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On-line advertising

You are given a pool of 250 ads.

Task:
» You can display one ad at a time, (say for 10° times).
» You wish to maximise the cumulative number of clicks, i.e.
identify ads with the highest click-through-rate and display
them most of the time.
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The Stochastic Multi-armed Bandit (Robbins, 1952)

> You are given K arms, X = {1,...,K}.

» At every round you “play/pull” an arm.
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The Stochastic Multi-armed Bandit (Robbins, 1952)

> You are given K arms, X ={1,..., K}.
» At every round you “play/pull” an arm.

» When you play arm x; € X in round t you receive a stochastic
reward y;, where E[y:] = f(x¢).

» Goal: Maximise the cumulative sum of expected rewards,
n n
B Y| = 3 f
t=1 t=1

» Goal: An algorithm (policy/strategy) which achieves “small”
cumulative regret,

n

Ro= ) Flx) =D Flxe) = D (F(x) — fxe))
t=1 t=1 t=1
where, x, = argmax, ¢y f(x).
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Smooth Bandits

f: X — Ris a black-box function that is accessible only via noisy
evaluations. X is a metric space, e.g. RY.

f(x)
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Smooth Bandits

f: X — Ris a black-box function that is accessible only via noisy
evaluations. X is a metric space, e.g. RY.
Let x, = argmax, f(x).

f(x)

Cumulative Regret after n evaluations

Ro=> f(x) — f(xe).
t=1

3/39



Smooth Bandits

f: X — Ris a black-box function that is accessible only via noisy
evaluations. X’ is a metric space, e.g. RY.
Let x, = argmax, f(x).

f(x)

Simple Regret after n evaluations

Sp=1f(x) — ,max f(xt).

=1,...,n
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Applications

7
T —3p||Cosmological| 5 PS4 > f(fl?)
Eg: Simulator /\,
Hubble Constant Zobs 'Z LII;ellhOOd
obs core

Baryonic Density Observatlon

B

Likelihood computation

4/39



Applications

T —
hyper-
parameters

Neural Network | f(z)

- Train NN using given hyper-parameters
- Compute accuracy on validation set

input image feature maps feature maps feature maps feature maps
(256x256) (256x256) (128x128) (128x128)

output

fully
1 layer 1 layer 1 layer I layer | connected |

cross validation
accuracy
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Applications

L —»

Expensive Blackbox
Function

Other Examples:

- Pre-clinical Drug Discovery

- Optimal policy in Autonomous Driving
- Synthetic gene design
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Recap

Types of arms (domain X)
1. K-armed bandit, X is a finite set.
2. Smooth bandit, A is a metric space (e.g. RY).
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Recap

Types of arms (domain X)
1. K-armed bandit, X is a finite set.
2. Smooth bandit, X is a metric space (e.g. RY).

3. “Smooth K-armed” bandits, X is finite, but there is
additional structure.

f: X — R. On playing x € X’ you observe f(x) + ¢, Ee = 0.
Two notions of regret

1. Cumulative regret, R, = 1 1 f(x) — f(xe).
2. Simple regret, S, = f(x) — maxe=1,.nf(xt).

Other formalisms: contextual bandit, adversarial bandit, duelling
bandit, linear bandit, best arm identification and several more ...

N.B: Pulling/playing an arm = experiment = function evaluation
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Outline

» Part I: Stochastic bandits (cont'd)
1. Gaussian processes for smooth bandits
2. Algorithms: Upper Confidence Bound (UCB) & Thompson
Sampling (TS)

» Digression: SL2College Research Collaboration Program

> Part Il: My research

1. Multi-fidelity bandit: cheap approximations to an expensive
experiments

2. Parallelising arm pulls
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Outline

» Part I: Stochastic bandits (cont'd)
1. Gaussian processes for smooth bandits

2. Algorithms: Upper Confidence Bound (UCB) & Thompson
Sampling (TS)
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Gaussian (Normal) distribution N(u,0?)

p-3c  p-2¢  p-o M pto pt2e ptdc

> A probability distribution for real valued random variables.

» Mean  and variance o?

completely characterises distribution.
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Gaussian (Normal) distribution N(u,0?)

p-3c  p-2¢  p-o M pto pt2e ptdc

v

A probability distribution for real valued random variables.
2

v

Mean p and variance o completely characterises distribution.

v

For samples Xi,..., Xy, let i = %ZiX,- be the sample mean.

Then, i £+ 1.96% is a 95% confidence interval for u.

Can draw samples (e.g. in Matlab: mu + sigma * randn()).

v
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Gaussian Processes (GP)

GP(u, k): A distribution over functions from X" to R.
Completely characterised by mean function p: X — R, and
covariance kernel K : X x X — R.
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Gaussian Processes (GP)

GP(u, k): A distribution over functions from X" to R.

Completely characterised by mean function p: X — R, and

covariance kernel k: X x X — R.

Functions with no observations

f(x)

-
g S

~ .
------
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Gaussian Processes (GP)

GP(u, k): A distribution over functions from X" to R.

Completely characterised by mean function p: X — R, and
covariance kernel kK : X x X — R.

Observations

f(x)

-
ey

~ .
------
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Gaussian Processes (GP)

GP(u, k): A distribution over functions from X" to R.
Completely characterised by mean function p: X — R, and
covariance kernel K : X x X — R.

Posterior GP given observations

f(x)

After t observations,  f(x) ~ N(u(x), 02(x)).

8/39



Algorithm 1: Upper Confidence Bounds in GP Bandits
Model f ~ GP(0, k).

Gaussian Process Upper Confidence Bound (GP-UCB)
(Srinivas et al. 2010).
f(z)
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Algorithm 1: Upper Confidence Bounds in GP Bandits

Model f ~ GP(0, k).

Gaussian Process Upper Confidence Bound (GP-UCB)
(Srinivas et al. 2010).

f(z)

z
Construct upper conf. bound: ¢:(x) = pr—1(x) + ﬁ,}/zat,l(x).
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Algorithm 1: Upper Confidence Bounds in GP Bandits
Model f ~ GP(0, k).

Gaussian Process Upper Confidence Bound (GP-UCB)
(Srinivas et al. 2010).
f(x)

1/2
Pt = p-1 + ﬁt/ Ot1 /

\

Maximise upper confidence bound.
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GP-UCB

x¢ = argmax  fe—1(x) + ﬁi/zat_l(x)
X

> us—1: Exploitation
» o0:_1: Exploration

» [3; controls the tradeoff. J; = logt.
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GP-UCB

x¢ = argmax  fe—1(x) + ﬁi/zat_l(x)
X

> us—1: Exploitation
» o0:_1: Exploration

» [3; controls the tradeoff. J; = logt.

GP-UCB, « is an SE kernel  (Srinivas et al. 2010)

| dyvol(X
whp S5, = f(x*)—t:maxnf(xt) < M
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GP-UCB (Srinivas et al. 2010)
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(Srinivas et al. 2010)
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(Srinivas et al. 2010)

GP-UCB
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(Srinivas et al. 2010)

GP-UCB
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GP-UCB (Srinivas et al. 2010)
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GP-UCB (Srinivas et al. 2010)
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Algorithm 2: Thompson Sampling in GP Bandits
Model f ~ GP(0, k).

Thompson Sampling (TS) (Thompson, 1933).

f(x)
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Algorithm 2: Thompson Sampling in GP Bandits

Model f ~ GP(0, k).

Thompson Sampling (TS) (Thompson, 1933).

f(x)

Draw sample g from posterior. Choose x; = argmax, g(x).

12/39



Thompson Sampling (TS) in GPs (Thompson, 1933)

f(x)
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Thompson Sampling (TS) in GPs (Thompson, 1933)

f(x)
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Outline

» Digression: SL2College Research Collaboration Program
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SL2College

Done with A/L, what's next?

Resources

Looking to study abroad?

Blog & News Contact Us

Looking for Professional / Vocational
a o

Vocational

Advanced Level Examination,

Looking for a scholarship?

‘There are so many scholerships out there. We can

o
graduates from respective universiies, who would

guide them through the process.

Willing to go that 'Extra Mile' with
your research?

it foran i 1 Journal

qualiications required to excel in your career path.

Moving to Sri Lanka?

Planning 1o retu 1o your motherland? Seeking job

opportunites.

Conference is not easy. Join our Research
Collaboration programme to find a qualfied,
experienced mentor, whose expertise wil take you

there.

www.sl2college.org

Lanka?
‘and informaton for everyone who want to retum or
migrate to Sri Lanke.
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www.sl2college.org/research-collab

research-collab@sl2college.org 16/39



SL2College Research Collaboration Program

How it works

We have a pool of doctoral/post-doctoral /professorial mentors (all
Sri Lankan).

We connect Sri Lankan undergrads to mentors, who will guide the
students on a research project.

Aim: Publish a paper (at a good venue) within a 9-15 month time
frame.
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Application Process

> Fill out the application form on our webpage:
www.sl2college.org/research-collab

- mention areas of interests and preferred mentors.

» .. and email your CV to research-collab@sl2college.org.
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research statement,

- your research interests & future plans
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Application Process

v

Fill out the application form on our webpage:
www.sl2college.org/research-collab

- mention areas of interests and preferred mentors.
. and email your CV to research-collab@sl2college.org.

If we decide to proceed, we ask you to submit a ~ 1 page
research statement,

- your research interests & future plans

- why you are interested in working with aforesaid mentor.

We send your CV & statement to the mentor. If he/she is
interested, we initiate a collaboration.

You report to us once every 3 months.

18/39



SL2College Research Collaboration Team

Ashwin Rajitha

Umashanthi Kirthevasan

www.sl2college.org/research-collab
research-collab@sl2college.org
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Outline

> Part Il: My research

1. Multi-fidelity bandit: cheap approximations to an expensive
experiments
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Part 2.1: Multi-fidelity Bandits

Motivating question:
What if we have cheap approximations to 7
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Motivating question:
What if we have cheap approximations to 7

1. Computational astrophysics and other scientific experiments:
simulations and numerical computations with less granularity.

7.
T > Cosmological > {}\Hﬁm L3 f(x)
. Simulator /\/
E.g: Zgim -
Hubble Constant Zobs Likelihood

Baryonic Density Observatlon Zobs Score

\ . Likelihood computation
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Part 2.1: Multi-fidelity Bandits

Motivating question:
What if we have cheap approximations to 7

1. Computational astrophysics and other scientific experiments:
simulations and numerical computations with less granularity.

L —>

E.g:

Cosmological >

Simulator

Hubble Constant
Baryonic Density

Observanon

] ~

Zsim
WASES o
/\/ Zy

Zobs

Zobs

—> ()
Likelihood
Score

Likelihood computation

2. Hyper-parameter tuning: Train & validate with a subset of the

data.

3. Robotics & autonomous driving: computer simulation vs real
world experiment.

21/39



Multi-fidelity Methods

For specific applications,

> Industrial design (Forrester et al. 2007)
» Hyper-parameter tuning (Agarwal et al. 2011, Klein et al. 2015,
Li et al. 2016)

» Active learning (Zhang & Chaudhuri 2015)

> Robotics (Cutler et al. 2014)
Multi-fidelity bandits & optimisation (Huang et al. 2006,

Forrester et al. 2007, March & Wilcox 2012, Poloczek et al. 2016)
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Multi-fidelity Methods

For specific applications,

> Industrial design (Forrester et al. 2007)
» Hyper-parameter tuning (Agarwal et al. 2011, Klein et al. 2015,
Li et al. 2016)

» Active learning (Zhang & Chaudhuri 2015)

> Robotics (Cutler et al. 2014)
Multi-fidelity bandits & optimisation (Huang et al. 2006,
Forrester et al. 2007, March & Wilcox 2012, Poloczek et al. 2016)

... with theoretical guarantees (Kandasamy et al. NIPS 2016a&b,

Kandasamy et al. ICML 2017)
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Multi-fidelity Bandits (Kandasamy et al. ICML 2017)

A fidelity space Z and domain X
Z < all granularity values

X < space of cosmological parameters

M
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g(z,x) « likelihood score when per-
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X at cosmological parameters x.
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X < space of cosmological parameters
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g(z,x) « likelihood score when per-

forming integrations on a grid of size z

2 at cosmological parameters x.
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Denote f(X) = g(Z., X) where z, € Z. Zo = highest grid size.

End Goal: Find x, = argmax, f(x).
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Multi-fidelity Bandits (Kandasamy et al. ICML 2017)

9(z,) A fidelity space Z and domain X
Z < all granularity values

X < space of cosmological parameters

g:ZxX >R

g(z,x) « likelihood score when per-

forming integrations on a grid of size z

at cosmological parameters x.

Denote f(X) = g(Z.,X) where z, € Z. Zo = highest grid size.

End Goal: Find x, = argmax, f(x).

A cost function, A : Z — R,.
AMz) = 0(z")  (say). 1

Z Ze
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Multi-fidelity Simple Regret (Kandasamy et al. ICML 2017)

9(z,)

End Goal: Find x, = argmax, f(x).
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Multi-fidelity Simple Regret (Kandasamy et al. ICML 2017)

End Goal: Find x, = argmax, f(x).

Simple Regret after capital \:  S(A) = f(x.) — max f(x¢).

t:Zt=2Z¢

A < amount of a resource spent, e.g. computation time or money.
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Multi-fidelity Simple Regret (Kandasamy et al. ICML 2017)

9(z,)

End Goal: Find x, = argmax, f(x).

Simple Regret after capital \:  S(A) = f(x.) — max f(x¢).

t:Zt=2Z¢

A < amount of a resource spent, e.g. computation time or money.

No reward for pulling an arm at low fidelities, but use cheap
evaluations at z # z, to speed up search for x,.
24/39



Algorithm: BOCA

A
A

——)@ ——————————
° X X X
X X
X
< X
X
X
® X
X —>

(Kandasamy et al. ICML 2017)
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Algorithm: BOCA (Kandasamy et al. ICML 2017)

———————— 9(_ — - - -
“e X X X
% X
. Model g ~ GP(0, ) and com-
X X pute posterior GP:
TX mean Pi—1 1 Z2x X >R
X
z X X std-dev Ot—1 . Zx X — R+
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Algorithm: BOCA (Kandasamy et al. ICML 2017)

TR
¢ X
Model g ~ GP(0, ) and com-
X x pute posterior GP:
T X ) mean -1 : Z XX =R
=z X . std-dev o0; 1 : Zx X — R,
X —>

(1) x¢ < maximise upper confidence bound for f(x) = g(z, x).

Xt = argn}(ax pe—1(ze, x) + ,33/20%—1(2.,)()
xX€E
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Algorlthm BOCA (Kandasamy et al. ICML 2017)

______________

Fo % X PoX
, E X
_ Model g ~ GP(0, ) and com-
X pute posterior GP:
T/, mean Pi—1 1 Z2x X >R
z X % std-dev o0; 1 : ZXx X - R,
v y
810, 1(20,2) :

(1) x¢ < maximise upper confidence bound for f(x) = g(z, x).

Xt = argn}(ax pe—1(ze, x) + ,33/20%—1(2.,)()
xX€E
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Algorlthm BOCA (Kandasamy et al. ICML 2017)

A-. --------------
Model g ~ GP(0, k) and com-
¢ pute posterior GP:
T < mean -1 : Z XX =R
z std-dev o0; 1 : Zx X — R,
— y
By or-1(ze, 1) '

(1) x¢ < maximise upper confidence bound for f(x)

Xt = argn}(ax pe—1(ze, x) + ,33/20%—1(2.,)()
xX€E

@) 2z~ {z) U { oea(zx) 2 ()

(3) =z = argmin A\(2) (cheapest z in Z;)
ZEZ:

- g(Z.,X).
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Algorlthm BOCA (Kandasamy et al. ICML 2017)

A-. --------------
Model g ~ GP(0, k) and com-
: pute posterior GP:

T < mean Pi—1 1 Z2x X >R
(z) D

Z 3 std-dev o1 : Zx X — R4
P ] X ,J’L
By or-1(ze, 1) '

(1) x¢ < maximise upper confidence bound for f(x) = g(z, x).

x¢ = argmax fi¢—1(Ze,x) + ﬁ:/zat,l(z.,x)

xeX
(2) z ~{z}U {z Doe1(z, %) > (2) }
(3) =z = argmin A\(2) (cheapest z in Z;)

ZEZ:
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Algorlthm BOCA (Kandasamy et al. ICML 2017)

Zt ‘-. --------------
Model g ~ GP(0, k) and com-
: pute posterior GP:

T < mean Pi—1 1 Z2x X >R
(z) D

Z ] std-dev o1 : Zx X — R4
PRTEES) X > &
By or-1(ze, 1) '

(1) x¢ < maximise upper confidence bound for f(x) = g(z, x).

x¢ = argmax fi¢—1(Ze,x) + ﬁ:/zat,l(z.,x)

xeX
(2) z ~{z}U {z Doe1(z, %) > (2) }
(3) =z = argmin A\(2) (cheapest z in Z;)

ZEZ:
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Algorlthm BOCA (Kandasamy et al. ICML 2017)

Model g ~ GP(0, ) and com-
pute posterior GP:

mean Pi—1 1 Z2x X >R
std-dev o1 : Zx X — R4

.
.
Ty

(2)
(3)

<+ maximise upper confidence bound for 7(x) = g(z, x).

x¢ = argmax fi¢—1(Ze,x) + ﬁ:/zat,l(z.,x)

xeX
Z ~ {ze} U {z so—1(zyxe) > y(2) }
z; = argmin \(2) (cheapest z in Z;)

ZeZt
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Algorlthm BOCA (Kandasamy et al. ICML 2017)

, Model g ~ GP(0, x) and com-
X X pute posterior GP:

I mean  pp—1 1 Z XX =R
std-dev o1 : Zx X — R4

.
X
Ty

(2)
(3)

<+ maximise upper confidence bound for 7(x) = g(z, x).

x¢ = argmax fi¢—1(Ze,x) + ﬁ:/zat,l(z.,x)

xeX
Z ~ {ze} U {z Coe1(zyxe) > y(z2) = <;\((ZZ.))> f(z)}
z; = argmin \(2) (cheapest z in Z;)

ZEZ:
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Theoretical Results for BOCA

“good” “bad”
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Theoretical Results for BOCA

"good” “bad”
large hz small hz

E.g.: For SE kernels, bandwidth hz controls smoothness.
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Theoretical Results for BOCA

X, = {x; f(xe) — f(x) < Caé}

If hz is large (good approximations), vol(X,) < vol(X),
and BOCA is much better than GP-UCB.

27/39



Theoretical Results for BOCA

X, = {x; f(xe) — f(x) < Caé}

If hz is large (good approximations), vol(X,) < vol(X),
and BOCA is much better than GP-UCB.

N.B: Dropping constants and polylog terms.
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Experiment: Cosmological inference on Type-la supernovae data

Estimate Hubble constant, dark matter fraction & dark energy
fraction by maximising likelihood on N, = 192 data.

Requires numerical integration on a grid of size G, = 10°.
Approximate with N € [50,192] or G € [102,10°] (2D fidelity space).
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Experiment: Cosmological inference on Type-la supernovae data

Estimate Hubble constant, dark matter fraction & dark energy
fraction by maximising likelihood on N, = 192 data.

Requires numerical integration on a grid of size G, = 10°.
Approximate with N € [50,192] or G € [102,10°] (2D fidelity space).
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QOutline

» Part I: Stochastic bandits (cont'd)
1. Gaussian processes for smooth bandits

2. Algorithms: Upper Confidence Bound (UCB) & Thompson
Sampling (TS)

» Digression: SL2College Research Collaboration Program

» Part II: My research

1. Multi-fidelity bandit: cheap approximations to an expensive
experiments

2. Parallelising arm pulls
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Part 2.2: Parallelising arm pulls

Sequential arm pulls with one worker

,ivl 2 3 o4
| | |

30/39



Part 2.2: Parallelising arm pulls

Sequential arm pulls with one worker

,ivl .2 3 4
L] L] L]

Time —

Parallel arm pulls with M workers (Asynchronous)

.1 4 9 12
'V T T T ="
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Part 2.2: Parallelising arm pulls

Sequential arm pulls with one worker

,ivl .2 3 4
L] L] L]

Time —

Parallel arm pulls with M workers (Asynchronous)
,ivl ! 9 J42
L] L] L]
,iv 2 .0 S .10 .
L] L] L]

T/‘3 l5 L7 11 e
| | |
Time —

Parallel arm pulls with M workers (Synchronous)

,ivl i 14 =:7 .

2 R— LR
i S

Time — 30/39



Why parallelisation?

» Computational experiments: infrastructure with 100-1000’s
CPUs or GPUs.

» Drug discovery: High throughput screening
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Why parallelisation?

» Computational experiments: infrastructure with 100-1000’s
CPUs or GPUs.

» Drug discovery: High throughput screening

Prior work: (Ginsbourger et al. 2011, Janusevskis et al. 2012, Wang et al.
2016, Gonzdlez et al. 2015, Desautels et al. 2014, Contal et al. 2013, Shah
and Ghahramani 2015, Kathuria et al. 2016, Wang et al. 2017, Wu and Frazier
2016, Hernandez-Lobato et al. 2017)
Shortcomings

» Asynchronicity

» Theoretical guarantees

» Computationally & conceptually simple
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Review: Sequential Thompson Sampling in GP Bandits

f(x)
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Review: Sequential Thompson Sampling in GP Bandits

f(x)
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Review: Sequential Thompson Sampling in GP Bandits

f(x)

Xt

Draw sample g from posterior. Choose x; = argmax, g(x).
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Parallelised Thompson Sampllng (Kandasamy et al. Arxiv 2017)

Asynchronous: asyTS

At any given time,
1. (X, y") + Wait for
a worker to finish.
2. Compute posterior GP.
3. Draw a sample g ~ GP.

4. Re-deploy worker at
argmax g.

1\‘1 W4 W9 J2
L] L] L]

w
-
[
—_—
-
—_—
—
=

Time —
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Parallelised Thompson Sampllng (Kandasamy et al. Arxiv 2017)

Asynchronous: asyTS

Synchronous: synTS

At any given time,
1. (X, y") + Wait for
a worker to finish.
2. Compute posterior GP.
3. Draw a sample g ~ GP.

4. Re-deploy worker at
argmax g.

At any given time,

LA, yi) M < Wait for
all workers to finish.

2. Compute posterior GP.

3. Draw M samples
gn ~ GP, Vm.

4. Re-deploy worker m at
argmax gn,, vVm.

,i\,l W4 9 J2
L] L] L]

w
-
[
—_—
-
—_—
—
=

Time —

._.
T 'S
]

w

6 19 .

Time —
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Theoretical Results: number of evaluations
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Theoretical Results: number of evaluations

n < # completed arm pulls by all workers.
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Theoretical Results: number of evaluations

Sequential TS, SE Kernel  (Russo & van Roy 2014)

vol(X) log(n)

<
B[S -

Theorem: synTS & asyTS, SE Kernel (Kandasamy et al. Arxiv 2017)

Mlog,SM)M N vol(X) ’iog(n)d

E[S,] <
n < # completed arm pulls by all workers.

Why is this interesting?
- A sequential algorithm can make use of information from all
previous rounds to determine where to evaluate next.
- A parallel algorithm could be missing up to M — 1 results at
any given time.

34/39



Theoretical Results: number of evaluations

Sequential TS, SE Kernel  (Russo & van Roy 2014)

vol(X) log(n)

<
B[S -

Theorem: synTS & asyTS, SE Kernel (Kandasamy et al. Arxiv 2017)

MIogISM)M N vol(X) ’iog(n)d

E[S,] <
n < # completed arm pulls by all workers.

Why is this interesting?
- A sequential algorithm can make use of information from all
previous rounds to determine where to evaluate next.
- A parallel algorithm could be missing up to M — 1 results at
any given time.  But randomisation helps!
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Theoretical Results: Simple regret with time

Asynchronous Synchronous
J L1 14 7
,I\,l =4 =9 =12 /i : i
. 2 5 8
,iv 2 =o =8 =10 ,iv f : }
1)3 P 7 e )i»:f i 16 19 .
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Theoretical Results: Simple regret with time

Asynchronous Synchronous
,i“l 4 P 2 /i“] i 4 i N
e 6 8 10 w2 |15 " s,
1\‘3 0 W7 MEN— ,‘\s_| R 9 e
Time — ‘ Time —
Theorem (Informal) (Kandasamy et al. Arxiv 2017)

If evaluation times are the same, asyTS =~ synTS.

Otherwise, bounds for asyTS is strictly better than synTS. More
the variability in evaluation times, the bigger the difference.



Theoretical Results: Simple regret with time

Asynchronous Synchronous
T‘] ! 29 g2 ,i“l ' 4 - ..
,iv 2 46 )8 410 ,i\ 2 I:S i 18 i
)i.»3 ' 17 g 11 o T‘j—| 16—| L| V-
Time — ‘ Time —
Theorem (Informal) (Kandasamy et al. Arxiv 2017)

If evaluation times are the same, asyTS =~ synTS.

Otherwise, bounds for asyTS is strictly better than synTS. More
the variability in evaluation times, the bigger the difference.

- Bounded tail decay: constant factor

- Sub-gaussian tail decay: y/log(M) factor
- Sub-exponential tail decay: log(M) factor
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Experiment: Currin-Exponential-14D

Evaluation time sampled from a Pareto-3 distribution

SR'(T)
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Experiment: Hyper-parameter tuning in Cifarl0 M =4

Tune # filters in in range (32,256) for each layer in a 6 layer CNN.

Time taken for an evaluation: 4 - 16 minutes.
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_
T

oO4dwvwv+0oOX

synBUCB
synTS
asyRAND
asyEl
asyHUCB
asyTS

0.69

Validation Accuracy
o
~

0.68

.7,

1000

2000 3000 4000 5000 6000 7000
Time (s)

37/39



Summary

» Bandits are a framework for studying exploration vs
exploitation trade-offs when optimising black-box functions.

» Smooth bandit formulations are more common in practical
applications.

» Several algorithms: UCB, TS, Index based policies, e-greedy
etc.
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Summary

» Bandits are a framework for studying exploration vs
exploitation trade-offs when optimising black-box functions.

» Smooth bandit formulations are more common in practical
applications.

» Several algorithms: UCB, TS, Index based policies, e-greedy
etc.

» Multi-fidelity Bandits: Allows us to use cheap
approximations to a an expensive experiment to quickly find
the optimum.

» Parallelised TS: Simple and intuitive way to deal with
multiple workers.
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Gautam

Jeff Junier
Thank You

Slides: www.cs.cmu.edu/ kkandasa/misc/mora-slides.pdf



