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▸ But data is different to other types of resources 

▸ Data is costly to produce, but free to replicate.



A UTOPIAN GOAL �4

Everyone collects data, everyone shares their data with others. 

- Cost incurred by one organization to produce data can benefit others. 

- Better for the organizations, better for society at large. 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SHARING WILL DEMOCRATIZE DATA �5

Small organizations with little data:

Large organization with lots of data:

A    B    C    D    E    F

By sharing data with each other, small organizations can compete with 
larger organizations.
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agent's penalty  =  estimation error  +  cost of data collection

When working on her own, an agent will collect enough data until the cost 
offsets the (diminishing) increase in value from data.
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If others are already contributing large amounts of data, an agent has no 
incentive to collect/contribute data of her own.
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▸ Agent can submit fabricated data and then discard it when learning.

▸ Agent may fabricate based on a small sample she has collected, so it 
may not always be easy to detect.



OBSTACLES TO DATA SHARING �10

Logistical
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Data sharing platforms/consortia Marketplaces for data and ML models

BUT THERE IS A DEMAND FOR DATA SHARING IN THE REAL WORLD
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Data marketplaces

 
 
Goal: Incentivize contributors to honestly 
contribute lots of data. Fairly reward them 
for effort via payments from consumers.
• A mediator checks for the quality of 

the data from contributors.
• Higher quality data  higher 

revenue for data contributors.
⟹
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PRIOR WORK
Mechanisms for data sharing and 
federated learning 

Sim, Zhang, Chan, Low 2020

Xu, Lyu, Ma et al 2021

Blum, Haghtalab, Phillips, Shao 2021

Karimireddy, Guo, Jordan 2022

Fraboni, Vidal, Lorenzi 2021

Lin, Du, Liu 2019

Ding, Fang, Huang 2020

Liu, Tian, Chen et al 2022

�13

Data marketplaces 

Cai, Daskalakis, Papadimitriou 2015

Agarwal, Dahleh, Sarkar, 2019

Agarwal, Dahleh, Horel, Rui, 2020

Jia, Dao, Wang et al, 2019

Wang, Rausch, Zhang et al 2020


Key difference: 
▸ All these works assume agents will always truthfully submit the data they 

have, i.e without fabrication/alteration.



OUTLINE
1. Mechanism design for collaborative normal mean estimation  

                                                                           (Chen, Zhu, Kandasamy, NeurIPS 2023) 

▸ Intuitions, overview of results 

▸ Problem formalism 

▸ Mechanism and theoretical analysis 

2. Extensions                                     (Clinton, Chen, Zhu, Kandasamy, Ongoing work) 

▸ Multiple distributions with asymmetric data collection capabilities 

▸ Collaborative supervised learning and experiment design
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• Estimate the mean  of a normal distribution 
with known variance .

μ
σ2

• An agent can collect samples at known unit cost .c

• Each agent wishes to minimize 
 
 
 

• When working on her own, agent will 
collect  points to minimize penalty.σ/ c

penalty =  estimation error  + data collection cost
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• Now consider  agents collecting and sharing their data.m

• Social penalty of all  agents if they collectively collect  points. 
 
 

m ntot

• To minimize social penalty, they should collect  points.n⋆
tot = σ m

c

• Each agent needs to collect only  points 

   Only  when compared to working on her own (  points).

n⋆ = σ

mc

× 1/ m σ/ c

• But she has  data.× m

social penalty =  estimation error of all agents  + data collection cost = m ×
σ2

ntot
+ cntot
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Amount of data 
she needs to collect 

Amount of data 
available to her

Penalty

Working on 
her own

Working 
together

σ

c

σ
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σ m

c
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2σ c

m

Agents can reduce data collection costs, and improve estimation error by 
sharing data with others.
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▸ Naive mechanism 1:   “pool and share”

▸ Selfish agents will free-ride: not contributing any data herself, but 
using data that the others have contributed. 
 
 
 

▸ Naive mechanism 2:  “pool and share, but only if you contribute 
enough data”

▸ Agents can fabricate and then discard after receiving others’ data.
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Each agent  will:i

• Collect  points  and submit  points .  
         # Agents may collect any number of points, and lie (e.g withhold, fabricate) about what they collect.

ni Xi = {xi,1, …, xi,ni
} n′�i Yi = {yi,1, …, yi,n′�i

}

The mechanism:

• To each agent, allocates a noisy version  of the others’ data. The noise is proportional 
to how much the agent’s submission  differs from the others' submissions . 

Ai
Yi {Yj}j≠i

Each agent  will:i

• Estimate  using all the information they have (  , , ).μ Xi Yi Ai

▸ We design a (minimax) optimal estimator to enforce truthful reporting.
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This mechanism is

▸ Nash incentive-compatible: Provided that other agents are well-behaved, 
the best strategy for an agent is to,

▸ Collect a sufficient amount ( ) of data.n⋆ = σ/ mc

▸ Submit it truthfully.

▸ Use the recommended minimax-optimal estimator.

▸ Individually rational: Provided that others are well-behaved, an agent 
does not do worse than the best she could do on her own. 

▸ Approximately efficient: Social penalty at the Nash strategies is at most a 
factor 2 of the global minimum.
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▸ The mechanism designer can choose a space of allocations .𝒜
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𝒜 = ⋃k≥0 ℝk

We can write the space of mechanisms  as,  
 

ℳ

ℳ = M = (𝒜, b); 𝒜 ⊂ universal set, b : (⋃
n≥0

ℝn)
m

→ 𝒜m

Datasets received 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}

▸ Submit .Yi = {yi,1, …, yi,n′�i
} = fi(Xi)

▸  maps the dataset collected to possibly altered dataset (e.g fabrication, 
withholding etc), of a potentially different size.
fi

▸ On receiving her allocation , she will estimate  via an estimator .Ai μ hi(Xi, Yi, Ai)
▸ An agent need not use the “straightforward" (e.g sample mean) estimator. 

An agent’s strategy  si = (ni, fi, hi) ∈ ℕ × ℱ × ℋ

ℱ = submission functions = f : ⋃
n≥0

ℝn → ⋃
n≥0

ℝn , ℋ = estimators = h : ⋃
n≥0

ℝn × ⋃
n≥0

ℝn × 𝒜 → ℝ
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pi M s = (s1, …, sm)

We take a  since  is unknown. Makes the problem well-defined.supμ∈ℝ … μ

▸ Otherwise, consider setting  and  for some .ni = 0 hi( ⋅ , ⋅ , ⋅ ) = μ′� μ′� ∈ ℝ

▸ When the true mean is , this strategy achieves zero penalty!μ = μ′�

▸ But this works only if agent knows  a priori.μ = μ′�

pi(M, s) = estimation error + data collection cost

= sup
μ∈ℝ

𝔼μ [(hi(Xi, fi(Xi), Ai) − μ)2] + cni
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Theorem (high-dimensional distributions with bounded variance): 
The recommended strategy profile �  is an � -approximate Nash 
equilibrium. Moreover, the mechanism is individually rational and 
approximately efficient with � .

s⋆ �̃�(1/m)

P(M, s⋆) ≤ (2 + �̃�(1/m)) ⋅ inf
M,s

P(M, s)
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Step 1: First, we will show that for any , submitting the data truthfully and using 
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Step 1: First, we will show that for any amount of data collected � , submitting it 
truthfully and using the recommended estimator minimizes the penalty, i.e 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pi (M, ((ni, f ⋆
i , h⋆

i ), s⋆
−i)) ≤ pi (M, ((ni, fi, hi), s⋆

−i)) for all (ni, fi, hi) ∈ ℕ × ℱ × ℋ

We need to show, for all , 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Or equivalently,
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μ∈ℝ
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We will apply the same recipe to prove step 1,

Two challenges:
1. Not just the estimator  but also the submission function .hi fi
2. The data available to the agent is not i.i.d!
▸ The corruption is data-dependent.

▸ In fact,    is not even jointly Gaussian.Xi, Zi, Z′�i

inf
fi,hi

sup
μ∈ℝ

𝔼μ [(hi (Xi, fi(Xi), Ai) − μ)2] = sup
μ∈ℝ

𝔼μ [(h⋆
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i (Xi), Ai) − μ)2]
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We show 
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▸ : step 2 of NIC (collect a sufficient amount of data).G(α) = 0

▸ : step 1 of NIC (sufficiently penalize untruthful agents).α2 ≥ n⋆
i

▸ “smallest number larger than”: for efficiency (don't over-penalize truthful agents).

+

We set �  to be the smallest number larger than �  such that � , where,α n⋆
i G(α) = 0



OUTLINE
1. Mechanism design for collaborative normal mean estimation  

                                                                               (Chen, Zhu, Kandasamy, NeurIPS 2023) 

▸ Intuitions, overview of results 

▸ Problem formalism 

▸ Mechanism and theoretical analysis 

2. Extensions                                     (Clinton, Chen, Zhu, Kandasamy, Ongoing work) 

▸ Multiple distributions with asymmetric data collection capabilities 

▸ Collaborative supervised learning and experiment design
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Data sharing when there is asymmetric data collection capabilities.
    E.g: hospitals in different locations, researchers with different experimental equipment etc.

  Agents will be more willing to collaborate due to complementarity of data.+

  No way to validate an agent's data with other similar data.−

Agent 1 can  
sample here.

Agent 2 can 
sample here.

×

×
×

×

×
× ×

×
×

×
×
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1 2 K

Agent � can sample from distribution � at cost � . 

Penalty,  �

i k ci,k

pi =
K

∑
k=1

est-errk +
K

∑
k=1

ci,kni,k

Overview of our solution:

▸ Uses axiomatic bargaining to define idealized collaboration targets 
assuming agents will always report truthfully.

▸ Enforces truthful behaviour, via corruption and other techniques.



�43RESULTS

Theorem: There exists a NIC and IR mechanism for which,
P(M, s⋆) ≤ 8 m ⋅ inf

M,s
P(M, s)

� : number of agents m



�43RESULTS

Theorem: There exists a NIC and IR mechanism for which,
P(M, s⋆) ≤ 8 m ⋅ inf

M,s
P(M, s)

Theorem (hardness): There exists a set of costs �  such that for 
any mechanism �  and any Nash equilibrium �  of this mechanism, 
we have

{ci,k}i,k
M s⋆

P(M, s⋆) ≥ 𝒪 ( m) ⋅ inf
M,s

P(M, s)

� : number of agents m



THANK YOU!
Alex ClintonYiding Chen Jerry Zhu

kandasamy@cs.wisc.edu



SUMMARY �45

▸ Data sharing has many benefits 

▸ Maximize the value created by data. 

▸ Democratize data. 

▸ But strategic agents can free-ride in naive mechanisms, either by 
not contributing data, or contributing fabricated datasets. 

▸ For mean estimation, our mechanism is IR and NIC while achieving 
a factor 2 of the global minimum social penalty.
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Theorem: The “pool and share, but only if you contribute enough 
data”  mechanism is NIC and IR and achieves the global minimum 
penalty � .inf

M,s
P(M, s)

Theorem: For all � , there exists a NIC and IR mechanism �  
such that � .

ϵ > 0 Mϵ
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