customers for higher long term revenue?
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» Phase 1: (for a small number of rounds, )

» Offer item for free.

» Observe iid samples from type distribution <.

» Eliminate types that did not appear often enough.

- Sy < remaining types.

» Phase 2: (setS, =S

» On round 7, set price p, low enough that buyers in S, will buy.
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Phase 1: (for a small number of rounds, )

Offer item for free.

Observe iid samples from type distribution <.

Eliminate types that did not appear often enough.

- Sy < remaining types.

Phase 2: (set S, =S

On round 1, set price p, low enough that buyers in S, will buy.

Update $,: eliminate types which contribute too little to revenue.
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» S,: customers we are targeting in the current round.

» Maintain 77-confidence intervals for buyers’ estimate of 0. foreach i € §..

1 2.3 4 5 6
v

S; = {2,3,5,6}
» Choose p, to be the minimum LCB of these confidence intervals.

» Updating S;: racing-like elimination used in Best Arm Identification.
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WHY DO WE NEED A PHASE 1?

24

» Phase 1: offer the item for free, eliminate types that are infrequent.

» Low probability of appearance = fewer reviews.

» More uncertainty about their value.

» Need to set a low price to target these buyers = low revenue.

>
type
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Upper bound: After 7' rounds with d types,

Lower bound:

_[RT] 5 min d1/3T2/3,

I

\

dmin

q min®

inf  sup E[R;] > 4'°T?

algorithms problems
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Upper bound: After 7' rounds with d types,

I

\ Ymin

q min®

_[RT] 5 min d1/3T2/3,

lowest type probability

Lower bound:

inf  sup E[R;] > 4'°T?

algorithms problems

I

algorithms - j-2/37-1/3

Grrin dmin

inf Sup _[RT] Z \

Lower bound proof: No algorithm can do significantly better than an algorithm
which eliminates low probability types and then focuses on the rest.
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SUMMARY

» Challenges: Setting high prices for high instantaneous revenue
—> Both buyer and seller cannot learn
—> Poor revenue in the long run

» Algorithm: Choose low prices early, and increase them gradually.

» Theoretical Results:

» Upper bound: 0 (d1/3T2/3) worst case regret, but 0 (Tl/z) regret when all
types appear frequently.

» Matching lower bounds.
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