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Identifying Phase Transitions in Alloys

composition
of alloy

Diffraction

 patterns
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Adaptive Goal Oriented Design of Experiments

Update model
with results

Next design
to test

Experiment

(Bayesian) Model
Recommendation

Algorithm

Application Specific Goal

I Blackbox Optimisation
I Active Learning
I Active Quadrature

(Osborne et al. 2012)

I Active Level Set Estimation (Gotovos et al. ’13)
I Active Search (Ma et al. ’17)
I Active Posterior Estimation

(Kandasamy et al. ’15)
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Outline

1. Blackbox optimisation, Bayesian Models, and Bayesian
Optimisation

2. New Frontiers in Bayesian Optimisation:
Parallel evaluations, High dimensional optimisation, Multi-fidelity

optimisation, Multi-objective optimisation

3. Dragonfly: An Open Source Bayesian Optimisation
Implementation & Experiments

4. General Settings for Adaptive Goal Oriented Design of
Experiments
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Black-box Optimisation

f : X → R is an expensive black-box function, accessible only via
noisy evaluations.

Let x? = argmaxx f (x).

x

f(x)
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Bayesian Models for f

Functions with no observations

x

f(x)
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Bayesian Models for f

Prior

x

f(x)
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Bayesian Models for f

Observations

x

f(x)
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Bayesian Models for f

Posterior given observations

x

f(x)
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Algorithm: Posterior (Thompson) Sampling
(Thompson 1933)

Assume f is drawn from some Bayesian model.

x

f(x)

1) Construct posterior. 2) Draw sample g from posterior.
3) Choose xt = argmaxx g(x). 4) Evaluate f at xt .
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Posterior Sampling – A Simulation (Thompson 1933)
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Posterior Sampling – A Simulation (Thompson 1933)
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Posterior Sampling – A Simulation (Thompson 1933)
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Posterior Sampling – A Simulation (Thompson 1933)
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Posterior Sampling – A Simulation (Thompson 1933)
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Posterior Sampling – A Simulation (Thompson 1933)
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Posterior Sampling – A Simulation (Thompson 1933)
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Posterior Sampling – A Simulation (Thompson 1933)
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Posterior Sampling – A Simulation (Thompson 1933)

x

f(x)

t = 25
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Bayesian Optimisation

Other criteria for selecting xt :

I Upper Confidence Bounds (Auer et al. 2003, Srinivas et al. 2010)

I Expected improvement (Jones et al. 1998)

I Probability of improvement (Kushner et al. 1964)

I Entropy search (Hernández-Lobato et al. 2014, Wang et al. 2017)

I . . . and a few more.

Bayesian models for f :

I Gaussian Processes (Jones et al. 1998)

I Neural networks (Snoek et al. 2015)

I Random forests (Hutter 2009)

I Customised models
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2.1 Parallel Evaluations

Sequential evaluations with one worker

Parallel evaluations with M workers (Asynchronous)

Parallel evaluations with M workers (Synchronous)
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Parallel Evaluations

Direct application of Thompson sampling works! (KKSP AISTATS’18)

I Conceptually and computationally simple in practice.

Theorem (Informal): Parallel posterior sampling

I Both synchronous and asynchronous posterior sampling are
almost as good as sequential posterior sampling after n
function evaluations.

I If evaluation times are the same, the synchronous version is
marginally better than asynchronous version.

I When there is high variability in evaluation times,
asynchronous version is better than synchronous.
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2.2 High Dimensional Bayesian Optimisation

Optimise f : [0, 1]d → R when d is very large.

At each time step

x

f(x)

x

f(x)

xt

1. Statistical Difficulty: estimating a high dimensional GP
requires several samples.

2. Computational Difficulty: maximising a high dimensional
acquisition (e.g. upper confidence bound) ϕt .
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Additive Models for High Dimensional BO
(KSP ICML’15)

f (x) = f (1)(x (1)) + f (2)(x (2)) + . . . + f (M)(x (M)).

x (j)’s are p-dimensional, p � d .

I Theory: Dependence on dimension improves from exponential
to linear.

I Better bias-variance trade-off even if f is not additive.

I Add-GP-UCB: algorithm with attractive computational
properties.
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2.3 Multi-fidelity Optimisation

Motivating question:
What if we have cheap approximations to f ?

1. In many computational models: simulations and numerical
computations with varying levels of granularity.

Cosmological
   Simulator

Observation

E.g:
Hubble Constant
Baryonic Density

Likelihood
   Score

Likelihood computation

2. In many applications:
Laborotary experiment > Expensive simulation > Simple
computational model
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Multi-fidelity Bandits (KDSP ICML’17)

X
Z

A fidelity space Z and domain X
Z ← all granularity values

X ← space of cosmological parameters

g : Z × X → R.
g(z , x) ← likelihood score when per-

forming simulations with granularity z

z at cosmological parameters x .

Denote f (x) = g(z•, x) where z• ∈ Z. z• = highest grid size.

End Goal: Find x? = argmaxx f (x).

A cost function, λ : Z → R+.
λ(z) = O(zp) (say).

Z z•

λ(z)
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Algorithm: BOCA (KDSP ICML’17)

Model g ∼ GP(0, κ) and com-
pute posterior GP:

mean µt−1 : Z × X → R
std-dev σt−1 : Z × X → R+

(1) xt ← maximise upper confidence bound for f (x) = g(z•, x).

xt = argmax
x∈X

µt−1(z•, x) + β
1/2
t σt−1(z•, x)

(2) Zt ≈ {z•} ∪
{
z : σt−1(z , xt) ≥ γ(z) =

(
λ(z)

λ(z•)

)q

ξ(z)

}
(3) zt = argmin

z∈Zt

λ(z) (cheapest z in Zt)
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Theoretical Results for BOCA

x⋆
X

g(z, x)

f(x)

z•
Z

“good”

x⋆

g(z, x)

X

f(x)

z•
Z

“bad”

Theorem: (Informal)
BOCA does better, i.e. achieves better Simple regret, than GP-
UCB. The improvements are better in the “good” setting when
compared to the “bad” setting.
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2.4 Multi-objective Optimisation

Can we optimise for multiple objectives?

solvents/salt

concentrations,

physical/process

conditions

conductivity,
voltage window

electrolyte
design

Experiment

20



Pareto-optimality

Voltage Window

C
o
n
d
u
ct

iv
it

y
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Pareto-optimality
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Multi-objective Bayesian Optimisation via Random Scalarisations
(PKP UAI’19)

A scalarisation function produces a scalar value from multiple
objective values.
E.g. linear scalarisation, sλ(x) = λ1f1(x) + λ2f2(x).
Other examples: Tsebychev scalarisation

For all λ = (λ1, λ2), x?λ := argmaxx∈X sλ(x) is Pareto optimal.

I By randomly sampling λ, we can explore the Pareto front.

I By choosing the sampling distribution, we can control the
region of the Pareto front we want to explore.
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Dragonfly (KVNPCSPX Arxiv’19)

dragonfly.github.io

pip install dragonfly-opt
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Dragonfly (KVNPCSPX Arxiv’19)
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Dragonfly (KVNPCSPX Arxiv’19)
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Dragonfly (KVNPCSPX Arxiv’19)
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Dragonfly: Cosmological inference on Type-1a supernovae

Estimate Hubble constant, dark matter fraction & dark energy
fraction using data on Type-1a supernovae. Approximate using less
data and/or less granular grid for numerical integration.
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Dragonfly: Electrolyte Design
Multi-objective optimisation (conductivity, voltage window).
Optimising for concentrations of LiNO3, Li2SO4, and NaClO4 in an
aqueous medium.

28



Dragonfly: Optimising Small Molecules (KXKNSPX Arxiv’19)

Discover organic small molecules with high drug-likeness scores
(QED score, penalised log partition coefficient etc.).
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* Also uses synthesis predictors (e.g. RexGen, (CJRJJGBJ ’19)) to
provide a synthesis recipe along with each recommendation.
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Dragonfly: Optimising Small Molecules (KXKNSPX Arxiv’19)

QED = 0.92145 QED = 0.94087

P-logP = 11.988 P-logP = 11.270
30
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Adaptive Goal Oriented Design of Experiments

Update model
with results

Next design
to test

Experiment

(Bayesian) Model
Recommendation

Algorithm

Application Specific Goal

I Blackbox Optimisation
I Active Learning
I Active Quadrature

(Osborne et al. 2012)

I Active Level Set Estimation (Gotovos et al. ’13)
I Active Search (Ma et al. ’17)
I Active Posterior Estimation

(Kandasamy et al. ’15)

Issues:
I New goal/setting =⇒ New algorithm?

I Algorithms tend to depend on the model and vice versa.
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Phase Identification in Alloys

composition
of alloy

Diffraction
 patterns

X-Ray Diffraction
Studies

Goal: Identify changes in crystal structure in an alloy.
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Multiple Goals in Electrolyte Design

solvents/salt
concentrations,
physical/process
conditions

solubility,
viscosity,
conductivity

MD/DFT Simulations,
Viscometer tests,

Impedance spectroscopy,
UV-vis spectroscopy

Goal: Actively learn viscosity and solubility, while simultaneously
optimising conductivity.
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Adaptive Goal Oriented Design of Experiments
(KNZKSP ICML’19)

1. System:

I An unknown parameter θ completely specifies the system.

I A prior P(θ) and a likelihood P(Y |X , θ).

2. Goal:

I Collect data Dn = {(xt , yxt )}nt=1 to maximise a user specified
reward function λ(θ,Dn).
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Algorithm: Myopic Posterior Sampling (MPS)
Inspired by Posterior Sampling.

Algorithm: MPS
- Set D0 ← initial data.
- For t = 1, 2, . . . , do

1. Sample θ′ ∼ P(θ|Dt−1).
2. Choose xt = argmaxx∈X λ

+(θ′,Dt−1, x).
3. yxt ← conduct experiment at xt .
4. Set Dt ← Dt−1 ∪ {(xt , yxt )}.

Only require that we can sample from the posterior P(θ|Dt−1).
- Many probabilistic programming tools available today.

λ+(θ′,D, x)← expected next step reward if θ′ was the system, we
already have data D, and we were to conduct an experiment at x :

λ+(θ′,D, x) = EYx∼P(Y |x ,θ′)

[
λ
(
θ′, D ∪ {(x ,Yx)}

)]
.

35
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3. yxt ← conduct experiment at xt .
4. Set Dt ← Dt−1 ∪ {(xt , yxt )}.

Only require that we can sample from the posterior P(θ|Dt−1).
- Many probabilistic programming tools available today.

λ+(θ′,D, x)← expected next step reward if θ′ was the system, we
already have data D, and we were to conduct an experiment at x :

λ+(θ′,D, x) = EYx∼P(Y |x ,θ′)

[
λ
(
θ′, D ∪ {(x ,Yx)}

)]
.
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Theory

Theorem (Informal): Under certain conditions, MPS is com-
petitive with a globally optimal oracle that knows θ.

E[λ(θ,Dn)|Dn ∼ πPS

M ] ≥

(1− γ)E[λ(θ,D?
γn)|D?

γn ∼ π?G]−
√
|X |τnΨn

2n
.

Proof ideas from
- Adaptive Submodularity
- Reinforcement Learning
- Bandits
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Experiment: Active Level Set Estimation

λ(θ?,Dn) = −vol(1{Sθ?,L 6= ŜDn,L})
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Experiment: Custom Goal in Electrolyte Design

An experiment measures solubility, viscosity and conductivity of an
electrolyte design.
Goal: Optimise conductivity while learning solubility and viscosity.

λ(θ?,Dn) = ‖fdissol − f̂dissol(Dn)‖2 + ‖fvis − f̂vis(Dn)‖2+

(max fcon − max
Xt ,t≤n

fcon(Xt)),
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Thank You

Slides:
people.eecs.berkeley.edu/∼kandasamy/talks/maryland slides aug2019.pdf
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Summary

Bayesian models allow quantifying uncertainty system given
experimental results → called the posterior.
- Use posterior to plan future experiments.

Bayesian Optimisation: used for optimising black-box systems.

I Conduct multiple parallel function calls. (KKSP AISTATS’18)

I Multi-fidelity optimisation: Use cheap approximations to a an
expensive experiment to speed up optimisation.

(KDSP NeurIPS’16a, KDOSP NeurIPS’16b, KDSP ICML’17)

I Find Pareto front when optimising multiple criteria (PKP UAI’19)

I Additive models have favourable statistical and computational
properties in high dimensional optimisation. (KSP ICML’15)

Dragonfly: A library for scalable Bayesian optimisation. Applied to
problems in electrolyte design, drug discovery etc. (KVNPCSPX Arxiv’19)

Bayesian methods for Goal Oriented Design of Experiments:
(KNZKSP ICML’19)
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