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Black-box Optimisation
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Black-box Optimisation
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Black-box Optimisation

L —»

Expensive Blackbox
Function

Other Examples:

- ML estimation in astrophysics

- Pre-clinical drug discovery

- Optimal policy in autonomous driving
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Black-box Optimisation

f: X — R is an expensive, black-box, noisy function, accessible
only via noisy evaluations.

f(z)
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Black-box Optimisation

f: X — R is an expensive, black-box, noisy function, accessible
only via noisy evaluations.
Let x, = argmax, f(x).

f(z)

Cumulative Regret after n evaluations

n

CR(n) = Z (f(X*) — f(Xt))

t=1
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A walk-through Bayesian Optimisation (BO)
with Gaussian Processes

» A review of Gaussian Processes (GPs)
» Thompson Sampling (TS): an algorithm for BO

» Other methods and models for BO
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Gaussian Processes (GP)

GP(u, r): A distribution over functions from X’ to R.
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Gaussian Processes (GP)

Functions with no observations

f(x)

GP(u, r): A distribution over functions from X’ to R
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Gaussian Processes (GP)

GP(u, r): A distribution over functions from X’ to R.

Posterior GP given observations

f(x)

Completely characterised by mean function p: X — R, and
covariance kernel K : X x X — R.
After t observations,  f(x) ~ N(u(x), o2(x)).
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Gaussian Process (Bayesian) Optimisation
Model f ~ GP(0, k).

Thompson Sampling (TS) (Thompson, 1933).

f(x)
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Gaussian Process (Bayesian) Optimisation
Model f ~ GP(0, k).

Thompson Sampling (TS) (Thompson, 1933).

f(x)

xT

1) Construct posterior GP.  2) Draw sample g from posterior.
3) Choose x; = argmax, g(x). 4) Evaluate f at x;.
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Thompson Sampling (TS) in GPs (Thompson, 1933)

f(x)
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Thompson Sampling (TS) in GPs (Thompson, 1933)
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Some Theoretical Results for TS

Simple Regret: SR(n) = f(x.) — ,Mmax f(xe)

=1,...,
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Some Theoretical Results for TS
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Theorem: For Thompson sampling, (Russo & van Roy 2014,

Srinivas et al. 2010)

[V,
E[SR(n)] < %(n) . < ignores constants

YV, < Maximum Information Gain.
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Some Theoretical Results for TS

Simple Regret: SR(n) = f(x.) — max f(x)

t=1,...,n

Theorem: For Thompson sampling, (Russo & van Roy 2014,
Srinivas et al. 2010)

[V,
E[SR(n)] < %(n) . < ignores constants

YV, < Maximum Information Gain.
When X C R?, SE (Gaussian) kernel: W, =< d9log(n)?.

. 1-<
Matérn kernel: W, < n° 2.

Several other results: (Agrawal et al 2012, Kaufmann et al 2012, Russo &
van Roy 2016, Chowdhury & Gopalan 2017 and more ...)
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Other methods for BO

Other criteria for selecting x;:
» Upper Confidence Bounds (Srinivas et al. 2010)
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Other methods for BO

Other criteria for selecting x;:
» Upper Confidence Bounds (Srinivas et al. 2010)

PN
|

f(x) wr = pe—1 + ﬂ/“”t—l /,'//v

!
T

» Expected improvement (Jones et al. 1998)
» Probability of improvement (Kushner et al. 1964)
» Entropy search (Herndndez-Lobato et al. 2014)
All deterministic methods, choose next point for evaluation by
maximising a deterministic acquisition function,
i.e. Xy = argmax,cy ©t(x).

8/31



Other methods for BO

Other criteria for selecting x;:
» Upper Confidence Bounds (Srinivas et al. 2010)

PN
|

f(x) wr = pe—1 + ﬂ/“”t—l /,'//v

!
T

» Expected improvement (Jones et al. 1998)
» Probability of improvement (Kushner et al. 1964)
» Entropy search (Herndndez-Lobato et al. 2014)

All deterministic methods, choose next point for evaluation by
maximising a deterministic acquisition function,

i.e. Xy = argmax,cy ©t(x).

Other models for f: Neural networks (Snoek et al. 2015), Random
Forests (Hutter 2009).
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Big picture: scaling up black-box optimisation
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» Optimising in high dimensional spaces
e.g.: Tuning models with several hyper-parameters
Additive models for f lead to statistically and computationally
tractable algorithms. (Kandasamy et al. ICML 2015)
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Big picture: scaling up black-box optimisation

» Optimising in high dimensional spaces
e.g.. Tuning models with several hyper-parameters
Additive models for f lead to statistically and computationally
tractable algorithms. (Kandasamy et al. ICML 2015)

> Multi-fidelity optimisation: what if we have cheap
approximations to 7
E.g. Train an ML model with N, data and T, iterations.
But use N < N, data and T < T, iterations to approximate
cross validation performance at (N, To).
(Kandasamy et al. NIPS 2016a&b, Kandasamy et al. ICML 2017)

Extends beyond GPs.
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This work: Parallel Evaluations (Kandasamy et al. Arxiv 2017)

Parallelisation with M workers: can evaluate f at M different
points at the same time.
E.g. Train M models with different hyper-parameter values in
parallel at the same time.

Inability to parallelise is a real bottleneck in practice!
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This work: Parallel Evaluations (Kandasamy et al. Arxiv 2017)

Parallelisation with M workers: can evaluate f at M different
points at the same time.
E.g. Train M models with different hyper-parameter values in
parallel at the same time.

Inability to parallelise is a real bottleneck in practice!

Some desiderata:

» Statistically, achieve x M improvement.

» Methodologically, be scalable for a very large number of
workers,

- Method remains computationally tractable as M increases.

- Method is conceptually simple, for robustness in practice.
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Outline (Kandasamy et al. Arxiv 2017)

1. Set up & definitions
2. Prior work & challenges

3. Algorithms synTS, asyTS: direct application of TS to
synchronous and asynchronous parallel settings

4. Experiments

5. Theoretical Results

6. Open questions/challenges
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Parallel Evaluations: set up
Sequential evaluations with one worker

T,l 22 3 14 .
T 1 T

Time —
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Time —

Parallel evaluations with M workers (Asynchronous)
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Parallel Evaluations: set up

Sequential evaluations with one worker

T)l .2 13 l4 ey
L] L] L]

Time —

Parallel evaluations with M workers (Asynchronous)

Time —

Parallel evaluations with M workers (Synchronous)
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Parallel Evaluations: set up

Sequential evaluations with one worker ™ job has feedback

,ivl =2 =3 :4 . from all previous j — 1
Time — jobs.

Parallel evaluations with M workers (Asynchronous)

Jj** job missing feedback
[

/Iv . =6 =8 =10 - from exactly M — 1
el o .7 1 jobs.

Time —

Parallel evaluations with M workers (Synchronous)

,ivl . 4 7
L} 1 ] ===

,iv 2 =‘5 r— 3 " . J* job missing feedback
) :6 ;9 from < M — 1 jobs.
s 1 _— -

Time —
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Slmple Regret in Parallel Settings (Kandasamy et al. Arxiv 2017)

Simple regret after n evaluations,

SR(n) = f(x.) — thaxnf(xt).

ey

n < number of completed evaluations by all M workers.
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Slmple Regret in Parallel Settings (Kandasamy et al. Arxiv 2017)

Simple regret after n evaluations,

SR(n) = f(x.) — thaxnf(xt).

e

n < number of completed evaluations by all M workers.

Simple regret with time as a resource,

Asynchronous Synchronous
T\l H 2 H2 /il—| 4 M

2 K 8 J0 2 =) " s .

T\ 3 =-5 =7 =11 T‘ 3 } 16 ' 9 P

]
Time — Time —

SR(T) = f(x) — max f(xt).

t=1,..,N

N < (possibly random) number of completed evaluations by all M
workers within time T.
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Outline (Kandasamy et al. Arxiv 2017)

N

. Prior work & challenges

w

. Algorithms synTS, asyTS: direct application of TS to
synchronous and asynchronous parallel settings
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Prior work in Parallel BO

(Ginsbourger et al. 2011)
(Janusevkis et al. 2012)
(Contal et al. 2013)
(Desautels et al. 2014)
(Gonzalez et al. 2015)
(Shah & Ghahramani. 2015)
(Wang et al. 2016)
(Kathuria et al. 2016)

(Wu & Frazier. 2017)
(Wang et al. 2017)
(Kandasamy et al. Arxiv 2017)
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Prior work in Parallel BO

Asynchr-
onicity
Ginsbourger et al. 2011) v
Janusevkis et al. 2012) v

(

(

(Contal et al. 2013)
(Desautels et al. 2014)
(Gonzalez et al. 2015)
(Shah & Ghahramani. 2015)
(Wang et al. 2016) v
(Kathuria et al. 2016)
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(Wang et al. 2017)
(Kandasamy et al. Arxiv 2017) v
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Prior work in Parallel BO

Asynchr- | Theoretical | Conceptual
onicity | guarantees | simplicity *
(Ginsbourger et al. 2011) v
(Janusevkis et al. 2012) v
(Contal et al. 2013) v
(Desautels et al. 2014) v
(Gonzalez et al. 2015)
(Shah & Ghahramani. 2015)
(Wang et al. 2016) v
(Kathuria et al. 2016) v
(Wu & Frazier. 2017)
(Wang et al. 2017)
(Kandasamy et al. Arxiv 2017) v v v

* straightforward extension of sequential algorithm works.
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Why are deterministic algorithms not “simple”?
Need to encourage diversity in parallel evaluations

Direct application of GP-UCB in the synchronous setting ...
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Why are deterministic algorithms not “simple”?
Need to encourage diversity in parallel evaluations

Direct application of GP-UCB in the synchronous setting ...
- First worker: maximise acquisition, x;1 = argmax @ (x).
- Second worker: acquisition is the same! x;1 = x4

- Xel = X2 = 00 = XeM-

1)

Direct application of sequential algorithm does not work.
Need to “encourage diversity"”.

15/31



Why are deterministic algorithms not “simple”?
Need to encourage diversity in parallel evaluations

» Add hallucinated observations.

f(@)

Ps

/
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» Resort to heuristics, typically requires additional
hyper-parameters and/or computational routines.
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Why are deterministic algorithms not “simple”?
Need to encourage diversity in parallel evaluations

» Add hallucinated observations.

f(=)

X X
/ x/
» Optimise an acquisition over XM,

» Resort to heuristics, typically requires additional
hyper-parameters and/or computational routines.

Take-home message: Straightforward application of sequential
algorithm works for TS. Inherent randomness takes care of

exploration vs. exploitation trade-off when managing M workers.

16/31



Parallel Thompson Sampllng (Kandasamy et al. Arxiv 2017)

Asynchronous: asyTS

At any given time,
1. (X, y") «+ Wait for
a worker to finish.
2. Compute posterior GP.
3. Draw a sample g ~ GP.

4. Re-deploy worker at
argmax g.

W14 19 12
I

,iv 2 ,6 8 ,10
T T T

J11

w
-

[
_—

-

Time —
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Parallel Thompson Sampling

Asynchronous: asyTS

(Kandasamy et al. Arxiv 2017)

Synchronous: synTS

At any given time,

1.

(x',y") < Wait for

a worker to finish.
Compute posterior GP.
Draw a sample g ~ GP.

At any given time,
LA, yi) M < Wait for

all workers to finish.

Compute posterior GP.

Draw M samples

gm ~ GP,Vm.

w

4. Re-deploy worker at 4. Re-deploy worker m at
argmax g. argmax gm, Vm.
NI 29 g2 T\l N— Fl
:}\v 2 6 3 0 ,i 2 I:S . s .
Y i L i o 0 -

Time —

Time —
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Parallel Thompson Sampling

Asynchronous: asyTS

(Kandasamy et al. Arxiv 2017)

Synchronous: synTS

At any given time,
1. (x',y") < Wait for
a worker to finish.
2. Compute posterior GP.
3. Draw a sample g ~ GP.

4. Re-deploy worker at
argmax g.

At any given time,

LA, yi) M < Wait for
all workers to finish.

2. Compute posterior GP.

3. Draw M samples
gn ~ GP, Vm.

4. Re-deploy worker m at
argmax gn,, vVm.

1» 2 ,6 .8 ,10
T T T

1v 3 /5 L7 L1
} } t

Time —

Variants in prior work:

T.l ’ 14 W7
' ' |
,iv 2 5 . 8
i i ; i
1‘3 ' 6 19 PR
| T L}

Time —

(Osband et al. 2016, Israelsen et al. 2016,

Hernandez-Lobato et al. 2017)
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. Set up & definitions
Prior work & challenges

Algorithms synTS, asyTS: direct application of TS to
synchronous and asynchronous parallel settings

Experiments

5. Theoretical Results

» synTS and asyTS perform essentially the same as seqTS in
terms of the number of evaluations.

» When we factor time as a resource, asyTS outperforms synTS
and seqTS.
with some caveats

Open questions/challenges

(Kandasamy et al. Arxiv 2017)
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Experiment: Parkl-4D M

=10
Comparison in terms of number of evaluations
/_\ T T T T T
I
1~
N
10°F
yTS
nTS
0 20 40 60 80 100 120

Number of evaluations (n)
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Experiment: Branin-2D

Evaluation time sampled from a uniform distribution

M =4

‘ ! T T
\
‘i--{‘l --F-- R
LA S St s B SRS
=~ I\\I\ f*-{- “ 1. synUCBPE
= \‘L Sy -'I"-I'\_
&= R
N L
102} N ;___I§}£n{|‘_|UCB
\}"I-- _
s{ynTS
0 10 20 30 40

Simulated time units (7")
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Experiment: Branin-2D M =4

Evaluation time sampled from a uniform distribution

SR/(T)

10 20 30
Simulated time units (7")
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Experiment: Branin-2D

M =4

Evaluation time sampled from a uniform distribution

107 F

SR/(T)

1072 F

2| ===-synTS
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- - -synHUCB
- - -synUCBPE
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——asyEl
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Experiment: Hartmann-6D M =12

Evaluation time sampled from a half-normal distribution

- = =-synRAND
|| == -synHUCB
- - -synUCBPE
-=-=-synTS
——asyRAND
——asyUCB
——asyHUCB
——asyEl
asyHTS
——asyTS

SR/(T)

0 5 10 15 20 25 30
Simulated time units (77)
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Experiment: Hartmann-18D M =25

Evaluation time sampled from an exponential distribution

- = =-synRAND
|- - -synHUCB
- - -synUCBPE
-=-=-synTS
——asyRAND
——asyUCB
——asyHUCB
——asyEl
asyHTS
——asyTS

0 5 10 15 20 25 30
Simulated time units (77)
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Experiment: Currin-Exponential-14D M = 35

Evaluation time sampled from a Pareto-3 distribution

1= - -synRAND
- - -synHUCB
- - -synUCBPE
-=-=-synTS
——asyRAND
——asyUCB
asyHUCB
——asyEl
asyHTS
——asyTS

25 |

~—~~ 20

SR(T

15 |

10 k . . . ;
0 5 10 15 20
Simulated time units (77)
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Experiment: Model Selection in Cifarl0

Tune # filters in in range (32,256) for each layer in a 6 layer CNN.

Time taken for an evaluation: 4 - 16 minutes.

0.72

0.71

e
N

0.69

Validation accuracy

0.68

M =4

—

]
1

1000

2000

4000 5000
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Outline (Kandasamy et al. Arxiv 2017)

5. Theoretical Results
» synTS and asyTS perform essentially the same as seqTS in
terms of the number of evaluations.

» When we factor time as a resource, asy TS outperforms synTS
and seqTS.
with some caveats.
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Bounds for SR(n), synTS

V, < Maximum information gain.
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Bounds for SR(n), synTS

V, < Maximum information gain.

Leading constant is also the same.
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Bounds for SR(n), asyTS
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Bounds for SR(n), asyTS

seqTS (Russo & van Roy 2014)
v,
E[SR(n)] < 1/ —ro8")
Theorem: asyTS, arbitrary X’ (Kandasamy et al. Arxiv 2017)
Mpolylog(M n
E[SR(n)] < MO ynog( A Log(")

. I(f;A|D,
§M = SUpp, ,>1 MaXacx |A|<M € ( ).

Theorem: There exists an asynchronously parallelisable initiali-
sation scheme requiring O(Mpolylog(M)) evaluations to f such
that &y < C. (Krause et al. 2008, Desautels et al. 2012)
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Bounds for SR(n), asyTS

seqTS (Russo & van Roy 2014)
v,
E[SR(n)] < 1/ —ro8")
Theorem: asyTS, arbitrary X’ (Kandasamy et al. Arxiv 2017)
Mpolylog(M n
E[SR(n)] < MO ynog( A Log(")

Theorem: There exists an asynchronously parallelisable initiali-
sation scheme requiring O(Mpolylog(M)) evaluations to f such
that &y < C. (Krause et al. 2008, Desautels et al. 2012)

* We do not believe this is necessary.
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Bounds for asyTS without the initialisation scheme
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Bounds for asyTS without the initialisation scheme

Theorem: synTS, arbitrary X (Kandasamy et al. Arxiv 2017)
M/log(M
]E[SR(n)] 5 \/ Og( ) + \/wn+M |0g(n + M)
n n
Theorem: asyTS, X C R (Ongoing work)

E[SR(n)] < ... + Y Mlceln)

nl/0(d)
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Theoretical Results for SR'(T)

Model evaluation time as an independent random variable

» Uniform unif(a, b) bounded
» Half-normal HN(7?) sub-Gaussian
» Exponential exp()) sub-exponential

Theorem (Informal):
If evaluation times are the same, synTS= asyTS.

Otherwise, bounds for asyTS are better than synTS. More the

variability in evaluation times, the bigger the difference.

- Uniform: constant factor

- Half-normal: /log(M) factor

- Exponential: log(M) factor
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Outline (Kandasamy et al. Arxiv 2017)

6. Open questions/challenges

28/31



Open Challenges for Parallelised TS

1. Bounds for asynchronous TS without initialisation.

2. Other models for evaluation times.
- e.g. evaluation time depends on x € X.

29/31



Open Challenges for Parallelised TS

1. Bounds for asynchronous TS without initialisation.

2. Other models for evaluation times.
- e.g. evaluation time depends on x € X.

3. In the asynchronous setting,
» Should you wait for another job to finish without immediately
re-deploying?
» Do you kill an on-going job depending on the result of a
completed job?
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Open Challenges for Parallelised TS

4. Optimising the sample when X' = [0, 1]¢,

f(x)

T

x¢ = argmax g(x), where g ~ Posterior GP
xeX

» Global optimisation of a non-convex function!
. a common challenge in most BO methods.
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4. Optimising the sample when X' = [0, 1]¢,

f(x)

Tt

x¢ = argmax g(x), where g ~ Posterior GP
xeX

» Global optimisation of a non-convex function!
. a common challenge in most BO methods.

But additionally for TS,

» As g is not deterministic, draw samples from a fixed set of
points and pick the maximum.
» Or if using an adaptive method, scales O((N + S)3) where
N < # of evaluations to f, S < # of evaluations to g.
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Summary

» synTS, asyTS: direct application of TS to synchronous and
asynchronous parallel settings.
» Take-aways: Theory

- Both perform essentially the same as seqTS in terms of the
number of evaluations.

- When we factor time as a resource, asyTS performs best.

» Take-aways: Practice

- Conceptually simple and scales better with the number of
workers than other methods.
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Akshay Jeff Barnabds
Krishnamurthy Schneider Péczos

Code: github.com/kirthevasank/gp-parallel-ts
Slides: www.cs.cmu.edu/ kkandasa/talks/google-ts-slides.pdf

Thank you.



