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MACHINE LEARNING IS UBIQUITOUS :

» Consumer facing businesses » Scientific research

» Industrial processes » Transport/logistics
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» Data is the new gold.

The Economist, NY Times, Forbes, Wired, Deloitte, EY
Boston Consulting Group, and several more ...

» But data is different to other types of resources

» Data is costly to produce, but free to replicate.



A UTOPIAN GOAL

Everyone collects data, everyone shares their data with others.

- Cost incurred by one organization to produce data can benefit others.

- Better for the organizations, better for society at large.

% ¢ 1% % <=
@ Pﬁ zer MEKCK amazZon i) shopif y $




SHARING WILL DEMOCRATIZE DATA




SHARING WILL DEMOCRATIZE DATA

Small organizations with little data:

A B C D E F



SHARING WILL DEMOCRATIZE DATA

Small organizations with little data:

A B C D E F

Large organization with lots of data:



SHARING WILL DEMOCRATIZE DATA

Small organizations with little data:

A B C D E F

Large organization with lots of data:

©



SHARING WILL DEMOCRATIZE DATA

Small organizations with little data:

A B C D E F

Large organization with lots of data:

©

By sharing data with each other, small organizations can compete with
larger organizations.
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FREE-RIDING (#1/3)

agent's penalty = estimation error + cost of data collection

When working on her own, an agent will collect enough data until the cost
offsets the (diminishing) increase in value from data.
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FREE-RIDING (#2/3)

Multiple agents share data via a naive pool-and-share protocol:

» Everyone collects data, everyone gets a copy of the others’ data.

If others are already contributing large amounts of data, an agent has no
incentive to collect/contribute data of her own.
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A seemingly plausible work-around (but does not work):
Pool-and-share but only if the agent contributes sufficient data
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» Agent can submit fabricated data and then discard it when learning.

» Agent may fabricate based on a small sample she has collected, so it
may not always be easy to detect.
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Ethical/Legal Security Logistical

Privacy Data breaches Inter-operability

Ownership of data Adversarial attacks Communication costs
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Free-riding Data monetization

Competition Data valuation




BUT THERE IS A DEMAND FOR DATA SHARING IN THE REAL WORLD :

Data sharing platforms/consortia Marketplaces for data and ML models

Pub@hem AWS Data Exchange

4% Ads Data Hub
pubfQed®

CITRINE?®
C, ChEMBL

INFORMATICS
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Azure Data Share

An open standard for secure data sharing
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for effort via payments from consumers.
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Goal: Incentivize contributors to honestly
contribute lots of data. Fairly reward them

for effort via payments from consumers.

A mediator checks for the quality of
the data from contributors.

 Higher quality data =— higher
revenue for data contributors.



PRIOR WORK 3

Mechanisms for data sharing and Data marketplaces

federated learning Cai, Daskalakis, Papadimitriou 2015
| Agarwal, Dahleh, Sarkar, 2019

Sim, Zhang, Chal‘”’ Low 2020 Agarwal, Dahleh, Horel, Rui, 2020

Xu, Lyu, Ma et a 202_1, Jia, Dao, Wang et al, 2019

Blum, Haghtalab, Phillips, Shao 2021 Wang, Rausch, Zhang et al 2020

Karimireddy, Guo, Jordan 2022
Fraboni, Vidal, Lorenzi 2021
Lin, Du, Liu 2019

Ding, Fang, Huang 2020

Liu, Tian, Chen et al 2022

Key difference:

» All these works assume agents will always truthfully submit the data they
have, i.e without fabrication/alteration.



OUTLINE .

1. Mechanism design for collaborative normal mean estimation
(Chen, Zhu, Kandasamy, NeurlPS 2023)
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» Multiple distributions with asymmetric data collection capabilities

» Collaborative supervised learning and experiment design
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e Estimate the mean i of a normal distribution

with known variance ¢~
<4+
: O
e An agent can collect samples at known unit cost c.
e Each agent wishes to minimize 12,
penalty = estimation error + data collection cost penalty = estimation error + cost

2
62 O

= — +Cn
— -+ cn
" n

cost =cn

e When working on her own, agent will Ectimation error 02

of sample mean

collect 0/\/2 points to minimize penalty. :

o/ \/E Amount of data (n)
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e Now consider m agents collecting and sharing their data.

e Social penalty of all m agents if they collectively collect n, . points.

02

social penalty = estimation error of all agents + data collection cost = m X
Mot

o To minimize social penalty, they should collect n*, = 2 points.

C

o Each agent needs to collect only n* = —Z_ points

mc

Only X 1/\% when compared to working on her own (a/\/z points).

e But she has X \% data.

|

17
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SEVERAL AGENTS WORKING TOGETHER

Working on
her own

Working
together

Amount of data Amount of data
she needs to collect available to her

(n;) (Myor)

O O

Ve Ve

o 0\/%
Ver G

Agents can reduce data collection costs, and improve estimation error by

sharing data with others.

18
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» Naive mechanism 1: “pool and share”

» Selfish agents will free-ride: not contributing any data herself, but
using data that the others have contributed.

o’ o* 0\/2 1 9 20\/2

penalty = FexXn, = — 4+ X0 = —
Mot (m—1) X e \% 2 \M
N

penalty for a well-behaved agent

» Naive mechanism 2: “pool and share, but only if you contribute
enough data”

» Agents can fabricate and then discard after receiving others’ data.
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Each agent  will:

o Collect n; points X; = {x; |, ..., x;, } and submitn; points ¥; = {y; |, ..., V; ./}

# Agents may collect any number of points, and lie (e.g withhold, fabricate) about what they collect.

The mechanism:

e To each agent, allocates a noisy version A; of the others’ data. The noise is proportional
to how much the agent’s submission Y; differs from the others' submissions { Y} ...

Each agent i will:

e Estimate y using all the information they have (X.,Y;, A)).

» We design a (minimax) optimal estimator to enforce truthful reporting.
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This mechanism is

Nash incentive-compatible: Provided that other agents are well-behaved,
the best strategy for an agent is to,

Collect a sufficient amount (n* = 6/4/mc) of data.
Submit it truthfully.
Use the recommended minimax-optimal estimator.

Individually rational: Provided that others are well-behaved, an agent
does not do worse than the best she could do on her own.

Approximately efficient: Social penalty at the Nash strategies is at most a
factor 2 of the global minimum.
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1. Mechanism design for collaborative normal mean estimation
(Chen, Zhu, Kandasamy, NeurlPS 2023)

» Intuitions, overview of results
» Problem formalism

» Mechanism and theoretical analysis

2. Extensions (Clinton, Chen, Zhu, Kandasamy, Ongoing work)
» Multiple distributions with asymmetric data collection capabilities

» Collaborative supervised learning and experiment design
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A mechanism M receives a dataset from each agent, and returns
an allocation A. to each agent .

» The mechanism designer can choose a space of allocations <.

E.g. Alargerdataset, o = [ J,-,R"

Datasets received
from the m agents.

We can write the space of mechanisms .Z as, /

M= M= (A,b); o Cuniversal set, b: (UL ”) — o™

n>0
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An agent’s penalty p. in a mechanism M under a strategy profile s = (s, ...,

piM,s) = estimation error + data collection cost
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An agent'’s penalty p. in a mechanism M under a strategy profile s = (s, ..., s ),
piM,s) = estimation error + data collection cost
)
HER

We take a sup, . ... since u is unknown. Makes the problem well-defined.

» Otherwise, consider settingn. =0and /2(-,-,-) = pu'forsome p’ € R.
» When the true mean is y = i/, this strategy achieves zero penalty!

» But this works only if agent knows i = 1" a priori.
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A mechanism will also publish a recommended strategy profile s* = {5},

Desiderata:

1. Nash incentive-compatible (NIC): 5™ is a Nash equilibrium, i.e
p(M,(s*,s7)) < p{M, (s;,s)) for all agents i and all other strategies s..

2. Individually rational (IR): An agent's penalty at s™ is no worse than the
lowest penalty she could achieve on her own, i.e p.(M, s™) < 26/\/2.

3. Approximately efficient: The social penalty P(M, s™) = » p(M,s*) is at

most a constant factor of the global minimum, i.e
min without NIC, IR

P(M,s*) < O(1)-minp(M', sy« constraints
M's’

¥ = 200y/mc (pool-and-share)



OUTLINE 2

1. Mechanism design for collaborative normal mean estimation
(Chen, Zhu, Kandasamy, NeurlPS 2023)

» Intuitions, overview of results
» Problem formalism

» Mechanism and theoretical analysis

2. Extensions (Clinton, Chen, Zhu, Kandasamy, Ongoing work)
» Multiple distributions with asymmetric data collection capabilities

» Collaborative supervised learning and experiment design
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Each agent ; will
» Choose their strategy s, = (n, f;, h;)
» Collectn; points X; = {x; |, ....x;, } and submit ¥; = {y; |, ..., v} = fi(X)).

Mechanism

» For each agent i:
» Z; < randomly sample 0/\@ points from others’ submissions V_..
» Set noise variance 77i2 = a? (mean(Yi) — mean(Zl-))z # Variance proportional to difference
y 2] {z +e, forallzeY_\Z, wheree, ~ # (05} }
» Set allocation to each agent, A; < (Z, Z/, 7).

Each agent  wil I
1§ Y= Uj;éin

» Compute their estimate /1,(X., Y., A)
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Mechanisms recommends that agents follow s = (n.*, f*, h.%),

o
n’ = ,

\ cm
f7 = identity,

1
ZMEXiUZi e 1 + n?/o? zuEZi’u

—1,
‘XZUZZ‘ T 1 + n2/c? ‘Zi‘<¥zi’isthe

corrupted

hi* (Xi» r;, (Zi» Z;; ’712)) —

A.

l

dataset.

That is collect a sufficient amount of data %, submit it truthfully /7,
and use a weighted average estimator /1"
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THEORETICAL RESULTS

Theorem: The recommended strategy profile s* is a Nash
equilibrium. Moreover, at s* the mechanism is individually rational

and approximately efficient with P(M, s*) < 2 - inf P(M, s).
M.,s

Theorem (high-dimensional distributions with bounded variance):

The recommended strategy profile s* is an O(1/m)-approximate Nash
equilibrium. Moreover, the mechanism is individually rational and

approximately efficient with P(M, s™) < (2 + 5(1/m)) - 1nf P(M, s).
M.,s
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We need to show that s = {(n*,f*, h”)}, is a Nash equilibrium, i.e

piM, (s*,s*)) < p; (M, (s;,s*)) forall agents i and all deviations s,

Step 1: First, we will show that for any 72, submitting the data truthfully and using
the recommended estimator minimizes the penalty, i.e

D; (M» ((”liaf,-*, h’), Sf,-)) < p; (M, ((ni,fi, h), Sfl.)> forall (n, f,h) e NX F XX

Step 2: Then, we will show the agent’s penalty is minimized when she collects n*
samples under (f, 1), i.e

pi (M, ((n*, f, b, Sfl-)> <p (M, ((n, £, 1), Sfi)) foralln, e N
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Step 1: First, we will show that for any amount of data collected 7, submitting it
truthfully and using the recommended estimator minimizes the penalty, i.e

1 (M» ((n, 7, h,-*),Sf,-)) < p; (M, ((n, hi),Sf,-)> forall (n, f,h) ENX F X H

We need to show, forall (n.,f.,h,) € N X F X A,

supE, l(hl.* (X, £5(X), A;) — ,4)2] + // < supE, l(hi (X, £(X). A;) — /4)2: + /o/

HER HER

Or equivalently,
sup -, [(hl‘* (Xi9 fl‘*(Xi)a Az) —/4)2] — 1Ilf sup = [(hl (Xi9 fl(Xl)a Al) —//t>2:

HER
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We are given X' = {X,, ..., X, }, drawn i.i.d from /' (, o°) where ¢~

is known. Let /1(X}') be an estimator for ;.. We wish to show
)] o7
minimax risk = inf sup Ey, [(Iu — h(Xf)) ] = —
ﬁ //tER ! n

Upper bound via an estimator: We can use the sample mean
_ . 2 02

minimax risk < sup E,, [(/4 — hg (X)) ] —

UeR 1 n
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Lower bound via Bayes' risk: Choose a prior A for 1. Then lower bound via

the Bayes' risk under A.

We will use A = /(0,7%). Then, for any estimator 7,

HER

k|

upEy, [(e = hXDY] > B,y |

Eon [0 = HXP1XG] |

Now, minimize inner expectation w.r.t /.

(i) As p, X7 is jointly Gaussian, i | X|' is also Gaussian.

(ii) Then choose /1 = posterior mean.

O

> 02
— A+ 62/12

2

Y
o 2

—> — daS 77~ — OO

n+ o2/t? n
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We will apply the same recipe to prove step 1,

infsup E, [(hl (X, [(X), A;) — ﬂ)zl = supE, [(hi* (X, [7(X), A;) — ,u)z]
Jishi HER HER

Two challenges:

1. Not just the estimator /2, but also the submission function f..
2. The data available to the agent is not i.i.d!

» The corruption is data-dependent.

» Infact, X.,Z, 7 is not even jointly Gaussian.

: : 2
» Set noise variance 17,.2 = q’ (mean(Yi) — mean(Zi)) #\

y 2 {z +e, forallzeY_\Z, wheree, ~ /V((),I]I-z)}.

I — I ——
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We show
infsup _(hi (Xl-, JX), Ai) —,14)2_ < suplk, _(hl.* (X,-, f,-*(X,-), Ai) —ﬂ)z_
Jirh UeER - il UeER - §
—1
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PROOF OF STEP 1: UPPER BOUND

We show
inf sup E, _(h,. (X; fiX), A;) — ﬂ)z_ < supE, _(hl.* (X; (X0, A;) —/4)2_
fihi yer L - uer L :

(Wl - Z)I/Ii* | n. n*

2~ A0 2 2 (2 21k 72 - o2
o-+ (0 /n; + o4/n; )Z

Proof idea:

» When /7 = identity, first condition on X,, Z, then Z/ ~ //(0, 6* + 11°).



PROOF OF STEP 1: LOWER BOUND

37

Choose prior A = //(0,7%) for .. Then for any f;, 1, we have



PROOF OF STEP 1: LOWER BOUND

37

Choose prior A = //(0,7%) for .. Then for any f;, 1, we have

sup
HER

—data~u

(hz (Xi» Ji{(X), Ai) — //’)2:

>

—data~u [(hz (Xb fi(Xi)a Ai) o /“t)z




PROOF OF STEP 1: LOWER BOUND 37
Choose prior A = /(0,7°) for u. Then for any /., h.,, we have

>UP T data~y _(hi (X, fiX), A)) _/")2_ S [dataNﬂ [<hz (X £i(X), A)) _/4)2 ,u” —— sup=avg
UeER - -

= Egatay [WA [(hl (Xl-, J4(X), Ai) — /4)2 data” <4—————————— Swap order of expectation



PROOF OF STEP 1: LOWER BOUND
Choose prior A = /(0,7°) for u. Then for any /., h.,, we have
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HER

—data~u

— WLdata~p |:,u~A

(hz (Xia Ji{(X), Ai) — //1)2:

>

37

E datares [(hl (Xl., JAX), Ai) —/4)2 /4” <«—— SUp = avg

(hl- (Xl-, fAX), Al-) — /4)2 data” 4————— Swap order of expectation

Choose /i, = posterior mean to minimize w.r.t /..



PROOF OF STEP 1: LOWER BOUND
Choose prior A = /(0,7°) for u. Then for any /., h.,, we have

sup
HER

—data~u

— WLdata~p |:,u~A

(hz (Xia Ji{(X), Ai) — //1)2:

>

37

E datares [(hl (Xl., 14X, Ai) —/4)2 /4” <«——— SUp 2 avg

(hl- (Xl-, fAX), Al-) — /4)2 data” 4————— Swap order of expectation

Choose /i; = posterior mean to minimize w.r.t /..

» U, X;, 7,7 is not jointly Gaussian, but i | X;, Z;, Z'is Gaussian.



PROOF OF STEP 1: LOWER BOUND
Choose prior A = /(0,7°) for u. Then for any /., h.,, we have

sup
HER

—data~u

— WLdata~p |:,u~A

(hz (Xia Ji{(X), Ai) — //1)2:

>

37

E datares [(hl (Xl., 14X, Ai) —/4)2 /4” <«——— SUp 2 avg

(hl- (Xl-, fAX), Al-) — /4)2 data” 4————— Swap order of expectation

Choose /i; = posterior mean to minimize w.r.t /..

» U, X;, 7,7 is not jointly Gaussian, but i | X;, Z;, Z'is Gaussian.

IV

—data

1
20 —1
1 1 | X |+ |Z:] 1
‘ l‘(g ) (‘fi(Xi)‘ ’ |Zi‘ Z) ) o’ 72]

yE fi(X)

ZEZ;



PROOF OF STEP 1: LOWER BOUND 37
Choose prior A = /(0,7°) for u. Then for any /., h.,, we have

>UP T data~y _(hi (X, fiX), A)) _”)2- i [dataNﬂ [(hz (X fiX), A)) —/4)2 '”” — sup=ave
HER - -

= Ejatas [,WA (hl- (Xl-, X)), Ai) —/4)2 data” <4—————————— Swap order of expectation

Choose /i; = posterior mean to minimize w.r.t /..

» U, X;, 7,7 is not jointly Gaussian, but i | X;, Z;, Z'is Gaussian.

1
20 —1
1 1 | X |+ |Z:] 1
‘ l‘(a ) (‘fi(Xi)‘ ’ |Zi‘ Z) ) o’ 72]

yE (X)) 7€/,

IV

—data

. =R (n) (say) <«———To minimize w.r.tf, choose f(X,) = {(1 +0%/(| X | 72))_1x, Vx e Xi}
and apply Hardy-Littlewood inequality.



PROOF OF STEP 1: LOWER BOUND 37
Choose prior A = /(0,7°) for u. Then for any /., h.,, we have

>UP T data~y _(hi (X, fiX), A)) _”)2- i [dataNﬂ [(hz (X fiX), A)) —/4)2 '”” — sup=ave
HER - -

2

(hl- (Xl-, fAX), Ai) — //t> data” <4————————————— Swap order of expectation

— WLdata~p |:,u~A
Choose /i; = posterior mean to minimize w.r.t /..

» U, X;, 7,7 is not jointly Gaussian, but i | X;, Z;, Z'is Gaussian.

1
20 —1
1 1 | X |+ |Z:] 1
‘ l‘(a ) (‘fi(Xi)‘ ’ |Zi‘ Z) ) o’ 72]

yE (X)) 7€/,

IV

—data

. =R (n) (say) <«———To minimize w.r.tf, choose f(X,) = {(1 +0%/(| X | 72))_1x, Vx e Xi}
and apply Hardy-Littlewood inequality.

— R_(n;) as T —> o0



PROOF OF STEP 2 ¥

Step 2: Then, we will show the agent’s penalty is minimized when she collects

n; samples under (f*, 1), i.e

P (M, ((n*, f, b2, Sf,-)) <p (M, ((ny, 7,12, Sfl.)) forall n. € N



PROOF OF STEP 2 ¥

Step 2: Then, we will show the agent’s penalty is minimized when she collects

n; samples under (f*, 1), i.e

P (M, ((n*, f, b2, Sf,-)) <p (M, ((ny, 7,12, Sfl.)) forall n. € N

From Step 1 we have,

m—2n* n+n*
RHS = p, (M» <(”i»fi*a hi*)»Sfi)> — LTz~ (1) ( " + — _2l + cn;
(02 + a? (Gz/nl-+62/nl-*) Z2> ©




PROOF OF STEP 2 ¥

Step 2: Then, we will show the agent’s penalty is minimized when she collects

n; samples under (f*, 1), i.e

P (M, ((n*, [, hY), Sfl-)) <p (M, ((ny, 7,12, Sfi)) forall n. € N

From Step 1 we have,

m—2n* n+n*
RHS = p, (M» <(”i»fi*a h,-*)»Sf,-)> — LTz~ (1) ( " + — _2l + cn;
(62 + a? (Gz/nl-+02/nl-*) Z2> ©

- The term inside [ is convex in .. Hence so is pi(M, ((nl-,fi*, h’), Sfl.)).

- Minimized at n, = n* (by our choice of a).
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» For each agent i:

» Z. < sample n™ = ¢/4/cm points from others’ subm

2
» Set noise variance 177 = a” (mean(Y,_-) — mean(Zl-))
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We set a to be the smallest number larger than W such that G(a) = 0, where,

_[m—4 40? 4o a? ov/mj/c Jo(m/c)l/4
G(a) .—( 1) o (m/o)1/4 (4(m + 1) ol 1) Mexp( P~ ) Erfc( W, )

» G(a) = 0: step 2 of NIC (collect a sufficient amount of data).

2 , . . .
» a” > n’: step 1 of NIC (sufficiently penalize untruthful agents).

» “smallest number larger than”: for efficiency (don't over-penalize truthful agents).
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OUTLINE o

1. Mechanism design for collaborative normal mean estimation
(Chen, Zhu, Kandasamy, NeurlPS 2023)

» Intuitions, overview of results
» Problem formalism

» Mechanism and theoretical analysis

2. Extensions (Clinton, Chen, Zhu, Kandasamy, Ongoing work)
» Multiple distributions with asymmetric data collection capabilities

» Collaborative supervised learning and experiment design
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Agent 1 can Agent 2 can

sample here. > I «— sample here.

Data sharing when there is asymmetric data collection capabilities.
E.g: hospitals in different locations, researchers with different experimental equipment etc.

+ Agents will be more willing to collaborate due to complementarity of data.

— No way to validate an agent's data with other similar data.
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Consider estimating K distributions (e.g discretizing the domain)

Agent i can sample from distribution k at cost ¢; .
K

K
A Penalty, p. = Z est-err; + 2 C; kM
N =1 =1

Overview of our solution:

» Uses axiomatic bargaining to define idealized collaboration targets
assuming agents will always report truthfully.

» Enforces truthful behaviour, via corruption and other techniques.
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RESULTS

Theorem: There exists a NIC and IR mechanism for which,

P(M, s*) < 8/m - inf P(M, s)
M.,s

m: number of agents

Theorem (hardness): There exists a set of costs {¢; ; },, such that for

any mechanism M and any Nash equilibrium s™ of this mechanism,

we have
P(M,s*) > O (\%) inf P(M, 5)

M.,s
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Data sharing has many benefits
Maximize the value created by data.

Democratize data.

But strategic agents can free-ride in naive mechanisms, either by
not contributing data, or contributing fabricated datasets.

For mean estimation, our mechanism is IR and NIC while achieving
a factor 2 of the global minimum social penalty.



MORE MECHANISMS AND RESULTS

46




MORE MECHANISMS AND RESULTS ~

When the mechanism deploys an estimate for agents in a downstream
application (& = N X F):



MORE MECHANISMS AND RESULTS ~

When the mechanism deploys an estimate for agents in a downstream
application (& = N X F):

Theorem: For all € > 0, there exists a NIC and IR mechanism M,

such that P(M_,s*) < (1 + ¢) - inf P(M, s).
M.,s



MORE MECHANISMS AND RESULTS ~

When the mechanism deploys an estimate for agents in a downstream
application (& = N X F):

Theorem: For all € > 0, there exists a NIC and IR mechanism M,

such that P(M_,s*) < (1 + ¢) - inf P(M, s).
M.,s

When agents have to report truthfully (& = N X #):



MORE MECHANISMS AND RESULTS e

When the mechanism deploys an estimate for agents in a downstream
application (& = N X F):

Theorem: For all € > 0, there exists a NIC and IR mechanism M,

such that P(M_,s™) < (1 + ¢) - inf P(M, s).
M.,s

When agents have to report truthfully (& = N X #):

Theorem: The “pool and share, but only if you contribute enough
data” mechanism is NIC and IR and achieves the global minimum

penalty inf P(M, s).
M.,s



