LEVERAGING REVIEWS: LEARNING TO PRICE WITH BUYER AND SELLER UNCERTAINTY

WSB SEMINAR, FEBRUARY 242023

KIRTHEVASAN KANDASAMY
DEPARTMENT OF COMPUTER SCIENCES, UW-MADISON JOINT WORK WITH: WENSHUO GUO, NIKA HAGHTALAB, ELLEN VITERCIK

- Many reasons: convenience, many options, reviews.

CUSTOMERS USE REVIEWS TO MAKE AN INFORMED PURCHASE

Cuisinart 422-24 Contour Stainless 10-Inch Open Skillet
Visit the Cuisinart Store
3,625 ratings

Groomer's Best Small Combo Brush for Cats and Small Dogs
Visit the Hartz Store
为 7,607 ratings

Paula's Choice Skin Perfecting 2\% BHA Liquid Salicylic Acid Exfoliant, Gentle Facial Exfoliator for Blackheads, Large Pores, Wrinkles \& Fine Lines, Travel Size, 1 Fluid Ounce PACKAGING MAY VARY
Visit the Paula's Choice Store

CUSTOMERS USE REVIEWS TO MAKE AN INFORMED PURCHASE

Cuisinart 422－24 Contour Stainless 10－Inch Open Skillet
Visit the Cuisinart Store
3， 625 ratings

Groomer＇s Best Small Combo Brush for Cats and Small Dogs Visit the Hartz Store
人 7，607 ratings

Paula＇s Choice Skin Perfecting 2\％BHA Liquid Salicylic Acid Exfoliant，Gentle Facial Exfoliator for Blackheads，Large Pores，Wrinkles \＆Fine Lines， Travel Size， 1 Fluid Ounce－ PACKAGING MAY VARY Visit the Paula＇s Choice Store全领 79,839 ratings

－But customers do not look at just the average rating．

FILTERING REVIEWS BY ‘CUSTOMER TYPE’

↔ Cuisinart MCP22－24N MultiClad Pro Triple Ply 10－ Inch，Open Skillet
Visit the Cuisinart Store
解领施 14，945 ratings

\uparrow
Cuisinart MCP22－24N MultiClad Pro Triple Ply 10－ Inch，Open Skillet
Visit the Cuisinart Store
领领 14,945 ratings
为 4.7 out of 5

Looking for specific info？

Q oven

Customer Reviews

大
By Cheryl A．Jarrett in the United States on April 20， 2022
．．．They warp in the oven．see more
令育 Warps
By Ricky K Workman in the United States on August 3， 2022 ．．．Warps at 350 degrees see more

See 20 matching customer reviews＞

FILTERING REVIEWS BY ‘CUSTOMER TYPE’

↔ Groomer's Best Small Combo Brush
for Cats and Small Dogs
Visit the Hartz Store

Amazon's Choice for "hartz groomer's best combo dog brush"

Looking for specific info?

Q long-haired

Customer Reviews

为
By Nazli Zeynep Turken on August 30, 2021
This brush/comb combo did not really collect any hair from my long-haired cat without a lot of pressure. The fur shedder work better.

Paula's Choice

Skin Perfecting 2\% BHA Liquid Exfoliant
$\star \star \star \star$ 1.1K Ask a question 254.6K

Oily \times Clear all

Viewing 1-6 of 189 reviews
$\star \star \star \star \star$
6 d ago
\checkmark Recommended

LITERALLY NEED

I didn't notice a major difference until I ran out of it, then my forehead started to break out again and my skin just looked dull. It's the only thing that gets rid of pimples that are painful and under the skin.

Helpful? $\Delta(3) \mid \nabla(1)$

HOW CAN REVIEWS BE HELPFUL?

- To buyers:

HOW CAN REVIEWS BE HELPFUL?

- To buyers:
- Understand if the product is right for them.

- To buyers:

- Understand if the product is right for them.
- E.g. Several positive reviews for stovetop cooking, but warps too frequently in the oven.

HOW CAN REVIEWS BE HELPFUL?

- To buyers:

- Understand if the product is right for them.
- E.g. Several positive reviews for stovetop cooking, but warps too frequently in the oven.

To sellers:

- To buyers:
- Understand if the product is right for them.
- E.g. Several positive reviews for stovetop cooking, but warps too frequently in the oven.
- To sellers:
- Gauge the demand for the product \Longrightarrow set prices to maximize revenue.
- To buyers:
- Understand if the product is right for them.
- E.g. Several positive reviews for stovetop cooking, but warps too frequently in the oven.

- To sellers:

- Gauge the demand for the product \Longrightarrow set prices to maximize revenue.
- E.g. Several 5 star reviews! We should increase the price.

GOAL

- Study how reviews can help both sides of the market.
- Study how reviews can help both sides of the market.
- Sellers will learn optimal price.
- Study how reviews can help both sides of the market.
- Sellers will learn optimal price.
- Buyers will learn their value for goods.
- Study how reviews can help both sides of the market.
- Sellers will learn optimal price.
- Buyers will learn their value for goods.
- Model: Several market models
- Study how reviews can help both sides of the market.
- Sellers will learn optimal price.
- Buyers will learn their value for goods.
- Model: Several market models
- In this work: posted-price mechanisms.
- Study how reviews can help both sides of the market.
- Sellers will learn optimal price.
- Buyers will learn their value for goods.
- Model: Several market models
- In this work: posted-price mechanisms.
- Prior work on feedback-driven market/auction design: single-item auctions (FPS '18, WPR'16, PPPR '22, ADG '16, DSS '19), posted price mechanisms when buyers know values (KL '03), VCG mechanisms (KGJS, JMLR '22), matching markets (LMJ, AISTATS '19), exchange economies (GKGJS, AISTATS '22), and several more ...

POSTED PRICE MECHANISM

- A single seller who has (an infinite amount) of a single item.

POSTED PRICE MECHANISM

- A single seller who has (an infinite amount) of a single item.
- Each buyer has a type i. All buyers of type i have value $\theta_{i}($ in $\$)$ for the item.

POSTED PRICE MECHANISM

- A single seller who has (an infinite amount) of a single item.
- Each buyer has a type i. All buyers of type i have value θ_{i} (in $\left.\$\right)$ for the item.
- There is a distribution \mathscr{P} of buyer types, i.e $i \sim \mathscr{P}$.

POSTED PRICE MECHANISM

- A single seller who has (an infinite amount) of a single item.
- Each buyer has a type i. All buyers of type i have value $\theta_{i}($ in $\$)$ for the item.
- There is a distribution \mathscr{P} of buyer types, i.e $i \sim \mathscr{P}$.

POSTED PRICE MECHANISM

- A single seller who has (an infinite amount) of a single item.
- Each buyer has a type i. All buyers of type i have value $\theta_{i}($ in $\$)$ for the item.
- There is a distribution \mathscr{P} of buyer types, i.e $i \sim \mathscr{P}$.

POSTED PRICE MECHANISM

- A single seller who has (an infinite amount) of a single item.
- Each buyer has a type i. All buyers of type i have value $\theta_{i}($ in $\$)$ for the item.
- There is a distribution \mathscr{P} of buyer types, i.e $i \sim \mathscr{P}$.

POSTED PRICE MECHANISM

- Seller posts a price p for the item. A buyer of type i will purchase if their value is larger than the price, i.e $\theta_{i} \geq p$.
－Seller posts a price p for the item．A buyer of type i will purchase if their value is larger than the price，i．e $\theta_{i} \geq p$ ．
\uparrow Cuisinart MCP22－24N MultiClad Pro Triple Ply 10－ Inch，Open Skillet
Visit the Cuisinart Store

4.7 out of 5

Customer Reviews
会畭纪 Warped
By Cheryl A．Jarrett in the United States 日 $^{\text {a }}$ on April 20， 2022
．．．They warp in the oven．see more
大 TM M M Warps
By Ricky K Workman in the United States on August 3， 2022
．．．Warps at 350 degrees see more
－Seller posts a price p for the item．A buyer of type i will purchase if their value is larger than the price，i．e $\theta_{i} \geq p$ ．
\uparrow Cuisinart MCP22－24N MultiClad Pro Triple Ply 10－ Inch，Open Skillet
Visit the Cuisinart Store
thet

Customer Reviews
会畭领 Warped
By Cheryl A．Jarrett in the United States 日 $^{\text {a }}$ on April 20， 2022
．．．They warp in the oven．see more
大 TM M M Warps
By Ricky K Workman in the United States on August 3， 2022
．．．Warps at 350 degrees see more
－Seller posts a price p for the item．A buyer of type i will purchase if their value is larger than the price，i．e $\theta_{i} \geq p$ ．
\dagger Cuisinart MCP22－24N MultiClad Pro Triple Ply 10－ Inch，Open Skillet
Visit the Cuisinart Store

4.7 out of 5

Customer Reviews
会畭领 Warped
By Cheryl A．Jarrett in the United States 日 $^{\text {a }}$ on April 20， 2022
．．．They warp in the oven．see more
大 TM M M Warps
By Ricky K Workman in the United States on August 3， 2022
．．．Warps at 350 degrees see more
See 20 matching customer reviews

Type 1

－Seller posts a price p for the item．A buyer of type i will purchase if their value is larger than the price，i．e $\theta_{i} \geq p$ ．
\dagger Cuisinart MCP22－24N MultiClad Pro Triple Ply 10－ Inch，Open Skillet
Visit the Cuisinart Store

4.7 out of 5

Customer Reviews
为领领 Warped
By Cheryl A．Jarrett in the United States 日 $^{\text {a }}$ on April 20， 2022
．．．They warp in the oven．see more

By Ricky K Workman in the United States on August 3， 2022
．．．Warps at 350 degrees see more

Type 1

Price：\＄40

I will use it mostly in the oven．
I value this pot at \＄20．
Type 2

I will use it mostly for stove－top cooking．
I value this pot at $\$ 50$ ．

MAXIMIZING REVENUE IN POSTED PRICE MECHANISMS

- How does a seller choose a price, given the type values and type distribution \mathscr{P} ?

MAXIMIZING REVENUE IN POSTED PRICE MECHANISMS

- How does a seller choose a price, given the type values and type distribution \mathscr{P} ?

MAXIMIZING REVENUE IN POSTED PRICE MECHANISMS

- How does a seller choose a price, given the type values and type distribution \mathscr{P} ?

- Expected revenue per purchase if you set price p,

MAXIMIZING REVENUE IN POSTED PRICE MECHANISMS

- How does a seller choose a price, given the type values and type distribution \mathscr{P} ?

- Expected revenue per purchase if you set price p,

$$
\operatorname{rev}(p)=p \cdot \mathbb{P}_{i \sim \mathscr{P}}\left(\theta_{i} \geq p\right)
$$

MAXIMIZING REVENUE IN POSTED PRICE MECHANISMS

- How does a seller choose a price, given the type values and type distribution \mathscr{P} ?

- Expected revenue per purchase if you set price p,

$$
\operatorname{rev}(p)=p \cdot \mathbb{P}_{i \sim \mathscr{P}}\left(\theta_{i} \geq p\right)
$$

- Optimal price

MAXIMIZING REVENUE IN POSTED PRICE MECHANISMS

- How does a seller choose a price, given the type values and type distribution \mathscr{P} ?

- Expected revenue per purchase if you set price p,

$$
\operatorname{rev}(p)=p \cdot \mathbb{P}_{i \sim \mathscr{P}}\left(\theta_{i} \geq p\right)
$$

- Optimal price

$$
p^{\star}=\arg \max _{p} \operatorname{rev}(p)
$$

ISSUES

1. Seller wishes to maximize revenue, but may not know \mathscr{P}.
2. Seller wishes to maximize revenue, but may not know \mathscr{P}.

3. Seller wishes to maximize revenue, but may not know \mathscr{P}.

$$
p^{\star}=\arg \max _{p} p \cdot \mathbb{P}_{i \sim \mathscr{P}}\left(\theta_{i} \geq p\right)
$$

1. Seller wishes to maximize revenue, but may not know \mathscr{P}.

$$
p^{\star}=\arg \max _{p} p \cdot \mathbb{P}_{i \sim \mathscr{P}}\left(\theta_{i} \geq p\right)
$$

2. A buyer may know their type i, but not their value θ_{i}.

1. Seller wishes to maximize revenue, but may not know \mathscr{P}.

$$
p^{\star}=\arg \max _{p} p \cdot \mathbb{P}_{i \sim \mathscr{P}}\left(\theta_{i} \geq p\right)
$$

2. A buyer may know their type i, but not their value θ_{i}.

- (In practice) due to uncertainty about their value, customers may not be willing to buy an item except at a low price.

1. Seller wishes to maximize revenue, but may not know \mathscr{P}.

$$
p^{\star}=\arg \max _{p} p \cdot \mathbb{P}_{i \sim \mathscr{P}}\left(\theta_{i} \geq p\right)
$$

2. A buyer may know their type i, but not their value θ_{i}.

- (In practice) due to uncertainty about their value, customers may not be willing to buy an item except at a low price.
- In this work: both customers and seller will use reviews to learn.

1. Problem set up

, Online learning framework, assumptions, challenges

2. Algorithm

3. Theoretical results

- Upper bounds, lower bounds, proof sketches

1. Problem set up

- Online learning framework, assumptions, challenges

2. Algorithm
3. Theoretical results

- Upper bounds, lower bounds, proof sketches

FRAMEWORK FOR ONLINE LEARNING \& PRICING

- Proceeds over a sequence of rounds. On any given round there are reviews from previous rounds.

FRAMEWORK FOR ONLINE LEARNING \& PRICING

- Proceeds over a sequence of rounds. On any given round there are reviews from previous rounds.
- On each round t :

FRAMEWORK FOR ONLINE LEARNING \& PRICING

- Proceeds over a sequence of rounds. On any given round there are reviews from previous rounds.
- On each round t :
- Seller chooses a price p_{t} (based on past reviews).

FRAMEWORK FOR ONLINE LEARNING \& PRICING

- Proceeds over a sequence of rounds. On any given round there are reviews from previous rounds.
- On each round t :
- Seller chooses a price p_{t} (based on past reviews).
- A new buyer of type $i_{t} \sim \mathscr{P}$ arrives. She buys the item if she has reason to believe that $\theta_{i_{t}} \geq p$ (based on past reviews).
- Proceeds over a sequence of rounds. On any given round there are reviews from previous rounds.
- On each round t :
- Seller chooses a price p_{t} (based on past reviews).
- A new buyer of type $i_{t} \sim \mathscr{P}$ arrives. She buys the item if she has reason to believe that $\theta_{i_{t}} \geq p$ (based on past reviews).
- If buyer buys, she leaves a review based on her experience of using the item. Otherwise, no review.
- Proceeds over a sequence of rounds. On any given round there are reviews from previous rounds
- On each round t :
- Seller chooses a price p_{t} (based on past reviews).
- A new buyer of type $i \sim \mathscr{P}$ arrives. She buys the item if she has reason to believe that $\theta_{i} \geq p$ (based on past reviews).
- If buyer buys, she leaves a review based on her experience of using the item. Otherwise, no review.

EX-ANTE VS EX-POST VALUE

- A buyer has ex-ante value θ_{i} based on their type .

EX-ANTE VS EX-POST VALUE

- A buyer has ex-ante value θ_{i} based on their type .
- Buyer's ex-post value v is drawn from distribution \mathscr{D}_{i} such that $\mathbb{E}_{\mathscr{D}_{i}}[v]=\theta_{i}$.

EX-ANTE VS EX-POST VALUE

- A buyer has ex-ante value θ_{i} based on their type .
- Buyer's ex-post value v is drawn from distribution \mathscr{D}_{i} such that $\mathbb{E}_{\mathscr{D}_{i}}[v]=\theta_{i}$.
- Actual experience of the customer.

EX-ANTE VS EX-POST VALUE

- A buyer has ex-ante value θ_{i} based on their type .
- Buyer's ex-post value v is drawn from distribution \mathscr{D}_{i} such that $\mathbb{E}_{\mathscr{D}_{i}}[v]=\theta_{i}$.
- Actual experience of the customer.
- Depends on exogenous factors that cannot be known at time of purchase.

EX-ANTE VS EX-POST VALUE

- A buyer has ex-ante value θ_{i} based on their type .
- Buyer's ex-post value v is drawn from distribution \mathscr{D}_{i} such that $\mathbb{E}_{\mathscr{D}_{i}}[v]=\theta_{i}$.
- Actual experience of the customer.
- Depends on exogenous factors that cannot be known at time of purchase.
- E.g manufacturing defects, delivery quality.
- A buyer has ex-ante value θ_{i} based on their type .
- Buyer's ex-post value v is drawn from distribution \mathscr{D}_{i} such that $\mathbb{E}_{\mathscr{D}_{i}}[v]=\theta_{i}$.
- Actual experience of the customer.
- Depends on exogenous factors that cannot be known at time of purchase.
- E.g manufacturing defects, delivery quality.
- Customer reviews are based on ex-post value (actual experience).

WHAT IS A REVIEW?

- If the buyers purchase, they reveal their type i and ex-post value v to the seller and future buyers.
- If the buyers purchase, they reveal their type i and ex-post value v to the seller and future buyers.
- Can extract type and value from written reviews, ratings, and buyer history (AMMO '22 Econometrica)
- If the buyers purchase, they reveal their type i and ex-post value v to the seller and future buyers.
- Can extract type and value from written reviews, ratings, and buyer history (AMMO '22 Econometrica)
- 'Revealing type' is perhaps a new model for soliciting customer reviews.

FRAMEWORK FOR ONLINE LEARNING \& PRICING

- Proceeds over a sequence of rounds. On any given round there are reviews from previous rounds
- On each round t :
- Seller chooses a price p_{t} (based on past reviews).
- A new buyer of type $i \sim \mathscr{P}$ arrives. She buys the item if she has reason to believe that $\theta_{i} \geq p$ (based on past reviews).
- If buyer buys, she leaves a review based on her experience of using the item. Otherwise, no review.

BUYER PURCHASE MODEL

- Buyers may not be willing to pay a high price if they are uncertain about their (ex-ante) value.

BUYER PURCHASE MODEL

- Buyers may not be willing to pay a high price if they are uncertain about their (ex-ante) value.
- But buyers cannot be overly conservative.

BUYER PURCHASE MODEL

- Buyers may not be willing to pay a high price if they are uncertain about their (ex-ante) value.
- But buyers cannot be overly conservative.
- E.g: "I will only pay $\$ 0.01$ since I do not know my value exactly".
- Buyers may not be willing to pay a high price if they are uncertain about their (ex-ante) value.
- But buyers cannot be overly conservative.
- E.g: "I will only pay $\$ 0.01$ since I do not know my value exactly".
- Revenue maximization would be hopeless with ultraconservative customers.
- Buyer on round t arrives with a threshold function τ_{t}. τ_{t} is an "estimate" of their value based on past reviews of their type.

BUYER PURCHASE MODEL: η-RISKY CUSTOMERS

- Buyer on round t arrives with a threshold function τ_{t}. τ_{t} is an "estimate" of their value based on past reviews of their type.
- Buyer purchases if $p_{t} \leq \tau_{t}$.
- Buyer on round t arrives with a threshold function τ_{t}. τ_{t} is an "estimate" of their value based on past reviews of their type.
- Buyer purchases if $p_{t} \leq \tau_{t}$.
- But this threshold has to be at least a η-lower confidence bound on the value.

Let the buyer's type be i, and let $\Phi_{i, t}$ be reviews from past customers of type i. Then,

- Buyer on round t arrives with a threshold function τ_{t}. τ_{t} is an "estimate" of their value based on past reviews of their type.
- Buyer purchases if $p_{t} \leq \tau_{t}$.
- But this threshold has to be at least a η-lower confidence bound on the value.

Let the buyer's type be i, and let $\Phi_{i, t}$ be reviews from past customers of type i. Then,

$$
\tau_{t} \geq \frac{1}{\left|\Phi_{i, t}\right|} \sum_{v \in \Phi_{i, t}} v-\sqrt{\frac{1}{\left|\Phi_{i, t}\right|} \log \left(\frac{t}{\eta}\right)}
$$

- Buyer on round t arrives with a threshold function τ_{t}. τ_{t} is an "estimate" of their value based on past reviews of their type.
- Buyer purchases if $p_{t} \leq \tau_{t}$.
- But this threshold has to be at least a η-lower confidence bound on the value.

Let the buyer's type be i, and let $\Phi_{i, t}$ be reviews from past customers of type i. Then,

$$
\tau_{t} \geq \frac{1}{\left|\Phi_{i, t}\right|} \sum_{v \in \Phi_{i, t}} v-\sqrt{\frac{1}{\left|\Phi_{i, t}\right|} \log \left(\frac{t}{\eta}\right)}
$$

- Bounded pessimism: The customer is willing to take at least a small risk. They may over-estimate their value (i.e $\tau_{t}>\theta_{i}$) with some small probability η.
- On each round t :

ONLINE LEARNING FRAMEWORK

, On each round t :

- Seller chooses a price p_{t} (based on past reviews)

ONLINE LEARNING FRAMEWORK

, On each round t :

- Seller chooses a price p_{t} (based on past reviews)
- A new buyer with type $i_{t} \sim \mathscr{P}$ and threshold τ_{t} arrives.

ONLINE LEARNING FRAMEWORK

- On each round t :
- Seller chooses a price p_{t} (based on past reviews)
- A new buyer with type $i_{t} \sim \mathscr{P}$ and threshold τ_{t} arrives.
- Buyer buys if $p_{t} \leq \tau_{t}$.

ONLINE LEARNING FRAMEWORK

- On each round t :
- Seller chooses a price p_{t} (based on past reviews)
- A new buyer with type $i_{t} \sim \mathscr{P}$ and threshold τ_{t} arrives.
- Buyer buys if $p_{t} \leq \tau_{t}$.
- If buyer buys,

ONLINE LEARNING FRAMEWORK

- On each round t :
- Seller chooses a price p_{t} (based on past reviews)
- A new buyer with type $i_{t} \sim \mathscr{P}$ and threshold τ_{t} arrives.
- Buyer buys if $p_{t} \leq \tau_{t}$.
- If buyer buys,
- Seller has revenue p_{t}.

ONLINE LEARNING FRAMEWORK

- On each round t :
- Seller chooses a price p_{t} (based on past reviews)
- A new buyer with type $i_{t} \sim \mathscr{P}$ and threshold τ_{t} arrives.
- Buyer buys if $p_{t} \leq \tau_{t}$.
- If buyer buys,
- Seller has revenue p_{t}.
- Buyer experiences ex-post value v_{t}, and reveals $\left(i_{t}, v_{t}\right)$.

ONLINE LEARNING FRAMEWORK

- On each round t :
- Seller chooses a price p_{t} (based on past reviews)
- A new buyer with type $i_{t} \sim \mathscr{P}$ and threshold τ_{t} arrives.
, Buyer buys if $p_{t} \leq \tau_{t}$.
- If buyer buys,
- Seller has revenue p_{t}.
- Buyer experiences ex-post value v_{t}, and reveals $\left(i_{t}, v_{t}\right)$.
- If buyer does not buy, no revenue and no review!

REGRET

- Compete against the best price p^{\star} when sellers know \mathscr{P} and customers know their type $\theta_{i_{i}}$.
- Compete against the best price p^{\star} when sellers know \mathscr{P} and customers know their type θ_{i}.
- Regret R_{T} after T rounds:
- Compete against the best price p^{\star} when sellers know \mathscr{P} and customers know their type $\theta_{i_{i}}$.
- Regret R_{T} after T rounds:

$$
R_{T}=\sum_{t=1}^{T} p^{\star} \cdot b_{t}^{\star}-\sum_{t=1}^{T} p_{t} \cdot b_{t}
$$

- Compete against the best price p^{\star} when sellers know \mathscr{P} and customers know their type $\theta_{i_{i}}$.
- Regret R_{T} after T rounds:

$$
R_{T}=\sum_{t=1}^{T} p^{\star} \cdot b_{t}^{\star}-\sum_{t=1}^{T} p_{t} \cdot b_{t}
$$

- Here, $b_{t}=1$ if there was a purchase on round t and $b_{t}^{\star}=1$ if the customer would have purchased at p^{\star} had they known their value.
- Compete against the best price p^{\star} when sellers know \mathscr{P} and customers know their type $\theta_{i_{i}}$.
- Regret R_{T} after T rounds:

$$
R_{T}=\sum_{t=1}^{T} p^{\star} \cdot b_{t}^{\star}-\sum_{t=1}^{T} p_{t} \cdot b_{t}
$$

- Here, $b_{t}=1$ if there was a purchase on round t and $b_{t}^{\star}=1$ if the customer would have purchased at p^{\star} had they known their value.
, We want small R_{T}. Specifically $\mathbb{E}\left[R_{T}\right] \in o(T)$.

CHALLENGES: PRICING AFFECTS LEARNING

- Seller wishes to set high prices on each round (to maximize current revenue).

CHALLENGES: PRICING AFFECTS LEARNING

- Seller wishes to set high prices on each round (to maximize current revenue).
- But higher prices \Longrightarrow no purchase \Longrightarrow no review.

CHALLENGES: PRICING AFFECTS LEARNING

- Seller wishes to set high prices on each round (to maximize current revenue).
- But higher prices \Longrightarrow no purchase \Longrightarrow no review.

1. Seller learning: Seller cannot gauge demand for the product.

CHALLENGES: PRICING AFFECTS LEARNING

- Seller wishes to set high prices on each round (to maximize current revenue).
- But higher prices \Longrightarrow no purchase \Longrightarrow no review.

1. Seller learning: Seller cannot gauge demand for the product.
2. Buyer learning: Future buyers cannot estimate their value.

- Even if buyers knew their values, seller needs to be conservative with pricing.

CHALLENGE 1: PRICING VS SELLER LEARNING

- Even if buyers knew their values, seller needs to be conservative with pricing.

CHALLENGE 1: PRICING VS SELLER LEARNING

- Even if buyers knew their values, seller needs to be conservative with pricing.

CHALLENGE 1: PRICING VS SELLER LEARNING

- Even if buyers knew their values, seller needs to be conservative with pricing.

CHALLENGE 1: PRICING VS SELLER LEARNING

- Even if buyers knew their values, seller needs to be conservative with pricing.

CHALLENGE 1: PRICING VS SELLER LEARNING

- Even if buyers knew their values, seller needs to be conservative with pricing.

CHALLENGE 1: PRICING VS SELLER LEARNING

- Even if buyers knew their values, seller needs to be conservative with pricing.

CHALLENGE 1: PRICING VS SELLER LEARNING

- Even if buyers knew their values, seller needs to be conservative with pricing.

- Set prices too high \Longrightarrow no feedback about low value types.

CHALLENGE 1: PRICING VS SELLER LEARNING

- Even if buyers knew their values, seller needs to be conservative with pricing.

- Set prices too high \Longrightarrow no feedback about low value types.

CHALLENGE 1: PRICING VS SELLER LEARNING

- Even if buyers knew their values, seller needs to be conservative with pricing.

- Set prices too high \Longrightarrow no feedback about low value types.
- Set prices too low \Longrightarrow low revenue.

CHALLENGE 1: PRICING VS SELLER LEARNING

- Even if buyers knew their values, seller needs to be conservative with pricing.

- Set prices too high \Longrightarrow no feedback about low value types.
- Set prices too low \Longrightarrow low revenue.
- Property: if $p_{t} \leq p^{\star}$, and buyers know values, sufficient feedback to learn p^{\star}.

CHALLENGE 1: PRICING VS SELLER LEARNING

- Even if buyers knew their values, seller needs to be conservative with pricing.

- Set prices too high \Longrightarrow no feedback about low value types.
- Set prices too low \Longrightarrow low revenue.
- Property: if $p_{t} \leq p^{\star}$, and buyers know values, sufficient feedback to learn p^{\star}.

Seller chooses price before seeing the customer type.

CHALLENGE 2: PRICING VS BUYER LEARNING

- Seller chooses price before seeing the customer type.
- A buyer's purchase decision depends on how certain she is of her value. This in turn depends on previous reviews.

CHALLENGE 2：PRICING VS BUYER LEARNING

－Seller chooses price before seeing the customer type．
－A buyer＇s purchase decision depends on how certain she is of her value． This in turn depends on previous reviews．

Type 2 （stovetop）	匂成匂\＄47	瓦匂\＄51	成気馬 37
	成成盛\＄39	匂匂匂\＄38	匂気盛会\＄52
		匂合会盛\＄44	

CHALLENGE 2: PRICING VS BUYER LEARNING

- Seller chooses price before seeing the customer type.
- A buyer's purchase decision depends on how certain she is of her value. This in turn depends on previous reviews.

CHALLENGE 2: PRICING VS BUYER LEARNING

- Seller chooses price before seeing the customer type.
- A buyer's purchase decision depends on how certain she is of her value. This in turn depends on previous reviews.

CHALLENGE 2: PRICING VS BUYER LEARNING

- Seller chooses price before seeing the customer type.
- A buyer's purchase decision depends on how certain she is of her value. This in turn depends on previous reviews.

CHALLENGE 2: PRICING VS BUYER LEARNING

- Seller chooses price before seeing the customer type.
- A buyer's purchase decision depends on how certain she is of her value. This in turn depends on previous reviews.

(grill)

CHALLENGE 2：PRICING VS BUYER LEARNING

－Seller chooses price before seeing the customer type．
－A buyer＇s purchase decision depends on how certain she is of her value． This in turn depends on previous reviews．

Type 2 （stovetop）			
		的成盛盛\＄44	

Type 3 路施 $\$ 53$

New type 3 user：

CHALLENGE 2：PRICING VS BUYER LEARNING

－Seller chooses price before seeing the customer type．
－A buyer＇s purchase decision depends on how certain she is of her value． This in turn depends on previous reviews．

Type 2 （stovetop）			
		的的的的的\＄38	
		的令动的\＄ 44	

Type 3 路施 $\$ 53$

（grill）

New type 3 user：

CHALLENGE 2：PRICING VS BUYER LEARNING

－Seller chooses price before seeing the customer type．
－A buyer＇s purchase decision depends on how certain she is of her value． This in turn depends on previous reviews．

Type 2 （stovetop）			
	的的的的的\＄39	的的的的的\＄38	
			的动会动\＄ 46
	匂领领\＄53		

New type 3 user：

CHALLENGE 2：PRICING VS BUYER LEARNING

－Seller chooses price before seeing the customer type．
－A buyer＇s purchase decision depends on how certain she is of her value． This in turn depends on previous reviews．

Type 2 （stovetop）	匂放的施\＄47		
		动动动动 538	気気施\＄52
			－
	动盛领\＄53	匂动动令\＄45	¢

```
Type 3 论论放$53
    (grill) 跲解$57
```


New type 3 user：

－Seller＇s dilemma：Only target type 1 buyers for high immediate revenue？Or also target type 3 customers for higher long term revenue？

OVERVIEW OF ALGORITHM \& RESULTS

- Algorithmic insights:
- Choose low prices early, and increase them gradually.

OVERVIEW OF ALGORITHM \& RESULTS

- Algorithmic insights:
- Choose low prices early, and increase them gradually.
- Theoretical Results:
- Upper bound: $\tilde{\mathscr{O}}\left(d^{1 / 3} T^{2 / 3}\right)$ worst case regret, but $\tilde{\mathcal{O}}\left(T^{1 / 2}\right)$ regret when all types appear frequently.
- Matching lower bounds.

1. Problem set up

- Online learning framework, assumptions, challenges

2. Algorithm

3. Theoretical results

- Upper bounds, lower bounds, proof sketches
- On each round t, maintain a set S_{t} of types
- On each round t, maintain a set S_{t} of types

1. Have sufficiently high value

ALGORITHM OVERVIEW

- On each round t, maintain a set S_{t} of types

1. Have sufficiently high value
2. Are not exceedingly rare

ALGORITHM OVERVIEW

- On each round t, maintain a set S_{t} of types

1. Have sufficiently high value (high average ex-post value)
2. Are not exceedingly rare (appeared frequently enough in the past)

- Both, based on past reviews.
- On each round t, maintain a set S_{t} of types

1. Have sufficiently high value (high average ex-post value)
2. Are not exceedingly rare (appeared frequently enough in the past)

- Both, based on past reviews.
- On round t, set price so that all customers of types in S_{t} will buy.

Phase 1:

Phase 2:

Phase 1: (for a small number of rounds, $\sim \tilde{\Theta}\left(d^{2 / 3} T^{1 / 3}\right)$ rounds)

Phase 2:

- Phase 1: (for a small number of rounds, $\sim \tilde{\Theta}\left(d^{2 / 3} T^{1 / 3}\right)$ rounds)
- Offer item for a "very low price"
- Phase 2:
- Phase 1: (for a small number of rounds, $\sim \tilde{\Theta}\left(d^{2 / 3} T^{1 / 3}\right)$ rounds)
- Offer item for a "very low price"
- Observe iid samples from type distribution \mathscr{P}.
- Phase 2:
- Phase 1: (for a small number of rounds, $\sim \tilde{\Theta}\left(d^{2 / 3} T^{1 / 3}\right)$ rounds)
- Offer item for a "very low price"
- Observe iid samples from type distribution \mathscr{P}.
- Set Q to be the set of types that appeared often enough
- Phase 2:
- Phase 1: (for a small number of rounds, $\sim \tilde{\Theta}\left(d^{2 / 3} T^{1 / 3}\right)$ rounds)
- Offer item for a "very low price"
- Observe iid samples from type distribution \mathscr{P}.
- Set Q to be the set of types that appeared often enough
- Phase 2: $\left(\operatorname{set} S_{t}=Q\right)$
- Phase 1: (for a small number of rounds, $\sim \tilde{\Theta}\left(d^{2 / 3} T^{1 / 3}\right)$ rounds)
- Offer item for a "very low price"
- Observe iid samples from type distribution \mathscr{P}.
- Set Q to be the set of types that appeared often enough
- Phase 2: $\left(\operatorname{set} S_{t}=Q\right)$
- Set price p_{t} low enough that buyers in S_{t} will buy.
- Phase 1: (for a small number of rounds, $\sim \tilde{\Theta}\left(d^{2 / 3} T^{1 / 3}\right)$ rounds)
- Offer item for a "very low price"
- Observe iid samples from type distribution \mathscr{P}.
- Set Q to be the set of types that appeared often enough
- Phase 2: $\left(\operatorname{set} S_{t}=Q\right)$
- Set price p_{t} low enough that buyers in S_{t} will buy.
- low enough: account for buyer uncertainty (η-risky).
, Phase 1: (for a small number of rounds, $\sim \tilde{\Theta}\left(d^{2 / 3} T^{1 / 3}\right)$ rounds)
- Offer item for a "very low price"
- Observe iid samples from type distribution \mathscr{P}.
- Set Q to be the set of types that appeared often enough
- Phase 2: $\left(\operatorname{set} S_{t}=Q\right)$
- Set price p_{t} low enough that buyers in S_{t} will buy.
- low enough: account for buyer uncertainty (η-risky).
- Update S_{t} : eliminate types which contribute too little to revenue.

PHASE 2: UPDATING S_{t}

- We will estimate the best price $p^{\star}(Q)$ for types in Q, instead of p^{\star}

PHASE 2: UPDATING S_{t}

- We will estimate the best price $p^{\star}(Q)$ for types in Q, instead of p^{\star}

$$
p^{\star}(Q)=\arg \max _{p} \operatorname{rev}(p, Q)=\arg \max _{p} p \cdot \mathbb{P}_{i \sim \mathscr{P}}\left(\theta_{i} \geq p \text { and } i \in Q\right)
$$

PHASE 2: UPDATING S_{t}

- We will estimate the best price $p^{\star}(Q)$ for types in Q, instead of p^{\star}

$$
p^{\star}(Q)=\arg \max _{n} \operatorname{rev}(p, Q)=\arg \max _{n} p \cdot \mathbb{P}_{i \sim \mathscr{P}}\left(\theta_{i} \geq p \text { and } i \in Q\right)
$$

- Observation: $p^{\star}(Q)=\theta_{i_{Q}}$ for some $i_{Q} \in Q$.

PHASE 2: UPDATING S_{t}

- We will estimate the best price $p^{\star}(Q)$ for types in Q, instead of p^{\star}

$$
p^{\star}(Q)=\arg \max \operatorname{rev}(p, Q)=\arg \max p \cdot \mathbb{P}_{i \sim \mathscr{P}}\left(\theta_{i} \geq p \text { and } i \in Q\right)
$$

$$
p
$$

$$
p
$$

, Observation: $p^{\star}(Q)=\theta_{i_{Q}}$ for some $i_{Q} \in Q$.

- Maintain confidence intervals for $\operatorname{rev}\left(\theta_{i}, Q\right)$ for each $i \in S_{t}$.

PHASE 2: UPDATING S_{t}

- We will estimate the best price $p^{\star}(Q)$ for types in Q, instead of p^{\star}

$$
p^{\star}(Q)=\arg \max \operatorname{rev}(p, Q)=\arg \max p \cdot \mathbb{P}_{i \sim \mathscr{P}}\left(\theta_{i} \geq p \text { and } i \in Q\right)
$$

, Observation: $p^{\star}(Q)=\theta_{i_{Q}}$ for some $i_{Q} \in Q$.

- Maintain confidence intervals for $\operatorname{rev}\left(\theta_{i}, Q\right)$ for each $i \in S_{t}$.

PHASE 2: UPDATING S_{t}

- We will estimate the best price $p^{\star}(Q)$ for types in Q, instead of p^{\star}

$$
p^{\star}(Q)=\arg \max \operatorname{rev}(p, Q)=\arg \max p \cdot \mathbb{P}_{i \sim \mathscr{P}}\left(\theta_{i} \geq p \text { and } i \in Q\right)
$$

p p
, Observation: $p^{\star}(Q)=\theta_{i_{Q}}$ for some $i_{Q} \in Q$.

- Maintain confidence intervals for $\operatorname{rev}\left(\theta_{i}, Q\right)$ for each $i \in S_{t}$.

- Eliminate i from S_{t} if it's UCB is smaller than the highest LCB (essentially).

PHASE 2: UPDATING S_{t}

- We will estimate the best price $p^{\star}(Q)$ for types in Q, instead of p^{\star}

$$
p^{\star}(Q)=\arg \max \operatorname{rev}(p, Q)=\arg \max p \cdot \mathbb{P}_{i \sim \mathscr{P}}\left(\theta_{i} \geq p \text { and } i \in Q\right)
$$

, Observation: $p^{\star}(Q)=\theta_{i_{Q}}$ for some $i_{Q} \in Q$.

- Maintain confidence intervals for $\operatorname{rev}\left(\theta_{i}, Q\right)$ for each $i \in S_{t}$.

- Eliminate i from S_{t} if it's UCB is smaller than the highest LCB (essentially).

PHASE 2: UPDATING S_{t}

- We will estimate the best price $p^{\star}(Q)$ for types in Q, instead of p^{\star}

$$
p^{\star}(Q)=\arg \max \operatorname{rev}(p, Q)=\arg \max p \cdot \mathbb{P}_{i \sim \mathscr{P}}\left(\theta_{i} \geq p \text { and } i \in Q\right)
$$

p p
, Observation: $p^{\star}(Q)=\theta_{i_{Q}}$ for some $i_{Q} \in Q$.

- Maintain confidence intervals for $\operatorname{rev}\left(\theta_{i}, Q\right)$ for each $i \in S_{t}$.

- Eliminate i from S_{t} if it's UCB is smaller than the highest LCB (essentially).
- We will estimate the best price $p^{\star}(Q)$ for types in Q, instead of p^{\star}

$$
p^{\star}(Q)=\arg \max \operatorname{rev}(p, Q)=\arg \max p \cdot \mathbb{P}_{i \sim \mathscr{P}}\left(\theta_{i} \geq p \text { and } i \in Q\right)
$$

, Observation: $p^{\star}(Q)=\theta_{i_{Q}}$ for some $i_{Q} \in Q$.

- Maintain confidence intervals for $\operatorname{rev}\left(\theta_{i}, Q\right)$ for each $i \in S_{t}$.

- Eliminate i from S_{t} if it's UCB is smaller than the highest LCB (essentially).
- S_{t} : customers we are targeting in the current round.
- $S_{t}:$ customers we are targeting in the current round.
- Maintain confidence intervals for buyers' estimate of θ_{i} for each $i \in S_{t}$.
- $S_{t}:$ customers we are targeting in the current round.
- Maintain confidence intervals for buyers' estimate of θ_{i} for each $i \in S_{t}$.

- $S_{t}:$ customers we are targeting in the current round.
- Maintain confidence intervals for buyers' estimate of θ_{i} for each $i \in S_{t}$.

- Choose p_{t} to be the minimum LCB of these confidence intervals.

PHASE 2: CHOOSING PRICE p_{t}

- $S_{t}:$ customers we are targeting in the current round.
- Maintain confidence intervals for buyers' estimate of θ_{i} for each $i \in S_{t}$.

- Choose p_{t} to be the minimum LCB of these confidence intervals.
"Phase 1: offer the item for a "very low price", eliminate types that are infrequent.
"Phase 1: offer the item for a "very low price", eliminate types that are infrequent.

WHY DO WE NEED A PHASE 1?

"Phase 1: offer the item for a "very low price", eliminate types that are infrequent.

- Low probability of appearance \Longrightarrow fewer reviews.

WHY DO WE NEED A PHASE 1?

"Phase 1: offer the item for a "very low price", eliminate types that are infrequent.

- Low probability of appearance \Longrightarrow fewer reviews.
- More uncertainty about their value.

WHY DO WE NEED A PHASE 1?

"Phase 1: offer the item for a "very low price", eliminate types that are infrequent.
, Low probability of appearance \Longrightarrow fewer reviews.

- More uncertainty about their value.
- Need to set a low price to target these buyers \Longrightarrow low revenue.

1. Problem set up
, Online learning framework, assumptions, challenges
2. Algorithm

3. Theoretical results

> Upper bounds, lower bounds, proof sketches

Theorem: In the worst case,

$$
\mathbb{E}\left[R_{T}\right] \in \tilde{\mathcal{O}}\left(d^{1 / 3} T^{2 / 3}+d^{2 / 3} T^{1 / 3}\right)
$$

Theorem: In the worst case,

$$
\mathbb{E}\left[R_{T}\right] \in \tilde{O}\left(d^{1 / 3} T^{2 / 3}+d^{2 / 3} T^{1 / 3}\right)
$$

But if the smallest probability of appearance for any type is large, i.e. $q_{\min } \geq d^{-2 / 3} T^{-1 / 3}$

Theorem: In the worst case,

$$
\mathbb{E}\left[R_{T}\right] \in \tilde{O}\left(d^{1 / 3} T^{2 / 3}+d^{2 / 3} T^{1 / 3}\right)
$$

But if the smallest probability of appearance for any type is large, i.e. $q_{\min } \geq d^{-2 / 3} T^{-1 / 3}$

$$
\mathbb{E}\left[R_{T}\right] \in \tilde{O}\left(\sqrt{\frac{T}{q_{\min }}}+d^{2 / 3} T^{1 / 3}\right)
$$

Worst case bound: $\mathbb{E}\left[R_{T}\right] \in \widetilde{\mathcal{O}}\left(d^{1 / 3} T^{2 / 3}+d^{2 / 3} T^{1 / 3}\right)$

UPPER BOUND PROOF SKETCH

Worst case bound: $\mathbb{E}\left[R_{T}\right] \in \widetilde{\mathcal{O}}\left(d^{1 / 3} T^{2 / 3}+d^{2 / 3} T^{1 / 3}\right)$
Four sources of regret:

UPPER BOUND PROOF SKETCH

Worst case bound: $\mathbb{E}\left[R_{T}\right] \in \tilde{\mathscr{O}}\left(d^{1 / 3} T^{2 / 3}+d^{2 / 3} T^{1 / 3}\right)$
Four sources of regret:

1. Low price in phase 1: $d^{2 / 3} T^{1 / 3}$ rounds.

UPPER BOUND PROOF SKETCH

Worst case bound: $\mathbb{E}\left[R_{T}\right] \in \tilde{\mathcal{O}}\left(d^{1 / 3} T^{2 / 3}+d^{2 / 3} T^{1 / 3}\right)$
Four sources of regret:

1. Low price in phase $1: d^{2 / 3} T^{1 / 3}$ rounds.
2. Eliminating some types after Phase 1 due to low probability of appearance: we are competing with $p^{\star}(Q)$ instead of $Q: d^{1 / 3} T^{2 / 3}$ regret.

UPPER BOUND PROOF SKETCH

Worst case bound: $\mathbb{E}\left[R_{T}\right] \in \tilde{\mathcal{O}}\left(d^{1 / 3} T^{2 / 3}+d^{2 / 3} T^{1 / 3}\right)$
Four sources of regret:

1. Low price in phase $1: d^{2 / 3} T^{1 / 3}$ rounds.
2. Eliminating some types after Phase 1 due to low probability of appearance: we are competing with $p^{\star}(Q)$ instead of $Q: d^{1 / 3} T^{2 / 3}$ regret.
3. Error in estimating the revenue $\operatorname{rev}\left(\theta_{i}, Q\right)$ in Phase 2: \sqrt{T} regret.

UPPER BOUND PROOF SKETCH

Worst case bound: $\mathbb{E}\left[R_{T}\right] \in \tilde{\mathcal{O}}\left(d^{1 / 3} T^{2 / 3}+d^{2 / 3} T^{1 / 3}\right)$
Four sources of regret:

1. Low price in phase $1: d^{2 / 3} T^{1 / 3}$ rounds.
2. Eliminating some types after Phase 1 due to low probability of appearance: we are competing with $p^{\star}(Q)$ instead of $Q: d^{1 / 3} T^{2 / 3}$ regret.
3. Error in estimating the revenue $\operatorname{rev}\left(\theta_{i}, Q\right)$ in Phase 2: \sqrt{T} regret.
4. Agents learning their values: $d^{1 / 3} T^{2 / 3}$ regret.

Theorem: In the worst case,

$$
\inf _{\text {algorithms }} \sup _{\text {problems }} \mathbb{E}\left[R_{T}\right] \in \tilde{\Omega}\left(d^{1 / 3} T^{2 / 3}\right)
$$

MAIN LOWER BOUND

Theorem: In the worst case,

$$
\inf _{\text {algorithms }} \sup _{\text {problems }} \mathbb{E}\left[R_{T}\right] \in \tilde{\Omega}\left(d^{1 / 3} T^{2 / 3}\right)
$$

But if the smallest probability of appearance for any type is large, i.e. $q_{\min } \geq d^{-2 / 3} T^{-1 / 3}$

MAIN LOWER BOUND

Theorem: In the worst case,

$$
\inf _{\text {algorithms }} \sup _{\text {problems }} \mathbb{E}\left[R_{T}\right] \in \tilde{\Omega}\left(d^{1 / 3} T^{2 / 3}\right)
$$

But if the smallest probability of appearance for any type is large, i.e. $q_{\min } \geq d^{-2 / 3} T^{-1 / 3}$

$$
\inf _{\text {algorithms }} \sup _{q_{\text {min }} \geq d^{-2 / 3} T^{-1 / 3}} \mathbb{E}\left[R_{T}\right] \in \tilde{\Omega}\left(\sqrt{\frac{T}{q_{\text {min }}}}\right)
$$

LOWER BOUND PROOF SKETCH

- Consider difficult problem instances where

1. different types have similar ex-ante values,
2. but, large variance in type appearance probabilities \mathscr{P}.

LOWER BOUND PROOF SKETCH

- Consider difficult problem instances where

1. different types have similar ex-ante values,
2. but, large variance in type appearance probabilities \mathscr{P}.

- Algorithm must decide if
- it will target low probability types (low price due to high uncertainty)
- or, ignore low probability types (foregoing potential future revenue)

LOWER BOUND PROOF SKETCH

- Consider difficult problem instances where

1. different types have similar ex-ante values,
2. but, large variance in type appearance probabilities \mathscr{P}.

- Algorithm must decide if
- it will target low probability types (low price due to high uncertainty)
- or, ignore low probability types (foregoing potential future revenue)
- Either way, seller suffers high regret.

LOWER BOUND PROOF SKETCH

- A class of algorithms when \mathscr{P} is known to the seller:

LOWER BOUND PROOF SKETCH

- A class of algorithms when \mathscr{P} is known to the seller:
- Ahead of time (before round 1), ignore types

LOWER BOUND PROOF SKETCH

- A class of algorithms when \mathscr{P} is known to the seller:
- Ahead of time (before round 1), ignore types
- whose probability of appearance is smaller than a chosen threshold.

LOWER BOUND PROOF SKETCH

- A class of algorithms when \mathscr{P} is known to the seller:
- Ahead of time (before round 1), ignore types
- whose probability of appearance is smaller than a chosen threshold.
- who contribute too little revenue.

LOWER BOUND PROOF SKETCH

- A class of algorithms when \mathscr{P} is known to the seller:
- Ahead of time (before round 1), ignore types
- whose probability of appearance is smaller than a chosen threshold.
- who contribute too little revenue.
- On each round, set price low enough to target all other customer types (while accounting for buyer uncertainty).

LOWER BOUND PROOF SKETCH

- A class of algorithms when \mathscr{P} is known to the seller:
- Ahead of time (before round 1), ignore types
- whose probability of appearance is smaller than a chosen threshold.
- who contribute too little revenue.
- On each round, set price low enough to target all other customer types (while accounting for buyer uncertainty).
- No algorithm can do significantly better than the best algorithm in this class.

LOWER BOUND PROOF SKETCH

- A class of algorithms when \mathscr{P} is known to the seller:
- Ahead of time (before round 1), ignore types
- whose probability of appearance is smaller than a chosen threshold.
- who contribute too little revenue.
- On each round, set price low enough to target all other customer types (while accounting for buyer uncertainty).
- No algorithm can do significantly better than the best algorithm in this class.
- Proof supports the structure of our algorithm (even without knowledge of \mathscr{P})!

LOWER BOUND PROOF SKETCH

- A class of algorithms when \mathscr{P} is known to the seller:
- Ahead of time (before round 1), ignore types
- whose probability of appearance is smaller than a chosen threshold.

Use a few rounds (Phase 1) to eliminate low prob types

- who contribute too little revenue.
- On each round, set price low enough to target all other customer types (while accounting for buyer uncertainty).
- No algorithm can do significantly better than the best algorithm in this class.
- Proof supports the structure of our algorithm (even without knowledge of \mathscr{P})!

LOWER BOUND PROOF SKETCH

- A class of algorithms when \mathscr{P} is known to the seller:
- Ahead of time (before round 1), ignore types
- whose probability of appearance is smaller than a chosen threshold.

Use a few rounds (Phase 1) to eliminate low prob types

- who contribute too little revenue. Phase 2, eliminating types from S_{t}
- On each round, set price low enough to target all other customer types (while accounting for buyer uncertainty).
- No algorithm can do significantly better than the best algorithm in this class.
- Proof supports the structure of our algorithm (even without knowledge of \mathscr{P})!

LOWER BOUND PROOF SKETCH

- A class of algorithms when \mathscr{P} is known to the seller:
- Ahead of time (before round 1), ignore types
- whose probability of appearance is smaller than a chosen threshold.

Use a few rounds (Phase 1) to eliminate low prob types

- who contribute too little revenue. Phase 2, eliminating types from S_{t}
- On each round, set price low enough to target all other customer types (while accounting for buyer uncertainty).

Phase 2, pricing strategy

- No algorithm can do significantly better than the best algorithm in this class.
- Proof supports the structure of our algorithm (even without knowledge of \mathscr{P})!
- Challenge: Setting high prices for high instantaneous revenue \Longrightarrow Both buyer and seller cannot learn
\Longrightarrow Poor revenue in the long run
- Algorithmic insight: Choose low prices early, and increase them gradually.
- Theoretical Results:
- Upper bound: $\tilde{\mathscr{O}}\left(d^{1 / 3} T^{2 / 3}\right)$ worst case regret, but $\tilde{\mathscr{O}}\left(T^{1 / 2}\right)$ regret when all types appear frequently.
- Matching lower bounds.

Wenshuo Guo UC Berkeley

Nika Haghtalab UC Berkeley

Ellen Vitercik
Stanford

THANK YOU!

