
1

CS/ECE 752 1

Lecture 3: Instruction Set Architectures

• Last Time
– Computer elements

• Transistors, wires, pins

• Today
– Finish computer elements
– ISA overview
– MIPS ISA
– ISA extensions
– “Alternate” ISAs

Slides courtesy of Stephen W. Keckler, UT-Austin

CS/ECE 752 2

Instruction Set Architecture

• Contract between programmer and the hardware
– Defines visible state of the system
– Defines how state changes in response to instructions

• Programmer: ISA is model of how a program will
execute

• Hardware Designer: ISA is formal definition of
the correct way to execute a program

• ISA specification
– The binary encodings of the instruction set

2

CS/ECE 752 3

ISA Basics

Op Mode Ra Rb

Mem

Regs

Before State

Mem

Regs

After State

instructionInstruction formats

Instruction types

Addressing modes

Data types

Operations

Interrupts/Events

Machine state

Memory organization

Register organization

CS/ECE 752 4

Architecture vs. Implementation

• Architecture: defines what a computer system
does in response to a program and a set of data
– Programmer visible elements of computer system

• Implementation: defines how a computer does it
– Sequence of steps to complete operations
– Time to execute each operation
– Hidden “bookkeeping” functions

3

CS/ECE 752 5

Classifying Instruction Set Architectures

Based on how the instructions receive/produce operands

• Stack
– Burroughs B5000 (1963), Java Virtual Machine (late 90s)

• Accumulator
– Univac-I (1951), EDSAC (1949)

• Register-memory
– IBM 360 (1964), DEC PDP--and later VAX (1970), Intel x86(1978)

• Load/Store
– IBM 801 (1974-prototype), Stanford MIPS/Berkeley RISC (mid

19080s)

– IBM Power, MIPS, DEC Alpha, DSP, VLIW, etc.

• Dataflow
– Numerous research machines over the years

• Special case: Vector ISAs

CS/ECE 752 6

ISA Basics

Op Mode Ra Rb

Mem

Regs

Before State

Mem

Regs

After State

instructionInstruction formats

Instruction types

Addressing modes

Data types

Operations

Interrupts/Events

Machine state

Memory organization

Register organization

4

CS/ECE 752 7

Memory Addressing

• Different size accesses (byte, half-word, word, etc.)

• Endian-ness
– Byte ordering within a larger object

• Alignment
– Is an access allowed to span any arbitrary boundaries?

• Addressing modes
– How is an address computed?

– Absolute, relative to the program counter, computed

CS/ECE 752 8

Addressing Mode Summary

#n immediate

(0x1000) absolute

Rn Register

(Rn) Register indirect

-(Rn) predecrement

(Rn)+ postincrement

*(Rn) Memory indirect

*(Rn)+ postincrement

d(Rn) Displacement (b,w,l)

d(Rn)[Rx] Scaled

VAX 11 had 27 addressing modes (why?)

5

CS/ECE 752 9

ISA Basics

Op Mode Ra Rb

Mem

Regs

Before State

Mem

Regs

After State

instructionInstruction formats

Instruction types

Addressing modes

Data types

Operations

Interrupts/Events

Machine state

Memory organization

Register organization

CS/ECE 752 10

Native Data Types

• General purpose processors
– Various size integers (now represented using 2’s

complement)
• Previous included binary coded decimal, signed-

magnitude, etc.
– Floating-point (single/double precision at 32/64 bits)
– “Addresses” - usually just integers, but not always
– Conditions (results of comparison operations)

• But - these are not written in stone
– Vectors (short as well as long)
– Fixed point (often used for signal processing)
– XYZW vertices (128 bits) for graphics

6

CS/ECE 752 11

Operations (Instructions)

• Arithmetic/logical
• Data transfer (load/store, move)
• Control (branch, jump, call)

– Branch delay slots

• System (operating system call, access to special state)
• Miscellaneous

– Subword parallel, saturating arithmetic
– Floating-point
– Decimal (such as for BCD)
– String operations (some found in VAX, etc.)
– Graphics - pixel/vertex operations

• Basically - whatever you can justify and build in HW
– But how do you decide what to put in?

• Shouting contest
• Democracy
• Seniority

• Analysis of tradeoffs

CS/ECE 752 12

Instruction Encoding

• Variable length - VAX, x86
– Instruction length depends on the number of operands,

etc.

– Intel 432 took this to an extreme

• Fixed length - MIPS, other “RISC” ISAs
– All instructions are the same length

• Hybrid - ARM Thumb, MIPS 16
– May support small number of fixed sizes (16/32 bits)

7

CS/ECE 752 13

Control - Exceptions/Events

• Implied multi-way branch after every
instruction
– External events (interrupts)

• completion of I/O operations
– Internal events (faults or exceptions)

• arithmetic overflow
• page fault

• What happens????
• EPC PC of instruction that caused

fault
– PC f(Fault type)

• new PC from HW table lookup
– Return: PC EPC + 4

• How would you use this to aid
compatibility?

Inst 1

Inst 2

P
a
g
e
 F

lt

D
is

k
 I
/O

R
T

C

O
v
e
rf

lo
w

CS/ECE 752 14

MIPS ISA

• 32 GP Integer registers (R0-31) – 32 bits each
– R0=0, other registers governed by conventions (SP, FP, RA, etc.)

• 32 FP registers (F0-F31)
– 16 double-precision (use adjacent 32-bit registers)

• 8, 16, and 32 bit integer data types
• Load/Store architecture (no memory operations in ALU ops)
• Simple addressing modes

– Immediate R1 0x23
– Displacement R2 d(Rx) ….. 0(R3), 0x1000(R0)

• Simple fixed instruction format (3 types), 90 instructions
• Fused compare and branch
• “ISA” has pseudo instruction that are synthesized into simple

sequences (ie. rotate left rol = combination of shift and mask)
• Designed for fast hardware (pipelining) + optimizing compilers

8

CS/ECE 752 15

MIPS ISA (a visual)

R0

R31

PC

R1

F0 F1

F2 F3

F30 F31

Op RS1 RS2 RD func

6 5 55 11

Op RS1 RD Const

6 5 5 16

Op Const

6 26

Fixed-Format

I: ld/st, rd rs1 op imm, branch

R: rd rs1 op rs2

J: j, jal

CS/ECE 752 16

0 zero constant 0

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . . (callee can clobber)

15 t7

MIPS: Software conventions for Registers

16 s0 callee saves

. . . (caller can clobber)

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp Pointer to global area

29 sp Stack pointer

30 fp frame pointer

31 ra Return Address (HW)

Plus a 3-deep stack of mode bits.

9

CS/ECE 752 17

MIPS arithmetic instructions

Instruction Example Meaning Comments

add add $1,$2,$3 $1 = $2 + $3 3 operands; exception possible

subtract sub $1,$2,$3 $1 = $2 – $3 3 operands; exception possible

add immediate addi $1,$2,100 $1 = $2 + 100 + constant; exception possible

add unsigned addu $1,$2,$3 $1 = $2 + $3 3 operands; no exceptions

subtract unsigned subu $1,$2,$3 $1 = $2 – $3 3 operands; no exceptions

add imm. unsign. addiu $1,$2,100 $1 = $2 + 100 + constant; no exceptions

multiply mult $2,$3 Hi, Lo = $2 x $3 64-bit signed product

multiply unsigned multu$2,$3 Hi, Lo = $2 x $3 64-bit unsigned product

divide div $2,$3 Lo = $2 ÷ $3, Lo = quotient, Hi = remainder

Hi = $2 mod $3

divide unsigned divu $2,$3 Lo = $2 ÷ $3, Unsigned quotient & remainder

Hi = $2 mod $3

Move from Hi mfhi $1 $1 = Hi Used to get copy of Hi

Move from Lo mflo $1 $1 = Lo Used to get copy of Lo

Which add for address arithmetic? Which add for integers?

CS/ECE 752 18

Multiply / Divide

• Start multiply, divide
– MULT rs, rt

– MULTU rs, rt

– DIV rs, rt

– DIVU rs, rt

• Move result from multiply, divide
– MFHI rd

– MFLO rd

• Move to HI or LO
– MTHI rd

– MTLO rd

General

Registers

HI LO

10

CS/ECE 752 19

MIPS logical instructions

Instruction Example Meaning Comment
and and $1,$2,$3 $1 = $2 & $3 3 reg. operands; Logical AND

or or $1,$2,$3 $1 = $2 | $3 3 reg. operands; Logical OR

xor xor $1,$2,$3 $1 = $2 Å $3 3 reg. operands; Logical XOR

nor nor $1,$2,$3 $1 = ~($2 |$3) 3 reg. operands; Logical NOR

and immediate andi $1,$2,10 $1 = $2 & 10 Logical AND reg, constant

or immediate ori $1,$2,10 $1 = $2 | 10 Logical OR reg, constant

xor immediate xori $1, $2,10 $1 = ~$2 &~10 Logical XOR reg, constant

shift left logical sll $1,$2,10 $1 = $2 << 10 Shift left by constant

shift right logical srl $1,$2,10 $1 = $2 >> 10 Shift right by constant

shift right arithm. sra $1,$2,10 $1 = $2 >> 10 Shift right (sign extend)

shift left logical sllv $1,$2,$3 $1 = $2 << $3 Shift left by variable

shift right logical srlv $1,$2, $3 $1 = $2 >> $3 Shift right by variable

shift right arithm. srav $1,$2, $3 $1 = $2 >> $3 Shift right arith. by variable

CS/ECE 752 20

MIPS data transfer instructions

Instruction Comment

SW 500(R4), R3 Store word

SH 502(R2), R3 Store half

SB 41(R3), R2 Store byte

LW R1, 30(R2) Load word

LH R1, 40(R3) Load halfword

LHU R1, 40(R3) Load halfword unsigned

LB R1, 40(R3) Load byte

LBU R1, 40(R3) Load byte unsigned

LUI R1, 40 Load Upper Immediate (16 bits shifted left by 16)

Why need LUI?

0000 … 0000

LUI R5

R5

11

CS/ECE 752 21

MIPS Compare and Branch

• Compare and Branch
– BEQ rs, rt, offset if R[rs] == R[rt] then PC-relative branch

– BNE rs, rt, offset <>

• Compare to zero and Branch
– BLEZ rs, offset if R[rs] <= 0 then PC-relative branch

– BGTZ rs, offset >

– BLT <

– BGEZ >=

– BLTZAL rs, offset if R[rs] < 0 then branch and link (into R 31)

– BGEZAL >=

• Remaining set of compare and branch take two instructions

• Almost all comparisons are against zero!

CS/ECE 752 22

MIPS jump, branch, compare instructions

Instruction Example Meaning
branch on equal beq $1,$2,100 if ($1 == $2) go to PC+4+100

Equal test; PC relative branch

branch on not eq. bne $1,$2,100 if ($1!= $2) go to PC+4+100
Not equal test; PC relative

set on less than slt $1,$2,$3 if ($2 < $3) $1=1; else $1=0
Compare less than; 2’s comp.

set less than imm. slti $1,$2,100 if ($2 < 100) $1=1; else $1=0
Compare < constant; 2’s comp.

set less than uns. sltu $1,$2,$3 if ($2 < $3) $1=1; else $1=0
Compare less than; natural numbers

set l. t. imm. uns. sltiu $1,$2,100 if ($2 < 100) $1=1; else $1=0
Compare < constant; natural numbers

jump j 10000 go to 10000
Jump to target address

jump register jr $31 go to $31
For switch, procedure return

jump and link jal 10000 $31 = PC + 4; go to 10000
For procedure call

12

CS/ECE 752 23

Details of the MIPS instruction set

• Register zero always has the value zero (even if you try to write it)

• Branch/jump and link put the return addr. PC+4 into the link register (R31)

• All instructions change all 32 bits of the destination register (including lui, lb,
lh) and all read all 32 bits of sources (add, sub, and, or, …)

• Immediate arithmetic and logical instructions are extended as follows:
– logical immediates ops are zero extended to 32 bits

– arithmetic immediates ops are sign extended to 32 bits (including addu)

• The data loaded by the instructions lb and lh are extended as follows:
– lbu, lhu are zero extended

– lb, lh are sign extended

• Overflow can occur in these arithmetic and logical instructions:
– add, sub, addi

• It cannot occur in
– addu, subu, addiu, and, or, xor, nor, shifts, mult, multu, div, divu

CS/ECE 752 24

Multimedia Instruction Extensions

• Properties of multimedia applications
– Narrower data types

• Bytes, halfwords, fixed-point, single-precision

– Statically known loop bounds

– Different common idioms

• Multiply+accumulate, averaging, permutations

• ….results in different instructions
– Short SIMD (single instruction/multiple data)

– Segmented arithmetic

– Loop counters (more often in multimedia processors)

– New instructions implemented directly in hardware

13

CS/ECE 752 25

Philips Trimedia ISA (TM1300)

• VLIW instruction set
– One instruction holds 5 independent operations

• 27 different types of functional units
• NOP placeholders required if operation slot is unused

– 3 branch delay slots exposed to compiler
– Implications

• Hazards must be detected/prevented in SW

• Guarded/Predicated execution
– Execution/nullification of instruction depends on value of a general

purpose register

• State
– 128 32-bit registers
– Instructions kept compressed until delivered to processor

• Operations
– Also uses sub-word parallelism (2 16-bit operations)
– Saturating arithmetic

CS/ECE 752 26

Trimedia 1300 Block Diagram

14

CS/ECE 752 27

TM1300 Issue Restrictions

CS/ECE 752 28

GPU Instruction Sets

15

CS/ECE 752 29

GPU Instruction Sets

CS/ECE 752 30

Example: DPH – homogeneous dot product

• The DPH instruction assigns the four-component dot product
of the two source vectors where the W component of the
first source vector is assumed to be 1.0 into the destination
register.

• Semantics:
t.x = source0.c***;
t.y = source0.*c**;
t.z = source0.**c*;
if (negate0) { t.x = -t.x; t.y = -t.y; t.z = -t.z; }
u.x = source1.c***;
u.y = source1.*c**;
u.z = source1.**c*;
u.w = source1.***c;
if (negate1) { u.x = -u.x; u.y = -u.y; u.z = -u.z; u.w = -u.w; }
v.x = t.x * u.x + t.y * u.y + t.z * u.z + u.w;
if (xmask) destination.x = v.x;
if (ymask) destination.y = v.x;
if (zmask) destination.z = v.x;
if (wmask) destination.w = v.x;

16

CS/ECE 752 31

Principles of Instruction Set Design

• Keep it simple (KISS)
– complexity

• increases logic area

• increases pipe stages

• increases development time

– evolution tends to make
kludges

• Orthogonality (modularity)
– simple rules, few exceptions

– all ops on all registers

Data Types

O
p

e
ra

ti
o

n
s

Add Modes

F
o

rm
a

ts

Regs

• Frequency
– make the common case

fast

• some instructions
(cases) are more
important than others

0%

10%

20%

30%

40%

50%

60%

INT LOAD STORE JMP FLOAT

CS/ECE 752 32

Principles of Instruction Set Design (part 2)

• Generality
– not all problems need the

same features or
instructions

– principle of least surprise

– performance should be
easy to predict

• Locality and concurrency
– design ISA to permit

efficient implementation

• today

• 10 years from now

0%

10%

20%

30%

40%

50%

60%

INT LOAD STORE JMP FLOAT CHAR

vs

F D R E W

F D R E W

F D R E W

F D R E W

17

CS/ECE 752 33

Review of ISA Principles

• Good ISA design
– KISS! - only implement necessities (encodings, address

modes, etc.)
– FOG: Frequency, Orthogonality, Generality

• Instruction Types
– ALU ops, Data movement, Control

• Addressing modes
– Matched to program usage (local vars, globals, arrays)

• Program Control
– Conditional/unconditional branches and jumps
– Where to store conditions
– PC relative and absolute

CS/ECE 752 34

Next Time

• Microarchitecture
– Components + structure

• Some comments on pipelining

• Reading assignment
– Review due:

• Colwell, Instruction sets and beyond

• Burger et al., Scaling to end of silicon…

