Multi-fidelity Bandit Optimisation

Kirthevasan Kandasamy
Carnegie Mellon University

July 12, 2016
University College London

Bandit Optimisation

Bandit Optimisation

Bandit Optimisation

Bandit Optimisation

$f: \mathcal{X} \equiv[0,1]^{d} \rightarrow \mathbb{R}$ is an expensive, black-box, noisy function.
Let $x_{\star}=\operatorname{argmax}_{x} f(x)$.

Bandit Optimisation

$f: \mathcal{X} \equiv[0,1]^{d} \rightarrow \mathbb{R}$ is an expensive, black-box, noisy function.
Let $x_{\star}=\operatorname{argmax}_{x} f(x)$.

Bandit Optimisation

$f: \mathcal{X} \equiv[0,1]^{d} \rightarrow \mathbb{R}$ is an expensive, black-box, noisy function.
Let $x_{\star}=\operatorname{argmax}_{x} f(x)$.

Optimisation \cong Minimise Simple Regret.

$$
S_{n}=f\left(x_{\star}\right)-\max _{\mathbf{x}_{t}, t=1, \ldots, n} f\left(\mathbf{x}_{t}\right) .
$$

Bandit Optimisation

$f: \mathcal{X} \equiv[0,1]^{d} \rightarrow \mathbb{R}$ is an expensive, black-box, noisy function.
Let $x_{\star}=\operatorname{argmax}_{x} f(x)$.

Bandits \cong Minimise Cumulative Regret.

$$
R_{n}=\sum_{t=1}^{n} f\left(x_{\star}\right)-f\left(\mathbf{x}_{t}\right)
$$

Bandit Optimisation

$f: \mathcal{X} \equiv[0,1]^{d} \rightarrow \mathbb{R}$ is an expensive, black-box, noisy function.
Let $x_{\star}=\operatorname{argmax}_{x} f(x)$.

Both problems are related.

$$
S_{n} \leq \frac{1}{n} R_{n}
$$

Gaussian Processes $(\mathcal{G} \mathcal{P})$

$\mathcal{G} \mathcal{P}(\mu, \kappa)$: A distribution over functions from \mathcal{X} to \mathbb{R}.

Gaussian Processes $(\mathcal{G P})$

$\mathcal{G} \mathcal{P}(\mu, \kappa)$: A distribution over functions from \mathcal{X} to \mathbb{R}.
Functions with no observations

Gaussian Processes $(\mathcal{G} \mathcal{P})$

$\mathcal{G P}(\mu, \kappa)$: A distribution over functions from \mathcal{X} to \mathbb{R}.

Prior $\mathcal{G P}$

Gaussian Processes $(\mathcal{G} \mathcal{P})$

$\mathcal{G} \mathcal{P}(\mu, \kappa)$: A distribution over functions from \mathcal{X} to \mathbb{R}.
Observations

Gaussian Processes $(\mathcal{G P})$

$\mathcal{G} \mathcal{P}(\mu, \kappa)$: A distribution over functions from \mathcal{X} to \mathbb{R}.

Posterior $\mathcal{G P}$ given Observations

Gaussian Processes $(\mathcal{G} \mathcal{P})$

$\mathcal{G} \mathcal{P}(\mu, \kappa)$: A distribution over functions from \mathcal{X} to \mathbb{R}.

Posterior $\mathcal{G P}$ given Observations

After t observations, $\quad f(x) \sim \mathcal{N}\left(\mu_{t}(x), \sigma_{t}^{2}(x)\right)$.

Gaussian Process Bandit (Bayesian) Optimisation

Model $f \sim \mathcal{G P}(\mathbf{0}, \kappa)$.
GP-UCB (Srinivas et al. 2010).

Gaussian Process Bandit (Bayesian) Optimisation

Model $f \sim \mathcal{G P}(\mathbf{0}, \kappa)$.
GP-UCB (Srinivas et al. 2010).

Gaussian Process Bandit (Bayesian) Optimisation

Model $f \sim \mathcal{G P}(\mathbf{0}, \kappa)$.
GP-UCB (Srinivas et al. 2010).

Construct Upper Conf. Bound: $\varphi_{t}(x)=\mu_{t-1}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}(x)$.

Gaussian Process Bandit (Bayesian) Optimisation

Model $f \sim \mathcal{G} \mathcal{P}(\mathbf{0}, \kappa)$.
GP-UCB (Srinivas et al. 2010).

Maximise Upper Confidence Bound.

GP-UCB

$$
\mathbf{x}_{t}=\underset{x}{\operatorname{argmax}} \mu_{t-1}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}(x)
$$

GP-UCB

$$
\mathbf{x}_{t}=\underset{x}{\operatorname{argmax}} \mu_{t-1}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}(x)
$$

- μ_{t-1} : Exploitation
- σ_{t-1} : Exploration

GP-UCB

$$
\mathbf{x}_{t}=\underset{x}{\operatorname{argmax}} \mu_{t-1}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}(x)
$$

- μ_{t-1} : Exploitation
- σ_{t-1} : Exploration
- β_{t} controls the tradeoff. $\beta_{t} \asymp \log t$.

GP-UCB

$$
\mathbf{x}_{t}=\underset{x}{\operatorname{argmax}} \mu_{t-1}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}(x)
$$

- μ_{t-1} : Exploitation
- σ_{t-1} : Exploration
- β_{t} controls the tradeoff. $\beta_{t} \asymp \log t$.
- The upper bound $\mu_{t-1}+\beta_{t}^{1 / 2} \sigma_{t-1}$ becomes tighter around the optimum x_{\star}.

GP-UCB

What if we have cheap approximations to f ?

What if we have cheap approximations to f ?

1. Hyper-parameter tuning: Train \& CV with a subset of the data, and/or early stopping before convergence.

What if we have cheap approximations to f ?

1. Hyper-parameter tuning: Train \& CV with a subset of the data, and/or early stopping before convergence.
E.g. Bandwidth (h) selection in kernel density estimation.

What if we have cheap approximations to f ?

1. Hyper-parameter tuning: Train \& CV with a subset of the data, and/or early stopping before convergence.
E.g. Bandwidth (h) selection in kernel density estimation.

2. Robotics: Simulation vs Real world experiment.

What if we have cheap approximations to f ?

1. Hyper-parameter tuning: Train \& CV with a subset of the data, and/or early stopping before convergence.
E.g. Bandwidth (h) selection in kernel density estimation.

2. Robotics: Simulation vs Real world experiment.
3. Compuatational Astrophysics: Cosmological simulations with less granularity.

Outline

1. Multi-fidelity Bandit Optimisation

- Formalism \& Challenges

2. MF-GP-UCB: Multi-fidelity optimisation using GPs

- Single Approximation/ 2 fidelity setting
- Theoretical Results \& Proof Sketches

3. MF-GP-UCB with multiple fidelities.
4. Experiments

Multi-fidelity Bandit Optimisation

Goal:

- Optimise $f . \quad x_{\star}=\operatorname{argmax}_{x} f(x)$.
- But ..

Multi-fidelity Bandit Optimisation

Goal:

- Optimise $f . \quad x_{\star}=\operatorname{argmax}_{x} f(x)$.
- But .. we have $M-1$ cheap approximations $f^{(1)}, f^{(2)}, \ldots, f^{(M-1)}$ to the function of interest $f=f^{(M)}$.

Multi-fidelity Bandit Optimisation

Goal:

- Optimise $f . \quad x_{\star}=\operatorname{argmax}_{x} f(x)$.
- But .. we have $M-1$ cheap approximations $f^{(1)}, f^{(2)}, \ldots, f^{(M-1)}$ to the function of interest $f=f^{(M)}$.
- $f^{(m)} \operatorname{costs} \lambda^{(m)} . \quad \lambda^{(1)}<\lambda^{(2)}<\ldots \lambda^{(M-1)}<\lambda^{(M)}$. "cost": could be computation time, money etc.

Multi-fidelity Bandit Optimisation

Goal:

- Optimise $f . \quad x_{\star}=\operatorname{argmax}_{x} f(x)$.
- But .. we have $M-1$ cheap approximations $f^{(1)}, f^{(2)}, \ldots, f^{(M-1)}$ to the function of interest $f=f^{(M)}$.
- $f^{(m)}$ costs $\lambda^{(m)} . \quad \lambda^{(1)}<\lambda^{(2)}<\ldots \lambda^{(M-1)}<\lambda^{(M)}$. "cost" : could be computation time, money etc.
- Assumptions
- $f^{(m)} \sim \mathcal{G} \mathcal{P}(0, \kappa)$ for all $m=1, \ldots, M$.
- $\left\|f^{(M)}-f^{(m)}\right\|_{\infty} \leq \zeta^{(m)}$ for all $m=1, \ldots, M-1$. $\zeta^{(m)}$'s are decreasing with m and are known.

Outline for a Sequential Strategy

At each step:

- Determine the point $\mathbf{x}_{t} \in \mathcal{X}$ and fidelity \mathbf{m}_{t} at which you want to query.

Outline for a Sequential Strategy

At each step:

- Determine the point $\mathbf{x}_{t} \in \mathcal{X}$ and fidelity \mathbf{m}_{t} at which you want to query.
- At time t, we have queried previously at any one of M fidelities. Use all these information to determine next query.

Outline for a Sequential Strategy

At each step:

- Determine the point $\mathbf{x}_{t} \in \mathcal{X}$ and fidelity \mathbf{m}_{t} at which you want to query.
- At time t, we have queried previously at any one of M fidelities. Use all these information to determine next query.
- End Goal: Maximise $f^{(M)}$. We don't really care much about the value of the query at the lower fidelities.

Outline for a Sequential Strategy

At each step:

- Determine the point $\mathbf{x}_{t} \in \mathcal{X}$ and fidelity \mathbf{m}_{t} at which you want to query.
- At time t, we have queried previously at any one of M fidelities. Use all these information to determine next query.
- End Goal: Maximise $f^{(M)}$. We don't really care much about the value of the query at the lower fidelities.
- But use $f^{(1)}, \ldots, f^{(M-1)}$ to guide search for x_{\star} at $f^{(M)}$.

Outline for a Sequential Strategy

At each step:

- Determine the point $\mathbf{x}_{t} \in \mathcal{X}$ and fidelity \mathbf{m}_{t} at which you want to query.
- At time t, we have queried previously at any one of M fidelities. Use all these information to determine next query.
- End Goal: Maximise $f^{(M)}$. We don't really care much about the value of the query at the lower fidelities.
- But use $f^{(1)}, \ldots, f^{(M-1)}$ to guide search for x_{\star} at $f^{(M)}$.

MF-GP-UCB: Multi-fidelity Gaussian Process Upper Confidence Bound

Challenges (in 2 fidelities)

- $f^{(1)}$ is not just a noisy version of $f^{(2)}$.

Challenges (in 2 fidelities)

- $f^{(1)}$ is not just a noisy version of $f^{(2)}$.
- Cannot just maximise $f^{(1)} . x_{\star}^{(1)}$ is suboptimal for $f^{(2)}$.

Challenges (in 2 fidelities)

- $f^{(1)}$ is not just a noisy version of $f^{(2)}$.
- Cannot just maximise $f^{(1)} . x_{\star}^{(1)}$ is suboptimal for $f^{(2)}$.

Challenges (in 2 fidelities)

- $f^{(1)}$ is not just a noisy version of $f^{(2)}$.
- Cannot just maximise $f^{(1)} . x_{\star}^{(1)}$ is suboptimal for $f^{(2)}$.

Challenges (in 2 fidelities)

- $f^{(1)}$ is not just a noisy version of $f^{(2)}$.
- Cannot just maximise $f^{(1)} . x_{\star}^{(1)}$ is suboptimal for $f^{(2)}$.

Challenges (in 2 fidelities)

- $f^{(1)}$ is not just a noisy version of $f^{(2)}$.
- Cannot just maximise $f^{(1)} . x_{\star}^{(1)}$ is suboptimal for $f^{(2)}$.
- Need to explore $f^{(2)}$ sufficiently well around the high valued regions of $f^{(1)}$ - but at a not too large region.

Challenges (in 2 fidelities)

- $f^{(1)}$ is not just a noisy version of $f^{(2)}$.
- Cannot just maximise $f^{(1)} . x_{\star}^{(1)}$ is suboptimal for $f^{(2)}$.
- Need to explore $f^{(2)}$ sufficiently well around the high valued regions of $f^{(1)}$ - but at a not too large region.

Key Message: MF-GP-UCB will explore \mathcal{X} using $f^{(1)}$ and use $f^{(2)}$ mostly in a "good" set \mathcal{X}_{g}, determined via $f^{(1)}$.

MF-GP-UCB with 2 fidelities

Upper Confidence Bound: Maintain 2 upper bounds for $f^{(2)}$.

$$
\begin{aligned}
& \varphi_{t}^{(1)}(x)=\mu_{t-1}^{(1)}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}^{(1)}(x)+\zeta^{(1)} \\
& \varphi_{t}^{(2)}(x)=\mu_{t-1}^{(2)}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}^{(2)}(x)
\end{aligned}
$$

MF-GP-UCB with 2 fidelities

Upper Confidence Bound: Maintain 2 upper bounds for $f^{(2)}$.

$$
\begin{gathered}
\varphi_{t}^{(1)}(x)=\mu_{t-1}^{(1)}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}^{(1)}(x)+\zeta^{(1)} \\
\varphi_{t}^{(2)}(x)=\mu_{t-1}^{(2)}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}^{(2)}(x) \\
\varphi_{t}(x)=\min \left\{\varphi_{t}^{(1)}(x), \varphi_{t}^{(2)}(x)\right\}
\end{gathered}
$$

MF-GP-UCB with 2 fidelities

Upper Confidence Bound: Maintain 2 upper bounds for $f^{(2)}$.

$$
\begin{aligned}
\varphi_{t}^{(1)}(x) & =\mu_{t-1}^{(1)}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}^{(1)}(x)+\zeta^{(1)} \\
\varphi_{t}^{(2)}(x) & =\mu_{t-1}^{(2)}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}^{(2)}(x) \\
\varphi_{t}(x) & =\min \left\{\varphi_{t}^{(1)}(x), \varphi_{t}^{(2)}(x)\right\}
\end{aligned}
$$

- Choose $\mathbf{x}_{t}=\operatorname{argmax}_{x \in \mathcal{X}} \varphi_{t}(x)$.

MF-GP-UCB with 2 fidelities

Upper Confidence Bound: Maintain 2 upper bounds for $f^{(2)}$.

$$
\begin{aligned}
\varphi_{t}^{(1)}(x) & =\mu_{t-1}^{(1)}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}^{(1)}(x)+\zeta^{(1)} \\
\varphi_{t}^{(2)}(x) & =\mu_{t-1}^{(2)}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}^{(2)}(x) \\
\varphi_{t}(x) & =\min \left\{\varphi_{t}^{(1)}(x), \varphi_{t}^{(2)}(x)\right\}
\end{aligned}
$$

- Choose $\mathbf{x}_{t}=\operatorname{argmax}_{x \in \mathcal{X}} \varphi_{t}(x)$.
- $\mathbf{m}_{t}= \begin{cases}1 & \text { if } \beta_{t}^{1 / 2} \sigma_{t-1}^{(1)}(x)>\gamma^{(1)} \\ 2 & \text { otherwise. }\end{cases}$

MF-GP-UCB

Theoretical Results

Simple regret after capital \wedge,

$$
S(\Lambda)=f^{(2)}\left(x_{\star}\right)-\max _{t: \mathbf{m}_{t}=2} f^{(2)}\left(\mathbf{x}_{t}\right)
$$

Theoretical Results

Simple regret after capital \wedge,

$$
S(\Lambda)=f^{(2)}\left(x_{\star}\right)-\max _{t: \mathbf{m}_{t}=2} f^{(2)}\left(\mathbf{x}_{t}\right)
$$

$n_{\Lambda}=\left\lfloor\Lambda / \lambda^{(2)}\right\rfloor$ is number of queries by GP-UCB within capital Λ.

Theoretical Results

Simple regret after capital \wedge,

$$
S(\Lambda)=f^{(2)}\left(x_{\star}\right)-\max _{t: \mathbf{m}_{t}=2} f^{(2)}\left(\mathbf{x}_{t}\right)
$$

$n_{\Lambda}=\left\lfloor\Lambda / \lambda^{(2)}\right\rfloor$ is number of queries by GP-UCB within capital Λ.
$\Psi_{n}(A)$: Maximum Information Gain of $A \subset \mathcal{X}$.

Theoretical Results

Simple regret after capital \wedge,

$$
S(\Lambda)=f^{(2)}\left(x_{\star}\right)-\max _{t: \mathbf{m}_{t}=2} f^{(2)}\left(\mathbf{x}_{t}\right)
$$

$n_{\Lambda}=\left\lfloor\Lambda / \lambda^{(2)}\right\rfloor$ is number of queries by GP-UCB within capital Λ.
$\Psi_{n}(A):$ Maximum Information Gain of $A \subset \mathcal{X} . \rightarrow \Psi_{n}(A) \propto \operatorname{vol}(A)$.

Theoretical Results

Simple regret after capital \wedge,

$$
S(\Lambda)=f^{(2)}\left(x_{\star}\right)-\max _{t: \mathbf{m}_{t}=2} f^{(2)}\left(\mathbf{x}_{t}\right)
$$

$n_{\Lambda}=\left\lfloor\Lambda / \lambda^{(2)}\right\rfloor$ is number of queries by GP-UCB within capital Λ.
$\Psi_{n}(A):$ Maximum Information Gain of $A \subset \mathcal{X} . \rightarrow \Psi_{n}(A) \propto \operatorname{vol}(A)$.
GP-UCB (Srinivas et. al. 2010)

$$
S(\Lambda) \lesssim \sqrt{\frac{\Psi_{n_{\Lambda}}(\mathcal{X})}{n_{\Lambda}}}
$$

Theoretical Results

Simple regret after capital \wedge,

$$
S(\Lambda)=f^{(2)}\left(x_{\star}\right)-\max _{t: \mathbf{m}_{t}=2} f^{(2)}\left(\mathbf{x}_{t}\right)
$$

$n_{\Lambda}=\left\lfloor\Lambda / \lambda^{(2)}\right\rfloor$ is number of queries by GP-UCB within capital Λ.
$\Psi_{n}(A):$ Maximum Information Gain of $A \subset \mathcal{X} . \rightarrow \Psi_{n}(A) \propto \operatorname{vol}(A)$.
GP-UCB (Srinivas et. al. 2010)

$$
\lambda^{(2)} S(\Lambda) \lesssim \lambda^{(2)} \sqrt{\frac{\Psi_{m_{\Lambda}}(\mathcal{X})}{n_{\Lambda}}}
$$

Theoretical Results

Simple regret after capital \wedge,

$$
S(\Lambda)=f^{(2)}\left(x_{\star}\right)-\max _{t: \mathbf{m}_{t}=2} f^{(2)}\left(\mathbf{x}_{t}\right)
$$

$n_{\Lambda}=\left\lfloor\Lambda / \lambda^{(2)}\right\rfloor$ is number of queries by GP-UCB within capital Λ.
$\Psi_{n}(A):$ Maximum Information Gain of $A \subset \mathcal{X} . \rightarrow \Psi_{n}(A) \propto \operatorname{vol}(A)$.
GP-UCB (Srinivas et. al. 2010)

$$
\lambda^{(2)} S(\Lambda) \lesssim \lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}(\mathcal{X})}{n_{\Lambda}}}
$$

Can we achieve?

$$
\lambda^{(2)} S(\Lambda) \lesssim \lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\mathcal{X}_{g}\right)}{n_{\Lambda}}}+\lambda^{(1)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\mathcal{X}_{g}^{c}\right)}{n_{\Lambda}}}
$$

Theoretical Results

Simple regret after capital \wedge,

$$
S(\Lambda)=f^{(2)}\left(x_{\star}\right)-\max _{t: \mathbf{m}_{t}=2} f^{(2)}\left(\mathbf{x}_{t}\right)
$$

$n_{\Lambda}=\left\lfloor\Lambda / \lambda^{(2)}\right\rfloor$ is number of queries by GP-UCB within capital Λ.
$\Psi_{n}(A):$ Maximum Information Gain of $A \subset \mathcal{X} . \rightarrow \Psi_{n}(A) \propto \operatorname{vol}(A)$.
GP-UCB (Srinivas et. al. 2010)

$$
\lambda^{(2)} S(\Lambda) \lesssim \lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}(\mathcal{X})}{n_{\Lambda}}}
$$

Can we achieve?

$$
\lambda^{(2)} S(\Lambda) \lesssim \lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\mathcal{X}_{g}\right)}{n_{\Lambda}}}+\lambda^{(1)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\mathcal{X}_{g}^{c}\right)}{n_{\Lambda}}}
$$

Ideal Scenario: $\lambda^{(1)} \ll \lambda^{(2)}$ and

$$
\operatorname{vol}\left(\mathcal{X}_{g}\right) \ll \operatorname{vol}\left(\mathcal{X}_{g}^{c}\right) \Longrightarrow \Psi_{n_{\wedge}}\left(\mathcal{X}_{g}\right) \ll \Psi_{n_{\Lambda}}\left(\mathcal{X}_{g}\right)
$$

The "Good" Set \mathcal{X}_{g}

\mathcal{X}_{g} is completely determined by f_{\star} and $f^{(1)}$.

$$
\mathcal{X}_{g}=\left\{x \in \mathcal{X}: f_{\star}-f^{(1)}(x) \leq \zeta^{(1)}\right\} .
$$

The "Good" Set \mathcal{X}_{g}

\mathcal{X}_{g} is completely determined by f_{\star} and $f^{(1)}$.

$$
\mathcal{X}_{g}=\left\{x \in \mathcal{X}: f_{\star}-f^{(1)}(x) \leq \zeta^{(1)}\right\} .
$$

- Contains x_{\star}.
- Need not be contiguous.

The "Good" Set \mathcal{X}_{g}

\mathcal{X}_{g} is completely determined by f_{\star} and $f^{(1)}$.

$$
\mathcal{X}_{g}=\left\{x \in \mathcal{X}: f_{\star}-f^{(1)}(x) \leq \zeta^{(1)}\right\} .
$$

- Contains x_{\star}.
- Need not be contiguous.
- Is "fundamental" to the problem: any strategy must explore $f^{(2)}$ well within this region.
- Lower bounds in the K-armed multi-fidelity bandit.

Theoretical Results

$$
\mathcal{X}_{g}=\left\{x \in \mathcal{X}: f_{\star}-f^{(1)}(x) \leq \zeta^{(1)}\right\} .
$$

Theorem (Simple Regret for MF-GP-UCB):

$$
\lambda^{(2)} S(\Lambda) \lesssim \lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\mathcal{X}_{g}\right)}{n_{\Lambda}}}+\lambda^{(1)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\mathcal{X}_{g}^{c}\right)}{n_{\Lambda}}}
$$

Theoretical Results

$$
\mathcal{X}_{g}=\left\{x \in \mathcal{X}: f_{\star}-f^{(1)}(x) \leq \zeta^{(1)}\right\} .
$$

We will consider a slightly inflated set.

$$
\widetilde{\mathcal{X}}_{g, \rho}=\left\{x \in \mathcal{X}: f_{\star}-f^{(1)}(x) \leq \zeta^{(1)}+\rho \gamma\right\} \quad \supset \mathcal{X}_{g} .
$$

Theorem (Simple Regret for MF-GP-UCB):

$$
\lambda^{(2)} S(\Lambda) \lesssim \lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\widetilde{\mathcal{X}}_{g, \rho}\right)}{n_{\Lambda}}}+\lambda^{(1)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\widetilde{\mathcal{X}}_{g, \rho}^{c}\right)}{n_{\Lambda}}}
$$

Theoretical Results

$$
\mathcal{X}_{g}=\left\{x \in \mathcal{X}: f_{\star}-f^{(1)}(x) \leq \zeta^{(1)}\right\} .
$$

We will consider a slightly inflated set.

$$
\widetilde{\mathcal{X}}_{g, \rho}=\left\{x \in \mathcal{X}: f_{\star}-f^{(1)}(x) \leq \zeta^{(1)}+\rho \gamma\right\} \quad \supset \mathcal{X}_{g} .
$$

Theorem (Simple Regret for MF-GP-UCB):

$$
\begin{aligned}
\lambda^{(2)} S(\Lambda) \lesssim & \lesssim \lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\tilde{\mathcal{X}}_{g, \rho}\right)}{n_{\Lambda}}}+\lambda^{(1)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\tilde{\mathcal{X}}_{g, \rho}^{c}\right)}{n_{\Lambda}}} \\
& +\lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}^{\alpha}\left(\tilde{\mathcal{X}}_{g, \rho}^{c}\right)}^{n_{\Lambda}^{2-\alpha}}}{}}
\end{aligned}
$$

Theoretical Results

$$
\mathcal{X}_{g}=\left\{x \in \mathcal{X}: f_{\star}-f^{(1)}(x) \leq \zeta^{(1)}\right\} .
$$

We will consider a slightly inflated set.

$$
\widetilde{\mathcal{X}}_{g, \rho}=\left\{x \in \mathcal{X}: f_{\star}-f^{(1)}(x) \leq \zeta^{(1)}+\rho \gamma\right\} \quad \supset \mathcal{X}_{g} .
$$

Theorem (Simple Regret for MF-GP-UCB):

$$
\begin{aligned}
\lambda^{(2)} S(\Lambda) & \lesssim \lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\tilde{\mathcal{X}}_{g, \rho}\right)}{n_{\Lambda}}}+\lambda^{(1)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\tilde{\mathcal{X}}_{g, \rho}^{c}\right)}{n_{\Lambda}}} \\
& +\lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}^{\alpha}}\left(\tilde{\mathcal{X}}_{g, \rho}^{c}\right)}{n_{\Lambda}^{2-\alpha}}}
\end{aligned}
$$

- Statement true for all $\alpha>0$ for $\rho \asymp 1+\frac{1}{\sqrt{\alpha}}$.

Theoretical Results

$$
\mathcal{X}_{g}=\left\{x \in \mathcal{X}: f_{\star}-f^{(1)}(x) \leq \zeta^{(1)}\right\} .
$$

We will consider a slightly inflated set.

$$
\widetilde{\mathcal{X}}_{g, \rho}=\left\{x \in \mathcal{X}: f_{\star}-f^{(1)}(x) \leq \zeta^{(1)}+\rho \gamma\right\} \quad \supset \mathcal{X}_{g} .
$$

Theorem (Simple Regret for MF-GP-UCB):

$$
\begin{aligned}
\lambda^{(2)} S(\Lambda) \lesssim & \lesssim \lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\tilde{\mathcal{X}}_{g, \rho}\right)}{n_{\Lambda}}}+\lambda^{(1)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\widetilde{\mathcal{X}}_{g, \rho}^{c}\right)}{n_{\Lambda}}} \\
& +\lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}^{\alpha}}\left(\tilde{\mathcal{X}}_{g, \rho}^{c}\right)}{n_{\Lambda}^{2-\alpha}}}+\lambda^{(1)} \frac{\operatorname{vol}\left(\tilde{\mathcal{X}}_{g, \rho}\right)}{n_{\Lambda}} \frac{1}{\gamma^{(1)^{d}}}
\end{aligned}
$$

- Statement true for all $\alpha>0$ for $\rho \asymp 1+\frac{1}{\sqrt{\alpha}}$.

Theoretical Results

$$
\mathcal{X}_{g}=\left\{x \in \mathcal{X}: f_{\star}-f^{(1)}(x) \leq \zeta^{(1)}\right\} .
$$

We will consider a slightly inflated set.

$$
\widetilde{\mathcal{X}}_{g, \rho}=\left\{x \in \mathcal{X}: f_{\star}-f^{(1)}(x) \leq \zeta^{(1)}+\rho \gamma\right\} \quad \supset \mathcal{X}_{g} .
$$

Theorem (Simple Regret for MF-GP-UCB):

$$
\begin{aligned}
\lambda^{(2)} S(\Lambda) \lesssim & \lesssim \lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\tilde{\mathcal{X}}_{g, \rho, n}\right)}{n_{\Lambda}}}+\lambda^{(1)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\tilde{\mathcal{X}}_{g, \rho}^{c}\right)}{n_{\Lambda}}} \\
& +\lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}^{\alpha}}\left(\tilde{\mathcal{X}}_{g, \rho}^{c}\right)}{n_{\Lambda}^{2-\alpha}}}+\lambda^{(1)} \frac{\operatorname{vol}\left(\tilde{\mathcal{X}}_{g, \rho}\right)}{n_{\Lambda}} \frac{1}{\gamma^{(1)^{d}}}
\end{aligned}
$$

- Statement true for all $\alpha>0$ for $\rho \asymp 1+\frac{1}{\sqrt{\alpha}}$.
- $\widetilde{\mathcal{X}}_{g, \rho, n} \rightarrow \widetilde{\mathcal{X}}_{g, \rho}$ as $n \rightarrow \infty$.

Theoretical Results

$$
\mathcal{X}_{g}=\left\{x \in \mathcal{X}: f_{\star}-f^{(1)}(x) \leq \zeta^{(1)}\right\} .
$$

We will consider a slightly inflated set.

$$
\widetilde{\mathcal{X}}_{g, \rho}=\left\{x \in \mathcal{X}: f_{\star}-f^{(1)}(x) \leq \zeta^{(1)}+\rho \gamma\right\} \quad \supset \mathcal{X}_{g} .
$$

Theorem (Simple Regret for MF-GP-UCB):

$$
\begin{aligned}
\lambda^{(2)} S(\Lambda) \lesssim & \lesssim \lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\widetilde{\mathcal{X}}_{g, \rho}\right)}{n_{\Lambda}}}+\lambda^{(1)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\widetilde{\mathcal{X}}_{g, \rho}^{c}\right)}{n_{\Lambda}}} \\
& +\lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}^{\alpha}}\left(\tilde{\mathcal{X}}_{g, \rho}^{c}\right)}{n_{\Lambda}^{2-\alpha}}}+\lambda^{(1)} \frac{\operatorname{vol}\left(\tilde{\mathcal{X}}_{g, \rho}\right)}{n_{\Lambda}} \frac{1}{\gamma^{(1)^{d}}}
\end{aligned}
$$

- Statement true for all $\alpha>0$ for $\rho \asymp 1+\frac{1}{\sqrt{\alpha}}$.
- $\widetilde{\mathcal{X}}_{g, \rho, n} \rightarrow \widetilde{\mathcal{X}}_{g, \rho}$ as $n \rightarrow \infty$.

Proof Sketch

$N \leftarrow$ Number of plays by MF-GP-UCB within capital Λ.

Proof Sketch

$N \leftarrow$ Number of plays by MF-GP-UCB within capital Λ. Since $\lambda^{(1)}<\lambda^{(2)}, N$ could be much larger than $n_{\Lambda}=\left\lfloor\Lambda / \lambda^{(2)}\right\rfloor$.

Proof Sketch

$N \leftarrow$ Number of plays by MF-GP-UCB within capital Λ.
Since $\lambda^{(1)}<\lambda^{(2)}, N$ could be much larger than $n_{\Lambda}=\left\lfloor\Lambda / \lambda^{(2)}\right\rfloor$.
But .. we show $N \leq 2 n_{\Lambda}$ with high probability.

Proof Sketch

$N \leftarrow$ Number of plays by MF-GP-UCB within capital Λ.
Since $\lambda^{(1)}<\lambda^{(2)}, N$ could be much larger than $n_{\Lambda}=\left\lfloor\Lambda / \lambda^{(2)}\right\rfloor$.
But .. we show $N \leq 2 n_{\Lambda}$ with high probability.

We need to bound the following 4 quantities.

- $T_{N}^{(2)}\left(\widetilde{\mathcal{X}}_{g, \rho}\right): \#$ of second fidelity queries in $\widetilde{\mathcal{X}}_{g, \rho}$.
- $T_{N}^{(2)}\left(\widetilde{\mathcal{X}}_{g, \rho}^{c}\right)$: \# of second fidelity queries in $\widetilde{\mathcal{X}}_{g, \rho}^{c}$.
$-T_{N}^{(1)}\left(\widetilde{\mathcal{X}}_{g, \rho}\right), T_{N}^{(1)}\left(\widetilde{\mathcal{X}}_{g, \rho}^{c}\right)$.

Proof Sketch

$N \leftarrow$ Number of plays by MF-GP-UCB within capital Λ.
Since $\lambda^{(1)}<\lambda^{(2)}, N$ could be much larger than $n_{\Lambda}=\left\lfloor\Lambda / \lambda^{(2)}\right\rfloor$.
But .. we show $N \leq 2 n_{\Lambda}$ with high probability.

We need to bound the following 4 quantities.

- $T_{N}^{(2)}\left(\widetilde{\mathcal{X}}_{g, \rho}\right): \#$ of second fidelity queries in $\widetilde{\mathcal{X}}_{g, \rho}$.
- $T_{N}^{(2)}\left(\widetilde{\mathcal{X}}_{g, \rho}^{c}\right)$: \# of second fidelity queries in $\widetilde{\mathcal{X}}_{g, \rho}^{c}$.
$-T_{N}^{(1)}\left(\widetilde{\mathcal{X}}_{g, \rho}\right), T_{N}^{(1)}\left(\tilde{\mathcal{X}}_{g, \rho}^{c}\right)$.
We will use, $T_{N}^{(1)}\left(\widetilde{\mathcal{X}}_{g, \rho}^{c}\right), T_{N}^{(2)}\left(\widetilde{\mathcal{X}}_{g, \rho}\right) \leq N$. Gives us

$$
\lambda^{(2)} \sqrt{\frac{\Psi_{N}\left(\widetilde{\mathcal{X}}_{g, \rho}\right)}{N}}+\lambda^{(1)} \sqrt{\frac{\Psi_{N}\left(\tilde{\mathcal{X}}_{g, \rho}^{c}\right)}{N}}
$$

Proof Sketch: Bounding $T_{N}^{(2)}\left(\widetilde{\mathcal{X}}_{g, \rho}^{c}\right)$

Proof Sketch: Bounding $T_{N}^{(2)}\left(\widetilde{\mathcal{X}}_{g, \rho}^{c}\right)$

$\mathbb{P}\left(T_{N}^{(2)}\left(\widetilde{\mathcal{X}}_{g, \rho}^{c}\right)>N^{\alpha}\right)<$ something small

Proof Sketch: Bounding $T_{N}^{(2)}\left(\widetilde{\mathcal{X}}_{g, \rho}^{c}\right)$

$\mathbb{P}\left(T_{N}^{(2)}\left(\widetilde{\mathcal{X}}_{g, \rho}^{c}\right)>N^{\alpha}\right)<$ something small
Holds for all $\alpha>0$ if $\rho \asymp 1+\frac{1}{\sqrt{\alpha}}$. This result is strong.

Proof Sketch: Bounding $T_{N}^{(2)}\left(\widetilde{\mathcal{X}}_{g, \rho}^{c}\right)$

$\mathbb{P}\left(T_{N}^{(2)}\left(\widetilde{\mathcal{X}}_{g, \rho}^{c}\right)>N^{\alpha}\right)<$ something small
Holds for all $\alpha>0$ if $\rho \asymp 1+\frac{1}{\sqrt{\alpha}}$. This result is strong.
This gives us the third term $\lambda^{(2)} \sqrt{\frac{\Psi_{N^{\alpha}\left(\tilde{\mathcal{X}}_{g, \rho}^{c}\right)}}{N^{2-\alpha}}}$.

Proof Sketch: Bounding $T_{N}^{(1)}\left(\widetilde{\mathcal{X}}_{g, \rho}\right)$

Proof Sketch: Bounding $T_{N}^{(1)}\left(\widetilde{\mathcal{X}}_{g, \rho}\right)$

Proof Sketch: Bounding $T_{N}^{(1)}\left(\widetilde{\mathcal{X}}_{g, \rho}\right)$

$T_{N}^{(1)}\left(\widetilde{\mathcal{X}}_{g, \rho}\right)$ cannot be large due to the switching criterion. Proof uses a covering argument and bounds on the GP posterior variance.

Proof Sketch: Bounding $T_{N}^{(1)}\left(\widetilde{\mathcal{X}}_{g, \rho}\right)$

$T_{N}^{(1)}\left(\widetilde{\mathcal{X}}_{g, \rho}\right)$ cannot be large due to the switching criterion. Proof uses a covering argument and bounds on the GP posterior variance.
This gives us the last term $\lambda^{(1)} \frac{\operatorname{vol}\left(\tilde{\mathcal{X}}_{g, \rho}\right)}{N} \frac{1}{\gamma^{(1)^{d}}}$

MF-GP-UCB with M fidelities

Setting: $\quad\left\|f^{(M)}-f^{(m)}\right\|_{\infty} \leq \zeta^{(m)}$ for all $m=1, \ldots, M-1$.

MF-GP-UCB with M fidelities

Setting: $\quad\left\|f^{(M)}-f^{(m)}\right\|_{\infty} \leq \zeta^{(m)}$ for all $m=1, \ldots, M-1$.

MF-GP-UCB:

$$
\varphi_{t}^{(m)}(x)=\mu_{t-1}^{(m)}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}^{(m)}(x)+\zeta^{(m)}
$$

MF-GP-UCB with M fidelities

Setting: $\quad\left\|f^{(M)}-f^{(m)}\right\|_{\infty} \leq \zeta^{(m)}$ for all $m=1, \ldots, M-1$.

MF-GP-UCB:

$$
\begin{gathered}
\varphi_{t}^{(m)}(x)=\mu_{t-1}^{(m)}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}^{(m)}(x)+\zeta^{(m)} \\
\varphi_{t}(x)=\min _{m=1, \ldots, M} \varphi_{t}^{(m)}(x)
\end{gathered}
$$

MF-GP-UCB with M fidelities

Setting: $\quad\left\|f^{(M)}-f^{(m)}\right\|_{\infty} \leq \zeta^{(m)}$ for all $m=1, \ldots, M-1$.

MF-GP-UCB:

$$
\begin{gathered}
\varphi_{t}^{(m)}(x)=\mu_{t-1}^{(m)}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}^{(m)}(x)+\zeta^{(m)} \\
\varphi_{t}(x)=\min _{m=1, \ldots, M} \varphi_{t}^{(m)}(x)
\end{gathered}
$$

- Choose $\mathbf{x}_{t}=\operatorname{argmax}_{x \in \mathcal{X}} \varphi_{t}(x)$.

MF-GP-UCB with M fidelities

Setting: $\quad\left\|f^{(M)}-f^{(m)}\right\|_{\infty} \leq \zeta^{(m)}$ for all $m=1, \ldots, M-1$.

MF-GP-UCB:

$$
\begin{gathered}
\varphi_{t}^{(m)}(x)=\mu_{t-1}^{(m)}(x)+\beta_{t}^{1 / 2} \sigma_{t-1}^{(m)}(x)+\zeta^{(m)} \\
\varphi_{t}(x)=\min _{m=1, \ldots, M} \varphi_{t}^{(m)}(x)
\end{gathered}
$$

- Choose $\mathbf{x}_{t}=\operatorname{argmax}_{x \in \mathcal{X}} \varphi_{t}(x)$.
- Choosing \mathbf{m}_{t} :

$$
\begin{aligned}
& \text { for } m=1, \ldots, M \text { : } \\
& \text { if } \beta_{t}^{1 / 2} \sigma_{t-1}^{(m)}\left(\mathbf{x}_{t}\right)>\gamma^{(m)}, \text { break; } \\
& \mathbf{m}_{t}=m \text {. }
\end{aligned}
$$

Regret Bound: MF-GP-UCB with M fidelities

"Ideal" Bound:
$\lambda^{(M)} S(\Lambda) \lesssim \lambda^{(M)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\mathcal{X}^{(M)}\right)}{n_{\Lambda}}}+\ldots+\lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\mathcal{X}^{(2)}\right)}{n_{\Lambda}}}+\lambda^{(1)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\mathcal{X}^{(1)}\right)}{n_{\Lambda}}}$

Regret Bound: MF-GP-UCB with M fidelities

"Ideal" Bound:
$\lambda^{(M)} S(\Lambda) \lesssim \lambda^{(M)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\mathcal{X}^{(M)}\right)}{n_{\Lambda}}}+\ldots+\lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\mathcal{X}^{(2)}\right)}{n_{\Lambda}}}+\lambda^{(1)} \sqrt{\frac{\Psi_{m_{\Lambda}}\left(\mathcal{X}^{(1)}\right)}{n_{\Lambda}}}$

Regret Bound: MF-GP-UCB with M fidelities

"Ideal" Bound:
$\lambda^{(M)} S(\Lambda) \lesssim \lambda^{(M)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\mathcal{X}^{(M)}\right)}{n_{\Lambda}}}+\ldots+\lambda^{(2)} \sqrt{\frac{\Psi_{n_{\Lambda}}\left(\mathcal{X}^{(2)}\right)}{n_{\Lambda}}}+\lambda^{(1)} \sqrt{\frac{\Psi_{m_{\Lambda}}\left(\mathcal{X}^{(1)}\right)}{n_{\Lambda}}}$

Theorem: Similar to above but contains $\gamma^{(m)}$ dependent inflations and other subdominant terms as in the two fidelity setting.

Experiment: Support Vector Classification

2 hyper-parameters, 2 fidelities $\left(n_{t r}=\{500,2000\}\right)$

Experiment: SALSA

6 hyper-parameters, 3 fidelities $\left(n_{t r}=\{2000,4000,8000\}\right)$

Experiment: Viola \& Jones Face Detection

22 hyper-parameters, 2 fidelities $\left(n_{t r}=\{300,3000\}\right)$

Experiment: Cosmological Maximum Likelihood Inference

- Type la Supernovae Data
- Maximum likelihood inference for 3 cosmological parameters:
- Hubble Constant H_{0}
- Dark Energy Fraction Ω_{\wedge}
- Dark Matter Fraction Ω_{M}
- Likelihood: Robertson Walker metric Requires numerical integration for each point in the dataset.

Experiment: Cosmological Maximum Likelihood Inference

3 cosmological parameters, 3 fidelities (grid $\left.=\left\{10^{2}, 10^{4}, 10^{6}\right\}\right)$

Synthetic Experiment: Hartmann-3D

Summary

- A novel framework and algorithm for Multi-fidelity Bandit Optimisation.
- MF-GP-UCB: intuitive algorithm using UCB principles.

Summary

- A novel framework and algorithm for Multi-fidelity Bandit Optimisation.
- MF-GP-UCB: intuitive algorithm using UCB principles.
- Theoretical Results
- Lower fidelities are used to eliminate bad regions.
- Higher fidelities are used in successively smaller regions.

Summary

- A novel framework and algorithm for Multi-fidelity Bandit Optimisation.
- MF-GP-UCB: intuitive algorithm using UCB principles.
- Theoretical Results
- Lower fidelities are used to eliminate bad regions.
- Higher fidelities are used in successively smaller regions.
- Outperforms naive strategies and other multi-fidelity methods in practice.

Collaborators

Gautam
Dasarathy

Junier
Oliva

Jeff
Schneider

Barnabas Poczos

Thank you.
Paper and slides are up on my website. Code will be up online soon.

Appendix: Simple Regret

Appendix: Cumulative Regret

Hartmann-6D, $M=4$, Costs $=[1 ; 10 ; 100 ; 1000]$

Appendix: Bad Approximations

Appendix: Cumulative Regret Definition

$$
\text { Instantaneous Reward } \quad q_{t}= \begin{cases}-B & \text { if } \boldsymbol{m}_{t} \neq M \\ f^{(M)}\left(\mathbf{x}_{t}\right) & \text { if } \mathbf{m}_{t}=M\end{cases}
$$

Instantaneous Regret $\quad r_{t}=f_{\star}-q_{t}= \begin{cases}f_{\star}-B & \text { if } \mathbf{m}_{t} \neq M \\ f_{\star}-f^{(M)}\left(\mathbf{x}_{t}\right) & \text { if } \mathbf{m}_{t}=M\end{cases}$

$$
\begin{aligned}
R(\Lambda) & =\Lambda f_{\star}-\left[\sum_{t=1}^{N} \lambda^{\left(m_{t}\right)} q_{t}+\left(\Lambda-\sum_{t=1}^{N} \lambda^{\left(m_{t}\right)}\right)(-B)\right] \\
& \leq 2 B \underbrace{\left(\Lambda-\sum_{t=1}^{N} \lambda^{\left(m_{t}\right)}\right)}_{\Lambda_{\text {res }}}+\sum_{t=1}^{N} \lambda^{\left(m_{t}\right)} r_{t}
\end{aligned}
$$

