Bayesian Design of Experiments via Posterior Sampling

Applications in Hyper-parameter tuning, Astrophysics, and Materials Science

Kirthevasan Kandasamy

Carnegie Mellon University & ExperiML

June 1, 2018

Lawrence Berkeley National Lab, CA
slides: www.cs.cmu.edu/~kkandasa

Design of Experiments

- ▶ Choose an experiment $x \in \mathcal{X}$.
- Obtain the result (observation) $Y_x \sim \mathbb{P}(y|x, \theta_*)$. θ_* (unknown) completely specifies the system.

Design of Experiments

- ▶ Choose an experiment $x \in \mathcal{X}$.
- ▶ Obtain the result (observation) $Y_x \sim \mathbb{P}(y|x, \theta_*)$. θ_* (unknown) completely specifies the system.
- ▶ Repeat in an adaptive sequence to collect data $D_t = \{(x_t, Y_{x_t})\}_{t=1}^n$.
- Typically some "goal/objective" in mind.

Black-box Optimisation: Model Selection

Goal: Find hyper-parameters with highest CV accuracy.

Black-box Optimisation: Architecture Search

Goal: Find NN architecture with highest CV accuracy.

Multi-objective Optimisation: Drug Discovery

Goal: Find drug with "good value" on all objectives.

Active Learning: Materials Science

Goal: Estimate relation between solution and interfacial tension.

Multiple Goals: Materials Science

Goal: Estimate relation between electrolyte solution and viscosity, while simultaneously optimising conductivity.

Posterior Estimation: Astrophysics

Goal: Estimate posterior for cosmological parameters given data.

Phase Identification: Materials Science

Goal: Identify changes in crystal structure in an alloy.

Outline

- Part I: Preliminaries (Black-box Optimisation)
 - 1. Bayesian Models
 - 2. Black-box Optimisation via Thompson Sampling
- Part II: DOE via posterior sampling
- Part III: Scaling up DOE (back to Black-box Optimisation)
 - 1. Parallelising experiments
 - 2. Multi-fidelity experimentation
 - 3. High dimensional input spaces
 - 4. Beyond Euclidean/categorical domains
- Part IV: ExperiML & Collaborations with LBL

Outline

- ▶ Part I: Preliminaries (Black-box Optimisation)
 - 1. Bayesian Models
 - 2. Black-box Optimisation via Thompson Sampling
- ▶ Part II: DOE via posterior sampling
- ► Part III: Scaling up DOE (back to Black-box Optimisation)
 - 1. Parallelising experiments
 - 2. Multi-fidelity experimentation
 - 3. High dimensional input spaces
 - 4. Beyond Euclidean/categorical domains
- ► Part IV: ExperiML & Collaborations with LBL

Black-box Optimisation

 $f:\mathcal{X}\to\mathbb{R}$ is an expensive, black-box function, accessible only via noisy evaluations.

Black-box Optimisation

 $f:\mathcal{X}\to\mathbb{R}$ is an expensive, black-box function, accessible only via noisy evaluations.

Black-box Optimisation

 $f:\mathcal{X}\to\mathbb{R}$ is an expensive, black-box function, accessible only via noisy evaluations.

Let $x_{\star} = \operatorname{argmax}_{x} f(x)$.

Functions with no observations

 \boldsymbol{x}

Observations

Posterior given observations $\mathbb{P}(\theta_{\star}|D_t)$

Posterior given observations $\mathbb{P}(\theta_{\star}|D_t)$

(Thompson, 1933)

1) Construct posterior $\mathbb{P}(\theta_{\star}|D_t)$.

(Thompson, 1933)

1) Construct posterior $\mathbb{P}(\theta_{\star}|D_t)$. 2) Draw sample g from posterior.

- 1) Construct posterior $\mathbb{P}(\theta_{\star}|D_t)$. 2) Draw sample g from posterior.
- 3) Choose $x_t = \operatorname{argmax}_x g(x)$.

- 1) Construct posterior $\mathbb{P}(\theta_{\star}|D_t)$. 2) Draw sample g from posterior.
- 3) Choose $x_t = \operatorname{argmax}_x g(x)$. 4) Evaluate f at x_t .

Black-box Optimisation in the Bayesian Paradigm

Other criteria for selecting x_t :

- ▶ Upper Confidence Bounds (Srinivas et al. 2010)
- Expected improvement (Jones et al. 1998)
- Probability of improvement (Kushner et al. 1964)
- ► Entropy search (Hernández-Lobato et al. 2014, Wang et al. 2017)
- ...and a few more.

Bayesian models for f:

- Gaussian Processes (most popular)
- ▶ Neural networks (Snoek et al. 2015)
- ▶ Random forests (Hutter 2009)

Off-the-shelf models: general, but can be inefficient.

Outline

- ► Part I: Preliminaries (Black-box Optimisation)
 - 1. Bayesian Models
 - 2. Black-box Optimisation via Thompson Sampling
- Part II: DOE via posterior sampling
- ▶ Part III: Scaling up DOE (back to Black-box Optimisation)
 - 1. Parallelising experiments
 - 2. Multi-fidelity experimentation
 - 3. High dimensional input spaces
 - 4. Beyond Euclidean/categorical domains
- ► Part IV: ExperiML & Collaborations with LBL

Design of Experiments

- ▶ Choose experiment $X \in \mathcal{X}$, obtain result $Y_X \sim \mathbb{P}(y|X, \theta_{\star})$.
- \blacktriangleright θ_{\star} represents everything that is unknown about the system.
- ▶ Repeat in a sequence to collect data $D_t = \{(X_j, Y_{X_j})\}_{j=1}^t$.
- ► Typically some "goal/objective" in mind.

Design of Experiments

- ▶ Choose experiment $X \in \mathcal{X}$, obtain result $Y_X \sim \mathbb{P}(y|X, \theta_{\star})$.
- $ightharpoonup heta_{\star}$ represents everything that is unknown about the system.
- ▶ Repeat in a sequence to collect data $D_t = \{(X_j, Y_{X_i})\}_{i=1}^t$.
- Typically some "goal/objective" in mind.

Desiderata for a General Framework:

- ▶ Flexibility to capture custom/complex relations for $X \to Y_X$.
 - Incorporate domain expertise into models.
- Ability to achieve any desired goal.

Formalism for "goal-oriented" DOE

System:

- ▶ A true parameter $\theta_{\star} \in \Theta$ that completely specifies the system.
- ▶ $\Theta \leftarrow$ a parameter space.

Formalism for "goal-oriented" DOE

System:

- ▶ A true parameter $\theta_{\star} \in \Theta$ that completely specifies the system.
- ▶ $\Theta \leftarrow$ a parameter space.

Goal:

- ▶ Collect data $D_n = \{(x_t, y_{x_t})\}_{t=1}^n$ to achieve a goal specified by a penalty function $\lambda(\theta, D_n)$.
- We wish to achieve small $\lambda(\theta_{\star}, D_n)$ after n experiments.

Formalism for "goal-oriented" DOE

System:

- ▶ A true parameter $\theta_{\star} \in \Theta$ that completely specifies the system.
- ▶ $\Theta \leftarrow$ a parameter space.

Goal:

- ▶ Collect data $D_n = \{(x_t, y_{x_t})\}_{t=1}^n$ to achieve a goal specified by a penalty function $\lambda(\theta, D_n)$.
- We wish to achieve small $\lambda(\theta_{\star}, D_n)$ after n experiments.

Bayesian Models:

- ▶ A prior for θ_{\star} : $\mathbb{P}(\theta_{\star})$.
- ▶ A discriminative model for observations $y|x, \theta$: $\mathbb{P}(y|x, \theta)$.

Three control variables:

Q: EC-EMC fraction, S: molarity of salt LiPF₆, T: temperature.

Three control variables:

Q: EC-EMC fraction, S: molarity of salt LiPF₆, T: temperature.

$$\begin{split} f_{\mathrm{vis}}(Q,S,T) &= \exp(-aT + bS) \cdot g_{\mathrm{vis}}(Q). \\ f_{\mathrm{dissol}}(Q,S,T) &= cT \cdot \frac{1}{1 + \exp(dS)} \cdot g_{\mathrm{dissolv}}(Q). \end{split} \tag{Reynolds model}$$

Three control variables:

Q: EC-EMC fraction, S: molarity of salt LiPF₆, T: temperature.

$$\begin{split} f_{\text{vis}}(Q,S,T) &= \exp(-aT + bS) \cdot g_{\text{vis}}(Q). \\ f_{\text{dissol}}(Q,S,T) &= cT \cdot \frac{1}{1 + \exp(dS)} \cdot g_{\text{dissolv}}(Q). \end{split} \tag{Reynolds model}$$

Observations: $y_{\text{visc}}|x, \theta \sim \mathcal{N}(f_{\text{vis}}(Q, S, T), \eta^2)$. $y_{\text{dissol}}|x, \theta \sim \mathcal{N}(f_{\text{dissol}}(Q, S, T), \sigma^2)$.

Three control variables:

Q: EC-EMC fraction, S: molarity of salt LiPF₆, T: temperature.

$$\begin{split} f_{\mathrm{vis}}(Q,S,T) &= \exp(-aT + bS) \cdot g_{\mathrm{vis}}(Q). \\ f_{\mathrm{dissol}}(Q,S,T) &= cT \cdot \frac{1}{1 + \exp(dS)} \cdot g_{\mathrm{dissolv}}(Q). \end{split} \tag{Reynolds model}$$

Observations: $y_{\text{visc}}|x, \theta \sim \mathcal{N}(f_{\text{vis}}(Q, S, T), \eta^2)$. $y_{\text{dissol}}|x, \theta \sim \mathcal{N}(f_{\text{dissol}}(Q, S, T), \sigma^2)$.

Unknown parameters: $\theta = (a, b, c, d, g_{\text{vis}}, g_{\text{dissolv}}) \in \Theta$. True parameter $\theta_{\star} = (a_{\star}, b_{\star}, c_{\star}, d_{\star}, g_{\text{vis}_{\star}}, g_{\text{dissolv}_{\star}})$. Use prior $\mathbb{P}(\theta_{\star})$ to specify plausible values for θ_{\star} .

Practitioner specifies goal of the experiment via $\lambda(\theta, D_n)$.

Practitioner specifies goal of the experiment via $\lambda(\theta, D_n)$.

Example 1: Optimisation

$$\lambda(\theta, D_n) = \max_{x \in \mathcal{X}} f_{\theta}(x) - \max_{t \le n} f_{\theta}(x_t)$$

Practitioner specifies goal of the experiment via $\lambda(\theta, D_n)$.

Example 1: Optimisation

$$\lambda(\theta, D_n) = \max_{x \in \mathcal{X}} f_{\theta}(x) - \max_{t \le n} f_{\theta}(x_t)$$

Example 2: Active Learning

Estimate some parameter $\tau_{\star} = \tau(\theta_{\star})$ of the system.

$$\lambda(\theta, D_n) = \|\tau(\theta) - \hat{\tau}(D_n)\|_2^2.$$

 $\hat{\tau} \leftarrow$ some prespecified (e.g. maximum likelihood) estimator for τ using data.

Practitioner specifies goal of the experiment via $\lambda(\theta, D_n)$.

Example 1: Optimisation

$$\lambda(\theta, D_n) = \max_{x \in \mathcal{X}} f_{\theta}(x) - \max_{t \le n} f_{\theta}(x_t)$$

Example 2: Active Learning

Estimate some parameter $\tau_{\star} = \tau(\theta_{\star})$ of the system.

$$\lambda(\theta, D_n) = \|\tau(\theta) - \hat{\tau}(D_n)\|_2^2.$$

 $\hat{\tau} \leftarrow$ some prespecified (e.g. maximum likelihood) estimator for τ using data.

Will look at more examples shortly.

MPS: Myopic Posterior Sampling for DOE

Expected look-ahead penalty at x if θ was the true parameter and we have already collected data D:

$$\lambda^{+}(\theta, D, x) = \mathbb{E}_{Y_{x} \sim \mathbb{P}(Y|x,\theta)} \Big[\lambda \big(\theta, D \cup \{(x, Y_{x})\} \big) \Big].$$

MPS: Myopic Posterior Sampling for DOE

Expected look-ahead penalty at x if θ was the true parameter and we have already collected data D:

$$\lambda^{+}(\theta, D, x) = \mathbb{E}_{Y_{x} \sim \mathbb{P}(Y|x,\theta)} \Big[\lambda \big(\theta, D \cup \{(x, Y_{x})\} \big) \Big].$$

Algorithm: MPS $(\pi_{ m M}^{ m PS})$

- Set D_0 ← initial data.
- For t = 1, 2, ..., do
 - 1. Sample $\theta \sim \mathbb{P}(\theta_{\star}|D_{t-1})$.
 - 2. Choose $x_t = \operatorname{argmin}_{x \in \mathcal{X}} \lambda^+(\theta, D_{t-1}, x)$.
 - 3. $y_{x_t} \leftarrow \text{conduct experiment at } x_t$.
 - 4. Set $D_t \leftarrow D_{t-1} \cup \{(x_t, y_{x_t})\}.$

MPS: Myopic Posterior Sampling for DOE

Expected look-ahead penalty at x if θ was the true parameter and we have already collected data D:

$$\lambda^+(\theta, D, x) = \mathbb{E}_{Y_x \sim \mathbb{P}(Y|x,\theta)} \Big[\lambda \big(\theta, D \cup \{(x, Y_x)\} \big) \Big].$$

Algorithm: MPS $(\pi_{ m M}^{ m PS})$

- Set D_0 ← initial data.
- For t = 1, 2, ..., do
 - 1. Sample $\theta \sim \mathbb{P}(\theta_{\star}|D_{t-1})$.
 - 2. Choose $x_t = \operatorname{argmin}_{x \in \mathcal{X}} \lambda^+(\theta, D_{t-1}, x)$.
 - 3. $y_{x_t} \leftarrow \text{conduct experiment at } x_t$.
 - 4. Set $D_t \leftarrow D_{t-1} \cup \{(x_t, y_{x_t})\}.$

N.B: When the goal is optimisation, this reduces to exactly Thompson sampling.

Experiment: Active Learning

ActiveSel: (Chaudhuri et al. 2015)

Experiment: Posterior Estimation in Astrophysics

Astrophysicist defines prior on Hubble constant, and dark matter fraction and dark energy fraction. Computer posterior distribution given Type Ia supernova data *Q*. Likelihood computed using the Robertson-Walker metric.

$$\lambda(\theta_{\star}, D_n) = \|p(\tau(\theta_{\star})|Q) - \hat{p}(\tau(\theta_{\star})|Q)\|_2$$

GP-EVR: (Kandasamy et al. IJCAI 2015)

Experiment: Custom goal in Electrolyte Design

An experiment measures solubility, viscosity and conductivity of an electrolyte design.

Goal: Optimise conductivity while learning solubility and viscosity.

$$\lambda(\theta_{\star}, D_n) = \|f_{\text{dissol}} - \hat{f}_{\text{dissol}}(D_n)\|^2 + \|f_{\text{vis}} - \hat{f}_{\text{vis}}(D_n)\|^2 + (\max f_{\text{con}} - \max_{X_t, t \le n} f_{\text{con}}(X_t)),$$

It works!

It works!

Theorem (Informal): Under certain assumptions on the problem, MPS does almost as well as the optimal algorithm that knows θ_{\star} .

It works!

Theorem (Informal): Under certain assumptions on the problem, MPS does almost as well as the optimal algorithm that knows θ_{\star} .

We use ideas/conditions from

- Adaptive Submodularity
- Re-inforcement Learning
- Bandits

Outline

- ► Part I: Preliminaries (Black-box Optimisation)
 - 1. Bayesian Models
 - 2. Black-box Optimisation via Thompson Sampling
- ▶ Part II: DOE via posterior sampling
- ▶ Part III: Scaling up DOE (back to Black-box Optimisation)
 - 1. Parallelising experiments
 - 2. Multi-fidelity experimentation
 - 3. High dimensional input spaces
 - 4. Beyond Euclidean/categorical domains
- ► Part IV: ExperiML & Collaborations with LBL

Part 3.1: Parallel Experiments

Sequential experiments with one worker

Part 3.1: Parallel Experiments

Sequential experiments with one worker

Parallel experiments with M workers (Asynchronous)

Part 3.1: Parallel Experiments

Sequential experiments with one worker

Parallel experiments with M workers (Asynchronous)

Parallel experiments with M workers (Synchronous)

Parallelised DOE via Posterior Sampling

Asynchronous:

At any given time,

- 1. $(x', y') \leftarrow \text{Wait for a worker to finish.}$
- 2. Update posterior for θ_{\star} .
- 3. Draw a sample $\theta \sim \mathbb{P}(\theta_{\star}|D_t)$.
- 4. Re-deploy worker at argmin $\lambda^+(\theta, D_t, x)$.

Parallelised DOE via Posterior Sampling

Asynchronous:

At any given time,

- 1. $(x', y') \leftarrow \text{Wait for a worker to finish.}$
- 2. Update posterior for θ_{\star} .
- 3. Draw a sample $\theta \sim \mathbb{P}(\theta_{\star}|D_t)$.
- 4. Re-deploy worker at argmin $\lambda^+(\theta, D_t, x)$.

Synchronous:

At any given time,

- 1. $\{(x'_m, y'_m)\}_{m=1}^M \leftarrow \text{Wait for all workers to finish.}$
- 2. Update posterior for θ_{\star} .
- 3. Draw M samples $\theta_m \sim \mathbb{P}(\theta_\star | D_t), \forall m$.
- 4. Re-deploy worker m at $\operatorname{argmin} \lambda^+(\theta_m, D_t, x)$.

Theory: parallel DOE via posterior sampling

Conjecture: For synchronous & asynchronous parallel DOE via posterior sampling

$$\mathbb{E}[\lambda(\theta_{\star}, D_n)] \lesssim \frac{M \log(M)}{n} + \text{sequential result}$$

Theorem: For parallelised Thompson samping (Black-box Optimisation) (Kandasamy et al. AISTATS 2018)

$$\mathbb{E}[f(x_{\star}) - \max_{t \leq n} f(x_t)] \lesssim \frac{M \log(M)}{n} + \frac{C}{\sqrt{n}}$$

Can also quantify difference between synchronous and asynchronous settings. (Kandasamy et al. AISTATS 2018)

- ▶ If evaluation times are the same, synchronous is slightly better.
- ▶ When there is high variability in evaluation times, asynchronous is much better than synchronous.

Outline

- ► Part I: Preliminaries (Black-box Optimisation)
 - 1. Bayesian Models
 - 2. Black-box Optimisation via Thompson Sampling
- ▶ Part II: DOE via posterior sampling
- Part III: Scaling up DOE (back to Black-box Optimisation)
 - 1. Parallelising experiments
 - 2. Multi-fidelity experimentation
 - 3. High dimensional input spaces
 - 4. Beyond Euclidean/categorical domains
- ► Part IV: ExperiML & Collaborations with LBL

Part 2.2: Multi-fidelity Experiments

Motivating question:

What if we have cheap approximations to an experimentation?

- 1. Hyper-parameter tuning: Train & validate with a subset of the data, and/or early stopping before convergence.
 - E.g. Bandwidth (ℓ) selection in kernel density estimation.

Part 2.2: Multi-fidelity Experiments

Motivating question:

What if we have cheap approximations to an experimentation?

- 1. Hyper-parameter tuning: Train & validate with a subset of the data, and/or early stopping before convergence.
 - E.g. Bandwidth (ℓ) selection in kernel density estimation.

- 2. Computational astrophysics: cosmological simulations and numerical computations with less granularity.
- 3. In many applications: real world experiment vs simulation.

Multi-fidelity Hyper-parameter tuning

- E.g. Train an ML model with N_{\bullet} data and T_{\bullet} iterations.
 - But use $N < N_{\bullet}$ data and $T < T_{\bullet}$ iterations to approximate cross validation performance at $(N_{\bullet}, T_{\bullet})$.

Multi-fidelity Hyper-parameter tuning

- E.g. Train an ML model with N_{\bullet} data and T_{\bullet} iterations.
 - But use $N < N_{\bullet}$ data and $T < T_{\bullet}$ iterations to approximate cross validation performance at $(N_{\bullet}, T_{\bullet})$.

Approximations from a continuous 2D "fidelity space" (N, T).

Multi-fidelity Hyper-parameter tuning

- E.g. Train an ML model with N_{\bullet} data and T_{\bullet} iterations.
 - But use $N < N_{\bullet}$ data and $T < T_{\bullet}$ iterations to approximate cross validation performance at $(N_{\bullet}, T_{\bullet})$.

Approximations from a continuous 2D "fidelity space" (N, T).

Multi-fidelity Black-box optimisation using GPs:

(Kandasamy et al. NIPS 2016a&b, Kandasamy et al. ICML 2017, Sen, Kandasamy et al. ICML 2018)

(Kandasamy et al. ICML 2017)

A fidelity space ${\mathcal Z}$ and domain ${\mathcal X}$

 $\mathcal{Z} \leftarrow \text{all } (N, T) \text{ values.}$

 $\mathcal{X} \leftarrow \text{all hyper-parameter values}.$

(Kandasamy et al. ICML 2017)

A fidelity space ${\mathcal Z}$ and domain ${\mathcal X}$

 $\mathcal{Z} \leftarrow \mathsf{all} \; (N, T) \; \mathsf{values}.$

 $\mathcal{X} \leftarrow$ all hyper-parameter values.

 $g: \mathcal{Z} \times \mathcal{X} \to \mathbb{R}$.

 $g([N, T], x) \leftarrow \text{cv}$ accuracy when training with N data for T iterations at hyper-parameter x.

(Kandasamy et al. ICML 2017)

A fidelity space ${\mathcal Z}$ and domain ${\mathcal X}$

 $\mathcal{Z} \leftarrow \mathsf{all}\ (N,T)\ \mathsf{values}.$

 $\mathcal{X} \leftarrow$ all hyper-parameter values.

$$g: \mathcal{Z} \times \mathcal{X} \to \mathbb{R}$$
.

 $g([N, T], x) \leftarrow \text{cv}$ accuracy when training with N data for T iterations at hyper-parameter x.

Denote
$$f(x) = g(z_{\bullet}, x)$$
 where $z_{\bullet} \in \mathcal{Z}$.

$$z_{\bullet}=[N_{\bullet},T_{\bullet}].$$

(Kandasamy et al. ICML 2017)

A fidelity space ${\mathcal Z}$ and domain ${\mathcal X}$

 $\mathcal{Z} \leftarrow \mathsf{all} \; (N, T) \; \mathsf{values}.$

 $\mathcal{X} \leftarrow$ all hyper-parameter values.

 $g: \mathcal{Z} \times \mathcal{X} \to \mathbb{R}$.

 $g([N, T], x) \leftarrow \text{cv}$ accuracy when training with N data for T iterations at hyper-parameter x.

Denote
$$f(x) = g(z_{\bullet}, x)$$
 where $z_{\bullet} \in \mathcal{Z}$.

 $z_{\bullet} = [N_{\bullet}, T_{\bullet}].$

End Goal: Find $x_* = \operatorname{argmax}_x f(x)$.

Therefore, $\lambda(f, D_t) = f(x_*) - \max_{t: z_* = z_*} f(x_t)$.

(Kandasamy et al. ICML 2017)

A fidelity space $\mathcal Z$ and domain $\mathcal X$

 $\mathcal{Z} \leftarrow \text{all } (N, T) \text{ values.}$

 $\mathcal{X} \leftarrow \text{all hyper-parameter values}.$

 $g: \mathcal{Z} \times \mathcal{X} \to \mathbb{R}$.

 $g([N, T], x) \leftarrow \text{cv accuracy when}$ training with N data for T iterations at hyper-parameter x.

Denote
$$f(x) = g(z_{\bullet}, x)$$
 where $z_{\bullet} \in \mathcal{Z}$.

 $z_{\bullet} = [N_{\bullet}, T_{\bullet}].$

End Goal: Find $x_* = \operatorname{argmax}_x f(x)$.

Therefore, $\lambda(f, D_t) = f(x_*) - \max_{t:z_* = z_*} f(x_t)$.

A cost function, $\gamma: \mathcal{Z} \to \mathbb{R}_+$. $\gamma(z) = \gamma(N, T) = \mathcal{O}(N^2 T)$ (say).

$$\gamma(z) = \gamma(N, T) = \mathcal{O}(N^2 T)$$
 (say

Algorithms

► Finite number of approximations: MF-GP-UCB

(Kandasamy et al. NIPS 2016b)

Continuous approximations: BOCA

(Kandasamy et al. ICML 2017)

Key intuition in both algorithms

- ▶ By default, will evaluate at the low (cheap) fidelities.
- Proceed to higher (expensive) fidelities when there is a good information to cost trade-off.

Algorithm: BOCA

(Kandasamy et al. ICML 2017)

Model $g \sim \mathcal{GP}(0, \kappa)$ and compute posterior \mathcal{GP} :

mean
$$\mu_{t-1}: \mathcal{Z} \times \mathcal{X} \to \mathbb{R}$$

std-dev $\sigma_{t-1}: \mathcal{Z} \times \mathcal{X} \to \mathbb{R}_+$

(1)
$$x_t \leftarrow \text{maximise upper confidence bound for } f(x) = g(z_{\bullet}, x).$$

$$x_t = \underset{x \in \mathcal{X}}{\operatorname{argmax}} \ \mu_{t-1}(z_{\bullet}, x) + \beta_t^{1/2} \sigma_{t-1}(z_{\bullet}, x)$$

Algorithm: BOCA

(Kandasamy et al. ICML 2017)

Model $g \sim \mathcal{GP}(0, \kappa)$ and compute posterior \mathcal{GP} :

 $\begin{array}{ll} \text{mean} & \mu_{t-1} : \mathcal{Z} \times \mathcal{X} \to \mathbb{R} \\ \text{std-dev} & \sigma_{t-1} : \mathcal{Z} \times \mathcal{X} \to \mathbb{R}_+ \end{array}$

- (1) $x_t \leftarrow \text{maximise upper confidence bound for } f(x) = g(z_{\bullet}, x).$ $x_t = \underset{x \in \mathcal{X}}{\operatorname{argmax}} \ \mu_{t-1}(z_{\bullet}, x) + \beta_t^{1/2} \sigma_{t-1}(z_{\bullet}, x)$
- (2) $\mathcal{Z}_t \approx \{z_{\bullet}\} \cup \left\{z : \sigma_{t-1}(z, x_t) \geq \gamma(z) = \left(\frac{\gamma(z)}{\gamma(z_{\bullet})}\right)^q \xi(z)\right\}$
- (3) $z_t = \underset{z \in \mathcal{Z}_t}{\operatorname{argmin}} \gamma(z)$ (cheapest z in \mathcal{Z}_t)

Theoretical Results for BOCA

Theoretical Results for BOCA

Theorem: (Informal) (Kandasamy et al. ICML 2017) BOCA does better, i.e. achieves better Simple regret, than GP-UCB. The improvements are better in the "good" setting when compared to the "bad" setting.

Experiment: SVM with 20 News Groups

Tune two hyper-parameters for the SVM.

Dataset has $N_{\bullet} = 15K$ data and use $T_{\bullet} = 100$ iterations.

But can choose $N \in [5K, 15K]$ or $T \in [20, 100]$ (2D fidelity space).

Experiment: SVM with 20 News Groups

Tune two hyper-parameters for the SVM.

Dataset has $N_{\bullet}=15K$ data and use $T_{\bullet}=100$ iterations.

But can choose $N \in [5K, 15K]$ or $T \in [20, 100]$ (2D fidelity space).

Experiment: Cosmological inference on Type-1a supernovae data

Estimate Hubble constant, dark matter fraction & dark energy fraction by maximising likelihood on $N_{\bullet}=192$ data. Requires numerical integration on a grid of size $G_{\bullet}=10^6$. Approximate with $N \in [50, 192]$ or $G \in [10^2, 10^6]$ (2D fidelity space).

Experiment: Cosmological inference on Type-1a supernovae data

Estimate Hubble constant, dark matter fraction & dark energy fraction by maximising likelihood on $N_{\bullet} = 192$ data. Requires numerical integration on a grid of size $G_{\bullet} = 10^6$. Approximate with $N \in [50, 192]$ or $G \in [10^2, 10^6]$ (2D fidelity space).

Outline

- ► Part I: Preliminaries (Black-box Optimisation)
 - 1. Bayesian Models
 - 2. Black-box Optimisation via Thompson Sampling
- ▶ Part II: DOE via posterior sampling
- ▶ Part III: Scaling up DOE (back to Black-box Optimisation)
 - 1. Parallelising experiments
 - 2. Multi-fidelity experimentation
 - 3. High dimensional input spaces
 - 4. Beyond Euclidean/categorical domains
- ► Part IV: ExperiML & Collaborations with LBL

Part 3.3: Optimisation in High Dimensional Input Spaces

E.g. Tuning a machine learning model with several hyper-parameters

Part 3.3: Optimisation in High Dimensional Input Spaces

E.g. Tuning a machine learning model with several hyper-parameters

At each time step

Part 3.3: Optimisation in High Dimensional Input Spaces

E.g. Tuning a machine learning model with several hyper-parameters

At each time step

- 1. Statistical Difficulty: estimating a high dimensional GP.
- 2. Computational Difficulty: maximising a high dimensional acquisition (e.g. sample or UCB) φ_t .

Additive Models for High Dimensional BO

(Kandasamy et al. ICML 2015)

Structural assumption:

$$f(x) = f^{(1)}(x^{(1)}) + f^{(2)}(x^{(2)}) + \ldots + f^{(M)}(x^{(M)}).$$

$$x^{(j)} \in \mathcal{X}^{(j)} = [0, 1]^p, \qquad p \ll d, \qquad x^{(i)} \cap x^{(j)} = \varnothing.$$

Additive Models for High Dimensional BO

(Kandasamy et al. ICML 2015)

Structural assumption:

$$f(x) = f^{(1)}(x^{(1)}) + f^{(2)}(x^{(2)}) + \dots + f^{(M)}(x^{(M)}).$$

$$x^{(j)} \in \mathcal{X}^{(j)} = [0, 1]^p, \qquad p \ll d, \qquad x^{(j)} \cap x^{(j)} = \varnothing.$$
E.g.
$$f(x_{\{1, \dots, 10\}}) = f^{(1)}(x_{\{1, 3, 9\}}) + f^{(2)}(x_{\{2, 4, 8\}}) + f^{(3)}(x_{\{5, 6, 10\}}).$$

Call
$$\{X^{(j)}_{j=1}^M\} = \{(1,3,9), (2,4,8), (5,6,10)\}$$
 the "decomposition".

Additive Models for High Dimensional BO

(Kandasamy et al. ICML 2015)

Structural assumption:

$$f(x) = f^{(1)}(x^{(1)}) + f^{(2)}(x^{(2)}) + \dots + f^{(M)}(x^{(M)}).$$

$$x^{(j)} \in \mathcal{X}^{(j)} = [0, 1]^p, \qquad p \ll d, \qquad x^{(i)} \cap x^{(j)} = \varnothing.$$

E.g.
$$f(x_{\{1,...,10\}}) = f^{(1)}(x_{\{1,3,9\}}) + f^{(2)}(x_{\{2,4,8\}}) + f^{(3)}(x_{\{5,6,10\}})$$
.

Call
$$\{X^{(j)}_{j=1}^M\} = \{(1,3,9), (2,4,8), (5,6,10)\}$$
 the "decomposition".

Advantages:

- ▶ Statistical: Better bias-variance trade-offs in high dimensions.
- \triangleright Computational: Easy to maximise acquisition and choose x_t .

Upper Confidence Bound:

$$\varphi_t(x) = \sum_{j=1}^{M} \underbrace{\mu_{t-1}^{(j)}(x^{(j)}) + \beta_t^{1/2} \sigma_{t-1}^{(j)}(x^{(j)})}_{\widehat{\varphi}_t^{(j)}(x^{(j)})}.$$

Maximise each $\widetilde{\varphi}_t^{(j)}$ separately.

Requires only $\mathcal{O}(\text{poly}(d)\epsilon^{-p})$ effort (vs $\mathcal{O}(\epsilon^{-d})$ for GP-UCB).

Additive models can still be useful in non-additive settings

- ► Additive models common in high dimensional regression. E.g.: Backfitting, MARS, COSSO, RODEO, SpAM etc. (Friedman '91, Lin et al. '06, Lafferty et al '05, Ravikumar et al. '09)
- ▶ Additive models are statistically simpler ⇒ worse bias, but much better variance in low sample regime.
- In bandit applications queries are expensive. So we usually cannot afford many queries.

Observation:

Add-GP-UCB does well even when f is not additive.

- ▶ Better bias/ variance trade-off in estimating the GP.
- Easy to maximise upper confidence bound.

Experiment: Viola & Jones Face Detection

A cascade of 22 weak classifiers.

Image classified negative if the score < threshold at any stage.

Experiment: Viola & Jones Face Detection

A cascade of 22 weak classifiers.

Image classified negative if the score < threshold at any stage.

In the paper we go up to > 100 dimensions.

Outline

- ► Part I: Preliminaries (Black-box Optimisation)
 - 1. Bayesian Models
 - 2. Black-box Optimisation via Thompson Sampling
- ▶ Part II: DOE via posterior sampling
- ▶ Part III: Scaling up DOE (back to Black-box Optimisation)
 - 1. Parallelising experiments
 - 2. Multi-fidelity experimentation
 - 3. High dimensional input spaces
 - 4. Beyond Euclidean/categorical domains
- ► Part IV: ExperiML & Collaborations with LBL

Feedforward network

At each time step

At each time step

At each time step

Main challenges

- Define a distance between neural network architectures.
- Optimise φ_t on the space of neural networks.

OTMANN: A distance between Neural Architectures

(Kandasamy et al. Arxiv 2018)

Key idea: To compute distance between architectures G_1 , G_2 , match computation in layers in G_1 to G_2 .

OTMANN: A distance between Neural Architectures

(Kandasamy et al. Arxiv 2018)

Key idea: To compute distance between architectures G_1 , G_2 , match computation in layers in G_1 to G_2 .

 $Z \in \mathbb{R}^{n_1 \times n_2}$. $Z_{ij} \leftarrow$ amount matched between layer $i \in G_1$ and $j \in G_2$.

OTMANN: A distance between Neural Architectures

(Kandasamy et al. Arxiv 2018)

Key idea: To compute distance between architectures G_1 , G_2 , match computation in layers in G_1 to G_2 .

$$Z \in \mathbb{R}^{n_1 \times n_2}$$
.

 $Z_{ij} \leftarrow \text{amount matched between layer}$ $i \in G_1 \text{ and } j \in G_2.$

Minimise
$$\phi_{\text{lmm}}(Z) + \phi_{\text{str}}(Z) + \phi_{\text{nas}}(Z)$$

 $\phi_{\mathrm{lmm}}(Z)$: label mismatch penalty

 $\phi_{\rm str}(Z)$: structural penalty

 $\phi_{\rm nas}(Z)$: non-assignment penalty

OTMANN: A distance between Neural Architectures

(Kandasamy et al. Arxiv 2018)

Key idea: To compute distance between architectures G_1 , G_2 , match computation in layers in G_1 to G_2 .

$$Z \in \mathbb{R}^{n_1 \times n_2}$$
.
 $Z_{ij} \leftarrow$ amount matched between layer
 $i \in G_1$ and $i \in G_2$.

Minimise
$$\phi_{\text{lmm}}(Z) + \phi_{\text{str}}(Z) + \phi_{\text{nas}}(Z)$$

 $\phi_{
m lmm}(Z)$: label mismatch penalty

 $\phi_{
m str}(Z)$: structural penalty

 $\phi_{\rm nas}(Z)$: non-assignment penalty

Can prove that the solution is a distance.

Optimising the sample from the posterior

Via an evolutionary algorithm.

Operation	Description
dec_single	Pick a layer at random and decrease the number of units by $1/8$.
dec_en_masse	Pick several layers at random in topological order and decrease the number of units by $1/8$ for all of them.
inc_single	Pick a layer at random and increase the number of units by $1/8$.
inc_en_masse	Pick several layers at random in topological order and increase the number of units by $1/8$ for all of them.
dup₋path	Pick a random path $u_1, u_2, \dots, u_{k-1}, u_k$, duplicate layers u_2, \dots, u_{k-1} and connect them to u_1 and u_k .
remove_layer	Pick a layer at random and remove it. Connect the layer's parents to its children if necessary.
skip	Randomly pick layers u, v where u is topologically before v . Add (u, v) to \mathcal{E} .
swap_label	Randomly pick a layer and change its label.
wedge_layer	Randomly remove an edge (u, v) from \mathcal{E} . Create a new layer w and add $(u, w), (w, v)$ to \mathcal{E} .

Optimising the sample from the posterior

Via an evolutionary algorithm.

Operation	Description
dec_single	Pick a layer at random and decrease the number of units by $1/8$.
dec_en_masse	Pick several layers at random in topological order and decrease the number of units by $1/8$ for all of them.
inc_single	Pick a layer at random and increase the number of units by $1/8$.
inc_en_masse	Pick several layers at random in topological order and increase the number of units by $1/8$ for all of them.
dup₋path	Pick a random path $u_1, u_2, \dots, u_{k-1}, u_k$, duplicate layers u_2, \dots, u_{k-1} and connect them to u_1 and u_k .
remove_layer	Pick a layer at random and remove it. Connect the layer's parents to its children if necessary.
skip	Randomly pick layers u, v where u is topologically before v . Add (u, v) to \mathcal{E} .
swap_label	Randomly pick a layer and change its label.
wedge_layer	Randomly remove an edge (u, v) from \mathcal{E} . Create a new layer w and add $(u, w), (w, v)$ to \mathcal{E} .

Resulting procedure: NASBOT
Neural Architecture Search with Bayesian Optimisation and
Optimal Transport (Kandasamy et al. Arxiv 2018)

Architectures found on Cifar10

Architectures found on Indoor Location

Architectures found on Slice Localisation

DOE on other (graphical) structures

Drug Discovery with Small molecules

Crystal Structures

Social networks & viral marketing

Summary

- ▶ A framework for "goal oriented" DOE.
 - General: can achieve any desired goal.
 - Flexible: can incorporate domain expertise.
- Myopic Posterior Sampling (MPS): An algorithm for DOE inspired by Thompson sampling.
- Can be trivially parallelised.

Summary

- ▶ A framework for "goal oriented" DOE.
 - General: can achieve any desired goal.
 - Flexible: can incorporate domain expertise.
- Myopic Posterior Sampling (MPS): An algorithm for DOE inspired by Thompson sampling.
- Can be trivially parallelised.

Scaling up DOE

- Multi-fidelity experimentation: Use cheap approximations to a an expensive experiment to speed things up.
- High dimensional DOE: Additive models have favourable statistical and computational properties.
- ▶ DOE in "complex" domains.

Outline

- ► Part I: Preliminaries (Black-box Optimisation)
 - 1. Bayesian Models
 - 2. Black-box Optimisation via Thompson Sampling
- ▶ Part II: DOE via posterior sampling
- ▶ Part III: Scaling up DOE (back to Black-box Optimisation)
 - 1. Parallelising experiments
 - 2. Multi-fidelity experimentation
 - 3. High dimensional input spaces
 - 4. Beyond Euclidean/categorical domains
- Part IV: ExperiML & Collaborations with LBL

What is an experiment?

An experiment is any action that has an opportunity cost attached to it.

What is an experiment?

An experiment is any action that has an opportunity cost attached to it.

Examples:

- 1. Experiments to design/discover new materials/drugs.
- 2. Experiments to optimise and industrial process.
- Personalised (contextual) experiments: online advertising, search etc.

Exhaustive search over restricted design space

Manual tuning by experts

Exhaustive search over restricted design space

- + Automated.
- Expensive testing on many poor designs.
- Misses many revolutionary designs since design space is restricted.

Manual tuning by experts

Exhaustive search over restricted design space

- + Automated.
- Expensive testing on many poor designs.
- Misses many revolutionary designs since design space is restricted.

Manual tuning by experts

- Domain experts manually design each test, directly using human expertise.
- Requires significant time and effort from experts.
- Humans are bad at making sense of complex high dimensional data.

Exhaustive search over restricted design space

- + Automated.
- Expensive testing on many poor designs.
- Misses many revolutionary designs since design space is restricted.

Manual tuning by experts

- Domain experts manually design each test, directly using human expertise.
- Requires significant time and effort from experts.
- Humans are bad at making sense of complex high dimensional data.

Value proposition: Faster & Better.

Our technology enables searching over large design spaces and identifies better designs in 10-100 times fewer trials than exhaustive search and expert tuning with significantly less effort from experts.

What we need for a collaboration

A well defined DOE problem. This includes,

- ▶ **Design variables** that can be tuned in the given problem and the constraints on each variable.
- Experimental results. E.g. how well did a design do on the criteria you care.
- ▶ **Goal:** What is the goal of conducting these experiments?
- Means to experiment: For each design, a means to conduct the experiment and obtain feedback, either in simulation or in a real system.

What we need for a collaboration

A well defined DOE problem. This includes,

- ▶ **Design variables** that can be tuned in the given problem and the constraints on each variable.
- Experimental results. E.g: how well did a design do on the criteria you care.
- ▶ **Goal:** What is the goal of conducting these experiments?
- Means to experiment: For each design, a means to conduct the experiment and obtain feedback, either in simulation or in a real system.

In addition ...

- Domain expertise: Explicit models, tacit knowledge etc.
- ▶ Past data: Data from past experiments on this or relevant tasks.

In return, we will ...

- Execute our methods on the data/problem given.
- ▶ ...and recommend new experiments(s) to conduct.

In return, we will ...

- ► Execute our methods on the data/problem given.
- ...and recommend new experiments(s) to conduct.
- ▶ If there is a simulation, we can run it ourselves. Otherwise, we will need your help to run experiments.

CMU, University of Massachusetts Amherst, Rice University, University of Texas Austin, Microsoft Research, ExperiML

Thank You