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Identifying Phase Transitions in Alloys

composition
of alloy

Diffraction

 patterns
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Adaptive Goal Oriented Design of Experiments

Update model
with results

Next design
to test

Experiment

(Bayesian) Model
Recommendation

Algorithm

Application Specific Goal

I Blackbox Optimisation
I Active Learning
I Active Quadrature

(Osborne et al. 2012)

I Active Level Set Estimation (Gotovos et al. ’13)
I Active Search (Ma et al. ’17)
I Active Posterior Estimation

(Kandasamy et al. ’15)
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Outline

1. Blackbox optimisation, Bayesian Models, and Bayesian
Optimisation

2. New Frontiers in Bayesian Optimisation:
Parallel evaluations, High dimensional optimisation, Multi-fidelity

optimisation, Multi-objective optimisation

3. Dragonfly: An Open Source Bayesian Optimisation
Implementation & Experiments

4. General Settings for Adaptive Goal Oriented Design of
Experiments

3



Outline

1. Blackbox optimisation, Bayesian Models, and Bayesian
Optimisation

2. New Frontiers in Bayesian Optimisation:
Parallel evaluations, High dimensional optimisation, Multi-fidelity

optimisation, Multi-objective optimisation

3. Dragonfly: An Open Source Bayesian Optimisation
Implementation & Experiments

4. General Settings for Adaptive Goal Oriented Design of
Experiments

4



Black-box Optimisation

f : X → R is an expensive black-box function, accessible only via
noisy evaluations.

Let x? = argmaxx f (x).

x

f(x)
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Bayesian Models for f

Functions with no observations

x

f(x)
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Bayesian Models for f

Prior

x

f(x)
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Bayesian Models for f

Observations
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f(x)
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Bayesian Models for f

Posterior given observations

x

f(x)

6



Algorithm: Posterior (Thompson) Sampling
(Thompson 1933)

Assume f is drawn from some Bayesian model.

x

f(x)

1) Construct posterior. 2) Draw sample g from posterior.
3) Choose xt = argmaxx g(x). 4) Evaluate f at xt .
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Posterior Sampling – A Simulation (Thompson 1933)
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Posterior Sampling – A Simulation (Thompson 1933)
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Posterior Sampling – A Simulation (Thompson 1933)
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Posterior Sampling – A Simulation (Thompson 1933)
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Posterior Sampling – A Simulation (Thompson 1933)
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Posterior Sampling – A Simulation (Thompson 1933)
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Posterior Sampling – A Simulation (Thompson 1933)
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Posterior Sampling – A Simulation (Thompson 1933)
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Posterior Sampling – A Simulation (Thompson 1933)

x

f(x)

t = 25
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Bayesian Optimisation

Other criteria for selecting xt :

I Upper Confidence Bounds (Auer et al. 2003, Srinivas et al. 2010)

I Expected improvement (Jones et al. 1998)

I Probability of improvement (Kushner et al. 1964)

I Entropy search (Hernández-Lobato et al. 2014, Wang et al. 2017)

I . . . and a few more.

Bayesian models for f :

I Gaussian Processes (Jones et al. 1998)

I Neural networks (Snoek et al. 2015)

I Random forests (Hutter 2009)

I Customised models
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2.1 Parallel Evaluations

Sequential evaluations with one worker

Parallel evaluations with M workers (Asynchronous)

Parallel evaluations with M workers (Synchronous)
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Parallel Evaluations

Direct application of Thompson sampling works! (KKSP AISTATS’18)

I Conceptually and computationally simple in practice.

Theorem (Informal): Parallel posterior sampling

I Both synchronous and asynchronous posterior sampling are
almost as good as sequential posterior sampling after n
function evaluations.

I If evaluation times are the same, the synchronous version is
marginally better than asynchronous version.

I When there is high variability in evaluation times,
asynchronous version is better than synchronous.
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2.2 High Dimensional Bayesian Optimisation

Optimise f : [0, 1]d → R when d is very large.

At each time step

x

f(x)

x

f(x)

xt

1. Statistical Difficulty: estimating a high dimensional GP
requires several samples.

2. Computational Difficulty: maximising a high dimensional
acquisition (e.g. upper confidence bound) ϕt .
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Additive Models for High Dimensional BO
(KSP ICML’15)

f (x) = f (1)(x (1)) + f (2)(x (2)) + . . . + f (M)(x (M)).

x (j)’s are p-dimensional, p � d .

I Theory: Dependence on dimension improves from exponential
to linear.

I Better bias-variance trade-off even if f is not additive.

I Add-GP-UCB: algorithm with attractive computational
properties.
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2.3 Multi-fidelity Optimisation

Motivating question:
What if we have cheap approximations to f ?

1. In many computational models: simulations and numerical
computations with varying levels of granularity.

Cosmological
   Simulator

Observation

E.g:
Hubble Constant
Baryonic Density

Likelihood
   Score

Likelihood computation

2. In many applications:
Laborotary experiment > Expensive simulation > Simple
computational model
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Multi-fidelity Bandits (KDSP ICML’17)

X
Z

A fidelity space Z and domain X
Z ← all granularity values

X ← space of cosmological parameters

g : Z × X → R.
g(z , x) ← likelihood score when per-

forming simulations with granularity z

z at cosmological parameters x .

Denote f (x) = g(z•, x) where z• ∈ Z. z• = highest grid size.

End Goal: Find x? = argmaxx f (x).

A cost function, λ : Z → R+.
λ(z) = O(zp) (say).

Z z•

λ(z)
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Algorithm: BOCA (KDSP ICML’17)

Model g ∼ GP(0, κ) and com-
pute posterior GP:

mean µt−1 : Z × X → R
std-dev σt−1 : Z × X → R+

(1) xt ← maximise upper confidence bound for f (x) = g(z•, x).

xt = argmax
x∈X

µt−1(z•, x) + β
1/2
t σt−1(z•, x)

(2) Zt ≈ {z•} ∪
{
z : σt−1(z , xt) ≥ γ(z) =

(
λ(z)

λ(z•)

)q

ξ(z)

}
(3) zt = argmin

z∈Zt

λ(z) (cheapest z in Zt)
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Theoretical Results for BOCA

x⋆
X

g(z, x)

f(x)

z•
Z

“good”

x⋆

g(z, x)

X

f(x)

z•
Z

“bad”

Theorem: (Informal)
BOCA does better, i.e. achieves better Simple regret, than GP-
UCB. The improvements are better in the “good” setting when
compared to the “bad” setting.
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2.4 Multi-objective Optimisation

Can we optimise for multiple objectives?

solvents/salt

concentrations,

physical/process

conditions

conductivity,
voltage window

electrolyte
design

Experiment
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Pareto-optimality

Voltage Window

C
o
n
d
u
ct

iv
it

y
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Pareto-optimality
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Multi-objective Bayesian Optimisation via Random Scalarisations
(PKP UAI’19)

A scalarisation function produces a scalar value from multiple
objective values.
E.g. linear scalarisation, sλ(x) = λ1f1(x) + λ2f2(x).
Other examples: Tsebychev scalarisation

For all λ = (λ1, λ2), x?λ := argmaxx∈X sλ(x) is Pareto optimal.

I By randomly sampling λ, we can explore the Pareto front.

I By choosing the sampling distribution, we can control the
region of the Pareto front we want to explore.
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Dragonfly (KVNPCSPX Arxiv’19)

dragonfly.github.io

pip install dragonfly-opt
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Dragonfly (KVNPCSPX Arxiv’19)
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Dragonfly (KVNPCSPX Arxiv’19)
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Dragonfly (KVNPCSPX Arxiv’19)
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Dragonfly: Cosmological inference on Type-1a supernovae

Estimate Hubble constant, dark matter fraction & dark energy
fraction using data on Type-1a supernovae. Approximate using less
data and/or less granular grid for numerical integration.
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Dragonfly: Electrolyte Design
Multi-objective optimisation (conductivity, voltage window).
Optimising for concentrations of LiNO3, Li2SO4, and NaClO4 in an
aqueous medium.

28



Dragonfly: Optimising Small Molecules (KXKNSPX Arxiv’19)

Discover organic small molecules with high drug-likeness scores
(QED score, penalised log partition coefficient etc.).
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* Also uses synthesis predictors (e.g. RexGen, (CJRJJGBJ ’19)) to
provide a synthesis recipe along with each recommendation.
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Dragonfly: Optimising Small Molecules (KXKNSPX Arxiv’19)

QED = 0.92145 QED = 0.94087

P-logP = 11.988 P-logP = 11.270
30



Outline

1. Blackbox optimisation, Bayesian Models, and Bayesian
Optimisation

2. New Frontiers in Bayesian Optimisation:
Parallel evaluations, High dimensional optimisation, Multi-fidelity

optimisation, Multi-objective optimisation

3. Dragonfly: An Open Source Bayesian Optimisation
Implementation & Experiments

4. General Settings for Adaptive Goal Oriented Design of
Experiments

31



Adaptive Goal Oriented Design of Experiments

Update model
with results

Next design
to test

Experiment

(Bayesian) Model
Recommendation

Algorithm

Application Specific Goal

I Blackbox Optimisation
I Active Learning
I Active Quadrature

(Osborne et al. 2012)

I Active Level Set Estimation (Gotovos et al. ’13)
I Active Search (Ma et al. ’17)
I Active Posterior Estimation

(Kandasamy et al. ’15)

Issues:
I New goal/setting =⇒ New algorithm?

I Algorithms tend to depend on the model and vice versa.
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Phase Identification in Alloys

composition
of alloy

Diffraction
 patterns

X-Ray Diffraction
Studies

Goal: Identify changes in crystal structure in an alloy.
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Multiple Goals in Electrolyte Design

solvents/salt
concentrations,
physical/process
conditions

solubility,
viscosity,
conductivity

MD/DFT Simulations,
Viscometer tests,

Impedance spectroscopy,
UV-vis spectroscopy

Goal: Actively learn viscosity and solubility, while simultaneously
optimising conductivity.

33



Adaptive Goal Oriented Design of Experiments
(KNZKSP ICML’19)

1. System:

I An unknown parameter θ completely specifies the system.

I A prior P(θ) and a likelihood P(Y |X , θ).

2. Goal:

I Collect data Dn = {(xt , yxt )}nt=1 to maximise a user specified
reward function λ(θ,Dn).
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Algorithm: Myopic Posterior Sampling (MPS)
Inspired by Posterior Sampling.

Algorithm: MPS
- Set D0 ← initial data.
- For t = 1, 2, . . . , do

1. Sample θ′ ∼ P(θ|Dt−1).
2. Choose xt = argmaxx∈X λ

+(θ′,Dt−1, x).
3. yxt ← conduct experiment at xt .
4. Set Dt ← Dt−1 ∪ {(xt , yxt )}.

Only require that we can sample from the posterior P(θ|Dt−1).
- Many probabilistic programming tools available today.

λ+(θ′,D, x)← expected next step reward if θ′ was the system, we
already have data D, and we were to conduct an experiment at x :

λ+(θ′,D, x) = EYx∼P(Y |x ,θ′)

[
λ
(
θ′, D ∪ {(x ,Yx)}

)]
.

35
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3. yxt ← conduct experiment at xt .
4. Set Dt ← Dt−1 ∪ {(xt , yxt )}.

Only require that we can sample from the posterior P(θ|Dt−1).
- Many probabilistic programming tools available today.

λ+(θ′,D, x)← expected next step reward if θ′ was the system, we
already have data D, and we were to conduct an experiment at x :

λ+(θ′,D, x) = EYx∼P(Y |x ,θ′)

[
λ
(
θ′, D ∪ {(x ,Yx)}

)]
.
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Theory

Theorem (Informal): Under certain conditions, MPS is com-
petitive with a globally optimal oracle that knows θ.

E[λ(θ,Dn)|Dn ∼ πPS

M ] ≥

(1− γ)E[λ(θ,D?
γn)|D?

γn ∼ π?G]−
√
|X |τnΨn

2n
.

Proof ideas from
- Adaptive Submodularity
- Reinforcement Learning
- Bandits
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Experiment: Active Level Set Estimation

λ(θ?,Dn) = −vol(1{Sθ?,L 6= ŜDn,L})
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Experiment: Custom Goal in Electrolyte Design

An experiment measures solubility, viscosity and conductivity of an
electrolyte design.
Goal: Optimise conductivity while learning solubility and viscosity.

λ(θ?,Dn) = ‖fdissol − f̂dissol(Dn)‖2 + ‖fvis − f̂vis(Dn)‖2+

(max fcon − max
Xt ,t≤n

fcon(Xt)),
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Thank You

Slides:
people.eecs.berkeley.edu/∼kandasamy/talks/maryland slides aug2019.pdf

39

https://people.eecs.berkeley.edu/~kandasamy/talks/maryland_slides_aug2019.pdf


Summary

Bayesian models allow quantifying uncertainty system given
experimental results → called the posterior.
- Use posterior to plan future experiments.

Bayesian Optimisation: used for optimising black-box systems.

I Conduct multiple parallel function calls. (KKSP AISTATS’18)

I Multi-fidelity optimisation: Use cheap approximations to a an
expensive experiment to speed up optimisation.

(KDSP NeurIPS’16a, KDOSP NeurIPS’16b, KDSP ICML’17)

I Find Pareto front when optimising multiple criteria (PKP UAI’19)

I Additive models have favourable statistical and computational
properties in high dimensional optimisation. (KSP ICML’15)

Dragonfly: A library for scalable Bayesian optimisation. Applied to
problems in electrolyte design, drug discovery etc. (KVNPCSPX Arxiv’19)

Bayesian methods for Goal Oriented Design of Experiments:
(KNZKSP ICML’19)
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