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» Many reasons: convenience, many options, reviews.
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» But customers do not look at just the average rating.
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FILTERING REVIEWS BY ‘CUSTOMER TYPE ‘

M Cuisinart MCP22-24N MultiClad Pro Triple Ply 10- Looking for specific info?
Inch, Open Skillet
Visit the Cuisinart Store [ Q 0ven|

=" ki v 14,945 ratings

e

Yriririris 4.7 out of 5

Customer Reviews

Yoy Warped
By Cheryl A. Jarrett in the United States = on April 20, 2022
...They warp in the oven. see more

Yoy ey e veve Warps
By Ricky K Workman in the United States == on August 3, 2022
...Warps at 350 degrees see more

See 20 matching customer reviews >




FILTERING REVIEWS BY ‘CUSTOMER TYPE

Groomer's Best Small Combo Brush
for Cats and Small Dogs

Visit the Hartz Store
W w%yr v 7,579ratings | 8 answered questions

for "hartz groomer’s best combo dog brush”

Looking for specific info?

Q long-haired

Customer Reviews

Yr 17171777 Did not collect any hair off of my long haired cat

By Nazli Zeynep Turken on August 30, 2021
This brush/comb combo did not really collect any hair from my long-haired cat without a lot of pressure. The fur shedder

work better.




FILTERING REVIEWS BY ‘CUSTOMER TYPE'

Paula's Choice
Skin Perfecting 2% BHA Liquid Exfoliant

%k kK ¥r 1.1K Ask a question W 254.6K

m gﬁ%l-l'gg O\ Sort v Rating v Verified Purchases Non-Incentivized Reviews Only @ Skin Concerns v Age Range Vv
< Oily X Qg Clear all
W  SKIN PERFECTING
J 2% BHA Liquid Viewing 1-6 of 189 reviews
Exfoliant
o L % %k %k k LITERALLY NEED
l Al Skin Types 6 d ago | didn’t notice a major difference until | ran out of it, then my forehead started to break out again and my skin just
x Mif.?oiigso:f:ffs' v Recommended looked dull. It’s the only thing that gets rid of pimples that are painful and under the skin.
A e ey Helpful? A (3) | ¥ (1)
m 118 ml/ 4 1l. oz

1. 8.0.0.0.1 A MUST IN MY WEEKLY ROUTINE
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» To buyers:

» Understand if the product is right for them.

» E.g.Several positive reviews for stovetop cooking, but warps too frequently in the oven.

» To sellers:

» Gauge the demand for the product = set prices to maximize revenue.

» E.g.Several 5 star reviews! We should increase the price.
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GOAL :

» Study how reviews can help both sides of the market.

» Sellers will learn optimal price.

» Buyers will learn their value for goods.

» Model: Several market models ...

» In this work: posted-price mechanisms.

» Prior work on feedback-driven market/auction design: single-item auctions (FPS 18, WPR’16, PPPR
22, ADG "16, DSS '19), posted price mechanisms when buyers know values (KL ‘03), VCG mechanisms
(KGJS, JMLR ‘22), matching markets (LMJ, AISTATS "19), exchange economies (GKGJS, AISTATS ‘22),

and several more ...
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» A single seller who has (an infinite amount) of a single item.

» Each buyer has a type i. All buyers of type i have value @, (in $) for the item.

» There is a distribution & of buyer types, i.e i ~ £.
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Cuisinart MCP22-24N MultiClad Pro Triple Ply 10-
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POSTED PRICE MECHANISM

» Seller posts a price p for the item. A buyer of type i will purchase if their
value is larger than the price, i.e 6, > p.

4 Cuisinart MCP22-24N MultiClad Pro Triple Ply 10- Type 1

Inch, Open Skillet

Visit the Cuisinart Store
/ = Wl df s v 14,945 ratings

/

SsAsodc 4.7 out of 5 D

() | will use it mostly
in the oven.
| value this pot at $20.

Price: $40
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Customer Reviews

Yor oy Warped
By Cheryl A. Jarrett in the United States = on April 20, 2022
...They warp in the oven. see more

Yooy Warps
By Ricky K Workman in the United States 2 on August 3, 2022
...Warps at 350 degrees see more

See 20 matching customer reviews >
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» Seller posts a price p for the item. A buyer of type i will purchase if their
value is larger than the price, i.e 6, > p.

4 Cuisinart MCP22-24N MultiClad Pro Triple Ply 10- Type 1

Inch, Open Skillet

Visit the Cuisinart Store
/ = Wl df s v 14,945 ratings

/

SsAsodc 4.7 out of 5 D

() | will use it mostly
in the oven.
| value this pot at $20.

Price: $40 Type 2

Yor oy Warped

By Cheryl A. Jarrett in the United States = on April 20, 2022 B .
...They warp in the oven. see more -
Feileeos Warps py V¥ N

By Ricky K Workman in the United States = on August 3, 2022 . .
o ° | will use it mostly for

...Warps at 350 degrees see more )
stove-top cooking.
See 20 matchi t iews > .
ee matcning customer reviews I Value thls pot at $50.

A




MAXIMIZING REVENUE IN POSTED PRICE MECHANISMS

11




MAXIMIZING REVENUE IN POSTED PRICE MECHANISMS

11

» How does a seller choose a price, given the type
values and type distribution 9°?



MAXIMIZING REVENUE IN POSTED PRICE MECHANISMS :

» How does a seller choose a price, given the type P

values and type distribution 9°? I

1 2 e d Type
0, 0o 6, Values




MAXIMIZING REVENUE IN POSTED PRICE MECHANISMS :

» How does a seller choose a price, given the type P
values and type distribution 9°?

d Type
9, Values

» Expected revenue per purchase if you set price p,



MAXIMIZING REVENUE IN POSTED PRICE MECHANISMS :

» How does a seller choose a price, given the type P
values and type distribution 9°?

d Type
9, Values

» Expected revenue per purchase if you set price p,

rev(p) =p - P »(0; 2 p)




MAXIMIZING REVENUE IN POSTED PRICE MECHANISMS :

» How does a seller choose a price, given the type P
values and type distribution 9°?

d Type
9, Values

» Expected revenue per purchase if you set price p,

rev(p) =p - P »(0; 2 p)

» Optimal price



MAXIMIZING REVENUE IN POSTED PRICE MECHANISMS :

» How does a seller choose a price, given the type P
values and type distribution 9°?

d Type
9, Values

» Expected revenue per purchase if you set price p,

rev(p) =p - P »(0; 2 p)

» Optimal price
p* = arg maxrev(p)

P
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1. Seller wishes to maximize revenue, but P
may not know <.

p* =argmaxp - P;_5(6; > p)
p

d Type
9, Values

2. A buyer may know their type i, but not their value 6.

» (In practice) due to uncertainty about their value, customers may not be
willing to buy an item except at a low price.

» In this work: both customers and seller will use reviews to learn.
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» Online learning framework, assumptions, challenges

2. Algorithm

3. Theoretical results

» Upper bounds, lower bounds, proof sketches



FRAMEWORK FOR ONLINE LEARNING & PRICING

15




FRAMEWORK FOR ONLINE LEARNING & PRICING

15

» Proceeds over a sequence of rounds. On any given round there are reviews
from previous rounds.



FRAMEWORK FOR ONLINE LEARNING & PRICING

15

» Proceeds over a sequence of rounds. On any given round there are reviews
from previous rounds.

» On each round r:



FRAMEWORK FOR ONLINE LEARNING & PRICING

15

» Proceeds over a sequence of rounds. On any given round there are reviews
from previous rounds.

» On each round r:

» Seller chooses a price p, (based on past reviews).



FRAMEWORK FOR ONLINE LEARNING & PRICING

» Proceeds over a sequence of rounds. On any given round there are reviews
from previous rounds.

» On each round r:
» Seller chooses a price p, (based on past reviews).

» A new buyer of type i, ~ & arrives. She buys the item if she has reason to

believe that 6, > p (based on past reviews).

15



FRAMEWORK FOR ONLINE LEARNING & PRICING

» Proceeds over a sequence of rounds. On any given round there are reviews
from previous rounds.

» On each round r:
» Seller chooses a price p, (based on past reviews).

» A new buyer of type i, ~ & arrives. She buys the item if she has reason to

believe that 6, > p (based on past reviews).

» If buyer buys, she leaves a review based on her experience of using the
item. Otherwise, no review.

15



FRAMEWORK FOR ONLINE LEARNING & PRICING

16

» Proceeds over a sequence of rounds. On any given round there are reviews
from previous rounds

» On each round :
» Seller chooses a price p, (based on past reviews).

» A new buyer of type i ~ & arrives. She buys the item if she has reason to
believe that 0. > p (based on past reviews).

» If buyer buys, she leaves a review based on her experience of using the
item. Otherwise, no review.
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» A buyer has ex-ante value 0. based on their type .

» Buyer's ex-post value v is drawn from distribution &, such that kg, [v] = 0,

» Actual experience of the customer.
» Depends on exogenous factors that cannot be known at time of purchase.

» E.g manufacturing defects, delivery quality.

» Customer reviews are based on ex-post value (actual experience).
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WHAT IS A REVIEW?

» If the buyers purchase, they reveal their type i and ex-post value v to the
seller and future buyers.

» Can extract type and value from written reviews, ratings, and buyer
history (AMMO ‘22 Econometrica)

» ‘Revealing type’ is perhaps a new model for soliciting customer reviews.

18
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» Proceeds over a sequence of rounds. On any given round there are reviews
from previous rounds

» On each round :
» Seller chooses a price p, (based on past reviews).

» A new buyer of type i ~ & arrives. She buys the item if she has reason to
believe that 0. > p (based on past reviews).

» If buyer buys, she leaves a review based on her experience of using the
item. Otherwise, no review.
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BUYER PURCHASE MODEL

» Buyers may not be willing to pay a high price if they are uncertain about
their (ex-ante) value.

» But buyers cannot be overly conservative.
» E.g: “l will only pay $0.01 since | do not know my value exactly”.

» Revenue maximization would be hopeless with ultraconservative
customers.

20
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BUYER PURCHASE MODEL: #-RISKY CUSTOMERS 3

» Buyer on round 7 arrives with a threshold function ..
7, is an “estimate” of their value based on past reviews of their type.

» Buyer purchases if p, < 7.

» But this threshold has to be at least a 17-lower confidence bound on the value.
Let the buyer’s type be i, and let ©; ; be reviews from past customers of type i. Then,

» Bounded pessimism: The customer is willing to take at least a small risk. They
may over-estimate their value (i.e 7, > ) with some small probability 7.
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ONLINE LEARNING FRAMEWORK

» On each round r:
» Seller chooses a price p, (based on past reviews)
» A new buyer with type i, ~ & and threshold 7, arrives.
» Buyer buysifp, < 7.
» If buyer buys,
» Seller has revenue p..

» Buyer experiences ex-post value v, and reveals (i,, v,).

» If buyer does not buy, no revenue and no review!

22
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REGRET

» Compete against the best price p™ when sellers know & and customers

know their type 0,.

» Regret R, after T rounds:
I I

Ry = ZP*'bt*_ Zpt'bt
1 =1

[=

» Here, b, = 1 if there was a purchase on round rand b = 1 if the

customer would have purchased at p™ had they known their value.

» We want small R;. Specifically

23
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CHALLENGES: PRICING AFFECTS LEARNING

» Seller wishes to set high prices on each round (to maximize current revenue).

» But higher prices = no purchase = no review.
1. Seller learning: Seller cannot gauge demand for the product.

2. Buyerlearning: Future buyers cannot estimate their value.

24
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» Set prices too high = no feedback about low value types.
» Set prices too low = low revenue.
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» Seller chooses price before seeing the customer type.

» A buyer’s purchase decision depends on how certain she is of her value.
This in turn depends on previous reviews.

e, TTITICIeTrSAT rdeiededr $51 fededriir$37  Newtype2user

YPE2  prordririr $39 Frdrdririr $38 Arirdrdrdr 652 “lwill pay upto $42

(tovetop) 'y fr fr fr vy $42 Frvrvr vy $44 Yrdrdrveey $46 For this pan
Prfrfrfr i $53 Y Aoy $45 Yrirdrdede $56

estimated value
S44.5

New type 3 user:

Type 3 YT Ir Yy $53 "I will pay up to $33
(qrill) YT I LYy $57 For this pan"

estimated’value

S55

» Seller’s dilemma: Only target type 1 buyers for high immediate revenue? Or
also target type 3 customers for higher long term revenue?
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» Algorithmic insights:

» Choose low prices early, and increase them gradually.

» Theoretical Results:

» Upper bound: 0 (d1/3T2/3) worst case regret, but 0 (Tl/z) regret when all
types appear frequently.

» Matching lower bounds.
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1. Problem set up

» Online learning framework, assumptions, challenges

2. Algorithm

3. Theoretical results

» Upper bounds, lower bounds, proof sketches
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» On each round 7, maintain a set S, of types
1. Have sufficiently high value (high average ex-post value)

2. Are not exceedingly rare (appeared frequently enough in the past)

» Both, based on past reviews.

» On round 7, set price so that all customers of types in S, will buy.
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Phase 1: (for a small number of rounds, )
Ofter item for a "very low price”
Observe iid samples from type distribution <.

Set O to be the set of types that appeared often enough

Phase 2: (setS = Q)

Set price p, low enough that buyers in S, will buy.
low enough: account for buyer uncertainty (#-risky).

Update S.: eliminate types which contribute too little to revenue.
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» We will estimate the best price p*(Q) for types in Q, instead of p*

p*(Q) = argmax rev(p,Q) =argmax p-P,_ 40, >p and i € Q)
p P

» Observation: p*(Q) = 6, for some i, € Q.

» Maintain confidence intervals for rev(60,, Q) for each i € §..
rev(60;, Q) Constructing Cls

; 47 requires some care

>

-1 T

—— -

-

0, 0y 0. 0. 0- @ price()
2 3\ 4/ / 6

Sii1 =13,5,6}
» Eliminate i from §, if it's UCB is smaller than the highest LCB (essentially).
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» Maintain confidence intervals for buyers’ estimate of . foreachi € §..
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WHY DO WE NEED A PHASE 1? 5

» Phase 1: offer the item for a “very low price”, eliminate types that are infrequent.

» Low probability of appearance = fewer reviews.

» More uncertainty about their value.

» Need to set a low price to target these buyers = low revenue.

>
type
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1. Problem set up

» Online learning framework, assumptions, challenges

2. Algorithm

3. Theoretical results

» Upper bounds, lower bounds, proof sketches
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Worst case bound: E[R;] € O (0171/3772/3 + d2/3T1/3)

Four sources of regret:

1. Low price in phase 1: d*°T"" rounds.

2. Eliminating some types after Phase 1 due to low probability of appearance:
we are competing with p*(Q) instead of Q: d'°T? regret.

3. Errorin estimating the revenue rev(@,, Q) in Phase 2: ﬁ regret.

4. Agents learning their values: d'°T?" regret.

36
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Theorem: In the worst case,

nf Ssup _[RT] = Q (d1/3T2/3)

algorithms problems

But if the smallest probability of appearance for any type is large, i.e. g, .. > d =T

inft sup “[R;] € Q

algorithms > 237173

dminZ
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» Consider difficult problem instances where

1. different types have similar ex-ante values,

2. but, large variance in type appearance probabilities <.

» Algorithm must decide if
» it will target low probability types (low price due to high uncertainty)

» or, ignore low probability types (foregoing potential future revenue)

» Either way, seller suffers high regret.

38
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LOWER BOUND PROOF SKETCH 3

» A class of algorithms when & is known to the seller:

¢ Ahead of time (before round 1), ignore types

® whose probability of appearance is smaller Use a few rounds (Phase 1) to
than a chosen threshold. eliminate low prob types
e who contribute too little revenue. Phase 2, eliminating types from S,

® On each round, set price low enough to target all other customer types (while
accounting for buyer uncertainty). Phase 2, pricing strategy

» No algorithm can do significantly better than the best algorithm in this class.

» Proof supports the structure of our algorithm (even without knowledge of &)!



SUMMARY

» Challenge: Setting high prices for high instantaneous revenue
—> Both buyer and seller cannot learn
—> Poor revenue in the long run

» Algorithmic insight: Choose low prices early, and increase them gradually.

» Theoretical Results:

» Upper bound: 0 (d1/3T2/3) worst case regret, but 0 (Tl/z) regret when all
types appear frequently.

» Matching lower bounds.
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