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On-line advertising

You are given a pool of 250 ads.

Task:
I You can display one ad at a time, (say for 106 times).

I You wish to maximise the cumulative number of clicks, i.e.
identify ads with the highest click-through-rate and display
them most of the time.
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The Stochastic Multi-armed Bandit (Robbins, 1952)

I You are given K arms, X = {1, . . . ,K}.

I At every round you “play/pull” an arm.

I When you play arm xt ∈ X in round t you receive a stochastic
reward yt , where E[yt ] = f (xt).

I Goal: Maximise the cumulative sum of expected rewards,

E
[ n∑

t=1

yt

]
=

n∑
t=1

f (xt).

I Goal: An algorithm (policy/strategy) which achieves “small”
cumulative regret,

Rn =
n∑

t=1

f (x?)−
n∑

t=1

f (xt) =
n∑

t=1

(
f (x?)− f (xt)

)
.

where, x? = argmaxx∈X f (x).
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Smooth Bandits

f : X → R is a black-box function that is accessible only via noisy
evaluations. X is a metric space, e.g. Rd .

Let x? = argmaxx f (x).

x

f(x)

Cumulative Regret after n evaluations

Rn =
n∑

t=1

f (x?) − f (xt).
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Smooth Bandits

f : X → R is a black-box function that is accessible only via noisy
evaluations. X is a metric space, e.g. Rd .
Let x? = argmaxx f (x).

x

f(x)

x∗

f(x∗)

Simple Regret after n evaluations

Sn = f (x?) − max
t=1,...,n

f (xt).

3/39



Applications

Cosmological
   Simulator

Observation

E.g:
Hubble Constant
Baryonic Density

Likelihood
   Score

Likelihood computation
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Applications

Neural Network
hyper-
parameters

cross validation
accuracy

- Train NN using given hyper-parameters
- Compute accuracy on validation set
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Applications

Expensive Blackbox
          Function

Other Examples:
- Pre-clinical Drug Discovery
- Optimal policy in Autonomous Driving
- Synthetic gene design
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Recap

Types of arms (domain X )

1. K -armed bandit, X is a finite set.

2. Smooth bandit, X is a metric space (e.g. Rd).

3. “Smooth K -armed” bandits, X is finite, but there is
additional structure.

f : X → R. On playing x ∈ X you observe f (x) + ε, Eε = 0.

Two notions of regret

1. Cumulative regret, Rn =
∑n

t=1 f (x?)− f (xt).

2. Simple regret, Sn = f (x?)−maxt=1,...,n f (xt).

Other formalisms: contextual bandit, adversarial bandit, duelling
bandit, linear bandit, best arm identification and several more . . .

N.B: Pulling/playing an arm = experiment = function evaluation
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Outline

I Part I: Stochastic bandits (cont’d)

1. Gaussian processes for smooth bandits

2. Algorithms: Upper Confidence Bound (UCB) & Thompson
Sampling (TS)

I Digression: SL2College Research Collaboration Program

I Part II: My research

1. Multi-fidelity bandit: cheap approximations to an expensive
experiments

2. Parallelising arm pulls
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Gaussian (Normal) distribution N (µ, σ2)

I A probability distribution for real valued random variables.

I Mean µ and variance σ2 completely characterises distribution.

I For samples X1, . . . ,Xn, let µ̂ = 1
n

∑
i Xi be the sample mean.

Then, µ̂± 1.96 σ√
n

is a 95% confidence interval for µ.

I Can draw samples (e.g. in Matlab: mu + sigma * randn()).
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Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.
Completely characterised by mean function µ : X → R, and
covariance kernel κ : X × X → R.

Functions with no observations

x

f(x)

After t observations, f (x) ∼ N (µt(x), σ2t (x) ).
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Algorithm 1: Upper Confidence Bounds in GP Bandits

Model f ∼ GP(0, κ).

Gaussian Process Upper Confidence Bound (GP-UCB)
(Srinivas et al. 2010).

x

f(x)

Construct upper conf. bound: ϕt(x) = µt−1(x) + β
1/2
t σt−1(x).
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Algorithm 1: Upper Confidence Bounds in GP Bandits

Model f ∼ GP(0, κ).

Gaussian Process Upper Confidence Bound (GP-UCB)
(Srinivas et al. 2010).

x

f(x)

ϕt = µt−1 + β
1/2
t σt−1

xt

Maximise upper confidence bound.
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GP-UCB

xt = argmax
x

µt−1(x) + β
1/2
t σt−1(x)

I µt−1: Exploitation

I σt−1: Exploration

I βt controls the tradeoff. βt � log t.

GP-UCB, κ is an SE kernel (Srinivas et al. 2010)

w.h.p Sn = f (x?)− max
t=1,...,n

f (xt) .

√
log(n)dvol(X )

n
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GP-UCB (Srinivas et al. 2010)

x

f(x)
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GP-UCB (Srinivas et al. 2010)
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x
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GP-UCB (Srinivas et al. 2010)

t = 7
x

f(x)
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GP-UCB (Srinivas et al. 2010)

t = 11
x

f(x)
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GP-UCB (Srinivas et al. 2010)

t = 25
x

f(x)

11/39



Algorithm 2: Thompson Sampling in GP Bandits

Model f ∼ GP(0, κ).

Thompson Sampling (TS) (Thompson, 1933).

x

f(x)

Draw sample g from posterior. Choose xt = argmaxx g(x).
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Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)
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t = 1

13/39



Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 2

13/39



Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 3

13/39



Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 4

13/39



Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 5

13/39



Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 6

13/39



Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 7

13/39



Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 11

13/39



Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 25
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Outline

I Part I: Stochastic bandits (cont’d)

1. Gaussian processes for smooth bandits

2. Algorithms: Upper Confidence Bound (UCB) & Thompson
Sampling (TS)

I Digression: SL2College Research Collaboration Program

I Part II: My research

1. Multi-fidelity bandit: cheap approximations to an expensive
experiments

2. Parallelising arm pulls
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SL2College

www.sl2college.org
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SL2College Research Collaboration Program
-Ashwin de Silva

www.sl2college.org/research-collab

research-collab@sl2college.org
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SL2College Research Collaboration Program

How it works

We have a pool of doctoral/post-doctoral/professorial mentors (all
Sri Lankan).

We connect Sri Lankan undergrads to mentors, who will guide the
students on a research project.

Aim: Publish a paper (at a good venue) within a 9-15 month time
frame.
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Application Process

I Fill out the application form on our webpage:
www.sl2college.org/research-collab

- mention areas of interests and preferred mentors.

I .. and email your CV to research-collab@sl2college.org.

I If we decide to proceed, we ask you to submit a ∼ 1 page
research statement,

- your research interests & future plans

- why you are interested in working with aforesaid mentor.

I We send your CV & statement to the mentor. If he/she is
interested, we initiate a collaboration.

I You report to us once every 3 months.
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SL2College Research Collaboration Team

Ashwin Nuwan Rajitha

Umashanthi Kirthevasan

www.sl2college.org/research-collab

research-collab@sl2college.org
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Outline

I Part I: Stochastic bandits (cont’d)

1. Gaussian processes for smooth bandits

2. Algorithms: Upper Confidence Bound (UCB) & Thompson
Sampling (TS)

I Digression: SL2College Research Collaboration Program

I Part II: My research

1. Multi-fidelity bandit: cheap approximations to an expensive
experiments

2. Parallelising arm pulls
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Part 2.1: Multi-fidelity Bandits

Motivating question:
What if we have cheap approximations to f ?

1. Computational astrophysics and other scientific experiments:
simulations and numerical computations with less granularity.

Cosmological
   Simulator

Observation

E.g:
Hubble Constant
Baryonic Density

Likelihood
   Score

Likelihood computation

2. Hyper-parameter tuning: Train & validate with a subset of the
data.

3. Robotics & autonomous driving: computer simulation vs real
world experiment.
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Multi-fidelity Methods

For specific applications,

I Industrial design (Forrester et al. 2007)

I Hyper-parameter tuning (Agarwal et al. 2011, Klein et al. 2015,

Li et al. 2016)

I Active learning (Zhang & Chaudhuri 2015)

I Robotics (Cutler et al. 2014)

Multi-fidelity bandits & optimisation (Huang et al. 2006,

Forrester et al. 2007, March & Wilcox 2012, Poloczek et al. 2016)

. . . with theoretical guarantees (Kandasamy et al. NIPS 2016a&b,

Kandasamy et al. ICML 2017)
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Multi-fidelity Bandits (Kandasamy et al. ICML 2017)

X
Z

A fidelity space Z and domain X
Z ← all granularity values

X ← space of cosmological parameters

g : Z × X → R.
g(z , x) ← likelihood score when per-

forming integrations on a grid of size z

at cosmological parameters x .

Denote f (x) = g(z•, x) where z• ∈ Z. z• = highest grid size.

End Goal: Find x? = argmaxx f (x).

A cost function, λ : Z → R+.
λ(z) = O(zp) (say).

Z z•

λ(z)
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Multi-fidelity Bandits (Kandasamy et al. ICML 2017)

X

g(z, x)

f(x)

z•
Z

A fidelity space Z and domain X
Z ← all granularity values

X ← space of cosmological parameters

g : Z × X → R.
g(z , x) ← likelihood score when per-

forming integrations on a grid of size z

at cosmological parameters x .

Denote f (x) = g(z•, x) where z• ∈ Z. z• = highest grid size.

End Goal: Find x? = argmaxx f (x).

A cost function, λ : Z → R+.
λ(z) = O(zp) (say).

Z z•

λ(z)

23/39



Multi-fidelity Bandits (Kandasamy et al. ICML 2017)

x⋆
X

g(z, x)

f(x)

z•
Z

A fidelity space Z and domain X
Z ← all granularity values

X ← space of cosmological parameters

g : Z × X → R.
g(z , x) ← likelihood score when per-

forming integrations on a grid of size z

at cosmological parameters x .

Denote f (x) = g(z•, x) where z• ∈ Z. z• = highest grid size.

End Goal: Find x? = argmaxx f (x).

A cost function, λ : Z → R+.
λ(z) = O(zp) (say).

Z z•

λ(z)

23/39



Multi-fidelity Bandits (Kandasamy et al. ICML 2017)

x⋆
X

g(z, x)

f(x)

z•
Z

A fidelity space Z and domain X
Z ← all granularity values

X ← space of cosmological parameters

g : Z × X → R.
g(z , x) ← likelihood score when per-

forming integrations on a grid of size z

at cosmological parameters x .

Denote f (x) = g(z•, x) where z• ∈ Z. z• = highest grid size.

End Goal: Find x? = argmaxx f (x).

A cost function, λ : Z → R+.
λ(z) = O(zp) (say).

Z z•

λ(z)

23/39



Multi-fidelity Simple Regret (Kandasamy et al. ICML 2017)

x⋆
X

g(z, x)

f(x)

z•
Z

Z z•

λ(z)

End Goal: Find x? = argmaxx f (x).

Simple Regret after capital Λ: S(Λ) = f (x?)− max
t: zt=z•

f (xt).

Λ← amount of a resource spent, e.g. computation time or money.

No reward for pulling an arm at low fidelities, but use cheap
evaluations at z 6= z• to speed up search for x?.
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Algorithm: BOCA (Kandasamy et al. ICML 2017)

Model g ∼ GP(0, κ) and com-
pute posterior GP:

mean µt−1 : Z × X → R
std-dev σt−1 : Z × X → R+

(1) xt ← maximise upper confidence bound for f (x) = g(z•, x).

xt = argmax
x∈X

µt−1(z•, x) + β
1/2
t σt−1(z•, x)

(2) Zt ≈ {z•} ∪
{
z : σt−1(z , xt) ≥ γ(z)

=

(
λ(z)

λ(z•)

)q

ξ(z)

}
(3) zt = argmin

z∈Zt

λ(z) (cheapest z in Zt)
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Theoretical Results for BOCA

x⋆
X

g(z, x)

f(x)

z•
Z

“good”

large hZ

x⋆

g(z, x)

X

f(x)

z•
Z

“bad”

small hZ

E.g.: For SE kernels, bandwidth hZ controls smoothness.
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Theoretical Results for BOCA

GP-UCB SE kernel, (Srinivas et al. 2010)

w.h.p S(Λ) .

√
vol(X )

Λ

BOCA SE kernel, (Kandasamy et al. ICML 2017)

w.h.p ∀α > 0, S(Λ) .

√
vol(Xα)

Λ
+

√
vol(X )

Λ2−α

Xα =
{
x ; f (x?)− f (x) . Cα

1

hZ

}
If hZ is large (good approximations), vol(Xα)� vol(X ),
and BOCA is much better than GP-UCB.

N.B: Dropping constants and polylog terms.
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Experiment: Cosmological inference on Type-1a supernovae data

Estimate Hubble constant, dark matter fraction & dark energy
fraction by maximising likelihood on N• = 192 data.
Requires numerical integration on a grid of size G• = 106.
Approximate with N ∈ [50, 192] or G ∈ [102, 106] (2D fidelity space).
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Outline

I Part I: Stochastic bandits (cont’d)

1. Gaussian processes for smooth bandits

2. Algorithms: Upper Confidence Bound (UCB) & Thompson
Sampling (TS)

I Digression: SL2College Research Collaboration Program

I Part II: My research

1. Multi-fidelity bandit: cheap approximations to an expensive
experiments

2. Parallelising arm pulls
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Part 2.2: Parallelising arm pulls
Sequential arm pulls with one worker

Parallel arm pulls with M workers (Asynchronous)

Parallel arm pulls with M workers (Synchronous)
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Why parallelisation?

I Computational experiments: infrastructure with 100-1000’s
CPUs or GPUs.

I Drug discovery: High throughput screening

Prior work: (Ginsbourger et al. 2011, Janusevskis et al. 2012, Wang et al.

2016, González et al. 2015, Desautels et al. 2014, Contal et al. 2013, Shah

and Ghahramani 2015, Kathuria et al. 2016, Wang et al. 2017, Wu and Frazier

2016, Hernandez-Lobato et al. 2017)

Shortcomings

I Asynchronicity

I Theoretical guarantees

I Computationally & conceptually simple
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Review: Sequential Thompson Sampling in GP Bandits

x

f(x)

Draw sample g from posterior. Choose xt = argmaxx g(x).
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Parallelised Thompson Sampling (Kandasamy et al. Arxiv 2017)

Asynchronous: asyTS

At any given time,
1. (x ′, y ′)← Wait for

a worker to finish.
2. Compute posterior GP.
3. Draw a sample g ∼ GP.

4. Re-deploy worker at
argmax g .

Synchronous: synTS

At any given time,
1. {(x ′m, y ′m)}Mm=1 ← Wait for

all workers to finish.
2. Compute posterior GP.
3. Draw M samples

gm ∼ GP, ∀m.
4. Re-deploy worker m at

argmax gm, ∀m.
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Theoretical Results: number of evaluations

Sequential TS, SE Kernel (Russo & van Roy 2014)

E[Sn] .

√
vol(X ) log(n)d

n

Theorem: synTS & asyTS, SE Kernel (Kandasamy et al. Arxiv 2017)

E[Sn] .
M log(M)2d

n
+

√
vol(X ) log(n)d

n

n← # completed arm pulls by all workers.

Why is this interesting?
- A sequential algorithm can make use of information from all

previous rounds to determine where to evaluate next.
- A parallel algorithm could be missing up to M − 1 results at

any given time. But randomisation helps!
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Theoretical Results: Simple regret with time

Asynchronous Synchronous

Theorem (Informal) (Kandasamy et al. Arxiv 2017)

If evaluation times are the same, asyTS ≈ synTS.

Otherwise, bounds for asyTS is strictly better than synTS. More
the variability in evaluation times, the bigger the difference.

- Bounded tail decay: constant factor

- Sub-gaussian tail decay:
√

log(M) factor

- Sub-exponential tail decay: log(M) factor
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Experiment: Currin-Exponential-14D M = 35
Evaluation time sampled from a Pareto-3 distribution

Timeunits (T)
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SR
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T
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Experiment: Hyper-parameter tuning in Cifar10 M = 4

Tune # filters in in range (32, 256) for each layer in a 6 layer CNN.
Time taken for an evaluation: 4 - 16 minutes.
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Summary

I Bandits are a framework for studying exploration vs
exploitation trade-offs when optimising black-box functions.

I Smooth bandit formulations are more common in practical
applications.

I Several algorithms: UCB, TS, Index based policies, ε-greedy
etc.

I Multi-fidelity Bandits: Allows us to use cheap
approximations to a an expensive experiment to quickly find
the optimum.

I Parallelised TS: Simple and intuitive way to deal with
multiple workers.
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Akshay Barnabás Gautam

Jeff Junier

Thank You
Slides: www.cs.cmu.edu/~kkandasa/misc/mora-slides.pdf


