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HOW CAN REVIEWS BE HELPFUL?
▸ To buyers:

▸ Understand if the product is right for them.

▸ E.g. Several positive reviews for stovetop cooking, but warps too frequently in the oven.     

▸ To sellers:

▸ Gauge the demand for the product   set prices to maximize revenue.⟹
▸ E.g. Several 5 star reviews! We should increase the price.
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GOAL
▸ Study how reviews can help both sides of the market.

▸ Sellers will learn optimal price.

▸ Buyers will learn their value for goods. 
 

▸ Model: Several market models …

▸ In this work: posted-price mechanisms.

▸ Prior work on feedback-driven market/auction design: single-item auctions (FPS ’18, WPR’16, PPPR 
’22, ADG ’16, DSS ‘19), posted price mechanisms when buyers know values (KL ’03), VCG mechanisms 
(KGJS, JMLR ’22), matching markets (LMJ, AISTATS ’19), exchange economies (GKGJS, AISTATS ’22), 
and several more …
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POSTED PRICE MECHANISM
▸ Seller posts a price � for the item. A buyer of type � will purchase if their  

value is larger than the price, i.e � .
p i

θi ≥ p

I will use it mostly for
stove-top cooking.

I value this pot at $50.

Type 2

I will use it mostly
in the oven.

I value this pot at $20.

Type 1

Price: $40
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values and type distribution ? 
 
 
 

𝒫

▸ Expected revenue per purchase if you set price ,  
 

p

▸ Optimal price

rev(p) = p ⋅ ℙi∼𝒫(θi ≥ p)

p⋆ = arg max
p

rev(p)

Type
Values
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2. A buyer may know their type , but not their value .i θi

▸ (In practice) due to uncertainty about their value, customers may not be 
willing to buy an item except at a low price. 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1. Seller wishes to maximize revenue, but  

may not know . 
 
 
 
 

𝒫

2. A buyer may know their type , but not their value .i θi

▸ (In practice) due to uncertainty about their value, customers may not be 
willing to buy an item except at a low price. 

▸ In this work: both customers and seller will use reviews to learn.

p⋆ = arg max
p

p ⋅ ℙi∼𝒫(θi ≥ p)

Type
Values
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EX-ANTE VS EX-POST VALUE
▸ A buyer has ex-ante value  based on their type . θi

▸ Buyer’s ex-post value  is drawn from distribution  such that .v 𝒟i 𝔼𝒟i
[v] = θi

▸ Actual experience of the customer.

▸ Depends on exogenous factors that cannot be known at time of purchase.

▸ E.g manufacturing defects, delivery quality.  

▸ Customer reviews are based on ex-post value (actual experience).
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WHAT IS A REVIEW?
▸ If the buyers purchase, they reveal their type  and ex-post value  to the 

seller and future buyers.
i v

▸ Can extract type and value from written reviews, ratings, and buyer 
history (AMMO ’22 Econometrica)

▸ ‘Revealing type’ is perhaps a new model for soliciting customer reviews.
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▸ Buyers may not be willing to pay a high price if they are uncertain about 

their (ex-ante) value. 

▸ But buyers cannot be overly conservative. 

▸ E.g: “I will only pay $0.01 since I do not know my value exactly”.

▸ Revenue maximization would be hopeless with ultraconservative 
customers.
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▸ Buyer on round  arrives with a threshold function .  

 is an “estimate” of their value based on past reviews of their type.
t τt

τt

▸ Buyer purchases if .  pt ≤ τt

▸ But this threshold has to be at least a -lower confidence bound on the value.  
Let the buyer’s type be , and let  be reviews from past customers of type . Then, 
 
 

η
i Φi,t i

▸ Bounded pessimism: The customer is willing to take at least a small risk. They 
may over-estimate their value (i.e ) with some small probability . τt > θi η

τt ≥
1

|Φi,t | ∑
v∈Φi,t

v −
1

|Φi,t |
log ( t

η )
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ONLINE LEARNING FRAMEWORK 
▸ On each round :t

▸ Seller chooses a price  (based on past reviews)pt

▸ A new buyer with type  and threshold  arrives.it ∼ 𝒫 τt

▸ Buyer buys if .pt ≤ τt

▸ If buyer buys,

▸ Seller has revenue .pt

▸ Buyer experiences ex-post value , and reveals . vt (it, vt)

▸ If buyer does not buy, no revenue and no review!
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RT T

▸ Here,  if there was a purchase on round  and  if the 
customer would have purchased at  had they known their value.

bt = 1 t b⋆
t = 1

p⋆

▸ We want small  . Specifically .RT 𝔼[RT] ∈ o(T)
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∑
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▸ Seller wishes to set high prices on each round (to maximize current revenue).

▸ But higher prices  no purchase  no review.⟹ ⟹

1. Seller learning: Seller cannot gauge demand for the product.

2. Buyer learning: Future buyers cannot estimate their value.
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▸ Choose low prices early, and increase them gradually.  

▸ Theoretical Results: 

▸ Upper bound:  worst case regret, but  regret when all 
types appear frequently. 

▸ Matching lower bounds.

𝒪̃ (d1/3T2/3) 𝒪̃ (T1/2)
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▸ On each round , maintain a set  of typest St

1. Have sufficiently high value 

2. Are not exceedingly rare 

▸ Both, based on past reviews. 

▸ On round , set price so that all customers of types in  will buy.t St
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▸ Phase 2:

▸  Offer item for a “very low price”

▸  Observe iid samples from type distribution .𝒫

▸  Set  to be the set of types that appeared often enoughQ

▸  Set price  low enough that buyers in  will buy.pt St

▸  low enough: account for buyer uncertainty ( -risky).η

▸  Update :  eliminate types which contribute too little to revenue.St

�30

(for a small number of rounds, �  rounds )∼ Θ̃(d2/3T1/3)

(set � )St = Q
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WHY DO WE NEED A PHASE 1?
▸ Phase 1: offer the item for a “very low price”, eliminate types that are infrequent.

▸ Low probability of appearance  fewer reviews.⟹

▸ More uncertainty about their value.

▸ Need to set a low price to target these buyers  low revenue.⟹
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2. Eliminating some types after Phase 1 due to low probability of appearance:  
          we are competing with  instead of :    regret.p⋆(Q) Q d1/3T2/3

3. Error in estimating the revenue  in Phase 2:  regret.rev(θi, Q) T

4. Agents learning their values:  regret.d1/3T2/3
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▸ Consider difficult problem instances where 

1. different types have similar ex-ante values, 

2. but, large variance in type appearance probabilities . 𝒫

▸ Algorithm must decide if 

▸ it will target low probability types (low price due to high uncertainty) 

▸ or, ignore low probability types (foregoing potential future revenue) 

▸ Either way, seller suffers high regret.
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SUMMARY
▸ Challenge: Setting high prices for high instantaneous revenue 

                      �  Both buyer and seller cannot learn 
                      �  Poor revenue in the long run  

▸ Algorithmic insight: Choose low prices early, and increase them gradually. 

▸ Theoretical Results: 

▸ Upper bound: �  worst case regret, but �  regret when all 
types appear frequently. 

▸ Matching lower bounds.

⟹
⟹

𝒪̃ (d1/3T2/3) 𝒪̃ (T1/2)

�40



Wenshuo Guo 
UC Berkeley

Nika Haghtalab 
UC Berkeley

Ellen Vitercik 
Stanford

THANK YOU!


