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Design of Experiments

    (Expensive)
Blackbox System

I Choose an experiment x ∈ X .

I Obtain the result (observation) Yx ∼ P(y |x , θ?).
θ? (unknown) completely specifies the system.

I Repeat in an adaptive sequence to collect data
Dt = {(xt ,Yxt )}nt=1.

I Typically some “goal/objective” in mind.
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Black-box Optimisation: Model Selection

hyper-
parameter
values

cross validation
accuracy

Neural Network

- Train NN using given hyper-params
- Compute accuracy on validation set

Goal: Find hyper-parameters with highest CV accuracy.

2/54



Black-box Optimisation: Architecture Search

cross validation
accuracy

Neural Network

- Train NN using given NN architecture
- Compute accuracy on validation setSpace of NN

Architectures

#0 ip, 64, (28891)

#1 crelu, 144, (144)

#2 softplus, 576, (82944)

#6 logistic, 256, (69632)

#9 linear, 256, (14445)

#3 leaky-relu, 72, (41472)

#4 logistic, 128, (73728)#5 elu, 64, (4608)

#7 logistic, 256, (16384)

#8 linear, 256, (14445)

#10 op, 512, (28891)

#0 ip, 64, (542390)

#1 elu, 128, (128)

#2 elu, 256, (32768)

#3 logistic, 512, (131072)

#27 logistic, 512, (393216)

#29 linear, 512, (542390)

#4 crelu, 512, (262144)

#5 logistic, 512, (262144)

#6 logistic, 512, (262144)#7 crelu, 512, (262144)

#8 elu, 512, (262144)#9 crelu, 512, (262144)

#10 tanh, 512, (262144)#11 elu, 512, (262144)

#23 tanh, 324, (259200)

#12 softplus, 64, (32768)#13 tanh, 512, (262144)

#16 logistic, 72, (9216)

#14 softplus, 512, (262144)

#15 softplus, 64, (32768)

#17 relu, 128, (8192) #18 logistic, 128, (9216)

#19 tanh, 576, (73728) #20 relu, 128, (16384)

#21 leaky-relu, 576, (331776) #22 relu, 288, (36864)

#26 leaky-relu, 512, (589824)

#24 tanh, 648, (209952)

#25 leaky-relu, 576, (373248)

#28 logistic, 512, (262144)

#30 op, 512, (542390)

#0 ip, 64, (423488)

#1 elu, 128, (128)

#2 elu, 256, (32768)

#3 linear, 512, (211744)

#25 tanh, 576, (700416)

#4 logistic, 512, (131072)

#21 tanh, 512, (262144)

#27 op, 512, (423488)

#5 logistic, 512, (262144)#6 logistic, 512, (262144)

#7 leaky-relu, 512, (262144)#8 leaky-relu, 512, (262144)

#9 leaky-relu, 576, (294912)

#10 tanh, 64, (32768)

#11 leaky-relu, 512, (262144)

#12 tanh, 512, (294912)

#20 crelu, 256, (81920)

#13 tanh, 512, (262144)

#14 tanh, 64, (32768)#15 relu, 64, (32768)

#16 relu, 64, (4096)

#17 relu, 128, (16384)

#18 logistic, 256, (32768)#19 logistic, 256, (32768)

#22 crelu, 512, (131072)

#23 elu, 504, (258048)

#24 tanh, 576, (290304)

#26 linear, 512, (211744)

#0 ip, 64, (206092)

#1 relu, 112, (112)#2 relu, 112, (112)#3 relu, 112, (112)

#4 relu, 224, (25088)

#20 logistic, 512, (417792)

#5 logistic, 448, (50176)

#8 linear, 512, (103046)

#6 logistic, 392, (87808)

#7 logistic, 441, (98784)#9 logistic, 496, (416640)

#10 leaky-relu, 62, (27342)

#22 op, 512, (206092)

#11 leaky-relu, 496, (246016)

#12 logistic, 512, (253952)

#19 logistic, 256, (192512)

#13 tanh, 128, (7936)

#14 leaky-relu, 64, (31744)

#18 softplus, 256, (159744)

#21 linear, 512, (103046)

#17 softplus, 128, (32768)

#15 tanh, 64, (4096)

#16 tanh, 128, (8192)

#0 ip, 64, (232665)

#1 relu, 128, (128)

#2 relu, 256, (32768)

#3 logistic, 512, (131072)

#14 crelu, 512, (262144)

#4 logistic, 512, (262144)

#5 elu, 512, (262144)

#6 elu, 512, (262144)

#13 crelu, 256, (196608)

#7 tanh, 576, (294912)

#8 tanh, 64, (36864)

#9 softplus, 64, (4096)

#10 softplus, 128, (8192)

#11 logistic, 128, (16384)

#12 logistic, 256, (32768)

#15 tanh, 512, (262144)

#16 tanh, 512, (262144)

#17 linear, 512, (232665)

#18 op, 512, (232665)

#0 ip, 64, (9121)

#1 leaky-relu, 128, (128)

#2 leaky-relu, 128, (128)#3 leaky-relu, 224, (28672)

#4 crelu, 126, (16128)#5 logistic, 64, (14336)

#9 linear, 256, (9121)

#6 logistic, 72, (4608)

#7 crelu, 126, (9072)

#8 crelu, 144, (18144)

#10 op, 256, (9121)

#0 ip, 64, (12209)

#1 relu, 144, (144)

#2 relu, 252, (36288)

#7 linear, 256, (12209)

#3 tanh, 72, (18144)

#6 logistic, 144, (54720)

#4 tanh, 64, (4608)

#5 leaky-relu, 128, (8192)

#8 op, 256, (12209)

#0 ip, 64, (30336)

#1 softplus, 128, (128)

#2 softplus, 128, (128)#3 softplus, 256, (32768)

#4 softplus, 256, (32768)#5 crelu, 160, (40960)

#8 tanh, 64, (20480)

#6 softplus, 64, (10240)

#7 softplus, 64, (4096)

#12 elu, 128, (24576)

#9 crelu, 64, (4096)

#10 tanh, 128, (8192)

#11 tanh, 128, (16384)

#13 elu, 112, (14336)

#14 elu, 256, (28672)

#15 elu, 256, (65536)

#16 linear, 256, (30336)

#17 op, 256, (30336)

Goal: Find NN architecture with highest CV accuracy.
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Multi-objective Optimisation: Drug Discovery

candidate
drugs

In Vitro/ In Vivo
        Test

specificity,
solubility,
potency,
toxicity

Goal: Find drug with “good value” on all objectives.
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Active Learning: Materials Science

solvent,
surfactant
concentrations

interfacial
  tension

Capillary/ Stallagmometric/
Wilhelmy tensometric

Experiment

Goal: Estimate relation between solution and interfacial tension.
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Multiple Goals: Materials Science

solvents/salt
concentrations,
physical/process
conditions

solvation energy,
viscosity,
conductivity

MD/DFT Simulations,
Viscometer tests,

Impedance spectroscopy,
UV-vis spectroscopy

Goal: Estimate relation between electrolyte solution and viscosity,
while simultaneously optimising conductivity.
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Posterior Estimation: Astrophysics

Cosmological
 Simulator

Observation Likelihood computation

Space of
Cosmological
Parameters

likelihood
   value

Goal: Estimate posterior for cosmological parameters given data.
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Phase Identification: Materials Science

composition
of alloy

Diffraction
 patterns

X-Ray Diffraction
Studies

Goal: Identify changes in crystal structure in an alloy.
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Outline

I Part I: Preliminaries (Black-box Optimisation)

1. Bayesian Models

2. Black-box Optimisation via Thompson Sampling

I Part II: DOE via posterior sampling

I Part III: Scaling up DOE (back to Black-box Optimisation)

1. Parallelising experiments

2. Multi-fidelity experimentation

3. High dimensional input spaces

4. Beyond Euclidean/categorical domains

I Part IV: ExperiML & Collaborations with LBL
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Black-box Optimisation

f : X → R is an expensive, black-box function, accessible only via
noisy evaluations.

Let x? = argmaxx f (x).

x

f(x)

5/54



Black-box Optimisation

f : X → R is an expensive, black-box function, accessible only via
noisy evaluations.

Let x? = argmaxx f (x).

x

f(x)

5/54



Black-box Optimisation

f : X → R is an expensive, black-box function, accessible only via
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x
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x∗

f(x∗)
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Bayesian Models for f

Functions with no observations

x

f(x)
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Bayesian Models for f

Prior P(θ?)

x

f(x)
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Bayesian Models for f

Observations

x

f(x)
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Bayesian Models for f

Posterior given observations P(θ?|Dt)

x

f(x)
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Bayesian Models for f
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x
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Thompson Sampling for Black-box Optimisation
(Thompson, 1933)

x

f(x)

1) Construct posterior P(θ?|Dt). 2) Draw sample g from posterior.
3) Choose xt = argmaxx g(x). 4) Evaluate f at xt .
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Thompson Sampling for Black-box Optimisation
(Thompson, 1933)

x

f(x)
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x

f(x)

t = 1
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Thompson Sampling for Black-box Optimisation
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Thompson Sampling for Black-box Optimisation
(Thompson, 1933)

x

f(x)

t = 11
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Thompson Sampling for Black-box Optimisation
(Thompson, 1933)

x

f(x)

t = 25
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Black-box Optimisation in the Bayesian Paradigm

Other criteria for selecting xt :

I Upper Confidence Bounds (Srinivas et al. 2010)

I Expected improvement (Jones et al. 1998)

I Probability of improvement (Kushner et al. 1964)

I Entropy search (Hernández-Lobato et al. 2014, Wang et al. 2017)

I . . . and a few more.

Bayesian models for f :

I Gaussian Processes (most popular)

I Neural networks (Snoek et al. 2015)

I Random forests (Hutter 2009)

Off-the-shelf models: general, but can be inefficient.
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Outline

I Part I: Preliminaries (Black-box Optimisation)

1. Bayesian Models

2. Black-box Optimisation via Thompson Sampling

I Part II: DOE via posterior sampling
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Design of Experiments

    (Expensive)
Blackbox System

I Choose experiment X ∈ X , obtain result YX ∼ P(y |X , θ?).

I θ? represents everything that is unknown about the system.

I Repeat in a sequence to collect data Dt = {(Xj ,YXj
)}tj=1.

I Typically some “goal/objective” in mind.

Desiderata for a General Framework:

I Flexibility to capture custom/complex relations for X → YX .
- Incorporate domain expertise into models.

I Ability to achieve any desired goal.
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Formalism for “goal-oriented” DOE

System:

I A true parameter θ? ∈ Θ that completely specifies the system.

I Θ← a parameter space.

Goal:

I Collect data Dn = {(xt , yxt )}nt=1 to achieve a goal specified by
a penalty function λ(θ,Dn).

I We wish to achieve small λ(θ?,Dn) after n experiments.

Bayesian Models:

I A prior for θ?: P(θ?).

I A discriminative model for observations y |x , θ: P(y |x , θ).
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Incorporating Domain Expertise via Bayesian Models
An example in Electrolyte Design

solvents/salt
concentrations,
physical/process
conditions

solvation energy,
viscosity,
conductivity

MD/DFT Simulations,
Viscometer tests,

Impedance spectroscopy,
UV-vis spectroscopy

Three control variables:
Q: EC-EMC fraction, S : molarity of salt LiPF6, T : temperature.

fvis(Q,S ,T ) = exp(−aT + bS) · gvis(Q). (Reynolds model)

fdissol(Q,S ,T ) = cT · 1
1+exp(dS) · gdissolv(Q).

Observations: yvisc|x , θ ∼ N (fvis(Q,S ,T ), η2).
ydissol|x , θ ∼ N (fdissol(Q,S ,T ), σ2).

Unknown parameters: θ = (a, b, c , d , gvis, gdissolv) ∈ Θ.
True parameter θ? = (a?, b?, c?, d?, gvis?, gdissolv?).
Use prior P(θ?) to specify plausible values for θ?.
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Specifying the goal via a Penalty Function

Practitioner specifies goal of the experiment via λ(θ,Dn).

Example 1: Optimisation

λ(θ,Dn) = max
x∈X

fθ(x)−max
t≤n

fθ(xt)

Example 2: Active Learning
Estimate some parameter τ? = τ(θ?) of the system.

λ(θ,Dn) = ‖τ(θ)− τ̂(Dn)‖22.

τ̂ ← some prespecified (e.g. maximum likelihood) estimator for τ
using data.

Will look at more examples shortly.
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MPS: Myopic Posterior Sampling for DOE

Expected look-ahead penalty at x if θ was the true parameter and
we have already collected data D:

λ+(θ,D, x) = EYx∼P(Y |x ,θ)

[
λ
(
θ, D ∪ {(x ,Yx)}

)]
.

Algorithm: MPS (πPS

M )

- Set D0 ← initial data.
- For t = 1, 2, . . . , do

1. Sample θ ∼ P(θ?|Dt−1).
2. Choose xt = argminx∈X λ

+(θ,Dt−1, x).
3. yxt ← conduct experiment at xt .
4. Set Dt ← Dt−1 ∪ {(xt , yxt )}.

N.B: When the goal is optimisation, this reduces to exactly
Thompson sampling.
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Experiment: Active Learning

Number of Experiments (n)
0 20 40 60 80 100

λ
(θ

⋆
,
n
)

10
-3

10
-2

10
-1

10
0

Linear RBF

RAND
ActiveSel
π
PS
M

π
⋆
M

ActiveSel: (Chaudhuri et al. 2015)
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Experiment: Posterior Estimation in Astrophysics

Astrophysicist defines prior on Hubble constant, and dark matter fraction
and dark energy fraction. Computer posterior distrbution given Type Ia
supernova data Q. Likelihood computed using the Robertson-Walker
metric.

λ(θ?,Dn) = ‖p(τ(θ?)|Q)− p̂(τ(θ?)|Q)‖2

Number of Experiments (n)
0 20 40 60 80 100

λ
(θ

⋆
,
n
)

10
-1

Super Nova

RAND
GP-EVR
π
PS
M

π
⋆
M

GP-EVR: (Kandasamy et al. IJCAI 2015)
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Experiment: Custom goal in Electrolyte Design

An experiment measures solubility, viscosity and conductivity of an
electrolyte design.
Goal: Optimise conductivity while learning solubility and viscosity.

λ(θ?,Dn) = ‖fdissol − f̂dissol(Dn)‖2 + ‖fvis − f̂vis(Dn)‖2+

(max fcon − max
Xt ,t≤n

fcon(Xt)),

Number of Experiments (n)
0 10 20 30 40

λ
(θ

⋆
,
n
)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Electrolyte Design

RAND
GRID
π
PS
M

π
⋆
M

18/54



Theory

It works!

Theorem (Informal): Under certain assumptions on the prob-
lem, MPS does almost as well as the optimal algorithm that
knows θ?.

We use ideas/conditions from
- Adaptive Submodularity
- Re-inforcement Learning
- Bandits
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I Part I: Preliminaries (Black-box Optimisation)

1. Bayesian Models

2. Black-box Optimisation via Thompson Sampling

I Part II: DOE via posterior sampling

I Part III: Scaling up DOE (back to Black-box Optimisation)

1. Parallelising experiments

2. Multi-fidelity experimentation

3. High dimensional input spaces

4. Beyond Euclidean/categorical domains

I Part IV: ExperiML & Collaborations with LBL
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Part 3.1: Parallel Experiments

Sequential experiments with one worker

Parallel experiments with M workers (Asynchronous)

Parallel experiments with M workers (Synchronous)
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Parallelised DOE via Posterior Sampling

Asynchronous:

At any given time,
1. (x ′, y ′)← Wait for

a worker to finish.
2. Update posterior for θ?.
3. Draw a sample
θ ∼ P(θ?|Dt).

4. Re-deploy worker at
argmin λ+(θ,Dt , x).

Synchronous:

At any given time,
1. {(x ′m, y ′m)}Mm=1 ← Wait for

all workers to finish.
2. Update posterior for θ?.
3. Draw M samples
θm ∼ P(θ?|Dt), ∀m.

4. Re-deploy worker m at
argminλ+(θm,Dt , x).
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Theory: parallel DOE via posterior sampling

Conjecture: For synchronous & asynchronous parallel DOE via
posterior sampling

E[λ(θ?,Dn)] .
M log(M)

n
+ sequential result

Theorem: For parallelised Thompson samping (Black-box Opti-
misation) (Kandasamy et al. AISTATS 2018)

E[f (x?)−max
t≤n

f (xt)] .
M log(M)

n
+

C√
n

Can also quantify difference between synchronous and
asynchronous settings. (Kandasamy et al. AISTATS 2018)

I If evaluation times are the same, synchronous is slightly better.
I When there is high variability in evaluation times,

asynchronous is much better than synchronous.
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Part 2.2: Multi-fidelity Experiments

Motivating question:
What if we have cheap approximations to an experimentation?

1. Hyper-parameter tuning: Train & validate with a subset of the
data, and/or early stopping before convergence.

E.g. Bandwidth (`) selection in kernel density estimation.

2. Computational astrophysics: cosmological simulations and
numerical computations with less granularity.

3. In many applications: real world experiment vs simulation.

25/54



Part 2.2: Multi-fidelity Experiments

Motivating question:
What if we have cheap approximations to an experimentation?

1. Hyper-parameter tuning: Train & validate with a subset of the
data, and/or early stopping before convergence.

E.g. Bandwidth (`) selection in kernel density estimation.

2. Computational astrophysics: cosmological simulations and
numerical computations with less granularity.

3. In many applications: real world experiment vs simulation.

25/54



Multi-fidelity Hyper-parameter tuning

E.g. Train an ML model with N• data and T• iterations.
- But use N < N• data and T < T• iterations to approximate

cross validation performance at (N•,T•).

Approximations from a continuous 2D “fidelity space” (N,T ).

Multi-fidelity Black-box optimisation using GPs:
(Kandasamy et al. NIPS 2016a&b, Kandasamy et al. ICML 2017,

Sen, Kandasamy et al. ICML 2018)
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Multi-fidelity Optimisation (Kandasamy et al. ICML 2017)

X
Z

A fidelity space Z and domain X
Z ← all (N,T ) values.

X ← all hyper-parameter values.

g : Z × X → R.
g([N,T ], x) ← cv accuracy when

training with N data for T iterations

at hyper-parameter x .

Denote f (x) = g(z•, x) where z• ∈ Z. z• = [N•,T•].

End Goal: Find x? = argmaxx f (x).

Therefore, λ(f ,Dt) = f (x?)− max
t:zt=z•

f (xt).

A cost function, γ : Z → R+. γ(z) = γ(N,T ) = O(N2T ) (say).
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Algorithms

I Finite number of approximations: MF-GP-UCB
(Kandasamy et al. NIPS 2016b)

I Continuous approximations: BOCA
(Kandasamy et al. ICML 2017)

Key intuition in both algorithms

I By default, will evaluate at the low (cheap) fidelities.

I Proceed to higher (expensive) fidelities when there is a good
information to cost trade-off.
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Algorithm: BOCA (Kandasamy et al. ICML 2017)

Model g ∼ GP(0, κ) and com-
pute posterior GP:

mean µt−1 : Z × X → R
std-dev σt−1 : Z × X → R+

(1) xt ← maximise upper confidence bound for f (x) = g(z•, x).

xt = argmax
x∈X

µt−1(z•, x) + β
1/2
t σt−1(z•, x)

(2) Zt ≈ {z•} ∪
{
z : σt−1(z , xt) ≥ γ(z)

=

(
γ(z)

γ(z•)

)q

ξ(z)

}
(3) zt = argmin

z∈Zt

γ(z) (cheapest z in Zt)
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Theoretical Results for BOCA

x⋆
X

g(z, x)

f(x)

z•
Z

“good”

x⋆

g(z, x)

X

f(x)

z•
Z

“bad”

Theorem: (Informal) (Kandasamy et al. ICML 2017)

BOCA does better, i.e. achieves better Simple regret, than GP-
UCB. The improvements are better in the “good” setting when
compared to the “bad” setting.
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Experiment: SVM with 20 News Groups

Tune two hyper-parameters for the SVM.
Dataset has N• = 15K data and use T• = 100 iterations.
But can choose N ∈ [5K , 15K ] or T ∈ [20, 100] (2D fidelity space).
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Experiment: Cosmological inference on Type-1a supernovae data

Estimate Hubble constant, dark matter fraction & dark energy
fraction by maximising likelihood on N• = 192 data.
Requires numerical integration on a grid of size G• = 106.
Approximate with N ∈ [50, 192] or G ∈ [102, 106] (2D fidelity space).
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Part 3.3: Optimisation in High Dimensional Input Spaces

E.g. Tuning a machine learning model with several hyper-parameters

At each time step

x

f(x)

x

f(x)

xt

1. Statistical Difficulty: estimating a high dimensional GP.

2. Computational Difficulty: maximising a high dimensional
acquisition (e.g. sample or UCB) ϕt .

34/54



Part 3.3: Optimisation in High Dimensional Input Spaces

E.g. Tuning a machine learning model with several hyper-parameters

At each time step

x

f(x)

x

f(x)

xt

1. Statistical Difficulty: estimating a high dimensional GP.

2. Computational Difficulty: maximising a high dimensional
acquisition (e.g. sample or UCB) ϕt .

34/54



Part 3.3: Optimisation in High Dimensional Input Spaces

E.g. Tuning a machine learning model with several hyper-parameters

At each time step

x

f(x)

x

f(x)

xt

1. Statistical Difficulty: estimating a high dimensional GP.

2. Computational Difficulty: maximising a high dimensional
acquisition (e.g. sample or UCB) ϕt .

34/54



Additive Models for High Dimensional BO
(Kandasamy et al. ICML 2015)

Structural assumption:

f (x) = f (1)(x (1)) + f (2)(x (2)) + . . . + f (M)(x (M)).

x (j) ∈ X (j) = [0, 1]p, p � d , x (i) ∩ x (j) = ∅.

E.g. f (x{1,...,10}) = f (1)(x{1,3,9}) + f (2)(x{2,4,8}) + f (3)(x{5,6,10}) .

1 2 3 4 5 6 ��HH7 8 9 10

Call {X (j)M

j=1} = {(1, 3, 9), (2, 4, 8), (5, 6, 10)} the “decomposition”.

Advantages:

I Statistical: Better bias-variance trade-offs in high dimensions.

I Computational: Easy to maximise acquisition and choose xt .
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Add-GP-UCB (Kandasamy et al. ICML 2015)

Upper Confidence Bound:

ϕt(x) =
M∑
j=1

µ
(j)
t−1(x (j)) + β

1/2
t σ

(j)
t−1(x (j))︸ ︷︷ ︸

ϕ̃
(j)
t (x(j))

.

Maximise each ϕ̃
(j)
t separately.

Requires only O(poly(d)ε−p) effort (vs O(ε−d) for GP-UCB).
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Additive models can still be useful in non-additive settings

I Additive models common in high dimensional regression.
E.g.: Backfitting, MARS, COSSO, RODEO, SpAM etc.

(Friedman ’91, Lin et al. ’06, Lafferty et al ’05, Ravikumar et al. ’09)

I Additive models are statistically simpler =⇒ worse bias, but
much better variance in low sample regime.

I In bandit applications queries are expensive. So we usually
cannot afford many queries.

I Observation:
Add-GP-UCB does well even when f is not additive.

I Better bias/ variance trade-off in estimating the GP.

I Easy to maximise upper confidence bound.
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Experiment: Viola & Jones Face Detection

A cascade of 22 weak classifiers.
Image classified negative if the score < threshold at any stage.
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In the paper we go up to > 100 dimensions.
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Part 3.4: Tuning Neural Network Architectures

0: ip
(57735)

1: conv7, 64
(64)

2: max-pool, 1
(64)

3: res3 /2, 64
(4096)

4: res3, 64
(4096)

5: res3 /2, 128
(8192)

6: res3, 128
(16384)

7: res3 /2, 256
(32768)

8: res3, 256
(65536)

9: res3 /2, 512
(131072)

10: res3, 512
(262144)

11: avg-pool, 1
(512)

12: fc, 1024
(52428)

13: softmax
(57735)

14: op
(57735)

Feedforward
network

GoogLeNet
(Szegedy et

al. 2015)

ResNet
(He et al.

2016)

DenseNet
(Huang et

al. 2017)
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Part 3.4: Tuning Neural Network Architectures

At each time step

x

f(x)

x

f(x)

xt

0: ip
(100)

1: conv3, 16
(16)

2: conv3, 8
(128)

3: conv3, 8
(128)

4: conv3, 32
(512)

5: max-pool, 1
(32)

6: fc, 16
(51)

7: softmax
(100)

8: op
(100)

0: ip
(129)

1: conv3, 16
(16)

2: conv3, 16
(16)

3: conv3, 16
(256)

4: conv5, 16
(256)

5: conv5 /2, 32
(512)

6: avg-pool, 1
(32)

7: fc, 32
(204)

8: softmax
(129)

9: op
(129)

#0 ip,  (100)

#1 tanh, 8, (8) #2 logistic, 8, (8)

#3 logistic, 8, (64) #4 tanh, 8, (64)

#5 elu, 16, (256) #6 relu, 16, (256)

#7 linear,  (100)

#8 op,  (100)

0: ip
(2707)

1: conv7, 64
(64)

2: conv5, 128
(8192)

3: conv3 /2, 64
(4096)

4: conv3, 64
(4096)

5: avg-pool, 1
(128)

6: max-pool, 1
(64)

7: max-pool, 1
(64)

8: fc, 64
(819)

12: fc, 64
(1228)

9: conv3, 128
(8192)

10: softmax
(1353)

13: softmax
(1353)

11: max-pool, 1
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Main challenges

I Define a distance between neural network architectures.

I Optimise ϕt on the space of neural networks.
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1: conv7, 64
(64)
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10: softmax
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11: max-pool, 1
(128)

14: op
(2707)
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#4 softplus, 16, (256) #5 relu, 16, (256)

#6 linear,  (100)

#7 op,  (100)

0: ip
(14456)

1: conv7, 64
(64)
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(32768)
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(65536)

9: avg-pool, 1
(256)

10: fc, 512
(13107)

11: softmax
(14456)

12: op
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#9 op,  (12710)

#4 leaky-relu, 128, (8192)

#7 elu, 512, (65536)
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Main challenges

I Define a distance between neural network architectures.

I Optimise ϕt on the space of neural networks.
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OTMANN: A distance between Neural Architectures
(Kandasamy et al. Arxiv 2018)

Key idea: To compute distance between architectures G1, G2,
match computation in layers in G1 to G2.

Z ∈ Rn1×n2 .
Zij ← amount matched between layer

i ∈ G1 and j ∈ G2.

Minimise φlmm(Z ) +φstr(Z ) +φnas(Z )

φlmm(Z ) : label mismatch penalty
φstr(Z ) : structural penalty
φnas(Z ) : non-assignment penalty

0: ip
(235)

1: conv3, 16
(16)

2: conv3, 16
(256)

3: conv3, 32
(512)

4: conv5, 32
(1024)

5: max-pool, 1
(32)

6: fc, 16
(512)

7: softmax
(235)

8: op
(235)

0: ip
(240)

1: conv7, 16
(16)

2: conv5, 32
(512)

3: conv3 /2, 16
(256)

4: conv3, 16
(256)

5: avg-pool, 1
(32)

6: max-pool, 1
(16)

7: max-pool, 1
(16)

8: fc, 16
(512)

12: fc, 16
(512)

9: conv3, 16
(256)

10: softmax
(120)

13: softmax
(120)

11: max-pool, 1
(16)

14: op
(240)

Can prove that the solution is a distance.
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Optimising the sample from the posterior

Via an evolutionary algorithm.

Resulting procedure: NASBOT
Neural Architecture Search with Bayesian Optimisation and
Optimal Transport (Kandasamy et al. Arxiv 2018)
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Architectures found on Cifar10
0: ip

(328008)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: max-pool
(64)

4: conv3, 128
(8192)

5: conv3, 128
(16384)

6: max-pool
(128)

7: conv3, 128
(16384)

8: conv3, 128
(16384)

9: conv3, 128
(16384)

10: conv3, 128
(16384)

11: max-pool
(128)

12: max-pool
(128)

13: conv3, 256
(32768)

14: conv3, 224
(28672)

15: conv3, 224
(57344)

16: conv3, 288
(64512)

17: conv3, 256
(57344)

18: max-pool
(288)

19: conv3, 288
(73728)

20: conv3, 576
(165888)

21: max-pool
(288)

22: conv3, 576
(331776)

23: conv3, 576
(165888)

24: conv3, 576
(165888)

25: max-pool
(576)

26: conv3, 576
(331776)

27: conv3, 576
(331776)

28: fc, 144
(8294)

29: conv3, 576
(331776)

30: conv3, 576
(331776)

31: avg-pool
(576)

32: softmax
(109336)

33: conv3, 576
(331776)

34: max-pool
(576)

36: fc, 144
(16588)

43: op
(328008)

35: conv3, 576
(331776)

37: max-pool
(576)

38: softmax
(109336)

39: fc, 126
(7257)

40: fc, 252
(3175)

41: fc, 504
(12700)

42: softmax
(109336)

0: ip
(159992)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: max-pool
(64)

4: conv3, 128
(8192)

5: conv3, 128
(16384)

6: max-pool
(128)

7: avg-pool
(128)

8: conv3, 128
(16384)

9: avg-pool
(128)

10: conv3, 128
(16384)

11: avg-pool
(128)

12: conv3, 128
(16384)

24: conv7, 512
(327680)

13: conv3, 128
(16384)

14: max-pool
(128)

15: conv3, 256
(32768)

19: max-pool
(384)

16: conv3, 256
(65536)

17: res3, 256
(65536)

18: conv3, 256
(65536)

20: conv5, 448
(172032)

21: conv3, 512
(229376)

22: conv3, 512
(262144)

23: conv3, 512
(262144)

25: max-pool
(512)

26: fc, 128
(6553)

27: fc, 256
(3276)

28: fc, 448
(11468)

29: softmax
(159992)

30: op
(159992)

0: ip
(198735)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: max-pool
(64)

4: conv3, 128
(8192)

5: conv3, 128
(16384)

6: max-pool
(128)

7: max-pool
(128)

8: conv3, 128
(16384)

9: conv3, 128
(16384)

10: max-pool
(128)

11: conv3, 128
(16384)

12: max-pool
(128)

13: conv3, 128
(16384)

14: conv3, 512
(65536)

15: max-pool
(128)

16: conv3, 576
(294912)

17: conv3, 256
(32768)

18: conv3, 256
(32768)

19: conv3, 576
(331776)

20: conv3, 256
(65536)

21: conv3, 256
(65536)

22: max-pool
(576)

23: conv3, 256
(65536)

25: max-pool
(512)

24: fc, 128
(7372)

26: fc, 256
(3276)

27: conv3, 512
(262144)

28: fc, 512
(13107)

29: conv3, 576
(294912)

30: softmax
(99367)

31: conv3, 576
(331776)

37: op
(198735)

32: max-pool
(576)

33: fc, 128
(7372)

34: fc, 256
(3276)

35: fc, 512
(13107)

36: softmax
(99367)

0: ip
(329217)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: avg-pool
(64)

4: max-pool
(64)

5: avg-pool
(64)

6: conv3, 128
(8192)

7: avg-pool
(64)

8: conv3, 128
(16384)

9: avg-pool
(64)

10: avg-pool
(64)

11: max-pool
(128)

12: avg-pool
(64)

13: avg-pool
(64)

14: conv3, 144
(18432)

46: fc, 128
(13926)

41: fc, 128
(7372)

15: conv3, 128
(18432)

16: conv3, 128
(16384)

17: conv3, 128
(16384)

18: max-pool
(128)

19: conv3, 256
(32768)

20: conv3, 256
(65536)

21: conv3, 256
(65536)

22: conv3, 288
(73728)

23: conv3, 256
(65536)

24: conv3, 256
(73728)

25: conv3, 256
(73728)

26: max-pool
(256)

27: max-pool
(256)

28: max-pool
(256)

29: max-pool
(256)

30: conv3, 512
(131072)

31: conv3, 512
(131072)

32: conv3, 512
(131072)

33: conv3, 512
(131072)

35: conv3, 512
(524288)

34: conv3, 512
(262144)

36: conv3, 512
(262144)

37: conv3, 512
(262144)

38: max-pool
(512)

39: conv3, 512
(262144)

40: conv3, 512
(262144)

43: max-pool
(1024)

42: res3 /2, 512
(262144)

44: fc, 512
(6553)

45: max-pool
(512)

47: softmax
(109739)

48: conv3, 128
(65536)

49: fc, 512
(6553)

55: op
(329217)

50: fc, 128
(1638)

51: softmax
(109739)

52: fc, 256
(3276)

53: fc, 512
(13107)

54: softmax
(109739)
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Architectures found on Indoor Location

#0 ip, 64, (28891)

#1 crelu, 144, (144)

#2 softplus, 576, (82944)

#6 logistic, 256, (69632)

#9 linear, 256, (14445)

#3 leaky-relu, 72, (41472)

#4 logistic, 128, (73728)#5 elu, 64, (4608)

#7 logistic, 256, (16384)

#8 linear, 256, (14445)

#10 op, 512, (28891)

#0 ip, 64, (542390)

#1 elu, 128, (128)

#2 elu, 256, (32768)

#3 logistic, 512, (131072)

#27 logistic, 512, (393216)

#29 linear, 512, (542390)

#4 crelu, 512, (262144)

#5 logistic, 512, (262144)

#6 logistic, 512, (262144)#7 crelu, 512, (262144)

#8 elu, 512, (262144)#9 crelu, 512, (262144)

#10 tanh, 512, (262144)#11 elu, 512, (262144)

#23 tanh, 324, (259200)

#12 softplus, 64, (32768)#13 tanh, 512, (262144)

#16 logistic, 72, (9216)

#14 softplus, 512, (262144)

#15 softplus, 64, (32768)

#17 relu, 128, (8192) #18 logistic, 128, (9216)

#19 tanh, 576, (73728) #20 relu, 128, (16384)

#21 leaky-relu, 576, (331776) #22 relu, 288, (36864)

#26 leaky-relu, 512, (589824)

#24 tanh, 648, (209952)

#25 leaky-relu, 576, (373248)

#28 logistic, 512, (262144)

#30 op, 512, (542390)

#0 ip, 64, (423488)

#1 elu, 128, (128)

#2 elu, 256, (32768)

#3 linear, 512, (211744)

#25 tanh, 576, (700416)

#4 logistic, 512, (131072)

#21 tanh, 512, (262144)

#27 op, 512, (423488)

#5 logistic, 512, (262144)#6 logistic, 512, (262144)

#7 leaky-relu, 512, (262144)#8 leaky-relu, 512, (262144)

#9 leaky-relu, 576, (294912)

#10 tanh, 64, (32768)

#11 leaky-relu, 512, (262144)

#12 tanh, 512, (294912)

#20 crelu, 256, (81920)

#13 tanh, 512, (262144)

#14 tanh, 64, (32768)#15 relu, 64, (32768)

#16 relu, 64, (4096)

#17 relu, 128, (16384)

#18 logistic, 256, (32768)#19 logistic, 256, (32768)

#22 crelu, 512, (131072)

#23 elu, 504, (258048)

#24 tanh, 576, (290304)

#26 linear, 512, (211744)

#0 ip, 64, (206092)

#1 relu, 112, (112)#2 relu, 112, (112)#3 relu, 112, (112)

#4 relu, 224, (25088)

#20 logistic, 512, (417792)

#5 logistic, 448, (50176)

#8 linear, 512, (103046)

#6 logistic, 392, (87808)

#7 logistic, 441, (98784)#9 logistic, 496, (416640)

#10 leaky-relu, 62, (27342)

#22 op, 512, (206092)

#11 leaky-relu, 496, (246016)

#12 logistic, 512, (253952)

#19 logistic, 256, (192512)

#13 tanh, 128, (7936)

#14 leaky-relu, 64, (31744)

#18 softplus, 256, (159744)

#21 linear, 512, (103046)

#17 softplus, 128, (32768)

#15 tanh, 64, (4096)

#16 tanh, 128, (8192)
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Architectures found on Slice Localisation

#0 ip, 64, (72512)

#1 crelu, 128, (128)

#2 crelu, 256, (32768)

#11 linear, 512, (72512)

#3 tanh, 512, (131072)

#4 tanh, 512, (262144)

#5 leaky-relu, 64, (32768)

#10 elu, 224, (172032)

#6 leaky-relu, 64, (4096)

#7 logistic, 128, (8192)

#8 logistic, 128, (16384)

#9 elu, 256, (65536)

#12 op, 512, (72512)

#0 ip, 64, (425996)

#1 elu, 128, (128)

#2 elu, 256, (32768)

#3 tanh, 512, (131072)

#4 tanh, 512, (262144)

#21 tanh, 512, (524288)

#23 linear, 512, (425996)

#5 leaky-relu, 512, (262144) #6 leaky-relu, 448, (229376)

#7 leaky-relu, 448, (229376)

#20 relu, 512, (524288)

#8 leaky-relu, 448, (200704)

#9 logistic, 512, (229376) #10 logistic, 512, (229376)

#11 softplus, 512, (524288)

#12 softplus, 64, (32768)

#13 tanh, 64, (4096)

#14 tanh, 128, (8192)

#15 crelu, 128, (16384)

#16 logistic, 256, (32768)

#19 relu, 512, (327680)

#17 logistic, 256, (65536)

#18 leaky-relu, 512, (131072)

#22 tanh, 512, (262144)

#24 op, 512, (425996)

#0 ip, 64, (192791)

#1 elu, 110, (110)

#2 elu, 448, (49280)

#3 tanh, 448, (200704)

#7 relu, 49, (24696)

#18 linear, 512, (192791)

#4 tanh, 448, (200704)

#5 tanh, 56, (25088)

#6 relu, 56, (28224)

#8 relu, 98, (4802)

#9 logistic, 128, (18816)

#17 tanh, 512, (570368)

#10 logistic, 128, (16384)

#11 logistic, 256, (32768)

#12 softplus, 256, (65536)

#13 softplus, 224, (57344)

#14 tanh, 504, (112896)

#15 tanh, 512, (258048)

#16 tanh, 512, (262144)

#19 op, 512, (192791)

#0 ip, 64, (136204)

#1 crelu, 128, (128)

#2 crelu, 288, (36864)

#13 tanh, 512, (458752)

#14 linear, 512, (136204)

#3 tanh, 512, (147456)

#4 tanh, 448, (229376)

#5 softplus, 448, (200704)

#6 tanh, 252, (112896)

#7 softplus, 64, (16128)

#8 logistic, 64, (4096)

#9 logistic, 128, (8192)

#10 elu, 128, (16384)

#11 elu, 256, (65536)

#12 tanh, 256, (65536)

#15 op, 512, (136204)
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DOE on other (graphical) structures

Drug Discovery with
Small molecules

Crystal Structures Social networks
& viral marketing

47/54



Summary

I A framework for “goal oriented” DOE.
- General: can achieve any desired goal.
- Flexible: can incorporate domain expertise.

I Myopic Posterior Sampling (MPS): An algorithm for DOE
inspired by Thompson sampling.

I Can be trivially parallelised.

Scaling up DOE

I Multi-fidelity experimentation: Use cheap approximations to a
an expensive experiment to speed things up.

I High dimensional DOE: Additive models have favourable
statistical and computational properties.

I DOE in “complex” domains.
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Outline

I Part I: Preliminaries (Black-box Optimisation)

1. Bayesian Models

2. Black-box Optimisation via Thompson Sampling

I Part II: DOE via posterior sampling

I Part III: Scaling up DOE (back to Black-box Optimisation)

1. Parallelising experiments

2. Multi-fidelity experimentation

3. High dimensional input spaces

4. Beyond Euclidean/categorical domains

I Part IV: ExperiML & Collaborations with LBL
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What is an experiment?

An experiment is any action that has an
opportunity cost attached to it.

Examples:

1. Experiments to design/discover new materials/drugs.

2. Experiments to optimise and industrial process.

3. Personalised (contextual) experiments: online advertising,
search etc.
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Currently companies have to choose between two bad
alternatives

Exhaustive search over
restricted design space

+ Automated.

− Expensive testing on
many poor designs.

− Misses many
revolutionary designs
since design space is
restricted.

Manual tuning by experts

+ Domain experts manually
design each test, directly
using human expertise.

− Requires significant time and
effort from experts.

− Humans are bad at making
sense of complex high
dimensional data.

Value proposition: Faster & Better.
Our technology enables searching over large design spaces and
identifies better designs in 10-100 times fewer trials than exhaustive
search and expert tuning with significantly less effort from experts.
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What we need for a collaboration

A well defined DOE problem. This includes,

I Design variables that can be tuned in the given problem and
the constraints on each variable.

I Experimental results. E.g: how well did a design do on the
criteria you care.

I Goal: What is the goal of conducting these experiments?

I Means to experiment: For each design, a means to conduct
the experiment and obtain feedback, either in simulation or in
a real system.

In addition ...

I Domain expertise: Explicit models, tacit knowledge etc.

I Past data: Data from past experiments on this or relevant
tasks.
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In return, we will ...

I Execute our methods on the data/problem given.

I . . . and recommend new experiments(s) to conduct.

I If there is a simulation, we can run it ourselves. Otherwise, we
will need your help to run experiments.
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