
Parallelised Bayesian Optimisation via
Thompson Sampling

Kirthevasan Kandasamy

Carnegie Mellon University

Google Research, Mountain View, CA
Sep 27, 2017

Slides: www.cs.cmu.edu/~kkandasa/talks/google-ts-slides.pdf

Slides are up on my website: www.cs.cmu.edu/∼kkandasa

Slides

Black-box Optimisation

Neural Network
hyper-
parameters

cross validation
accuracy

- Train NN using given hyper-parameters
- Compute accuracy on validation set

1/31

Black-box Optimisation

Expensive Blackbox
 Function

1/31

Black-box Optimisation

Expensive Blackbox
 Function

Other Examples:
- ML estimation in astrophysics
- Pre-clinical drug discovery
- Optimal policy in autonomous driving

1/31

Black-box Optimisation

f : X → R is an expensive, black-box, noisy function, accessible
only via noisy evaluations.

Let x? = argmaxx f (x).

x

f(x)

Simple Regret after n evaluations

SR(n) = f (x?) − max
t=1,...,n

f (xt).

2/31

Black-box Optimisation

f : X → R is an expensive, black-box, noisy function, accessible
only via noisy evaluations.

Let x? = argmaxx f (x).

x

f(x)

Simple Regret after n evaluations

SR(n) = f (x?) − max
t=1,...,n

f (xt).

2/31

Black-box Optimisation

f : X → R is an expensive, black-box, noisy function, accessible
only via noisy evaluations.
Let x? = argmaxx f (x).

x

f(x)

x∗

f(x∗)

Simple Regret after n evaluations

SR(n) = f (x?) − max
t=1,...,n

f (xt).

2/31

Black-box Optimisation

f : X → R is an expensive, black-box, noisy function, accessible
only via noisy evaluations.
Let x? = argmaxx f (x).

x

f(x)

x∗

f(x∗)

Simple Regret after n evaluations

SR(n) = f (x?) − max
t=1,...,n

f (xt).

2/31

Black-box Optimisation

f : X → R is an expensive, black-box, noisy function, accessible
only via noisy evaluations.
Let x? = argmaxx f (x).

x

f(x)

x∗

f(x∗)

Cumulative Regret after n evaluations

CR(n) =
n∑

t=1

(
f (x?) − f (xt)

)
2/31

Black-box Optimisation

f : X → R is an expensive, black-box, noisy function, accessible
only via noisy evaluations.
Let x? = argmaxx f (x).

x

f(x)

x∗

f(x∗)

Simple Regret after n evaluations

SR(n) = f (x?) − max
t=1,...,n

f (xt).

2/31

A walk-through Bayesian Optimisation (BO)

with Gaussian Processes

I A review of Gaussian Processes (GPs)

I Thompson Sampling (TS): an algorithm for BO

I Other methods and models for BO

3/31

Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Functions with no observations

x

f(x)

Completely characterised by mean function µ : X → R, and
covariance kernel κ : X × X → R.
After t observations, f (x) ∼ N (µt(x), σ2t (x)).

4/31

Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Functions with no observations

x

f(x)

Completely characterised by mean function µ : X → R, and
covariance kernel κ : X × X → R.
After t observations, f (x) ∼ N (µt(x), σ2t (x)).

4/31

Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Prior GP

x

f(x)

Completely characterised by mean function µ : X → R, and
covariance kernel κ : X × X → R.
After t observations, f (x) ∼ N (µt(x), σ2t (x)).

4/31

Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Observations

x

f(x)

Completely characterised by mean function µ : X → R, and
covariance kernel κ : X × X → R.
After t observations, f (x) ∼ N (µt(x), σ2t (x)).

4/31

Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Posterior GP given observations

x

f(x)

Completely characterised by mean function µ : X → R, and
covariance kernel κ : X × X → R.
After t observations, f (x) ∼ N (µt(x), σ2t (x)).

4/31

Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Posterior GP given observations

x

f(x)

Completely characterised by mean function µ : X → R, and
covariance kernel κ : X × X → R.
After t observations, f (x) ∼ N (µt(x), σ2t (x)).

4/31

Gaussian Process (Bayesian) Optimisation

Model f ∼ GP(0, κ).

Thompson Sampling (TS) (Thompson, 1933).

x

f(x)

1) Construct posterior GP. 2) Draw sample g from posterior.
3) Choose xt = argmaxx g(x). 4) Evaluate f at xt .

5/31

Gaussian Process (Bayesian) Optimisation

Model f ∼ GP(0, κ).

Thompson Sampling (TS) (Thompson, 1933).

x

f(x)

1) Construct posterior GP.

2) Draw sample g from posterior.
3) Choose xt = argmaxx g(x). 4) Evaluate f at xt .

5/31

Gaussian Process (Bayesian) Optimisation

Model f ∼ GP(0, κ).

Thompson Sampling (TS) (Thompson, 1933).

x

f(x)

1) Construct posterior GP. 2) Draw sample g from posterior.

3) Choose xt = argmaxx g(x). 4) Evaluate f at xt .

5/31

Gaussian Process (Bayesian) Optimisation

Model f ∼ GP(0, κ).

Thompson Sampling (TS) (Thompson, 1933).

x

f(x)

xt

1) Construct posterior GP. 2) Draw sample g from posterior.
3) Choose xt = argmaxx g(x).

4) Evaluate f at xt .

5/31

Gaussian Process (Bayesian) Optimisation

Model f ∼ GP(0, κ).

Thompson Sampling (TS) (Thompson, 1933).

x

f(x)

xt

1) Construct posterior GP. 2) Draw sample g from posterior.
3) Choose xt = argmaxx g(x). 4) Evaluate f at xt .

5/31

Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

6/31

Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 1

6/31

Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 2

6/31

Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 3

6/31

Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 4

6/31

Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 5

6/31

Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 6

6/31

Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 7

6/31

Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 14

6/31

Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 25

6/31

Some Theoretical Results for TS

Simple Regret: SR(n) = f (x?)− max
t=1,...,n

f (xt)

Theorem: For Thompson sampling, (Russo & van Roy 2014,

Srinivas et al. 2010)

E[SR(n)] .

√
Ψn log(n)

n
. . ignores constants

Ψn ← Maximum Information Gain.

When X ⊂ Rd , SE (Gaussian) kernel: Ψn � dd log(n)d .

Matérn kernel: Ψn � n1−
c
d2 .

Several other results: (Agrawal et al 2012, Kaufmann et al 2012, Russo &

van Roy 2016, Chowdhury & Gopalan 2017 and more . . .)

7/31

Some Theoretical Results for TS

Simple Regret: SR(n) = f (x?)− max
t=1,...,n

f (xt)

Theorem: For Thompson sampling, (Russo & van Roy 2014,

Srinivas et al. 2010)

E[SR(n)] .

√
Ψn log(n)

n
. . ignores constants

Ψn ← Maximum Information Gain.

When X ⊂ Rd , SE (Gaussian) kernel: Ψn � dd log(n)d .

Matérn kernel: Ψn � n1−
c
d2 .

Several other results: (Agrawal et al 2012, Kaufmann et al 2012, Russo &

van Roy 2016, Chowdhury & Gopalan 2017 and more . . .)

7/31

Some Theoretical Results for TS

Simple Regret: SR(n) = f (x?)− max
t=1,...,n

f (xt)

Theorem: For Thompson sampling, (Russo & van Roy 2014,

Srinivas et al. 2010)

E[SR(n)] .

√
Ψn log(n)

n
. . ignores constants

Ψn ← Maximum Information Gain.

When X ⊂ Rd , SE (Gaussian) kernel: Ψn � dd log(n)d .

Matérn kernel: Ψn � n1−
c
d2 .

Several other results: (Agrawal et al 2012, Kaufmann et al 2012, Russo &

van Roy 2016, Chowdhury & Gopalan 2017 and more . . .)

7/31

Some Theoretical Results for TS

Simple Regret: SR(n) = f (x?)− max
t=1,...,n

f (xt)

Theorem: For Thompson sampling, (Russo & van Roy 2014,

Srinivas et al. 2010)

E[SR(n)] .

√
Ψn log(n)

n
. . ignores constants

Ψn ← Maximum Information Gain.

When X ⊂ Rd , SE (Gaussian) kernel: Ψn � dd log(n)d .

Matérn kernel: Ψn � n1−
c
d2 .

Several other results: (Agrawal et al 2012, Kaufmann et al 2012, Russo &

van Roy 2016, Chowdhury & Gopalan 2017 and more . . .)

7/31

Other methods for BO

Other criteria for selecting xt :
I Upper Confidence Bounds (Srinivas et al. 2010)

x

f(x)

I Expected improvement (Jones et al. 1998)

I Probability of improvement (Kushner et al. 1964)

I Entropy search (Hernández-Lobato et al. 2014)

All deterministic methods, choose next point for evaluation by
maximising a deterministic acquisition function,

i.e. xt = argmaxx∈X ϕt(x).

Other models for f : Neural networks (Snoek et al. 2015), Random
Forests (Hutter 2009).

8/31

Other methods for BO

Other criteria for selecting xt :
I Upper Confidence Bounds (Srinivas et al. 2010)

x

f(x)

I Expected improvement (Jones et al. 1998)

I Probability of improvement (Kushner et al. 1964)

I Entropy search (Hernández-Lobato et al. 2014)

All deterministic methods, choose next point for evaluation by
maximising a deterministic acquisition function,

i.e. xt = argmaxx∈X ϕt(x).

Other models for f : Neural networks (Snoek et al. 2015), Random
Forests (Hutter 2009).

8/31

Other methods for BO

Other criteria for selecting xt :
I Upper Confidence Bounds (Srinivas et al. 2010)

x

f(x)

I Expected improvement (Jones et al. 1998)

I Probability of improvement (Kushner et al. 1964)

I Entropy search (Hernández-Lobato et al. 2014)

All deterministic methods, choose next point for evaluation by
maximising a deterministic acquisition function,

i.e. xt = argmaxx∈X ϕt(x).

Other models for f : Neural networks (Snoek et al. 2015), Random
Forests (Hutter 2009).

8/31

Other methods for BO

Other criteria for selecting xt :
I Upper Confidence Bounds (Srinivas et al. 2010)

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

I Expected improvement (Jones et al. 1998)

I Probability of improvement (Kushner et al. 1964)

I Entropy search (Hernández-Lobato et al. 2014)

All deterministic methods, choose next point for evaluation by
maximising a deterministic acquisition function,

i.e. xt = argmaxx∈X ϕt(x).

Other models for f : Neural networks (Snoek et al. 2015), Random
Forests (Hutter 2009).

8/31

Other methods for BO

Other criteria for selecting xt :
I Upper Confidence Bounds (Srinivas et al. 2010)

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

xt

I Expected improvement (Jones et al. 1998)

I Probability of improvement (Kushner et al. 1964)

I Entropy search (Hernández-Lobato et al. 2014)

All deterministic methods, choose next point for evaluation by
maximising a deterministic acquisition function,

i.e. xt = argmaxx∈X ϕt(x).

Other models for f : Neural networks (Snoek et al. 2015), Random
Forests (Hutter 2009).

8/31

Other methods for BO

Other criteria for selecting xt :
I Upper Confidence Bounds (Srinivas et al. 2010)

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

xt

I Expected improvement (Jones et al. 1998)

I Probability of improvement (Kushner et al. 1964)

I Entropy search (Hernández-Lobato et al. 2014)

All deterministic methods, choose next point for evaluation by
maximising a deterministic acquisition function,

i.e. xt = argmaxx∈X ϕt(x).

Other models for f : Neural networks (Snoek et al. 2015), Random
Forests (Hutter 2009).

8/31

Other methods for BO

Other criteria for selecting xt :
I Upper Confidence Bounds (Srinivas et al. 2010)

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

xt

I Expected improvement (Jones et al. 1998)

I Probability of improvement (Kushner et al. 1964)

I Entropy search (Hernández-Lobato et al. 2014)

All deterministic methods, choose next point for evaluation by
maximising a deterministic acquisition function,

i.e. xt = argmaxx∈X ϕt(x).

Other models for f : Neural networks (Snoek et al. 2015), Random
Forests (Hutter 2009).

8/31

Other methods for BO

Other criteria for selecting xt :
I Upper Confidence Bounds (Srinivas et al. 2010)

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

xt

I Expected improvement (Jones et al. 1998)

I Probability of improvement (Kushner et al. 1964)

I Entropy search (Hernández-Lobato et al. 2014)

All deterministic methods, choose next point for evaluation by
maximising a deterministic acquisition function,

i.e. xt = argmaxx∈X ϕt(x).

Other models for f : Neural networks (Snoek et al. 2015), Random
Forests (Hutter 2009).

8/31

Big picture: scaling up black-box optimisation

I Optimising in high dimensional spaces
e.g.: Tuning models with several hyper-parameters
Additive models for f lead to statistically and computationally
tractable algorithms. (Kandasamy et al. ICML 2015)

I Multi-fidelity optimisation: what if we have cheap
approximations to f ?
E.g. Train an ML model with N• data and T• iterations.
But use N < N• data and T < T• iterations to approximate
cross validation performance at (N•,T•).

(Kandasamy et al. NIPS 2016a&b, Kandasamy et al. ICML 2017)

Extends beyond GPs.

9/31

Big picture: scaling up black-box optimisation

I Optimising in high dimensional spaces
e.g.: Tuning models with several hyper-parameters
Additive models for f lead to statistically and computationally
tractable algorithms. (Kandasamy et al. ICML 2015)

I Multi-fidelity optimisation: what if we have cheap
approximations to f ?
E.g. Train an ML model with N• data and T• iterations.
But use N < N• data and T < T• iterations to approximate
cross validation performance at (N•,T•).

(Kandasamy et al. NIPS 2016a&b, Kandasamy et al. ICML 2017)

Extends beyond GPs.

9/31

Big picture: scaling up black-box optimisation

I Optimising in high dimensional spaces
e.g.: Tuning models with several hyper-parameters
Additive models for f lead to statistically and computationally
tractable algorithms. (Kandasamy et al. ICML 2015)

I Multi-fidelity optimisation: what if we have cheap
approximations to f ?
E.g. Train an ML model with N• data and T• iterations.
But use N < N• data and T < T• iterations to approximate
cross validation performance at (N•,T•).

(Kandasamy et al. NIPS 2016a&b, Kandasamy et al. ICML 2017)

Extends beyond GPs.

9/31

Big picture: scaling up black-box optimisation

I Optimising in high dimensional spaces
e.g.: Tuning models with several hyper-parameters
Additive models for f lead to statistically and computationally
tractable algorithms. (Kandasamy et al. ICML 2015)

I Multi-fidelity optimisation: what if we have cheap
approximations to f ?
E.g. Train an ML model with N• data and T• iterations.
But use N < N• data and T < T• iterations to approximate
cross validation performance at (N•,T•).

(Kandasamy et al. NIPS 2016a&b, Kandasamy et al. ICML 2017)

Extends beyond GPs.

9/31

This work: Parallel Evaluations (Kandasamy et al. Arxiv 2017)

Parallelisation with M workers: can evaluate f at M different
points at the same time.
E.g. Train M models with different hyper-parameter values in
parallel at the same time.

Inability to parallelise is a real bottleneck in practice!

Some desiderata:

I Statistically, achieve ×M improvement.

I Methodologically, be scalable for a very large number of
workers,

- Method remains computationally tractable as M increases.

- Method is conceptually simple, for robustness in practice.

10/31

This work: Parallel Evaluations (Kandasamy et al. Arxiv 2017)

Parallelisation with M workers: can evaluate f at M different
points at the same time.
E.g. Train M models with different hyper-parameter values in
parallel at the same time.

Inability to parallelise is a real bottleneck in practice!

Some desiderata:

I Statistically, achieve ×M improvement.

I Methodologically, be scalable for a very large number of
workers,

- Method remains computationally tractable as M increases.

- Method is conceptually simple, for robustness in practice.

10/31

Outline (Kandasamy et al. Arxiv 2017)

1. Set up & definitions

2. Prior work & challenges

3. Algorithms synTS, asyTS: direct application of TS to
synchronous and asynchronous parallel settings

4. Experiments

5. Theoretical Results

I synTS and asyTS perform essentially the same as seqTS in
terms of the number of evaluations.

I When we factor time as a resource, asyTS outperforms synTS
and seqTS.

. . . with some caveats.

6. Open questions/challenges

11/31

Outline (Kandasamy et al. Arxiv 2017)

1. Set up & definitions

2. Prior work & challenges

3. Algorithms synTS, asyTS: direct application of TS to
synchronous and asynchronous parallel settings

4. Experiments

5. Theoretical Results

I synTS and asyTS perform essentially the same as seqTS in
terms of the number of evaluations.

I When we factor time as a resource, asyTS outperforms synTS
and seqTS.

. . . with some caveats.

6. Open questions/challenges

11/31

Outline (Kandasamy et al. Arxiv 2017)

1. Set up & definitions

2. Prior work & challenges

3. Algorithms synTS, asyTS: direct application of TS to
synchronous and asynchronous parallel settings

4. Experiments

5. Theoretical Results

I synTS and asyTS perform essentially the same as seqTS in
terms of the number of evaluations.

I When we factor time as a resource, asyTS outperforms synTS
and seqTS.

. . . with some caveats

6. Open questions/challenges

11/31

Parallel Evaluations: set up

Sequential evaluations with one worker

jth job has feedback
from all previous j − 1

jobs.

Parallel evaluations with M workers (Asynchronous)

jth job missing feedback
from exactly M − 1

jobs.

Parallel evaluations with M workers (Synchronous)

jth job missing feedback
from ≤ M − 1 jobs.

12/31

Parallel Evaluations: set up

Sequential evaluations with one worker

jth job has feedback
from all previous j − 1

jobs.

Parallel evaluations with M workers (Asynchronous)

jth job missing feedback
from exactly M − 1

jobs.

Parallel evaluations with M workers (Synchronous)

jth job missing feedback
from ≤ M − 1 jobs.

12/31

Parallel Evaluations: set up

Sequential evaluations with one worker

jth job has feedback
from all previous j − 1

jobs.

Parallel evaluations with M workers (Asynchronous)

jth job missing feedback
from exactly M − 1

jobs.

Parallel evaluations with M workers (Synchronous)

jth job missing feedback
from ≤ M − 1 jobs.

12/31

Parallel Evaluations: set up

Sequential evaluations with one worker jth job has feedback
from all previous j − 1

jobs.

Parallel evaluations with M workers (Asynchronous)

jth job missing feedback
from exactly M − 1

jobs.

Parallel evaluations with M workers (Synchronous)

jth job missing feedback
from ≤ M − 1 jobs.

12/31

Simple Regret in Parallel Settings (Kandasamy et al. Arxiv 2017)

Simple regret after n evaluations,

SR(n) = f (x?) − max
t=1,...,n

f (xt).

n← number of completed evaluations by all M workers.

Simple regret with time as a resource,

Asynchronous Synchronous

SR′(T) = f (x?) − max
t=1,...,N

f (xt).

N ← (possibly random) number of completed evaluations by all M
workers within time T .

13/31

Simple Regret in Parallel Settings (Kandasamy et al. Arxiv 2017)

Simple regret after n evaluations,

SR(n) = f (x?) − max
t=1,...,n

f (xt).

n← number of completed evaluations by all M workers.

Simple regret with time as a resource,

Asynchronous Synchronous

SR′(T) = f (x?) − max
t=1,...,N

f (xt).

N ← (possibly random) number of completed evaluations by all M
workers within time T .

13/31

Outline (Kandasamy et al. Arxiv 2017)

1. Set up & definitions

2. Prior work & challenges

3. Algorithms synTS, asyTS: direct application of TS to
synchronous and asynchronous parallel settings

4. Experiments

5. Theoretical Results

I synTS and asyTS perform essentially the same as seqTS in
terms of the number of evaluations.

I When we factor time as a resource, asyTS outperforms synTS
and seqTS.

. . . with some caveats

6. Open questions/challenges

13/31

Prior work in Parallel BO

Asynchr-
onicity

Theoretical
guarantees

Conceptual
simplicity *

(Ginsbourger et al. 2011)

X

(Janusevkis et al. 2012)

X

(Contal et al. 2013)

X

(Desautels et al. 2014)

X

(Gonzalez et al. 2015)

(Shah & Ghahramani. 2015)

(Wang et al. 2016)

X

(Kathuria et al. 2016)

X

(Wu & Frazier. 2017)

(Wang et al. 2017)

(Kandasamy et al. Arxiv 2017)

X X X

* straightforward extension of sequential algorithm works.

14/31

Prior work in Parallel BO

Asynchr-
onicity

Theoretical
guarantees

Conceptual
simplicity *

(Ginsbourger et al. 2011) X
(Janusevkis et al. 2012) X
(Contal et al. 2013)

X

(Desautels et al. 2014)

X

(Gonzalez et al. 2015)

(Shah & Ghahramani. 2015)

(Wang et al. 2016) X
(Kathuria et al. 2016)

X

(Wu & Frazier. 2017)

(Wang et al. 2017)

(Kandasamy et al. Arxiv 2017) X

X X

* straightforward extension of sequential algorithm works.

14/31

Prior work in Parallel BO

Asynchr-
onicity

Theoretical
guarantees

Conceptual
simplicity *

(Ginsbourger et al. 2011) X
(Janusevkis et al. 2012) X
(Contal et al. 2013) X
(Desautels et al. 2014) X
(Gonzalez et al. 2015)

(Shah & Ghahramani. 2015)

(Wang et al. 2016) X
(Kathuria et al. 2016) X
(Wu & Frazier. 2017)

(Wang et al. 2017)

(Kandasamy et al. Arxiv 2017) X X

X

* straightforward extension of sequential algorithm works.

14/31

Prior work in Parallel BO

Asynchr-
onicity

Theoretical
guarantees

Conceptual
simplicity *

(Ginsbourger et al. 2011) X
(Janusevkis et al. 2012) X
(Contal et al. 2013) X
(Desautels et al. 2014) X
(Gonzalez et al. 2015)

(Shah & Ghahramani. 2015)

(Wang et al. 2016) X
(Kathuria et al. 2016) X
(Wu & Frazier. 2017)

(Wang et al. 2017)

(Kandasamy et al. Arxiv 2017) X X X

* straightforward extension of sequential algorithm works.

14/31

Why are deterministic algorithms not “simple”?
Need to encourage diversity in parallel evaluations

Direct application of GP-UCB in the synchronous setting ...

- First worker: maximise acquisition, xt1 = argmaxϕt(x).

- Second worker: acquisition is the same! xt1 = xt2

- xt1 = xt2 = · · · = xtM .

x

f(x)

Direct application of sequential algorithm does not work.
Need to “encourage diversity”.

15/31

Why are deterministic algorithms not “simple”?
Need to encourage diversity in parallel evaluations

Direct application of GP-UCB in the synchronous setting ...

- First worker: maximise acquisition, xt1 = argmaxϕt(x).

- Second worker: acquisition is the same! xt1 = xt2

- xt1 = xt2 = · · · = xtM .

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

xt1

Direct application of sequential algorithm does not work.
Need to “encourage diversity”.

15/31

Why are deterministic algorithms not “simple”?
Need to encourage diversity in parallel evaluations

Direct application of GP-UCB in the synchronous setting ...

- First worker: maximise acquisition, xt1 = argmaxϕt(x).

- Second worker: acquisition is the same! xt1 = xt2

- xt1 = xt2 = · · · = xtM .

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

xt2 = xt1

Direct application of sequential algorithm does not work.
Need to “encourage diversity”.

15/31

Why are deterministic algorithms not “simple”?
Need to encourage diversity in parallel evaluations

Direct application of GP-UCB in the synchronous setting ...

- First worker: maximise acquisition, xt1 = argmaxϕt(x).

- Second worker: acquisition is the same! xt1 = xt2

- xt1 = xt2 = · · · = xtM .

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

xt2 = xt1

Direct application of sequential algorithm does not work.
Need to “encourage diversity”.

15/31

Why are deterministic algorithms not “simple”?
Need to encourage diversity in parallel evaluations

Direct application of GP-UCB in the synchronous setting ...

- First worker: maximise acquisition, xt1 = argmaxϕt(x).

- Second worker: acquisition is the same! xt1 = xt2

- xt1 = xt2 = · · · = xtM .

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

xt2 = xt1

Direct application of sequential algorithm does not work.
Need to “encourage diversity”.

15/31

Why are deterministic algorithms not “simple”?
Need to encourage diversity in parallel evaluations

I Add hallucinated observations.

x

f(x)

I Optimise an acquisition over XM .
I Resort to heuristics, typically requires additional

hyper-parameters and/or computational routines.

Take-home message: Straightforward application of sequential
algorithm works for TS. Inherent randomness takes care of
exploration vs. exploitation trade-off when managing M workers.

16/31

Why are deterministic algorithms not “simple”?
Need to encourage diversity in parallel evaluations

I Add hallucinated observations.

x

f(x)

f̂

I Optimise an acquisition over XM .
I Resort to heuristics, typically requires additional

hyper-parameters and/or computational routines.

Take-home message: Straightforward application of sequential
algorithm works for TS. Inherent randomness takes care of
exploration vs. exploitation trade-off when managing M workers.

16/31

Why are deterministic algorithms not “simple”?
Need to encourage diversity in parallel evaluations

I Add hallucinated observations.

x

f(x)

f̂

I Optimise an acquisition over XM .
I Resort to heuristics, typically requires additional

hyper-parameters and/or computational routines.

Take-home message: Straightforward application of sequential
algorithm works for TS. Inherent randomness takes care of
exploration vs. exploitation trade-off when managing M workers.

16/31

Why are deterministic algorithms not “simple”?
Need to encourage diversity in parallel evaluations

I Add hallucinated observations.

x

f(x)

I Optimise an acquisition over XM .
I Resort to heuristics, typically requires additional

hyper-parameters and/or computational routines.

Take-home message: Straightforward application of sequential
algorithm works for TS. Inherent randomness takes care of
exploration vs. exploitation trade-off when managing M workers.

16/31

Why are deterministic algorithms not “simple”?
Need to encourage diversity in parallel evaluations

I Add hallucinated observations.

x

f(x)

I Optimise an acquisition over XM .

I Resort to heuristics, typically requires additional
hyper-parameters and/or computational routines.

Take-home message: Straightforward application of sequential
algorithm works for TS. Inherent randomness takes care of
exploration vs. exploitation trade-off when managing M workers.

16/31

Why are deterministic algorithms not “simple”?
Need to encourage diversity in parallel evaluations

I Add hallucinated observations.

x

f(x)

I Optimise an acquisition over XM .
I Resort to heuristics, typically requires additional

hyper-parameters and/or computational routines.

Take-home message: Straightforward application of sequential
algorithm works for TS. Inherent randomness takes care of
exploration vs. exploitation trade-off when managing M workers.

16/31

Why are deterministic algorithms not “simple”?
Need to encourage diversity in parallel evaluations

I Add hallucinated observations.

x

f(x)

I Optimise an acquisition over XM .
I Resort to heuristics, typically requires additional

hyper-parameters and/or computational routines.

Take-home message: Straightforward application of sequential
algorithm works for TS. Inherent randomness takes care of
exploration vs. exploitation trade-off when managing M workers.

16/31

Parallel Thompson Sampling (Kandasamy et al. Arxiv 2017)

Asynchronous: asyTS

At any given time,
1. (x ′, y ′)← Wait for

a worker to finish.
2. Compute posterior GP.
3. Draw a sample g ∼ GP.

4. Re-deploy worker at
argmax g .

Synchronous: synTS

At any given time,
1. {(x ′m, y ′m)}Mm=1 ← Wait for

all workers to finish.
2. Compute posterior GP.
3. Draw M samples

gm ∼ GP, ∀m.
4. Re-deploy worker m at

argmax gm, ∀m.

Variants in prior work: (Osband et al. 2016, Israelsen et al. 2016,

Hernandez-Lobato et al. 2017)

17/31

Parallel Thompson Sampling (Kandasamy et al. Arxiv 2017)

Asynchronous: asyTS

At any given time,
1. (x ′, y ′)← Wait for

a worker to finish.
2. Compute posterior GP.
3. Draw a sample g ∼ GP.

4. Re-deploy worker at
argmax g .

Synchronous: synTS

At any given time,
1. {(x ′m, y ′m)}Mm=1 ← Wait for

all workers to finish.
2. Compute posterior GP.
3. Draw M samples

gm ∼ GP, ∀m.
4. Re-deploy worker m at

argmax gm, ∀m.

Variants in prior work: (Osband et al. 2016, Israelsen et al. 2016,

Hernandez-Lobato et al. 2017)

17/31

Parallel Thompson Sampling (Kandasamy et al. Arxiv 2017)

Asynchronous: asyTS

At any given time,
1. (x ′, y ′)← Wait for

a worker to finish.
2. Compute posterior GP.
3. Draw a sample g ∼ GP.

4. Re-deploy worker at
argmax g .

Synchronous: synTS

At any given time,
1. {(x ′m, y ′m)}Mm=1 ← Wait for

all workers to finish.
2. Compute posterior GP.
3. Draw M samples

gm ∼ GP, ∀m.
4. Re-deploy worker m at

argmax gm, ∀m.

Variants in prior work: (Osband et al. 2016, Israelsen et al. 2016,

Hernandez-Lobato et al. 2017)

17/31

Outline (Kandasamy et al. Arxiv 2017)

1. Set up & definitions

2. Prior work & challenges

3. Algorithms synTS, asyTS: direct application of TS to
synchronous and asynchronous parallel settings

4. Experiments

5. Theoretical Results

I synTS and asyTS perform essentially the same as seqTS in
terms of the number of evaluations.

I When we factor time as a resource, asyTS outperforms synTS
and seqTS.

. . . with some caveats

6. Open questions/challenges

18/31

Experiment: Park1-4D M = 10
Comparison in terms of number of evaluations

10 0

asyTS

seqTS
0 20 40 60 80 100 120

synTS

19/31

Experiment: Branin-2D M = 4
Evaluation time sampled from a uniform distribution

0 10 20 30 40

10 -2

10 -1

20/31

Experiment: Branin-2D M = 4
Evaluation time sampled from a uniform distribution

0 10 20 30 40

10 -2

10 -1

20/31

Experiment: Branin-2D M = 4
Evaluation time sampled from a uniform distribution

synRAND
synHUCB
synUCBPE
synTS
asyRAND
asyUCB
asyHUCB
asyEI
asyHTS
asyTS

0 10 20 30 40

10 -2

10 -1

20/31

Experiment: Hartmann-6D M = 12
Evaluation time sampled from a half-normal distribution

synRAND
synHUCB
synUCBPE
synTS
asyRAND
asyUCB
asyHUCB
asyEI
asyHTS
asyTS

0 5 10 15 20 25 30

10 -1

10 0

21/31

Experiment: Hartmann-18D M = 25
Evaluation time sampled from an exponential distribution

synRAND
synHUCB
synUCBPE
synTS
asyRAND
asyUCB
asyHUCB
asyEI
asyHTS
asyTS

0 5 10 15 20 25 30

2.5

3

3.5

4

4.5

5
5.5

6
6.5

22/31

Experiment: Currin-Exponential-14D M = 35
Evaluation time sampled from a Pareto-3 distribution

synRAND
synHUCB
synUCBPE
synTS
asyRAND
asyUCB
asyHUCB
asyEI
asyHTS
asyTS

0 5 10 15 20
10

15

20

25

23/31

Experiment: Model Selection in Cifar10 M = 4

Tune # filters in in range (32, 256) for each layer in a 6 layer CNN.
Time taken for an evaluation: 4 - 16 minutes.

1000 2000 3000 4000 5000 6000 7000

0.68

0.69

0.7

0.71

0.72

synTS
asyRAND
asyHUCB

asyTS
asyEI

synHUCB

24/31

Outline (Kandasamy et al. Arxiv 2017)

1. Set up & definitions

2. Prior work & challenges

3. Algorithms synTS, asyTS: direct application of TS to
synchronous and asynchronous parallel settings

4. Experiments

5. Theoretical Results

I synTS and asyTS perform essentially the same as seqTS in
terms of the number of evaluations.

I When we factor time as a resource, asyTS outperforms synTS
and seqTS.

. . . with some caveats.

6. Open questions/challenges

24/31

Bounds for SR(n), synTS

seqTS (Russo & van Roy 2014)

E[SR(n)] .

√
Ψn log(n)

n

Ψn ← Maximum information gain.

Theorem: synTS (Kandasamy et al. Arxiv 2017)

E[SR(n)] .
M
√

log(M)

n
+

√
Ψn+M log(n+M)

n

Leading constant is also the same.

25/31

Bounds for SR(n), synTS

seqTS (Russo & van Roy 2014)

E[SR(n)] .

√
Ψn log(n)

n

Ψn ← Maximum information gain.

Theorem: synTS (Kandasamy et al. Arxiv 2017)

E[SR(n)] .
M
√

log(M)

n
+

√
Ψn+M log(n+M)

n

Leading constant is also the same.

25/31

Bounds for SR(n), asyTS
seqTS (Russo & van Roy 2014)

E[SR(n)] .

√
Ψn log(n)

n

Theorem: asyTS (Kandasamy et al. Arxiv 2017)

E[SR(n)] .

√
ξMΨn log(n)

n

ξM = supDn,n≥1 maxA⊂X ,|A|≤M e I (f ;A|Dn).

Theorem: There exists an asynchronously parallelisable initiali-
sation scheme requiring O(Mpolylog(M)) evaluations to f such
that ξM ≤ C . (Krause et al. 2008, Desautels et al. 2012)

* We do not believe this is necessary.

26/31

Bounds for SR(n), asyTS
seqTS (Russo & van Roy 2014)

E[SR(n)] .

√
Ψn log(n)

n

Theorem: asyTS (Kandasamy et al. Arxiv 2017)

E[SR(n)] .

√
ξMΨn log(n)

n

ξM = supDn,n≥1 maxA⊂X ,|A|≤M e I (f ;A|Dn).

Theorem: There exists an asynchronously parallelisable initiali-
sation scheme requiring O(Mpolylog(M)) evaluations to f such
that ξM ≤ C . (Krause et al. 2008, Desautels et al. 2012)

* We do not believe this is necessary.

26/31

Bounds for SR(n), asyTS
seqTS (Russo & van Roy 2014)

E[SR(n)] .

√
Ψn log(n)

n

Theorem: asyTS (Kandasamy et al. Arxiv 2017)

E[SR(n)] .

√
ξMΨn log(n)

n

ξM = supDn,n≥1 maxA⊂X ,|A|≤M e I (f ;A|Dn).

Theorem: There exists an asynchronously parallelisable initiali-
sation scheme requiring O(Mpolylog(M)) evaluations to f such
that ξM ≤ C . (Krause et al. 2008, Desautels et al. 2012)

* We do not believe this is necessary.

26/31

Bounds for SR(n), asyTS
seqTS (Russo & van Roy 2014)

E[SR(n)] .

√
Ψn log(n)

n

Theorem: asyTS, arbitrary X (Kandasamy et al. Arxiv 2017)

E[SR(n)] .
Mpolylog(M)

n
+

√
CΨn log(n)

n

ξM = supDn,n≥1 maxA⊂X ,|A|≤M e I (f ;A|Dn).

Theorem: There exists an asynchronously parallelisable initiali-
sation scheme requiring O(Mpolylog(M)) evaluations to f such
that ξM ≤ C . (Krause et al. 2008, Desautels et al. 2012)

* We do not believe this is necessary.

26/31

Bounds for SR(n), asyTS
seqTS (Russo & van Roy 2014)

E[SR(n)] .

√
Ψn log(n)

n

Theorem: asyTS, arbitrary X (Kandasamy et al. Arxiv 2017)

E[SR(n)] .
Mpolylog(M)

n
+

√
CΨn log(n)

n

ξM = supDn,n≥1 maxA⊂X ,|A|≤M e I (f ;A|Dn).

Theorem: There exists an asynchronously parallelisable initiali-
sation scheme requiring O(Mpolylog(M)) evaluations to f such
that ξM ≤ C . (Krause et al. 2008, Desautels et al. 2012)

* We do not believe this is necessary.

26/31

Bounds for asyTS without the initialisation scheme

Theorem: synTS, arbitrary X (Kandasamy et al. Arxiv 2017)

E[SR(n)] .
M
√

log(M)

n
+

√
Ψn+M log(n + M)

n

Theorem: asyTS, X ⊂ Rd (Ongoing work)

E[SR(n)] +

√
M log(n)

n1/O(d)

27/31

Bounds for asyTS without the initialisation scheme

Theorem: synTS, arbitrary X (Kandasamy et al. Arxiv 2017)

E[SR(n)] .
M
√

log(M)

n
+

√
Ψn+M log(n + M)

n

Theorem: asyTS, X ⊂ Rd (Ongoing work)

E[SR(n)] +

√
M log(n)

n1/O(d)

27/31

Theoretical Results for SR′(T)

Model evaluation time as an independent random variable

I Uniform unif(a, b) bounded

I Half-normal HN (τ2) sub-Gaussian

I Exponential exp(λ) sub-exponential

Theorem (Informal):
If evaluation times are the same, synTS≈ asyTS.

Otherwise, bounds for asyTS are better than synTS. More the
variability in evaluation times, the bigger the difference.

- Uniform: constant factor

- Half-normal:
√

log(M) factor

- Exponential: log(M) factor

28/31

Theoretical Results for SR′(T)

Model evaluation time as an independent random variable

I Uniform unif(a, b) bounded

I Half-normal HN (τ2) sub-Gaussian

I Exponential exp(λ) sub-exponential

Theorem (Informal):
If evaluation times are the same, synTS≈ asyTS.

Otherwise, bounds for asyTS are better than synTS. More the
variability in evaluation times, the bigger the difference.

- Uniform: constant factor

- Half-normal:
√

log(M) factor

- Exponential: log(M) factor

28/31

Theoretical Results for SR′(T)

Model evaluation time as an independent random variable

I Uniform unif(a, b) bounded

I Half-normal HN (τ2) sub-Gaussian

I Exponential exp(λ) sub-exponential

Theorem (Informal):
If evaluation times are the same, synTS≈ asyTS.

Otherwise, bounds for asyTS are better than synTS. More the
variability in evaluation times, the bigger the difference.

- Uniform: constant factor

- Half-normal:
√

log(M) factor

- Exponential: log(M) factor

28/31

Outline (Kandasamy et al. Arxiv 2017)

1. Set up & definitions

2. Prior work & challenges

3. Algorithms synTS, asyTS: direct application of TS to
synchronous and asynchronous parallel settings

4. Experiments

5. Theoretical Results

I synTS and asyTS perform essentially the same as seqTS in
terms of the number of evaluations.

I When we factor time as a resource, asyTS outperforms synTS
and seqTS.

. . . with some caveats

6. Open questions/challenges

28/31

Open Challenges for Parallelised TS

1. Bounds for asynchronous TS without initialisation.

2. Other models for evaluation times.
- e.g. evaluation time depends on x ∈ X .

3. In the asynchronous setting,
I Should you wait for another job to finish without immediately

re-deploying?
I Do you kill an on-going job depending on the result of a

completed job?

29/31

Open Challenges for Parallelised TS

1. Bounds for asynchronous TS without initialisation.

2. Other models for evaluation times.
- e.g. evaluation time depends on x ∈ X .

3. In the asynchronous setting,
I Should you wait for another job to finish without immediately

re-deploying?
I Do you kill an on-going job depending on the result of a

completed job?

29/31

Open Challenges for Parallelised TS

4. Optimising the sample when X = [0, 1]d ,

x

f(x)

xt

xt = argmax
x∈X

g(x), where g ∼ Posterior GP

I Global optimisation of a non-convex function!
.. a common challenge in most BO methods.

But additionally for TS,

I As g is not deterministic, draw samples from a fixed set of
points and pick the maximum.

I Or if using an adaptive method, scales O((N + S)3) where
N ← # of evaluations to f , S ← # of evaluations to g .

30/31

Open Challenges for Parallelised TS

4. Optimising the sample when X = [0, 1]d ,

x

f(x)

xt

xt = argmax
x∈X

g(x), where g ∼ Posterior GP

I Global optimisation of a non-convex function!
.. a common challenge in most BO methods.

But additionally for TS,

I As g is not deterministic, draw samples from a fixed set of
points and pick the maximum.

I Or if using an adaptive method, scales O((N + S)3) where
N ← # of evaluations to f , S ← # of evaluations to g .

30/31

Summary

I synTS, asyTS: direct application of TS to synchronous and
asynchronous parallel settings.

I Take-aways: Theory

- Both perform essentially the same as seqTS in terms of the
number of evaluations.

- When we factor time as a resource, asyTS performs best.

I Take-aways: Practice

- Conceptually simple and scales better with the number of
workers than other methods.

31/31

Summary

I synTS, asyTS: direct application of TS to synchronous and
asynchronous parallel settings.

I Take-aways: Theory

- Both perform essentially the same as seqTS in terms of the
number of evaluations.

- When we factor time as a resource, asyTS performs best.

I Take-aways: Practice

- Conceptually simple and scales better with the number of
workers than other methods.

31/31

Summary

I synTS, asyTS: direct application of TS to synchronous and
asynchronous parallel settings.

I Take-aways: Theory

- Both perform essentially the same as seqTS in terms of the
number of evaluations.

- When we factor time as a resource, asyTS performs best.

I Take-aways: Practice

- Conceptually simple and scales better with the number of
workers than other methods.

31/31

Akshay Jeff Barnabás
Krishnamurthy Schneider Póczos

Code: github.com/kirthevasank/gp-parallel-ts

Slides: www.cs.cmu.edu/~kkandasa/talks/google-ts-slides.pdf

Thank you.

