
Improving Cache Power EÆciency with an Asymmetric Set-Associative

Cache

Zhigang Hu and Margaret Martonosi

Department of Electrical Engineering

Princeton University

hzg,martonosi@ee.princeton.edu

Stefanos Kaxiras

Circuits and Systems Research Lab

Agere Systems

kaxiras@agere.com

Abstract

Data caches are widely used in general-purpose pro-

cessors as a means to hide long memory latencies.

Set-associativity in these caches helps programs avoid

performance problems due to cache mapping con
icts.

Many programs, however, need high associativity for

only some of their frequently-referenced addresses and

tolerate much lower associativity for the remainder of

the references. With this variability in mind, this pa-

per proposes an asymmetric cache structure in which

the size of each way can be di�erent. The ways of

the cache are di�erent powers of two, and allow for a

\tree-structured" cache in which extra associativity can

be shared. We accomplish this by having two cache blocks

from the large ways align with individual cache blocks in

the smaller ways. This structure achieves miss rates

comparable (on average 3% better for SPEC2000) to a

conventional cache of the same size and associativity.

Most notably, the asymmetric cache has the nice prop-

erty that accesses hit in the smaller ways can immedi-

ately terminate accesses to larger ways so that power

can be saved. For the SPEC2000 benchmarks, we found

cache energy per access was reduced by 17% on average.

1 Introduction

To attack the speed gap between processor and main

memory, aggressive cache architectures are widely em-

ployed in current general purpose microprocessors. For

example, Alpha 21264 [5] processor has a 64KB, 2-way

set associative L1 data cache and an L1 instruction

cache of the same size. Cache design is a trade-o� of

many factors including hit latency, miss rate, chip area

and power consumption. Balancing all these factors re-

sults in complex designs.

In this paper we propose set associative caches with

asymmetrical ways. This simple technique is based on

observed access behavior in set associative caches and

can potentially provide bene�ts in three areas: hit la-

tency, miss rate, and power consumption. Figure 1

shows a typical cache organization. In this organization,

each way is symmetric. That is, each set is designed to

have the same number of ways. However, during ac-

tual program execution, depending on the memory ad-

dress mapping and memory access behavior, each set

may have di�erent associative requirements. For exam-

ple, in an extreme case, a lot of addresses may map

to a single set while no address map to another. This

wastes cache space and leads to con
ict misses which

can be eliminated if a more eÆcient mapping mecha-

nism were used. Figure 2 depicts the number of misses

to each set in a 32K direct-mapped L1 data cache for

a SPEC2000 program, gzip. This �gure clearly demon-

strates that some sets experience manymore misses than

others. Intuitively, we could optimize the cache behav-

ior by assigning more ways to these sets than others.

Output dataSelect

Comparators

Mux drivers

DATA ARRAYSTAG ARRAYS

D
E

C
O

D
E

R
S

Bit lines

Word lines

Sense Amps Sense Amps

Figure 1: The conventional cache organization

Di�erent programs may also have di�erent set asso-

0.E+00

5.E+03

1.E+04

2.E+04

2.E+04

3.E+04

3.E+04

4.E+04

4.E+04

5.E+04

5.E+04

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001

set

n
u

m
o

f
m

is
s

Figure 2: Misses to each set with a 32KB direct-mapped

cache for gzip

ciativity requirements. Figure 3 shows the miss rate of

32KB caches with di�erent associativity for SPEC2000

benchmarks. Most benchmarks get remarkable improve-

ment when increasing associativity from direct-mapped

to 2-way set associative. On average, a 2-way cache can

reduce miss rate by 13% compared to a direct-mapped

one with the same size. The improvements from 2-way

to 4-way is rather small for most benchmarks. On av-

erage, a 4-way cache reduce the miss rate by only 1.5%

compared to a 2-way cache. However, for some bench-

marks, such as crafty, perlbmk and galgel, the miss rate

improvements are quite signi�cant. These data indicate

that most benchmarks have an associativity requirement

of around 2 and only some of them need more.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

g
zi

p

vp
r

g
cc

m
cf

cr
af

ty

p
ar

se
r

eo
n

p
er

lb
m

k

g
ap

vo
rt

ex

g
zi

p

tw
o

lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu

m
es

a

g
al

g
el ar
t

eq
u

ak
e

vp
r

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

m
is

s
ra

te

1-way 2-way 4-way

Figure 3: Miss rate of 32KB L1 data caches with di�er-

ent associativity for SPEC2000

1.1 Related Work

Cache organization has been the subject of much re-

search. In general there are two main research cate-

gories. One category of research focuses on the internal

structure and address mapping design within a single

cache. Group associative cache [12] and DASC (Direct-

mapped Access Set-associative Check) cache [17] are

examples in this category. Both try to achieve the

miss rate of a set associative cache with the hit la-

tency of a direct-mapped cache by combining an as-

sociative tag array with a direct-mapped data array.

In group-associative cache [12], a direct-mapped cache

is dynamically partitioned into groups of cache lines.

Each group functions as a set as in an conventional

set-associative cache. Each memory block can map to

a group instead of a single position in a conventional

direct-mapped cache. The exact position of this block is

recorded in a directory which is accessed in parallel with

data/tag array. In DASC caches [17], the tag array is n-

way set-associative but the data array is direct-mapped.

For each memory request, data in the privileged loca-

tion is optimistically used. If the tag check indicates

a miss on the privileged location, all activities using

the speculative data must be canceled. Since the tag

is set-associative, a hit on alternative locations can be

also be determined during the tag check. On a miss to

all the alternate locations, the referenced data must be

served from next level of the memory hierarchy. Other

work in this category includes column-associative cache

[1], skewed associativity cache [2] and the di�erence-bit

cache [8].

Another category of cache research tries to split the

data cache into typically two sub-caches to capture dif-

ferent memory access patterns. Examples in this cat-

egory include |among others|the split temporal spa-

tial data cache (STS) [11], the split spatial/non-spatial

cache [13], victim bu�er [7], �lter cache [6]. A survey of

this category of research can be found in [15].

Our work is also similar to the skewed associativity

work [2] in that each way is indexed di�erently. How-

ever, in asymmetric caches, the di�erence in indexing

stems from the di�erent size of each cache way and not

by the deliberate use of di�erent decoders for each way.

Thus, within each way, we retain the conventional in-

dex function to avoid adding new decoders. Since our

work is focused on power consumption instead of miss

rate, these two mechanisms are actually orthogonal to

each other. It's possible to combine the two to achieve

di�erent trade-o�s between power and performance.

1.2 Contributions

In this paper, we propose an asymmetric structure for

set associative cache where the size of each way can be

di�erent. Because each set in a cache has di�erent as-

sociativity requirements and on a higher level, di�er-

ent programs also have this property, we propose to

use smaller sizes in higher associativity ways. For in-

stance, a 64K 4-way set-associative cache can have 4

ways of size 1024, 512, 256 and 256 lines respectively.

We show that this organization has better miss rate

than the equal-capacity cache of either direct-mapped

or conventional 2-way or 4-way set-associativity. Fur-

thermore, since smaller ways are faster, we show how a

hit on those ways can immediately signal other ways to

stop the lookup. This e�ect, similar to \Short Circuit

Evaluation" of boolean expressions, can reduce the av-

erage power consumed in the slower and larger ways. By

applying this technique, the asymmetric cache described

above achieves 17% cache energy savings compared to a

4-way conventional cache of the same size.

The structure of the paper is as follows. In Section

2, we explain the simulation environment and machine

model used to evaluate our proposed structure. Next in

Section 3, we introduce details about the structure of the

asymmetric set-associative cache and discuss some ad-

vantages of this structure. In Section 4, we demonstrate

our simulation results. Finally, Section 5 concludes the

paper and discusses our plans for future work.

2 Methodology and Modeling

2.1 Simulator

Simulations in this paper are based on the SimpleScalar

framework [3] and CACTI 2 [19], [14]. Our model pro-

cessor has sizing parameters that closely resemble Alpha

21264 [5], but without a clustered organization. The

main processor and memory hierarchy parameters are

shown in Table 1.

2.2 Benchmarks

We evaluate our results using benchmarks from the

SPEC CPU2000 benchmark suite [18]. The benchmarks

are compiled for the Alpha instruction set using the

Compaq Alpha compiler with SPEC peak settings. For

Processor Core

Instruction Window 80-RUU, 40-LSQ

Issue width 4 instructions per cycle

Functional Units 4 IntALU,1 IntMult/Div,

4 FPALU,1 FPMult/Div,

2 MemPorts

Memory Hierarchy

L1 Dcache Size Varied size, 32B blocks, WB

L1 Icache Size 32KB, 1-way, 32B blocks, WB

L2 Uni�ed, 1MB, 8-way LRU,

64B blocks,6-cycle latency, WB

Memory 100 cycles

TLB Size 128-entry, 30-cycle miss penalty

Table 1: Con�guration of Simulated Processor

each program, we follow the recommendations in [16],

but skip a minimum of 1 billion instructions. We then

simulate 500M instructions using the reference input set.

3 Asymmetric Set Associative Cache

3.1 Structure

In an asymmetric set associative cache, as the name

implies, the sets are of di�erent sizes. Figure 4 shows an

asymmetric 4-way set associative cache that is modeled

in our simulations. The size of each of the four ways

is 1024, 512, 256 and 256 entries respectively. We set

the last set to 256 lines (instead of 128) simply because

in this way the asymmetrical cache can be laid out into

roughly twice the space required for its largest way. In

addition this sizing choice allows direct comparison with

conventional caches of equal size.

In conventional cache layouts, caches are broken into

several smaller blocks to balance the wire length of each

direction [19]. Consequently, the large decoder shown

in Figure 1 is also made up of simpler subdecoders. By

carefully choosing way size of powers of two, we can

share these subdecoders among the ways in asymmetric

caches.

Using this design asymmetric caches have the follow-

ing characteristics:

1. Because of their size, smaller ways are faster.

2. Tag comparisons happen in di�erent speeds: hits

are detected faster in smaller ways

3. Smaller ways consume less power

Output dataSelectMux drivers

DATA ARRAYSTAG ARRAYS

D
E

C
O

D
E

R
S

Comparators Disable

Sense AmpsSense Amps

Figure 4: Structure of an asymmetric cache

In the following subsections we describe how we can

take advantage of these characteristics to achieve better

performance with less power.

3.2 \Shorting lookups" in Asymmetric Set Associa-

tive Caches

Similarly to conventional set associative caches, each

way in asymmetric caches should be accessed in parallel

to look for a hit. Unlike conventional caches however,

asymmetric caches have di�erent hit latencies depending

on the size of the way that contains the correct address

and data. In particular, if an address hits on a faster tag

way, it is desirable to signal the slower ways to terminate

their lookup. We refer to this as shorting the lookup.

This behavior, similar to short circuit evaluation, has

important e�ects on cache hit latency and power con-

sumption. For this to work well, the tag comparison

results of smaller ways should be known before sense

amps are initiated in the larger ways. Table 2 show the

latency of these two paths based on Cacti 2.0 [14]. For

an 8KB 1-way cache, the time for the tag comparison

to �nish is 1.05916ns. This is smaller than the latency

from data decoder to before data sense amps for 16KB

and 32KB caches, which is 1.10357ns and 1.41125ns re-

spectively.

Typical sense amp designs incorporate a sense signal

that is pulled down (simultaneously with wordline) to

engage the sense amp, as shown in Figure 5 [10]. Our

approach is to gate the sense signal of the larger ways

using the result (miss) from the smaller ways. In case of

a miss in the smaller ways the sense amps are enabled

in the larger ways. We can cascade this signal gating

from smaller to larger ways but we may delay a hit on

the largest way. Alternatively any hit in any of the

ways disables sensing in all larger ways. We simulate

the former in our evaluations.

Gating the sense signal for a small period does not

a�ect the correctness of the circuits as long as we are

dealing with static RAM cells. [4] In this case, the static

memory cell only enlarges the di�erential voltage in the

bit and bit-bar lines making it easier for the sense amp

to amplify this to full swing down the road. The same

is not true for dynamic RAM cells, however. There

the sense signal has to be asserted simultaneously with

wordline signal since with the passage of time it becomes

harder for the sense amps to detect the di�erential be-

tween bit and bit-bar. Under such conditions, transient

noise can easily introduce errors.

BIT BIT

OUT OUT

SENSE

PREVIOUS MISS

Figure 5: Conventional sense ampli�er augmented with

gated sense signal.

Latency 8KB 1-way 16KB 1-way 32KB 1-way

Path 1(ns) 1.05916 1.27253 1.72843

Path 2(ns) 0.82921 1.10357 1.41125

Table 2: Latencies of Path (1): From tag decoder to

after tag comparator and Path (2): From data decoder

to before data sense amps

3.3 Hit Latency

When a cache access hits on the faster way, data can be

immediately sent back to the processor. In this case the

processor does not need to wait for the results of slower

ways, so the hit latency is the latency of the faster way.

On the other hand, if an access misses on the faster

way, the other ways have to be checked for a hit. In this

situation, the hit latency is the latency of the slower

ways. Therefore, the average hit latency of an asym-

metric set associative cache is p(hit on faster way) *

smaller latency + p(hit on slower way) * larger latency.

In current general purpose processors, an access to

L1 caches typically takes more than 1 cycle to com-

plete [5]. Instead of waiting the whole access latency

for the hit/miss results, some processors speculatively

issue load-dependent instructions based on prediction of

the load hit/miss [9]. Like other speculation techniques,

this mechanism su�ers a penalty when such a prediction

turns out to be wrong. In an asymmetric cache, we are

not predicting a way; rather, since the faster ways have

a smaller latency, we learn their hit/miss results sooner.

Thus, their result can be returned earlier to the proces-

sor. This mechanism is especially desirable if the faster

ways can be accessed in one machine cycle.

Based on the results of the previous section a hit in

fast way can switch o� the sense amps of the slower

ways. We assume this capability as shown in Figure 4.

Thus hit latency is determined by the slowest way that

produces a hit, plus overhead to route the data after the

hit is detected. Based on our simulation parameters and

latency data from Cacti 2.0, we assume our asymmetric

cache has a 2 cycle latency for the 1024-line and 512-line

ways but only 1 cycle for the two 256-line ways.

3.4 Replacement Policy

To achieve smaller average hit latency, it is desirable for

most of the cache accesses to hit in the smaller, faster

ways of the cache. On the other hand, half of the cached

data in our asymmetric cache is stored in the largest,

slowest way. As a result, positioning frequently-used

data in the smallest cache way is important. Replace-

ment strategies in an asymmetric cache can a�ect both

miss rate and power consumption depending on where

heavily accessed data are stored in the cache. One could

devise schemes in which the most heavily accessed data

are pushed in the smallest ways. However, data move-

ment within the cache would be a signi�cant source of

power consumption in this case. In this paper we exam-

ine asymmetrical caches with simple LRU replacement

policies without data movement.

An LRU replacement strategy is necessary to main-

tain low miss rates in associative caches, especially when

power is a major concern and we want to minimize ac-

cesses to the lower parts of the memory hierarchy. LRU

replacement is slightly more complex than in conven-

tional caches. We assume here an LRU implementation

with N modulo-N counters per set, where N is the as-

sociativity. The counters are updated so as to preserve

a total order within the set, the largest value indicating

the LRU line in the set. Figure 6 shows the LRU scheme

of our asymmetric cache. In the asymmetric cache, for

the purpose of LRU replacement, we consider that the

number of sets is equal to the number of lines in the

smallest way. Each set however, comprises of more lines

than the associativity of the cache. Speci�cally each

set contains all the alternative lines that map to the

same line in the smallest way. Thus, the LRU array has

only as many entries as the size of the smallest way but

each entry contains more counters for the larger ways.

In our example design (1024,512,256,256) there are just

256 LRU entries corresponding to the 256 lines of the

smallest ways. Each entry contains 4 LRU counters for

the largest way (1024 lines), 2 counters for the second

largest (512 lines), and 1 counter for each of the smallest

ways (256 lines). When new data are brought into the

cache a set of lines is selected according to the address

of the new data. This address maps onto a single line in

each of the 4 ways specifying a unique path in the map-

ping tree (see �gure 6). Only the LRU counters that

correspond to the speci�c mapping path are considered

for the replacement decision. The evicted line is the

one with the largest value among the counters selected.

However, the LRU entry is updated with any access that

corresponds to the mapping tree, and therefore behaves

as if it was not 4-way but 8-way set associative. In this

paper we examine this LRU replacement scheme but we

also use a simpler random replacement algorithm (where

we replace a random line from the corresponding set).

We believe that pseudo-LRU mechanisms are also pos-

sible but we have not examined them as of yet.

LRU counter ARRAY

LRU counters corresponding to the mapping tree

Figure 6: An LRU replacement policy for asymmetric

cache

3.5 Power Consumption

The potential hit latency bene�ts can lead to improve-

ments in a program's overall energy consumption and

energy-delay product since they may reduce the pro-

gram execution time. Moreover, our scheme for shorting

cache lookups can be e�ective in reducing cache energy

per hit, when hits occur in the smaller cache ways. As

was explained above, if an access hits on a smaller way,

the larger ways can be prevented from continuing the

lookup into the sense ampli�ers. Thus, the energy con-

sumed on sense amps can be saved. In current caches,

sense amps for data array account for a large portion

of the total cache power consumption. Figure 7 shows

the percentage of cache energy per access attributed to

data sense amps for various caches with 32Byte line size

in 0.25um technology. The power numbers are from the

Cacti 2.0 tool [14]. Across the di�erent cache con�gura-

tions, about half of the energy per access is consumed on

the data sense amps. Thus, early hits on faster ways are

much more power-e�ective than other hits. As shown in

Section 4, this signi�cantly reduces the total power con-

sumption of asymmetric caches.

0

10

20

30

40

50

60

8KB/1way 16KB/1way 32KB/1way 16KB/2way 32KB/2way 64KB/2way 32KB/4way 64KB/4way 128KB/4way

d
at

a
se

n
se

am
p

en
er

g
y

as
p

er
ce

n
ta

g
e

o
f

to
ta

le
n

er
g

y

Figure 7: The ratio of data sense amp energy per access

for various caches

4 Results

In this section, we will examine simulation results for

asymmetric caches and some conventional caches. All

caches here have size of 64KB and block size of 32B. The

asymmetric cache has 1024, 512, 256 and 256 entries for

its 4 ways respectively as described previously. We run

the whole SPEC2000 benchmark suite and report their

geometric means. Both random and LRU replacement

policies are considered here.

4.1 Accesses to Each Way

Figure 8 compares the normalized number of accesses

to each way for the asymmetric cache and the 4-way

conventional cache.

4.1.1 Random Replacement Policy

With random replacement policy, accesses to each way

in a conventional cache are about the same due to their

identical size. However, for asymmetric caches, accesses

to each way are di�erent. It is interesting to note that

the accesses to a way are roughly proportional to the

square root of the way size. Particularly, the 256-entry

way gets about half as many accesses as the 1024-entry

way and the 512-entry way gets about 0.7 times as

many accesses. We have observed this behavior for all

SPEC2000 benchmarks. This means that smaller ways

serve more accesses than what their size would indicate.

4.1.2 LRU Replacement Policy

Using LRU replacement policy, we still observed sim-

ilar accesses frequencies to each way in conventional

caches. For asymmetric caches, accesses are roughly

proportional to the size of each way. Speci�cally, in

the asymmetric cache we simulated, the accesses to each

way roughly follow a 4:2:1:1 ratio.

0.26
0.27

0.24

0.18

0.25

0.14

0.18

0.22

0.13

0.25

0.38

0.50

0.26
0.25 0.25 0.25

0.0

0.1

0.2

0.3

0.4

0.5

0.6

orig_4way_rand asym_4way_rand orig_4way_LRU asym_4way_LRU

n
o

rm
al

iz
ed

n
u

m
b

er
o

f
ac

ce
ss

way_0 way_1 way_2 way_3

Figure 8: Normalized number of access to each way

in asymmetric vs. conventional 4-way caches for

SPEC2000

4.2 Miss Rate

Figure 9 compares the miss rate of the asymmetric 4-way

set associative cache to conventional 1-way, 2-way and

4-way set associative caches of the same total capacity.

As we expected, the 4-way caches clearly outperform the

1-way and 2-way caches. Within the 4-way caches (con-

ventional and asymmetric), the miss rates are very close

but the asymmetric has about a 3% miss rate advantage

over the conventional cache for random replacement and

a 4% advantage for LRU replacement.

0.0322

0.0205

0.0177 0.0171
0.0162 0.0155

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.04

orig_1way orig_2way orig_4way_rand asym_4way_rand orig_4way_LRU asym_4way_LRU

m
is

s
ra

te

Figure 9: Miss rate of asymmetric vs. conventional 4-

way caches for SPEC2000

4.3 Performance

In asymmetric caches, hits on smaller ways have lower

latencies than larger ways. However, the impact of this

e�ect on performance is not signi�cant due to two rea-

sons: the aggressive out-of-order execution and the fully

pipelined data cache access. In [5], it has been estimated

that adding cache latency by 1 cycle only costs about 4%

in overall performance. We expect the e�ect in asym-

metric caches is even smaller since accesses hit in the

smaller ways only one third of the time. Our simula-

tion results show no noticeable di�erence for FP bench-

marks. For integer benchmarks, we observe a 1% im-

provement in performance for asymmetric caches com-

pared to conventional caches for both random and LRU

replacement policies. Figure 10 depicts the average IPC

for SPEC2000 with di�erent 4 way 64KB caches. Fi-

nally, we note that in some designs, asymmetric caches

may be promising as a way to maintain shorter pipeline

depths even as clock cycle times decrease.

4.4 Power Consumption

This section compares the power consumption of our

asymmetric caches with the same-sized conventional 4-

way cache. Since both caches are 4-way set associative,

we assume the energy consumed by the mux drivers and

1.5825
1.5861

1.5884
1.5907

1.50

1.52

1.54

1.56

1.58

1.60

orig_4way_rand asym_4way_rand orig_4way_LRU asym_4way_LRU

IP
C

Figure 10: IPC of asymmetric vs. conventional 4-way

caches for SPEC2000

the output drivers (see Figure 1 and Figure 4, these

drivers account for 1% - 2% energy in a 4-way cache)

are similar; we exclude them from our comparison. To

calculate access energy for each way, we utilized Cacti

2.0 [14] assuming a 0.25um technology.

Way 0 Way 1 Way 2 Way 3

1024 512 256 256

entries entries entries entries

Access frequency(%) 0.3712 0.2588 0.1807 0.1760

random replacement

Access frequency(%) 0.5015 0.2368 0.1360 0.1257

LRU replacement

Access energy (nJ) 3.9799 2.7955 1.9885 1.9885

Data sense amp

energy (nJ) 1.4863 1.2132 0.9756 0.9756

Table 3: Access frequency and per-access energy for

each way

Table 3 shows the resulting access energy and fre-

quency for each way. We estimate the energy per ac-

cess of a conventional 4-way cache (excluding the mux

drivers and output drives) as sum of the access energy

to each way. For the asymmetric cache, by applying

lookup-shorting, we avoid the data sense amp energy

in the larger cache ways if we determine in time that

we have a hit in one of the smaller ways. Considering

this e�ect, we estimate the energy saving of each way

as p(lookup shorted) * data sense amp energy. Table 4

shows the average access energy of the conventional and

asymmetric 4-way 64KB caches. The data clearly il-

lustrate the e�ectiveness of lookup-shorting. Compared

to the conventional cache, an asymmetric cache achieves

17% energy savings with random replacement policy and

13% with LRU replacement policy.

asym asym
conventional random LRU

average access 11.1820 9.3480 9.6939
energy (nJ)
normalized
access energy 1 0.83 0.87

Table 4: Energy of asymmetric and conventional 4-way
64KB caches

5 Conclusions

Many programs can tolerate low associativity for most

of their data accesses, but need higher associativity for

some small part of their dataset. This is evident in

small helper caches such as victim bu�ers which work

well in concert with direct-mapped caches. In this pa-

per we take a di�erent approach to exploit the same

phenomenon: we modify set-associative caches so that

di�erent ways have di�erent sizes. We call the result-

ing architectures asymmetric set-associative caches. In

asymmetric caches, sizes of di�erent ways are di�erent

powers-of-2 and allow for a \tree-structured" cache. Ex-

tra associativity is shared by having two cache blocks

from the large ways align with individual cache blocks

in the smaller ways. An LRU replacement policy can

be implemented by treating all the items in a \mapping

tree" as a single set with higher associativity. Replace-

ment decisions take into account only the items that

correspond to a single path within the mapping tree.

Because of their di�erent size, cache ways in asym-

metric caches have di�erent access times and power

characteristics. In particular, smaller ways can be ac-

cessed faster and at the same time expend less energy.

We can further exploit a hit on a fast cache way by

\shorting" the lookup at the slower cache ways.

Thus, asymmetric caches have the bene�t of lower

power consumption in the smaller ways while main-

taining the same miss rate as conventional caches. In

our experiments we actually see a 3% reduction in the

SPEC2000 average miss rate. By immediately terminate

lookups in larger ways when detecting a hit on smaller

ways, the average cache access energy is reduced by 17%

for SPEC2000.

Asymmetric cache architectures do not require any

elaborate new hardware but rather they are simple vari-

ations in the geometry of conventional set-associative

caches. This minimal-cost approach results in power

savings and with further optimizations could even pro-

vide higher performance at the same time.

References

[1] A. Agarwal and S. Pudar. Column-associative caches:
A technique for reducing the miss rate of direct-mapped
caches. In Proc. ISCA-20, 1992.

[2] F. Bodin and A. Seznec. Skewed associativity enhances
performance predictability. In Proc. ISCA-22, June
1995.

[3] D. Burger, T. M. Austin, and S. Bennett. Evaluating
future microprocessors: the SimpleScalar tool set. Tech.
Report TR-1308, Univ. of Wisconsin-Madison Computer
Sciences Dept., July 1996.

[4] P. W. Diodato. Personal communication, 2001.

[5] L. Gwennap. Digital 21264 sets new standard. Micro-
processor Report, pages 11{16, Oct. 28, 1996.

[6] M. G. Johnson Kin and W. H. Mangione-Smith. The
�lter cache: An energy eÆcient memory structure. In
Proc. Micro-30, Nov. 1997.

[7] N. Jouppi. Improving Direct-Mapped Cache Perfor-
mance by the Addition of a Small Fully-Associative
Cache and Prefetch Bu�ers. In Proc. ISCA-17, May
1990.

[8] T. Juan, T. Lang, and J. Navarro. The di�erence-bit
cache. In Proc. of the 23rd Int'l Symp. on Computer
Architecture, June 1996.

[9] R. E. Kessler. The Alpha 21264 microprocessor. IEEE
Micro, 19(2):24{36, 1999.

[10] Luis Villa, Michael Zhang and Krste Asanovic. Dy-
namic Zero Compression for Cache Energy Reduction.
In Proc. Micro-33, Dec. 2000.

[11] V. Milutinovic et al. The Split Temporal/Spacial Cache:
Initial Performance Analysis. In SCIzzL-5, 1996.

[12] J. Peir, Y. Lee, and W. Hsu. Capturing Dynamic Mem-
ory Reference Behavior with Adaptive Cache Topology.
In Proc. ASPLOS-VIII, Nov. 1998.

[13] M. Prvulovic et al. The Split Spatial/Non-Spacial
Cache: A performance and Complexity Analysis. In
IEEE TCCA Newsletter, 1999.

[14] G. Reinman and N. Jouppi. Extensions to cacti. Un-
published document, 1999.

[15] J. Sahuquillo and A. Pont. Splitting the Data Cache: A
Survey. In IEEE Concurrency, 2000.

[16] S. Sair and M. Charney. Memory behavior of the
SPEC2000 benchmark suite. Technical report, IBM,
2000.

[17] A. Seznec. DASC cache. In Proc. HPCA-1, Jan. 1995.

[18] The Standard Performance Evaluation Corporation.
WWW Site. http://www.spec.org, Dec. 2000.

[19] S. Wilton and N. Jouppi. An Enhanced Access and Cy-
cle Time Model for On-chip Caches. In WRL Research
Report 93/5, DEC Western Research Laboratory, 1994.

