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Black-box Optimisation

Neural Network
hyper-
parameters

cross validation
accuracy

- Train NN using given hyper-parameters
- Compute accuracy on validation set
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Expensive Blackbox
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Black-box Optimisation

Expensive Blackbox
          Function

Other Examples:
- ML estimation in astrophysics
- Pre-clinical drug discovery
- Optimal policy in autonomous driving
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Black-box Optimisation

f : X → R is an expensive, black-box, noisy function, accessible
only via noisy evaluations.

Let x? = argmaxx f (x).

x

f(x)

Simple Regret after n evaluations

Sn = f (x?) − max
t=1,...,n

f (xt).
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Black-box Optimisation

f : X → R is an expensive, black-box, noisy function, accessible
only via noisy evaluations.
Let x? = argmaxx f (x).

x

f(x)

x∗

f(x∗)

Cumulative Regret after n evaluations

Rn =
n∑

t=1

(
f (x?) − f (xt)

)
.
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A walk-through Bayesian Optimisation with

Gaussian Processes

I Gaussian Processes (GPs)

I GP-UCB: An algorithm for Bayesian Optimisation (BO)
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Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Functions with no observations

x

f(x)

Completely characterised by mean function µ : X → R, and
covariance kernel κ : X × X → R.
After t observations, f (x) ∼ N (µt(x), σ2

t (x) ).
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Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.
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Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Posterior GP given observations
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Gaussian Process Bandit (Bayesian) Optimisation

Model f ∼ GP(0, κ).

Gaussian Process Upper Confidence Bound (GP-UCB)
(Srinivas et al. 2010)

x

f(x)

1) Construct posterior GP. 2) ϕt = µt−1 + β
1/2
t σt−1 is a UCB.

3) Choose xt = argmaxx ϕt(x). 4) Evaluate f at xt .
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GP-UCB (Srinivas et al. 2010)

x

f(x)

6/30



GP-UCB (Srinivas et al. 2010)

t = 1
x

f(x)

6/30



GP-UCB (Srinivas et al. 2010)

t = 2
x

f(x)

6/30



GP-UCB (Srinivas et al. 2010)

t = 3
x

f(x)

6/30



GP-UCB (Srinivas et al. 2010)

t = 4
x

f(x)

6/30



GP-UCB (Srinivas et al. 2010)

t = 5
x

f(x)

6/30



GP-UCB (Srinivas et al. 2010)

t = 6
x

f(x)

6/30



GP-UCB (Srinivas et al. 2010)

t = 7
x

f(x)

6/30



GP-UCB (Srinivas et al. 2010)
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GP-UCB (Srinivas et al. 2010)

t = 25
x

f(x)
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GP-UCB

xt = argmax
x

µt−1(x) + β
1/2
t σt−1(x)

I µt−1: Exploitation

I σt−1: Exploration

I βt controls the tradeoff. βt � log t.

GP-UCB, κ is an SE kernel (Srinivas et al. 2010)

w.h.p Sn = f (x?)− max
t=1,...,n

f (xt) .

√
vol(X )

n

. ignores constants and polylog terms.
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Big picture: scaling up black-box optimisation

I Optimising in high dimensional spaces
e.g.: Tuning models with several hyper-parameters
Additive models for f lead to statistically and computationally
tractable algorithms. (Kandasamy et al. ICML 2015)

I Parallelising function evaluations
Randomised algorithms scale well to a large number of parallel
workers. (Kandasamy et al. Arxiv 2017)

Extends beyond GPs.
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This work: What if we have cheap approximations to f ?
(Kandasamy et al. NIPS 2016a&b, Kandasamy et al. ICML 2017)

1. Hyper-parameter tuning: Train & validate with a subset of the
data, and/or early stopping before convergence.

E.g. Bandwidth (`) selection in kernel density estimation.

2. Computational astrophysics: cosmological simulations and
numerical computations with less granularity.

3. Autonomous driving: simulation vs real world experiment.
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Prior work in Multi-fidelity Methods

For specific applications,

I Industrial design (Forrester et al. 2007)

I Hyper-parameter tuning (Agarwal et al. 2011, Klein et al. 2015,

Li et al. 2016)

I Active learning (Zhang & Chaudhuri 2015)

I Robotics (Cutler et al. 2014)

Multi-fidelity optimisation
(Huang et al. 2006, Forrester et al. 2007,

March & Wilcox 2012, Poloczek et al. 2016)
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Outline

1. A finite number of approximations
(Kandasamy et al. NIPS 2016b)

- Formalism, intuition and challenges
- Algorithm
- Theoretical results
- Experiments

2. A continuous spectrum of approximations
(Kandasamy et al. ICML 2017)

- Formalism
- Algorithm
- Theoretical results
- Experiments
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Multi-fidelity Bandit Optimisation in 2 Fidelities (1 Approximation)
(Kandasamy et al. NIPS 2016b)

x⋆

f (2) = f

I Optimise f = f (2). x? = argmaxx f
(2)(x).

I But ..

we have an approximation f (1) to f (2).

I f (1) costs λ(1), f (2) costs λ(2). λ(1) < λ(2).
“cost”: could be computation time, money etc.

I f (1), f (2) ∼ GP(0, κ).

I ‖f (2) − f (1)‖∞ ≤ ζ(1). ζ(1) is known.
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Multi-fidelity Bandit Optimisation in 2 Fidelities (1 Approximation)
(Kandasamy et al. NIPS 2016b)

x⋆

f (1)

f (2)

At time t: Determine the point xt ∈ X and fidelity mt ∈ {1, 2}
for querying.

End Goal: Maximise f (2). Don’t care for maximum of f (1).

Simple Regret: S(Λ) = f (2)(x?) − max
t :mt=2

f (2)(xt)

Capital Λ← amount of the resource spent. E.g. seconds or dollars.

No reward for querying f (1), but use cheap evaluations to guide
search for x? at f (2).
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Challenges

x⋆

f (2) = f

I f (1) is not just a noisy version of f (2).

I Cannot just maximise f (1). x
(1)
? is suboptimal for f (2).

I Need to explore f (2) sufficiently well around the high valued
regions of f (1) – but at a not too large region.

Key Message: We will explore X using f (1) and use f (2)

mostly in a promising region Xα.
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MF-GP-UCB (Kandasamy et al. NIPS 2016b)

Multi-fidelity Gaussian Process Upper Confidence Bound

x⋆

f (1)

f (2)

γ
(1)

mt = 2

I Construct Upper Confidence Bound ϕt for f (2).

Choose point xt = argmaxx∈X ϕt(x).

ϕ
(1)
t (x) = µ

(1)
t−1(x) + β

1/2
t σ

(1)
t−1(x) +ζ(1)

ϕ
(2)
t (x) = µ

(2)
t−1(x) + β

1/2
t σ

(2)
t−1(x)

ϕt(x) = min{ϕ(1)
t (x), ϕ

(2)
t (x) }

I Choose fidelity mt =

{
1 if β

1/2
t σ

(1)
t−1(xt) > γ(1)

2 otherwise.
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Theoretical Results for MF-GP-UCB

GP-UCB, κ is an SE kernel (Srinivas et al. 2010)

w.h.p S(Λ) = f (2)(x?) − max
t :mt=2

f (2)(xt) .

√
vol(X )

Λ

MF-GP-UCB, κ is an SE kernel (Kandasamy et al. NIPS 2016b)

w.h.p ∀α > 0, S(Λ) .

√
vol(Xα)

Λ
+

√
vol(X )

Λ2−α

Xα = {x : f (2)(x?)− f (1)(x) ≤ Cαζ
(1)}
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MF-GP-UCB with multiple approximations

Things work out.
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Experiment: Viola & Jones Face Detection

22 Threshold values for each cascade. (d = 22)
Fidelities with dataset sizes (300, 3000). (M = 2)
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Experiment: Cosmological Maximum Likelihood Inference

I Type Ia Supernovae Data

I Maximum likelihood inference for 3 cosmological parameters:

I Hubble Constant H0

I Dark Energy Fraction ΩΛ

I Dark Matter Fraction ΩM

I Likelihood: Robertson Walker metric (Robertson 1936)

Requires numerical integration for each point in the dataset.
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Experiment: Cosmological Maximum Likelihood Inference

3 cosmological parameters. (d = 3)
Fidelities: integration on grids of size (102, 104, 106). (M = 3)
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MF-GP-UCB Synthetic Experiment: Hartmann-3D

d = 3, M = 3
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Outline

1. A finite number of approximations
(Kandasamy et al. NIPS 2016b)

- Formalism, intuition and challenges
- Algorithm
- Theoretical results
- Experiments

2. A continuous spectrum of approximations
(Kandasamy et al. ICML 2017)

- Formalism
- Algorithm
- Theoretical results
- Experiments
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Why continuous approximations?

- Use an arbitrary amount of data?

- Iterative algorithms: use arbitrary number of iterations?

E.g. Train an ML model with N• data and T• iterations.
- But use N < N• data and T < T• iterations to approximate

cross validation performance at (N•,T•).

Approximations from a continuous 2D “fidelity space” (N,T ).

Scientific studies: Simulations and numerical computations at
varying continuous levels of granularity.
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Multi-fidelity Optimisation with Continuous Approximations
(Kandasamy et al. ICML 2017)

X
Z

A fidelity space Z and domain X
Z ← all (N,T ) values.

X ← all hyper-parameter values.

g : Z × X → R.
g([N,T ], x) ← cv accuracy when

training with N data for T iterations

at hyper-parameter x .

We wish to optimise f (x) = g(z•, x) where z• ∈ Z. z• = [N•,T•].

End Goal: Find x? = argmaxx f (x).

A cost function, λ : Z → R+.
λ(z) = λ(N,T ) = O(N2T ).

Z z•

λ(z)
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Multi-fidelity Simple Regret (Kandasamy et al. ICML 2017)

x⋆
X

g(z, x)

f(x)

z•
Z

Z z•

λ(z)

End Goal: Find x? = argmaxx f (x).

Simple Regret after capital Λ: S(Λ) = f (x?)− max
t: zt=z•

f (xt).

Λ← amount of a resource spent, e.g. computation time or money.

No reward for maximising low fidelities, but use cheap evaluations
at z 6= z• to speed up search for x?.
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BOCA: Bayesian Optimisation with Continuous Approximations
(Kandasamy et al. ICML 2017)

Model g ∼ GP(0, κ) and com-
pute posterior GP:

mean µt−1 : Z × X → R
std-dev σt−1 : Z × X → R+

(1) xt ← maximise upper confidence bound for f (x) = g(z•, x).

xt = argmax
x∈X

µt−1(z•, x) + β
1/2
t σt−1(z•, x)

(2) Zt ≈ {z•} ∪
{
z : σt−1(z , xt) ≥ γ(z)

=

(
λ(z)

λ(z•)

)q

ξ(z)

}
(3) zt = argmin

z∈Zt

λ(z) (cheapest z in Zt)
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Theoretical Results for BOCA

g ∼ GP(0, κ), κ : (Z × X )2 → R.

κ([z , x ], [z ′, x ′]) = κX (x , x ′) · κZ(z , z ′)

x⋆
X

g(z, x)

f(x)

z•
Z

“good”

large hZ

x⋆

g(z, x)

X

f(x)

z•
Z

“bad”

small hZ

E.g.: If κZ is an SE kernel, bandwidth hZ controls smoothness.
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Theoretical Results for BOCA

GP-UCB κX is an SE kernel, (Srinivas et al. 2010)

w.h.p S(Λ) .

√
vol(X )

Λ

BOCA κX , κZ are SE kernels, (Kandasamy et al. ICML 2017)

w.h.p ∀α > 0, S(Λ) .

√
vol(Xα)

Λ
+

√
vol(X )

Λ2−α

Xα =
{
x ; f (x?)− f (x) . Cα

1

hZ

}
If hZ is large (good approximations), vol(Xα)� vol(X ),
and BOCA is much better than GP-UCB.
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Experiment: SVM with 20 News Groups

Tune two hyper-parameters for the SVM.
Dataset has N• = 15K data and use T• = 100 iterations.
But can choose N ∈ [5K , 15K ] or T ∈ [20, 100] (2D fidelity space).

0.89

0.895

0.9

0.905

0.91

0.915

500 1000 1500 2000

More synthetic & real experiments in the paper.
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Open Questions, Challenges & Take-aways

I If you know the relationship between the approximations
(fidelities), you should use it.
Estimating it from data on the fly is not impossible, but
difficult.

I There might be better/different models for the
approximations that might suit your problem.

- E.g. approximations that are good in certain regions but bad
in other regions.
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Summary

Multi-fidelity K -armed bandits (Kandasamy et al. NIPS 2016a)

I An algorithm MF-UCB and an upper bound on the regret.

I An almost matching lower bound.

Key takeaways (Kandasamy et al. NIPS 2016a,

Kandasamy et al. NIPS 2016b, Kandasamy et al. ICML 2017)

I Upper confidence bound strategy

I Choose higher fidelity only after controlling uncertainty at
lower fidelities.

I Explore the entire space using cheap low fidelities and reserve
expensive higher fidelities for promising candidates.

I Theoretically/empirically outperforms strategies which ignore
the approximations.
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Jeff
Schneider

Barnabas
 Poczos

Junier
Oliva

 Gautam
Dasarathy

Thank you.

Code for MF-GP-UCB: github.com/kirthevasank/mf-gp-ucb

Slides: www.cs.cmu.edu/∼kkandasa/talks/fb-mf-slides.pdf

30/30



MF-GP-UCB (Kandasamy et al. NIPS 2016b)
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