
Scalable Bandit Methods for
Hyper-parameter Tuning

Kirthevasan Kandasamy

Carnegie Mellon University

Guest Lecture - Scalable Machine Learning for Big Data Biology

University of Pittsburgh, Pittsburgh, PA

November 3, 2017

Hyper-parameter Tuning

Neural Network
hyper-
parameters

cross validation
accuracy

- Train NN using given hyper-parameters
- Compute accuracy on validation set

1/40

Black-box Optimisation

Expensive Blackbox
 Function

1/40

Maximum Likelihood estimation in Astrophysics

Cosmological
 Simulator

Observation

E.g:
Hubble Constant
Baryonic Density

Likelihood
 Score

Likelihood computation

1/40

Black-box Optimisation

Expensive Blackbox
 Function

Other Examples:
- Pre-clinical Drug Discovery
- Optimal policy in Autonomous Driving
- Synthetic gene design

1/40

Black-box Optimisation

f : X → R is a black-box function that is accessible only via noisy
evaluations.

Let x? = argmaxx f (x).

x

f(x)

Simple Regret after n evaluations

Sn = f (x?) − max
t=1,...,n

f (xt).

2/40

Black-box Optimisation

f : X → R is a black-box function that is accessible only via noisy
evaluations.

Let x? = argmaxx f (x).

x

f(x)

Simple Regret after n evaluations

Sn = f (x?) − max
t=1,...,n

f (xt).

2/40

Black-box Optimisation

f : X → R is a black-box function that is accessible only via noisy
evaluations.
Let x? = argmaxx f (x).

x

f(x)

x∗

f(x∗)

Simple Regret after n evaluations

Sn = f (x?) − max
t=1,...,n

f (xt).

2/40

Black-box Optimisation

f : X → R is a black-box function that is accessible only via noisy
evaluations.
Let x? = argmaxx f (x).

x

f(x)

x∗

f(x∗)

Simple Regret after n evaluations

Sn = f (x?) − max
t=1,...,n

f (xt).

2/40

Outline

I Part I: Bandits in the Bayesian Paradigm

1. Gaussian processes

2. Algorithms: Upper Confidence Bound (UCB) & Thompson
Sampling (TS)

I Part II: Scaling up Bandits

1. Multi-fidelity bandit: cheap approximations to an expensive
experiment

2. Parallelising function evaluations

3. High dimensional input spaces

3/40

Outline

I Part I: Bandits in the Bayesian Paradigm

1. Gaussian processes

2. Algorithms: Upper Confidence Bound (UCB) & Thompson
Sampling (TS)

I Part II: Scaling up Bandits

1. Multi-fidelity bandit: cheap approximations to an expensive
experiment

2. Parallelising function evaluations

3. High dimensional input spaces

3/40

Gaussian (Normal) distribution N (µ, σ2)

I A probability distribution for real valued random variables.

I Mean µ and variance σ2 completely characterises distribution.

I For samples X1, . . . ,Xn, let µ̂ = 1
n

∑
i Xi be the sample mean.

Then, µ̂± 1.96 σ√
n

is a 95% confidence interval for µ.

I Can draw samples (e.g. in Matlab: mu + sigma * randn()).

4/40

Gaussian (Normal) distribution N (µ, σ2)

I A probability distribution for real valued random variables.

I Mean µ and variance σ2 completely characterises distribution.

I For samples X1, . . . ,Xn, let µ̂ = 1
n

∑
i Xi be the sample mean.

Then, µ̂± 1.96 σ√
n

is a 95% confidence interval for µ.

I Can draw samples (e.g. in Matlab: mu + sigma * randn()).

4/40

Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Functions with no observations

x

f(x)

Completely characterised by mean function µ : X → R, and
covariance kernel κ : X × X → R.
After t observations, f (x) ∼ N (µt(x), σ2t (x)).

5/40

Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Functions with no observations

x

f(x)

Completely characterised by mean function µ : X → R, and
covariance kernel κ : X × X → R.
After t observations, f (x) ∼ N (µt(x), σ2t (x)).

5/40

Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Prior GP

x

f(x)

Completely characterised by mean function µ : X → R, and
covariance kernel κ : X × X → R.
After t observations, f (x) ∼ N (µt(x), σ2t (x)).

5/40

Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Observations

x

f(x)

Completely characterised by mean function µ : X → R, and
covariance kernel κ : X × X → R.
After t observations, f (x) ∼ N (µt(x), σ2t (x)).

5/40

Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Posterior GP given observations

x

f(x)

Completely characterised by mean function µ : X → R, and
covariance kernel κ : X × X → R.
After t observations, f (x) ∼ N (µt(x), σ2t (x)).

5/40

Gaussian Processes (GP)

GP(µ, κ): A distribution over functions from X to R.

Posterior GP given observations

x

f(x)

Completely characterised by mean function µ : X → R, and
covariance kernel κ : X × X → R.
After t observations, f (x) ∼ N (µt(x), σ2t (x)).

5/40

Algorithm 1: Upper Confidence Bounds in GP Bandits

Model f ∼ GP(0, κ).

Gaussian Process Upper Confidence Bound (GP-UCB)
(Srinivas et al. 2010)

x

f(x)

1) Construct posterior GP. 2) ϕt = µt−1 + β
1/2
t σt−1 is a UCB.

3) Choose xt = argmaxx ϕt(x). 4) Evaluate f at xt .

6/40

Algorithm 1: Upper Confidence Bounds in GP Bandits

Model f ∼ GP(0, κ).

Gaussian Process Upper Confidence Bound (GP-UCB)
(Srinivas et al. 2010)

x

f(x)

1) Construct posterior GP.

2) ϕt = µt−1 + β
1/2
t σt−1 is a UCB.

3) Choose xt = argmaxx ϕt(x). 4) Evaluate f at xt .

6/40

Algorithm 1: Upper Confidence Bounds in GP Bandits

Model f ∼ GP(0, κ).

Gaussian Process Upper Confidence Bound (GP-UCB)
(Srinivas et al. 2010)

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

1) Construct posterior GP. 2) ϕt = µt−1 + β
1/2
t σt−1 is a UCB.

3) Choose xt = argmaxx ϕt(x). 4) Evaluate f at xt .

6/40

Algorithm 1: Upper Confidence Bounds in GP Bandits

Model f ∼ GP(0, κ).

Gaussian Process Upper Confidence Bound (GP-UCB)
(Srinivas et al. 2010)

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

xt

1) Construct posterior GP. 2) ϕt = µt−1 + β
1/2
t σt−1 is a UCB.

3) Choose xt = argmaxx ϕt(x).

4) Evaluate f at xt .

6/40

Algorithm 1: Upper Confidence Bounds in GP Bandits

Model f ∼ GP(0, κ).

Gaussian Process Upper Confidence Bound (GP-UCB)
(Srinivas et al. 2010)

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

xt

1) Construct posterior GP. 2) ϕt = µt−1 + β
1/2
t σt−1 is a UCB.

3) Choose xt = argmaxx ϕt(x). 4) Evaluate f at xt .

6/40

GP-UCB

xt = argmax
x

µt−1(x) + β
1/2
t σt−1(x)

I µt−1: Exploitation

I σt−1: Exploration

I βt controls the tradeoff. βt � log t.

7/40

GP-UCB (Srinivas et al. 2010)

x

f(x)

8/40

GP-UCB (Srinivas et al. 2010)

t = 1
x

f(x)

8/40

GP-UCB (Srinivas et al. 2010)

t = 2
x

f(x)

8/40

GP-UCB (Srinivas et al. 2010)

t = 3
x

f(x)

8/40

GP-UCB (Srinivas et al. 2010)

t = 4
x

f(x)

8/40

GP-UCB (Srinivas et al. 2010)

t = 5
x

f(x)

8/40

GP-UCB (Srinivas et al. 2010)

t = 6
x

f(x)

8/40

GP-UCB (Srinivas et al. 2010)

t = 7
x

f(x)

8/40

GP-UCB (Srinivas et al. 2010)

t = 11
x

f(x)

8/40

GP-UCB (Srinivas et al. 2010)

t = 25
x

f(x)

8/40

Algorithm 2: Thompson Sampling in GP Bandits

Model f ∼ GP(0, κ).

Thompson Sampling (TS) (Thompson, 1933).

x

f(x)

1) Construct posterior GP. 2) Draw sample g from posterior.
3) Choose xt = argmaxx g(x). 4) Evaluate f at xt .

9/40

Algorithm 2: Thompson Sampling in GP Bandits

Model f ∼ GP(0, κ).

Thompson Sampling (TS) (Thompson, 1933).

x

f(x)

1) Construct posterior GP.

2) Draw sample g from posterior.
3) Choose xt = argmaxx g(x). 4) Evaluate f at xt .

9/40

Algorithm 2: Thompson Sampling in GP Bandits

Model f ∼ GP(0, κ).

Thompson Sampling (TS) (Thompson, 1933).

x

f(x)

1) Construct posterior GP. 2) Draw sample g from posterior.

3) Choose xt = argmaxx g(x). 4) Evaluate f at xt .

9/40

Algorithm 2: Thompson Sampling in GP Bandits

Model f ∼ GP(0, κ).

Thompson Sampling (TS) (Thompson, 1933).

x

f(x)

xt

1) Construct posterior GP. 2) Draw sample g from posterior.
3) Choose xt = argmaxx g(x).

4) Evaluate f at xt .

9/40

Algorithm 2: Thompson Sampling in GP Bandits

Model f ∼ GP(0, κ).

Thompson Sampling (TS) (Thompson, 1933).

x

f(x)

xt

1) Construct posterior GP. 2) Draw sample g from posterior.
3) Choose xt = argmaxx g(x). 4) Evaluate f at xt .

9/40

Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

10/40

Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 1

10/40

Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 2

10/40

Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 3

10/40

Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 4

10/40

Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 5

10/40

Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 6

10/40

Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 7

10/40

Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 11

10/40

Thompson Sampling (TS) in GPs (Thompson, 1933)

x

f(x)

t = 25

10/40

Bandits in the Bayesian Paradigm

Theory: Both UCB and TS will eventually find the optimum under
appropriate smoothness assumptions of f . That is,

Sn = f (x?)− max
t=1,...,n

f (xt) → 0, as n→∞

Other criteria for selecting xt :

I Expected improvement (Jones et al. 1998)

I Probability of improvement (Kushner et al. 1964)

I Predictive entropy search (Hernández-Lobato et al. 2014)

I . . . and a few more.

Other Bayesian models for f :

I Neural networks (Snoek et al. 2015)

I Random Forests (Hutter 2009)

11/40

Bandits in the Bayesian Paradigm

Theory: Both UCB and TS will eventually find the optimum under
appropriate smoothness assumptions of f . That is,

Sn = f (x?)− max
t=1,...,n

f (xt) → 0, as n→∞

Other criteria for selecting xt :

I Expected improvement (Jones et al. 1998)

I Probability of improvement (Kushner et al. 1964)

I Predictive entropy search (Hernández-Lobato et al. 2014)

I . . . and a few more.

Other Bayesian models for f :

I Neural networks (Snoek et al. 2015)

I Random Forests (Hutter 2009)

11/40

Bandits in the Bayesian Paradigm

Theory: Both UCB and TS will eventually find the optimum under
appropriate smoothness assumptions of f . That is,

Sn = f (x?)− max
t=1,...,n

f (xt) → 0, as n→∞

Other criteria for selecting xt :

I Expected improvement (Jones et al. 1998)

I Probability of improvement (Kushner et al. 1964)

I Predictive entropy search (Hernández-Lobato et al. 2014)

I . . . and a few more.

Other Bayesian models for f :

I Neural networks (Snoek et al. 2015)

I Random Forests (Hutter 2009)

11/40

Outline

I Part I: Bandits in the Bayesian Paradigm

1. Gaussian processes

2. Algorithms: Upper Confidence Bound (UCB) & Thompson
Sampling (TS)

I Part II: Scaling up Bandits

1. Multi-fidelity bandit: cheap approximations to an expensive
experiment

2. Parallelising function evaluations

3. High dimensional input spaces

(N.B: Part II is a shameless plug for my research.)

12/40

Outline

I Part I: Bandits in the Bayesian Paradigm

1. Gaussian processes

2. Algorithms: Upper Confidence Bound (UCB) & Thompson
Sampling (TS)

I Part II: Scaling up Bandits

1. Multi-fidelity bandit: cheap approximations to an expensive
experiment

2. Parallelising function evaluations

3. High dimensional input spaces

(N.B: Part II is a shameless plug for my research.)

12/40

Part 2.1: Multi-fidelity Bandits

Motivating question:
What if we have cheap approximations to f ?

1. Hyper-parameter tuning: Train & validate with a subset of the
data, and/or early stopping before convergence.

E.g. Bandwidth (`) selection in kernel density estimation.

2. Computational astrophysics: cosmological simulations and
numerical computations with less granularity.

3. Autonomous driving: simulation vs real world experiment.

13/40

Part 2.1: Multi-fidelity Bandits

Motivating question:
What if we have cheap approximations to f ?

1. Hyper-parameter tuning: Train & validate with a subset of the
data, and/or early stopping before convergence.

E.g. Bandwidth (`) selection in kernel density estimation.

2. Computational astrophysics: cosmological simulations and
numerical computations with less granularity.

3. Autonomous driving: simulation vs real world experiment.

13/40

Multi-fidelity Methods

For specific applications,

I Industrial design (Forrester et al. 2007)

I Hyper-parameter tuning (Agarwal et al. 2011, Klein et al. 2015,

Li et al. 2016)

I Active learning (Zhang & Chaudhuri 2015)

I Robotics (Cutler et al. 2014)

Multi-fidelity bandits & optimisation (Huang et al. 2006,

Forrester et al. 2007, March & Wilcox 2012, Poloczek et al. 2016)

. . . with theoretical guarantees (Kandasamy et al. NIPS 2016a&b,

Kandasamy et al. ICML 2017)

14/40

Multi-fidelity Methods

For specific applications,

I Industrial design (Forrester et al. 2007)

I Hyper-parameter tuning (Agarwal et al. 2011, Klein et al. 2015,

Li et al. 2016)

I Active learning (Zhang & Chaudhuri 2015)

I Robotics (Cutler et al. 2014)

Multi-fidelity bandits & optimisation (Huang et al. 2006,

Forrester et al. 2007, March & Wilcox 2012, Poloczek et al. 2016)

. . . with theoretical guarantees (Kandasamy et al. NIPS 2016a&b,

Kandasamy et al. ICML 2017)

14/40

Multi-fidelity Bandits for Hyper-parameter tuning

- Use an arbitrary amount of data?
- Iterative algorithms: use arbitrary number of iterations?

E.g. Train an ML model with N• data and T• iterations.
- But use N < N• data and T < T• iterations to approximate

cross validation performance at (N•,T•).

Approximations from a continuous 2D “fidelity space” (N,T).

15/40

Multi-fidelity Bandits for Hyper-parameter tuning

- Use an arbitrary amount of data?
- Iterative algorithms: use arbitrary number of iterations?

E.g. Train an ML model with N• data and T• iterations.
- But use N < N• data and T < T• iterations to approximate

cross validation performance at (N•,T•).

Approximations from a continuous 2D “fidelity space” (N,T).

15/40

Multi-fidelity Bandits for Hyper-parameter tuning

- Use an arbitrary amount of data?
- Iterative algorithms: use arbitrary number of iterations?

E.g. Train an ML model with N• data and T• iterations.
- But use N < N• data and T < T• iterations to approximate

cross validation performance at (N•,T•).

Approximations from a continuous 2D “fidelity space” (N,T).

15/40

Multi-fidelity Bandits (Kandasamy et al. ICML 2017)

X
Z

A fidelity space Z and domain X
Z ← all (N,T) values.

X ← all hyper-parameter values.

g : Z × X → R.
g([N,T], x) ← cv accuracy when

training with N data for T iterations

at hyper-parameter x .

Denote f (x) = g(z•, x) where z• ∈ Z. z• = [N•,T•].

End Goal: Find x? = argmaxx f (x).

A cost function, λ : Z → R+.
λ(z) = λ(N,T) = O(N2T) (say).

Z z•

λ(z)

16/40

Multi-fidelity Bandits (Kandasamy et al. ICML 2017)

X

g(z, x)

Z

A fidelity space Z and domain X
Z ← all (N,T) values.

X ← all hyper-parameter values.

g : Z × X → R.
g([N,T], x) ← cv accuracy when

training with N data for T iterations

at hyper-parameter x .

Denote f (x) = g(z•, x) where z• ∈ Z. z• = [N•,T•].

End Goal: Find x? = argmaxx f (x).

A cost function, λ : Z → R+.
λ(z) = λ(N,T) = O(N2T) (say).

Z z•

λ(z)

16/40

Multi-fidelity Bandits (Kandasamy et al. ICML 2017)

X

g(z, x)

f(x)

z•
Z

A fidelity space Z and domain X
Z ← all (N,T) values.

X ← all hyper-parameter values.

g : Z × X → R.
g([N,T], x) ← cv accuracy when

training with N data for T iterations

at hyper-parameter x .

Denote f (x) = g(z•, x) where z• ∈ Z. z• = [N•,T•].

End Goal: Find x? = argmaxx f (x).

A cost function, λ : Z → R+.
λ(z) = λ(N,T) = O(N2T) (say).

Z z•

λ(z)

16/40

Multi-fidelity Bandits (Kandasamy et al. ICML 2017)

x⋆
X

g(z, x)

f(x)

z•
Z

A fidelity space Z and domain X
Z ← all (N,T) values.

X ← all hyper-parameter values.

g : Z × X → R.
g([N,T], x) ← cv accuracy when

training with N data for T iterations

at hyper-parameter x .

Denote f (x) = g(z•, x) where z• ∈ Z. z• = [N•,T•].

End Goal: Find x? = argmaxx f (x).

A cost function, λ : Z → R+.
λ(z) = λ(N,T) = O(N2T) (say).

Z z•

λ(z)

16/40

Multi-fidelity Bandits (Kandasamy et al. ICML 2017)

x⋆
X

g(z, x)

f(x)

z•
Z

A fidelity space Z and domain X
Z ← all (N,T) values.

X ← all hyper-parameter values.

g : Z × X → R.
g([N,T], x) ← cv accuracy when

training with N data for T iterations

at hyper-parameter x .

Denote f (x) = g(z•, x) where z• ∈ Z. z• = [N•,T•].

End Goal: Find x? = argmaxx f (x).

A cost function, λ : Z → R+.
λ(z) = λ(N,T) = O(N2T) (say).

Z z•

λ(z)

16/40

Algorithm: BOCA (Kandasamy et al. ICML 2017)

Model g ∼ GP(0, κ) and com-
pute posterior GP:

mean µt−1 : Z × X → R
std-dev σt−1 : Z × X → R+

(1) xt ← maximise upper confidence bound for f (x) = g(z•, x).

xt = argmax
x∈X

µt−1(z•, x) + β
1/2
t σt−1(z•, x)

(2) Zt ≈ {z•} ∪
{
z : σt−1(z , xt) ≥ γ(z)

=

(
λ(z)

λ(z•)

)q

ξ(z)

}
(3) zt = argmin

z∈Zt

λ(z) (cheapest z in Zt)

17/40

Algorithm: BOCA (Kandasamy et al. ICML 2017)

Model g ∼ GP(0, κ) and com-
pute posterior GP:

mean µt−1 : Z × X → R
std-dev σt−1 : Z × X → R+

(1) xt ← maximise upper confidence bound for f (x) = g(z•, x).

xt = argmax
x∈X

µt−1(z•, x) + β
1/2
t σt−1(z•, x)

(2) Zt ≈ {z•} ∪
{
z : σt−1(z , xt) ≥ γ(z)

=

(
λ(z)

λ(z•)

)q

ξ(z)

}
(3) zt = argmin

z∈Zt

λ(z) (cheapest z in Zt)

17/40

Algorithm: BOCA (Kandasamy et al. ICML 2017)

Model g ∼ GP(0, κ) and com-
pute posterior GP:

mean µt−1 : Z × X → R
std-dev σt−1 : Z × X → R+

(1) xt ← maximise upper confidence bound for f (x) = g(z•, x).

xt = argmax
x∈X

µt−1(z•, x) + β
1/2
t σt−1(z•, x)

(2) Zt ≈ {z•} ∪
{
z : σt−1(z , xt) ≥ γ(z)

=

(
λ(z)

λ(z•)

)q

ξ(z)

}
(3) zt = argmin

z∈Zt

λ(z) (cheapest z in Zt)

17/40

Algorithm: BOCA (Kandasamy et al. ICML 2017)

Model g ∼ GP(0, κ) and com-
pute posterior GP:

mean µt−1 : Z × X → R
std-dev σt−1 : Z × X → R+

(1) xt ← maximise upper confidence bound for f (x) = g(z•, x).

xt = argmax
x∈X

µt−1(z•, x) + β
1/2
t σt−1(z•, x)

(2) Zt ≈ {z•} ∪
{
z : σt−1(z , xt) ≥ γ(z)

=

(
λ(z)

λ(z•)

)q

ξ(z)

}
(3) zt = argmin

z∈Zt

λ(z) (cheapest z in Zt)

17/40

Algorithm: BOCA (Kandasamy et al. ICML 2017)

Model g ∼ GP(0, κ) and com-
pute posterior GP:

mean µt−1 : Z × X → R
std-dev σt−1 : Z × X → R+

(1) xt ← maximise upper confidence bound for f (x) = g(z•, x).

xt = argmax
x∈X

µt−1(z•, x) + β
1/2
t σt−1(z•, x)

(2) Zt ≈ {z•} ∪
{
z : σt−1(z , xt) ≥ γ(z)

=

(
λ(z)

λ(z•)

)q

ξ(z)

}
(3) zt = argmin

z∈Zt

λ(z) (cheapest z in Zt)

17/40

Algorithm: BOCA (Kandasamy et al. ICML 2017)

Model g ∼ GP(0, κ) and com-
pute posterior GP:

mean µt−1 : Z × X → R
std-dev σt−1 : Z × X → R+

(1) xt ← maximise upper confidence bound for f (x) = g(z•, x).

xt = argmax
x∈X

µt−1(z•, x) + β
1/2
t σt−1(z•, x)

(2) Zt ≈ {z•} ∪
{
z : σt−1(z , xt) ≥ γ(z)

=

(
λ(z)

λ(z•)

)q

ξ(z)

}
(3) zt = argmin

z∈Zt

λ(z) (cheapest z in Zt)

17/40

Algorithm: BOCA (Kandasamy et al. ICML 2017)

Model g ∼ GP(0, κ) and com-
pute posterior GP:

mean µt−1 : Z × X → R
std-dev σt−1 : Z × X → R+

(1) xt ← maximise upper confidence bound for f (x) = g(z•, x).

xt = argmax
x∈X

µt−1(z•, x) + β
1/2
t σt−1(z•, x)

(2) Zt ≈ {z•} ∪
{
z : σt−1(z , xt) ≥ γ(z)

=

(
λ(z)

λ(z•)

)q

ξ(z)

}
(3) zt = argmin

z∈Zt

λ(z) (cheapest z in Zt)

17/40

Algorithm: BOCA (Kandasamy et al. ICML 2017)

Model g ∼ GP(0, κ) and com-
pute posterior GP:

mean µt−1 : Z × X → R
std-dev σt−1 : Z × X → R+

(1) xt ← maximise upper confidence bound for f (x) = g(z•, x).

xt = argmax
x∈X

µt−1(z•, x) + β
1/2
t σt−1(z•, x)

(2) Zt ≈ {z•} ∪
{
z : σt−1(z , xt) ≥ γ(z)

=

(
λ(z)

λ(z•)

)q

ξ(z)

}
(3) zt = argmin

z∈Zt

λ(z) (cheapest z in Zt)

17/40

Algorithm: BOCA (Kandasamy et al. ICML 2017)

Model g ∼ GP(0, κ) and com-
pute posterior GP:

mean µt−1 : Z × X → R
std-dev σt−1 : Z × X → R+

(1) xt ← maximise upper confidence bound for f (x) = g(z•, x).

xt = argmax
x∈X

µt−1(z•, x) + β
1/2
t σt−1(z•, x)

(2) Zt ≈ {z•} ∪
{
z : σt−1(z , xt) ≥ γ(z) =

(
λ(z)

λ(z•)

)q

ξ(z)

}
(3) zt = argmin

z∈Zt

λ(z) (cheapest z in Zt)

17/40

Theoretical Results for BOCA

x⋆
X

g(z, x)

f(x)

z•
Z

“good”

x⋆

g(z, x)

X

f(x)

z•
Z

“bad”

Theorem: (Informal)
BOCA does better, i.e. achieves better Simple regret, than GP-
UCB. The improvements are better in the “good” setting when
compared to the “bad” setting.

18/40

Theoretical Results for BOCA

x⋆
X

g(z, x)

f(x)

z•
Z

“good”

x⋆

g(z, x)

X

f(x)

z•
Z

“bad”

Theorem: (Informal)
BOCA does better, i.e. achieves better Simple regret, than GP-
UCB. The improvements are better in the “good” setting when
compared to the “bad” setting.

18/40

Experiment: SVM with 20 News Groups

Tune two hyper-parameters for the SVM.
Dataset has N• = 15K data and use T• = 100 iterations.
But can choose N ∈ [5K , 15K] or T ∈ [20, 100] (2D fidelity space).

0.89

0.895

0.9

0.905

0.91

0.915

500 1000 1500 2000

19/40

Experiment: Cosmological inference on Type-1a supernovae data

Estimate Hubble constant, dark matter fraction & dark energy
fraction by maximising likelihood on N• = 192 data.
Requires numerical integration on a grid of size G• = 106.
Approximate with N ∈ [50, 192] or G ∈ [102, 106] (2D fidelity space).

1000 1500 2000 2500 3000 3500
0.02

0.03

0.04

0.05

0.06
0.07
0.08
0.09

0.1

20/40

Experiment: Cosmological inference on Type-1a supernovae data

Estimate Hubble constant, dark matter fraction & dark energy
fraction by maximising likelihood on N• = 192 data.
Requires numerical integration on a grid of size G• = 106.
Approximate with N ∈ [50, 192] or G ∈ [102, 106] (2D fidelity space).

1000 1500 2000 2500 3000 3500
0.02

0.03

0.04

0.05

0.06
0.07
0.08
0.09

0.1

20/40

Hyper-band: A multi-fidelity method with incremental
resource allocation (Li et al. 2016)

E.g: Training a neural network with gradient descent for several
iterations.

If the CV error is bad after early iterations, then it will
likely be bad at the end.

Successive Halving (with finite X):

1. Allocate a small resource R to each x ∈ X .
e.g. Train all hyper-parameters for 100 iterations.

2. Drop half of the x ’s that are performing worst.

3. Repeat steps 1 & 2 until one arm is left.

Can be extended to infinite X .

Does not fall within the GP/Bayesian framework.

21/40

Hyper-band: A multi-fidelity method with incremental
resource allocation (Li et al. 2016)

E.g: Training a neural network with gradient descent for several
iterations. If the CV error is bad after early iterations, then it will
likely be bad at the end.

Successive Halving (with finite X):

1. Allocate a small resource R to each x ∈ X .
e.g. Train all hyper-parameters for 100 iterations.

2. Drop half of the x ’s that are performing worst.

3. Repeat steps 1 & 2 until one arm is left.

Can be extended to infinite X .

Does not fall within the GP/Bayesian framework.

21/40

Hyper-band: A multi-fidelity method with incremental
resource allocation (Li et al. 2016)

E.g: Training a neural network with gradient descent for several
iterations. If the CV error is bad after early iterations, then it will
likely be bad at the end.

Successive Halving (with finite X):

1. Allocate a small resource R to each x ∈ X .
e.g. Train all hyper-parameters for 100 iterations.

2. Drop half of the x ’s that are performing worst.

3. Repeat steps 1 & 2 until one arm is left.

Can be extended to infinite X .

Does not fall within the GP/Bayesian framework.

21/40

Hyper-band: A multi-fidelity method with incremental
resource allocation (Li et al. 2016)

E.g: Training a neural network with gradient descent for several
iterations. If the CV error is bad after early iterations, then it will
likely be bad at the end.

Successive Halving (with finite X):

1. Allocate a small resource R to each x ∈ X .
e.g. Train all hyper-parameters for 100 iterations.

2. Drop half of the x ’s that are performing worst.

3. Repeat steps 1 & 2 until one arm is left.

Can be extended to infinite X .

Does not fall within the GP/Bayesian framework.

21/40

Hyper-band: A multi-fidelity method with incremental
resource allocation (Li et al. 2016)

E.g: Training a neural network with gradient descent for several
iterations. If the CV error is bad after early iterations, then it will
likely be bad at the end.

Successive Halving (with finite X):

1. Allocate a small resource R to each x ∈ X .
e.g. Train all hyper-parameters for 100 iterations.

2. Drop half of the x ’s that are performing worst.

3. Repeat steps 1 & 2 until one arm is left.

Can be extended to infinite X .

Does not fall within the GP/Bayesian framework.

21/40

Hyper-band (cont’d)

When compared to Bayesian methods,

I Pro: Incremental resource allocation (do not need to retrain
all models from the beginning).

I Con: Cannot use correlation between arms (e.g. if x1 has
large CV accuracy, then x2 close to x1 is also likely to do well).

Experiments:

22/40

Hyper-band (cont’d)

When compared to Bayesian methods,

I Pro: Incremental resource allocation (do not need to retrain
all models from the beginning).

I Con: Cannot use correlation between arms (e.g. if x1 has
large CV accuracy, then x2 close to x1 is also likely to do well).

Experiments:

22/40

Outline

I Part I: Bandits in the Bayesian Paradigm

1. Gaussian processes

2. Algorithms: Upper Confidence Bound (UCB) & Thompson
Sampling (TS)

I Part II: Scaling up Bandits

1. Multi-fidelity bandit: cheap approximations to an expensive
experiment

2. Parallelising function evaluations

3. High dimensional input spaces

23/40

Part 2.2: Parallelising arm pulls
Sequential evaluations with one worker

Parallel evaluations with M workers (Asynchronous)

Parallel evaluations with M workers (Synchronous)

24/40

Part 2.2: Parallelising arm pulls
Sequential evaluations with one worker

Parallel evaluations with M workers (Asynchronous)

Parallel evaluations with M workers (Synchronous)

24/40

Part 2.2: Parallelising arm pulls
Sequential evaluations with one worker

Parallel evaluations with M workers (Asynchronous)

Parallel evaluations with M workers (Synchronous)

24/40

Why parallelisation?

I Computational experiments: infrastructure with 100-1000’s
CPUs or GPUs.

Prior work: (Ginsbourger et al. 2011, Janusevskis et al. 2012, Wang et al.

2016, González et al. 2015, Desautels et al. 2014, Contal et al. 2013, Shah

and Ghahramani 2015, Kathuria et al. 2016, Wang et al. 2017, Wu and Frazier

2016, Hernandez-Lobato et al. 2017)

Shortcomings

I Asynchronicity

I Theoretical guarantees

I Computationally & conceptually simple

25/40

Why parallelisation?

I Computational experiments: infrastructure with 100-1000’s
CPUs or GPUs.

Prior work: (Ginsbourger et al. 2011, Janusevskis et al. 2012, Wang et al.

2016, González et al. 2015, Desautels et al. 2014, Contal et al. 2013, Shah

and Ghahramani 2015, Kathuria et al. 2016, Wang et al. 2017, Wu and Frazier

2016, Hernandez-Lobato et al. 2017)

Shortcomings

I Asynchronicity

I Theoretical guarantees

I Computationally & conceptually simple

25/40

Review: Sequential Thompson Sampling in GP Bandits

Thompson Sampling (TS) (Thompson, 1933).

x

f(x)

1) Construct posterior GP. 2) Draw sample g from posterior.
3) Choose xt = argmaxx g(x). 4) Evaluate f at xt .

26/40

Review: Sequential Thompson Sampling in GP Bandits

Thompson Sampling (TS) (Thompson, 1933).

x

f(x)

1) Construct posterior GP.

2) Draw sample g from posterior.
3) Choose xt = argmaxx g(x). 4) Evaluate f at xt .

26/40

Review: Sequential Thompson Sampling in GP Bandits

Thompson Sampling (TS) (Thompson, 1933).

x

f(x)

1) Construct posterior GP. 2) Draw sample g from posterior.

3) Choose xt = argmaxx g(x). 4) Evaluate f at xt .

26/40

Review: Sequential Thompson Sampling in GP Bandits

Thompson Sampling (TS) (Thompson, 1933).

x

f(x)

xt

1) Construct posterior GP. 2) Draw sample g from posterior.
3) Choose xt = argmaxx g(x).

4) Evaluate f at xt .

26/40

Review: Sequential Thompson Sampling in GP Bandits

Thompson Sampling (TS) (Thompson, 1933).

x

f(x)

xt

1) Construct posterior GP. 2) Draw sample g from posterior.
3) Choose xt = argmaxx g(x). 4) Evaluate f at xt .

26/40

Parallelised Thompson Sampling (Kandasamy et al. Arxiv 2017)

Asynchronous: asyTS

At any given time,
1. (x ′, y ′)← Wait for

a worker to finish.
2. Compute posterior GP.
3. Draw a sample g ∼ GP.

4. Re-deploy worker at
argmax g .

Synchronous: synTS

At any given time,
1. {(x ′m, y ′m)}Mm=1 ← Wait for

all workers to finish.
2. Compute posterior GP.
3. Draw M samples

gm ∼ GP, ∀m.
4. Re-deploy worker m at

argmax gm, ∀m.

Variants in prior work: (Osband et al. 2016, Israelsen et al. 2016,

Hernandez-Lobato et al. 2017)

27/40

Parallelised Thompson Sampling (Kandasamy et al. Arxiv 2017)

Asynchronous: asyTS

At any given time,
1. (x ′, y ′)← Wait for

a worker to finish.
2. Compute posterior GP.
3. Draw a sample g ∼ GP.

4. Re-deploy worker at
argmax g .

Synchronous: synTS

At any given time,
1. {(x ′m, y ′m)}Mm=1 ← Wait for

all workers to finish.
2. Compute posterior GP.
3. Draw M samples

gm ∼ GP, ∀m.
4. Re-deploy worker m at

argmax gm, ∀m.

Variants in prior work: (Osband et al. 2016, Israelsen et al. 2016,

Hernandez-Lobato et al. 2017)

27/40

Parallelised Thompson Sampling (Kandasamy et al. Arxiv 2017)

Asynchronous: asyTS

At any given time,
1. (x ′, y ′)← Wait for

a worker to finish.
2. Compute posterior GP.
3. Draw a sample g ∼ GP.

4. Re-deploy worker at
argmax g .

Synchronous: synTS

At any given time,
1. {(x ′m, y ′m)}Mm=1 ← Wait for

all workers to finish.
2. Compute posterior GP.
3. Draw M samples

gm ∼ GP, ∀m.
4. Re-deploy worker m at

argmax gm, ∀m.

Variants in prior work: (Osband et al. 2016, Israelsen et al. 2016,

Hernandez-Lobato et al. 2017)

27/40

Theoretical Results for TS: number of evaluations

Sequential TS, SE Kernel (Russo & van Roy 2014)

E[Sn] .

√
vol(X) log(n)

n

Theorem: synTS & asyTS, SE Kernel (Kandasamy et al. Arxiv 2017)

E[Sn] .
M
√

log(M)

n
+

√
vol(X) log(n + M)

n

n← # completed arm pulls by all workers.

Why is this interesting?
- A sequential algorithm can make use of information from all

previous rounds to determine where to evaluate next.
- A parallel algorithm could be missing up to M − 1 results at

any given time. But randomisation helps!

28/40

Theoretical Results for TS: number of evaluations

Sequential TS, SE Kernel (Russo & van Roy 2014)

E[Sn] .

√
vol(X) log(n)

n

Theorem: synTS & asyTS, SE Kernel (Kandasamy et al. Arxiv 2017)

E[Sn] .
M
√

log(M)

n
+

√
vol(X) log(n + M)

n

n← # completed arm pulls by all workers.

Why is this interesting?
- A sequential algorithm can make use of information from all

previous rounds to determine where to evaluate next.
- A parallel algorithm could be missing up to M − 1 results at

any given time. But randomisation helps!

28/40

Theoretical Results for TS: number of evaluations

Sequential TS, SE Kernel (Russo & van Roy 2014)

E[Sn] .

√
vol(X) log(n)

n

Theorem: synTS & asyTS, SE Kernel (Kandasamy et al. Arxiv 2017)

E[Sn] .
M
√

log(M)

n
+

√
vol(X) log(n + M)

n

n← # completed arm pulls by all workers.

Why is this interesting?
- A sequential algorithm can make use of information from all

previous rounds to determine where to evaluate next.
- A parallel algorithm could be missing up to M − 1 results at

any given time.

But randomisation helps!

28/40

Theoretical Results for TS: number of evaluations

Sequential TS, SE Kernel (Russo & van Roy 2014)

E[Sn] .

√
vol(X) log(n)

n

Theorem: synTS & asyTS, SE Kernel (Kandasamy et al. Arxiv 2017)

E[Sn] .
M
√

log(M)

n
+

√
vol(X) log(n + M)

n

n← # completed arm pulls by all workers.

Why is this interesting?
- A sequential algorithm can make use of information from all

previous rounds to determine where to evaluate next.
- A parallel algorithm could be missing up to M − 1 results at

any given time. But randomisation helps!

28/40

Sequential evaluations with one worker

Parallel evaluations with M workers (Asynchronous)

Parallel evaluations with M workers (Synchronous)

29/40

Theoretical Results: Simple regret with time

Asynchronous Synchronous

Theorem (Informal) (Kandasamy et al. Arxiv 2017)

If evaluation times are the same, asyTS ≈ synTS.

Otherwise, bounds for asyTS is better than synTS. More the
variability in evaluation times, the bigger the difference.

- Bounded tail decay: constant factor

- Sub-gaussian tail decay:
√

log(M) factor

- Sub-exponential tail decay: log(M) factor

30/40

Theoretical Results: Simple regret with time

Asynchronous Synchronous

Theorem (Informal) (Kandasamy et al. Arxiv 2017)

If evaluation times are the same, asyTS ≈ synTS.

Otherwise, bounds for asyTS is better than synTS. More the
variability in evaluation times, the bigger the difference.

- Bounded tail decay: constant factor

- Sub-gaussian tail decay:
√

log(M) factor

- Sub-exponential tail decay: log(M) factor

30/40

Theoretical Results: Simple regret with time

Asynchronous Synchronous

Theorem (Informal) (Kandasamy et al. Arxiv 2017)

If evaluation times are the same, asyTS ≈ synTS.

Otherwise, bounds for asyTS is better than synTS. More the
variability in evaluation times, the bigger the difference.

- Bounded tail decay: constant factor

- Sub-gaussian tail decay:
√

log(M) factor

- Sub-exponential tail decay: log(M) factor

30/40

Experiment: Branin-2D M = 4
Evaluation time sampled from a uniform distribution

0 10 20 30 40

10 -2

10 -1

31/40

Experiment: Branin-2D M = 4
Evaluation time sampled from a uniform distribution

0 10 20 30 40

10 -2

10 -1

31/40

Experiment: Branin-2D M = 4
Evaluation time sampled from a uniform distribution

synRAND
synHUCB
synUCBPE
synTS
asyRAND
asyUCB
asyHUCB
asyEI
asyHTS
asyTS

0 10 20 30 40

10 -2

10 -1

31/40

Experiment: Hartmann-18D M = 25
Evaluation time sampled from an exponential distribution

synRAND
synHUCB
synUCBPE
synTS
asyRAND
asyUCB
asyHUCB
asyEI
asyHTS
asyTS

0 5 10 15 20 25 30

2.5

3

3.5

4

4.5

5
5.5

6
6.5

32/40

Experiment: Model Selection in Cifar10 M = 4

Tune # filters in in range (32, 256) for each layer in a 6 layer CNN.
Time taken for an evaluation: 4 - 16 minutes.

1000 2000 3000 4000 5000 6000 7000

0.68

0.69

0.7

0.71

0.72

synTS
asyRAND
asyHUCB

asyTS
asyEI

synHUCB

33/40

Parallelised Thompson Sampling in Neural Networks
(Hernandez-Lobato et al. 2017)

34/40

Parallelised Thompson Sampling in Neural Networks
(Hernandez-Lobato et al. 2017)

34/40

Outline

I Part I: Bandits in the Bayesian Paradigm

1. Gaussian processes

2. Algorithms: Upper Confidence Bound (UCB) & Thompson
Sampling (TS)

I Part II: Scaling up Bandits

1. Multi-fidelity bandit: cheap approximations to an expensive
experiment

2. Parallelising function evaluations

3. High dimensional input spaces

35/40

Part 2.3: Optimisation in High Dimensional Input Spaces

E.g. Tuning a machine learning model with several hyper-parameters

At each time step

x

f(x)

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

xt

1. Statistical Difficulty: estimating a high dimensional GP.

2. Computational Difficulty: maximising a high dimensional
acquisition (e.g. upper confidence bound) ϕt .

36/40

Part 2.3: Optimisation in High Dimensional Input Spaces

E.g. Tuning a machine learning model with several hyper-parameters

At each time step

x

f(x)

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

xt

1. Statistical Difficulty: estimating a high dimensional GP.

2. Computational Difficulty: maximising a high dimensional
acquisition (e.g. upper confidence bound) ϕt .

36/40

Part 2.3: Optimisation in High Dimensional Input Spaces

E.g. Tuning a machine learning model with several hyper-parameters

At each time step

x

f(x)

x

f(x) ϕt = µt−1 + β
1/2
t σt−1

xt

1. Statistical Difficulty: estimating a high dimensional GP.

2. Computational Difficulty: maximising a high dimensional
acquisition (e.g. upper confidence bound) ϕt .

36/40

Additive Models for High Dimensional BO
(Kandasamy et al. ICML 2015)

E.g. f (x{1,...,10}) = f (1)(x{1,3,9}) + f (2)(x{2,4,8}) + f (3)(x{5,6,10}) .

1 2 3 4 5 6 ��HH7 8 9 10

I Better statistical properties: sample complexity improves from
exponential in d to linear in d .

I Add-GP-UCB algorithm: computationally tractable even for
large d .

I Better bias variance trade-off in practice: algorithm does well
even if f is not additive.

37/40

Additive Models for High Dimensional BO
(Kandasamy et al. ICML 2015)

E.g. f (x{1,...,10}) = f (1)(x{1,3,9}) + f (2)(x{2,4,8}) + f (3)(x{5,6,10}) .

1 2 3 4 5 6 ��HH7 8 9 10

I Better statistical properties: sample complexity improves from
exponential in d to linear in d .

I Add-GP-UCB algorithm: computationally tractable even for
large d .

I Better bias variance trade-off in practice: algorithm does well
even if f is not additive.

37/40

Experiment: Viola & Jones Cascade classifier

Tune 22 hyper-parameters in the V&J classifier.

0 100 200 300
65

70

75

80

85

90

95

38/40

Summary

I Bandits are a framework for studying exploration vs
exploitation trade-offs when optimising black-box functions.

I Several applications: Hyper-parameter Tuning, materials
synthesis, scientific experiments etc.

I Several algorithms: UCB, TS, EI etc.

I Multi-fidelity Bandits: Use cheap approximations to a an
expensive experiment to speed up optimisation.

I Parallelised TS: Simple and intuitive way to deal with
multiple workers.

I High dimensional optimisation: Additive models have
favourable statistical and computational properties.

39/40

Summary

I Bandits are a framework for studying exploration vs
exploitation trade-offs when optimising black-box functions.

I Several applications: Hyper-parameter Tuning, materials
synthesis, scientific experiments etc.

I Several algorithms: UCB, TS, EI etc.

I Multi-fidelity Bandits: Use cheap approximations to a an
expensive experiment to speed up optimisation.

I Parallelised TS: Simple and intuitive way to deal with
multiple workers.

I High dimensional optimisation: Additive models have
favourable statistical and computational properties.

39/40

Akshay Barnabás Gautam

Jeff Junier

Thank You
Slides: www.cs.cmu.edu/~kkandasa/talks/pitt-hptune-slides.pdf

