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Designing Electrolytes in Batteries
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Black-box Optimisation in Computational Astrophysics

Cosmological
   Simulator

Observation

E.g:
Hubble Constant
Baryonic Density

Likelihood
   Score

Likelihood computation
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Black-box Optimisation

Expensive Blackbox
          Function

Other Examples:
- Pre-clinical Drug Discovery
- Optimal policy in Autonomous Driving
- Synthetic gene design
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Black-box Optimisation

f : X → R is an expensive, black-box function, accessible only via
noisy evaluations.

Let x? = argmaxx f (x).

x

f(x)
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Outline

I Part I: Bayesian Optimisation

I Bayesian Models for f

I Two algorithms: upper confidence bounds & Thompson
sampling

I Part II: Some Modern Challenges

I Multi-fidelity Optimisation

I Parallelisation
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Bayesian Models for f e.g. Gaussian Processes (GP)

GP: A distribution over functions from X to R.

Functions with no observations

x

f(x)

After t observations, f (x) ∼ N (µt(x), σ2
t (x) ).
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Bayesian Optimisation with Upper Confidence Bounds

Model f ∼ GP.

Gaussian Process Upper Confidence Bound (GP-UCB)
(Srinivas et al. 2010)

x

f(x)

1) Construct posterior GP. 2) ϕt = µt−1 + β
1/2
t σt−1 is a UCB.

3) Choose xt = argmaxx ϕt(x). 4) Evaluate f at xt .
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GP-UCB (Srinivas et al. 2010)

x
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GP-UCB (Srinivas et al. 2010)

t = 1
x

f(x)
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GP-UCB (Srinivas et al. 2010)
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GP-UCB (Srinivas et al. 2010)
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GP-UCB (Srinivas et al. 2010)

t = 6
x

f(x)

6/19



GP-UCB (Srinivas et al. 2010)
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GP-UCB (Srinivas et al. 2010)

t = 11
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GP-UCB (Srinivas et al. 2010)

t = 25
x

f(x)
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Bayesian Optimisation with Thompson Sampling

Model f ∼ GP(0, κ).

Thompson Sampling (TS) (Thompson, 1933).

x

f(x)

1) Construct posterior GP. 2) Draw sample g from posterior.

3) Choose xt = argmaxx g(x). 4) Evaluate f at xt .
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More on Bayesian Optimisation

Theoretical results: Both UCB and TS will eventually find the
optimum under certain smoothness assumptions of f .

Other criteria for selecting xt :

I Expected improvement (Jones et al. 1998)

I Probability of improvement (Kushner et al. 1964)

I Predictive entropy search (Hernández-Lobato et al. 2014)

I Information directed sampling (Russo & Van Roy 2014)

Other Bayesian models for f :

I Neural networks (Snoek et al. 2015)

I Random Forests (Hutter 2009)
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Some Modern Challenges/Opportunities

1. Multi-fidelity Optimisation (Kandasamy et al. NIPS 2016 a&b,

Kandasamy et al. ICML 2017)

2. Parallelisation (Kandasamy et al. Arxiv 2017)
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1. Multi-fidelity Optimisation
(Kandasamy et al. NIPS 2016 a&b, Kandasamy et al. ICML 2017)

Desired function f is very expensive, but . . .
we have access to cheap approximations.

x⋆
f

f1, f2, f3 ≈ f which
are cheaper to evaluate.

E.g. f : a real world battery experiment
f2: lab experiment
f1: computer simulation
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MF-GP-UCB (Kandasamy et al. NIPS 2016b)

Multi-fidelity Gaussian Process Upper Confidence Bound

With 2 fidelities (1 Approximation),

x⋆xt

t = 14

f (1)

f (2)

Theorem: MF-GP-UCB finds the optimum x? with less resources
than GP-UCB on f (2).

Can be extended to multiple approximations and continuous
approximations.
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Experiment: Cosmological Maximum Likelihood Inference

I Type Ia Supernovae Data

I Maximum likelihood inference for 3 cosmological parameters:

I Hubble Constant H0

I Dark Energy Fraction ΩΛ

I Dark Matter Fraction ΩM

I Likelihood: Robertson Walker metric (Robertson 1936)

Requires numerical integration for each point in the dataset.
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Experiment: Cosmological Maximum Likelihood Inference

3 cosmological parameters. (d = 3)
Fidelities: integration on grids of size (102, 104, 106). (M = 3)
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Experiment: Hartmann-3D

2 Approximations (3 fidelities).
We want to optimise the m = 3rd fidelity, which is the most
expensive. m = 1st fidelity is cheapest.
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2. Parallelising function evaluations
Parallelisation with M workers: can evaluate f at M different
points at the same time.
E.g.: Test M different battery solvents at the same time.

Sequential evaluations with one worker

Parallel evaluations with M workers (Asynchronous)

Parallel evaluations with M workers (Synchronous)
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Parallel Thompson Sampling (Kandasamy et al. Arxiv 2017)

Asynchronous: asyTS

At any given time,
1. (x ′, y ′)← Wait for

a worker to finish.
2. Compute posterior GP.
3. Draw a sample g ∼ GP.

4. Re-deploy worker at
argmax g .

Synchronous: synTS

At any given time,
1. {(x ′m, y ′m)}Mm=1 ← Wait for

all workers to finish.
2. Compute posterior GP.
3. Draw M samples

gm ∼ GP, ∀m.
4. Re-deploy worker m at

argmax gm, ∀m.
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Experiment: Branin-2D M = 4
Evaluation time sampled from a uniform distribution
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Experiment: Hartmann-18D M = 25
Evaluation time sampled from an exponential distribution
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Summary

I Black-box Optimisation methods are used in several scientific
and engineering applications.

I Bayesian Optimisation: A method for black-box optimisation
which uses Bayesian uncertainty estimates for f .

I Some modern challenges

I Multi-fidelity optimisation

I Parallel evaluations

I and several more . . .

Thank you.
Slides are up on my website: www.cs.cmu.edu/∼kkandasa
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