
Low Power Microarchitecture with Instruction Reuse

Frederico Pratas
INESC-ID/IST

Rua Alves Redol, 9, 1000-029
Lisboa, Portugal

fcpp@inesc-id.pt

Georgi Gaydadjiev
CE Lab/TU Delft

Mekelweg 4, 2628 CD
Delft, The Netherlands

georgi@ce.et.tudelft.nl

Mladen Berekovic
TU Braunschweig

Braunschweig, Germany
berekovic@ida.ing.tu-

bs.de
Leonel Sousa

INESC-ID/IST
Rua Alves Redol, 9, 1000-029

Lisboa, Portugal
las@inesc-id.pt

Stefanos Kaxiras
University of Patras

Patras, Greece
kaxiras@ee.upatras.gr

ABSTRACT
Power consumption has become a very important metric and
challenging research topic in the design of microprocessors in
the recent years. The goal of this work is to improve power
efficiency of superscalar processors through instruction reuse
at the execution stage. This paper proposes a new method
for reusing instructions when they compose small loops: the
loop’s instructions are first buffered in the Reorder Buffer
and reused afterwards without the need for dynamically un-
rolling the loop, as commonly implemented by the tradi-
tional instruction reusing techniques. The proposed method
is implemented with the introduction of two new auxiliary
hardware structures in a typical superscalar microarchitec-
ture: a Finite State Machine (FSM), used to detect the
reusable loops; and a Log used to store the renaming data
for each instruction when the loop is “unrolled”. In order to
evaluate the proposed method we modified the sim-outorder
tool from Simplescalar v3.0 for the PISA, and Wattch v1.02
Power Performance simulators. Several different configura-
tions and benchmarks have been used during the simula-
tions. The obtained results show that by implementing this
new method in a superscalar microarchitecture, the power
efficiency can be improved without significantly affecting
neither the performance nor the cost.

Categories and Subject Descriptors
C.1.1 [Processor Architectures]: Single Data Stream Ar-
chitectures—RISC/CISC, VLIW architectures

General Terms
Design, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’08, May 5–7, 2008, Ischia, Italy.
Copyright 2008 ACM 978-1-60558-077-7/08/05 ...$5.00.

Keywords
Power Reduction, Superscalar Processor, Loop Reusing Tech-
nique, Reorder Buffer Optimization.

1. INTRODUCTION
Three decades of history of microprocessors report truly

remarkable technological advances in the computer indus-
try. This evolution closely followed the well-known Gordon
Moore Law [8]. Aiming ever-faster microprocessors, sev-
eral strategies that focus in exploiting Instruction-Level Par-
alelism (ILP) have been adopted, namely: deeper pipelining,
multiple execution units, wider fetching mechanisms and
speculative execution have been used in the microprocessors
design [4]. Today’s superscalar processor microarchitectures
prove the effort that has been done to exploit ILP. Due to
this evolution, power consumption has also become one of
the most important parameters in the design of such com-
plex systems [13].

Nowadays, instruction reuse (IR) techniques are used to
improve the power efficiency and ILP in superscalar microar-
chitectures. Reuse methods have been developed at differ-
ent stages: at the fetch/decode stages, for instance through
trace caches [10] and dynamic instruction reuse [14]; and
at the execution stage, using mechanisms such as the issue
queue buffering [6], the trace reuse [18] and the execution
cache [16]. All of these methods reuse instructions that have
been previously fetched from the instruction cache and that
are still available in the processors core, in order to pre-
vent the fetch and/or the passage of instructions through
processing stages; for instance by reusing instructions at the
execution stage, the front-end of the processor can be gated-
off. Therefore, such methods can improve power efficiency
by exploiting repeated operations during the execution of
programs, like the frequent existence of loops in real pro-
grams.

This paper proposes an enhanced microarchitecture which
implements a new IR method at the execution stage to
reduce the power consumption in a superscalar processor.
Besides reducing the number of accesses to the memory,
the proposed method also decreases the power consump-
tion by reusing the instructions directly from the reorder
buffer (ROB) and thus avoiding the flow of redundant data
in the ROB by preventing explicit unrolling of simple dy-
namic loops with a single control path. To implement the

Table 1: Summary of IR methods characteristics.

Method
Characteristics

Register Data Data Look-up Explicit loop Typical
renaming origin structures schemes unrolling size (kbits)

Execution Cache bypassed EC any trace X X 128
Trace Reuse X ROB basic blocks X X 1.5
Issue Queue X IQ loops no X 2

CLU X ROB loops no no 1.5

proposed IR method, two new hardware structures have to
be introduced: a controller, to detect the reusable instruc-
tions, and a small buffer, to store the renaming data gener-
ated in the Register Alias Table (RAT). Simulation results
reveal that the power efficiency can be improved up to 10%.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews previously proposed IR techniques. Section 3
analyzes the opportunities and challenges of reusing the in-
structions from the ROB and introduces the proposed method.
Section 4 presents the implementation details of the pro-
posed method in the microarchitecture, including the new
hardware structures that are required. Finally, the perfor-
mance evaluation results are presented in section 5 and sec-
tion 6 concludes this paper.

2. ANALYSIS OF KNOWN INSTRUCTION
REUSE METHODS

Three main techniques have been proposed to reuse in-
structions in superscalar microarchitectures at the execution
stage: i) Execution Cache; ii) Trace Cache; and iii) Issue
Queue buffering.

2.1 Main characteristics of each IR method
The method proposed by Talpes et al. [15] consists on in-

serting a trace-cache-like mechanism deeply in the pipeline
of the processor to reduce the instruction processing path,
and thus improving the performance. Using this trace-cache,
after the Issue stage - designated by Execution Cache (EC) -
the instructions already fetched, decoded, and renamed can
be stored in dynamic order in the cache structure and reused
directly as a consequence of a hit. This mechanism compre-
hends mainly two phases: i) a trace is built and stored in
the execution cache in issue order, while instructions are
executed from the Issue stage; ii) a search is performed in
order to find a trace that starts at the same point as the
actual execution point; in the case of a hit, the instructions
are executed directly from the execution cache sequentially.

The method proposed by Yang et al. [18] reuses the in-
structions directly from the reorder buffer (ROB). Since the
required information, that is produced by the fetch and de-
code stages and is associated to the in-flight instructions,
is stored in the ROB, we can reuse it whenever a reusable
instruction is identified, by directly forwarding it from the
ROB to the renaming stage. The reused instruction is then
normally renamed, reinserted in the ROB, executed, and
committed following a shorter instruction processing path.
Since the ROB behaves like a cache, a look-up step is needed
to find reusable instructions. Instructions under fetch and
in-flight instructions are ordered as traces of basic blocks
and each basic block is stored in the ROB in program order.

Therefore, if a match is found for the starting instruction of
a basic block, then all instructions until the next basic block
will also be reused. A Reuse Identification Unit (RIU) is
used in order to track the content of the ROB at the block
level. The RIU records the starting Program Counter (PC),
the corresponding ROB entry index and the size of the re-
spective block traces.

Finally, the Issue Queue method [6] reuses the instruc-
tions directly from the Issue Queue (IQ) creating a new
instruction processing path. The proposed issue queue de-
sign has a mechanism to dynamically detect and identify
reusable instructions belonging only to tight loops. When
a tight loop is detected, its instructions are buffered from
the Issue Queue instead of being fetched from the mem-
ory. This method is composed by the following four main
components: the loop detector, that checks for conditional
branches and jump instructions (backward branch/jump) in
a loop and if the loop fits in the Issue Queue; the buffering
mechanism, that keeps the instructions in the queue even
after being dispatched to the functional units; the schedul-
ing mechanism, which controls the keeping/removing of the
instructions in the queue; finally, the issue queue can change
back to the non-reusing state when an ongoing buffering is
revoked and/or a misprediction occurs. The implementa-
tion of this method is supported by a dedicated Finite State
Machine (FSM) that controls the state of the IQ, and also
by using additional information stored in the IQ.

Table 1 summarizes the main characteristics of the meth-
ods previously described and the one proposed herein, which
will be discussed in the next section, namely: the hardware
structures used for reuse in each method and the kind of
data structures detected and reused.

2.2 Comparative Analysis
From the three approaches referred above, only the method

proposed by Talpes et al. (see section 2.1), based on the
Execution Cache, is able to reuse the register renaming in-
formation. Besides, when a trace is built in the Execution
Cache the instructions lose their original logical order and
can only be retrieved on a sequential basis. Therefore, with
each change of trace the processor must perform a look-up
step in the Execution Cache to either find a new trace or
retrieve to an in-order execution, leading to some breaks in
the potential ILP.

The Trace Reuse method based on the information in the
ROB has some drawbacks, namely: i) when there is a switch
to the conventional path, an additional penalty cycle is spent
in searching the RIU in order to ensure that no match exists
for the given predicted fetch address; ii) for a loop with N
active iterations and unrolled in the ROB, the RIU has at
least N entries occupied for each repeated basic block (due

Figure 1: Loop unrolling example; PRi - Physical Register i.

to all branch instructions being inserted in the RIU entries);
iii) the time to reuse a block may be to short, because it
can only be reused until the first instruction in the block is
committed. A possible solution for the last handicap is to
increase the ROB size; it increases the probability for the
ROB to contain multiple copies of the same block. Con-
sequently, the probability for that block to be captured is
also higher. Nevertheless by increasing the ROB size we also
increase the power consumption.

Contrasting with the previous methods, the Issue Queue
method only reuses specific types of code structures (simple
loops with a single control path), and not generic traces. The
hardware overhead is very low, so the power consumption in
the additional structures is also low regarding to the ob-
tained power reduction, for example, for regular processing.
Nevertheless, breakdowns in the performance can occur dur-
ing the recovery procedures when switching between states.
As an example, this situation can occur whenever a program
has a lot of potential loops but with a small number of it-
erations, because the system has to switch a lot of times
between different states.

The method proposed in this paper, and also presented in
Table 1, is designated as Constrained Loop Unrolling (CLU).
Although it gathers some of the characteristics from the
previously presented methods, it mainly reuses instructions
from the ROB as in [18] and exploits the fact that some parts
of a program consist of repeated traces of code with a single
control path (tight loops), by performing loop detection as
in [6]. Moreover, it has the particular characteristic of per-
forming dynamic scheduling with implicit loop unrolling, as
it will be explained further in the next section.

3. PROPOSED INSTRUCTION REUSE
METHOD

Loops in programs provide some a priori information,
namely the fact that a set of instructions has a high prob-
ability of being executed several times. When a program
loop has high iterations count, the power consumption in
the ROB significantly rises, due to redundant data being
stored in the ROB during the explicit loop unrolling (high
number of accesses). Furthermore, the ROB usually has to
be a large structure with multiple Input/Output (I/O) ports.

In order to simplify the design of our proposal we focus
this work on simple loops with a single control path, as the
example provided in Figure 1. The repetition of the instruc-
tions that constitute each loop iteration can be exploited by

reusing the instructions while they are present in the pro-
cessor core. Implementing such idea requires that informa-
tion about loop instructions is kept in the microarchitecture,
for example by using additional hardware structures. This
would be a straight approach when the reuse of instructions
is carried out at the fetch stage. However, instruction reuse
in a deeper level of the pipeline, such as the execution stage,
would allow to gate-off the complete front-end of the pro-
cessor, thus potentially saving more power. Moreover, if the
reusable information is kept in small hardware structures,
there is also the possibility to improve ILP by using wider
and faster buses during the reuse phase.

Based on this analysis, a new method to perform IR at
the execution stage of a superscalar processor is proposed:
the CLU. The main idea of this method is to implement
IR by providing instructions from the ROB when a small
sized loop is detected. The proposed CLU method uses the
information in the ROB in a different way: when process-
ing a loop there is no need to repeat the same information
for each iteration, as actually happens when the loop is un-
rolled in the ROB. Instead, only the information related to
the renaming of the destination registers is stored. Such
information is important to free the allocated physical reg-
isters at the commit stage or when a misprediction occurs,
because in many cases the physical register file (PRF) is sep-
arated from the ROB [13]. Thus, a new structure is needed
to store the information related to the register renaming, for
supporting implicit unrolling. Mainly, this structure is very
small and its power consumption is very low compared with
the one of the ROB. The proposed structure stores regis-
ter renaming information in each iteration of the loop, and
an additional counter is needed for counting the executed in-
structions in each iteration of the loop. When an instruction
of a certain iteration is finished, the counter is incremented
and only when an iteration is finished the instructions can
be committed since commit has to be kept in order. Dur-
ing the instruction reuse, static branch prediction is used to
simplify the recovery mechanism.

Three different phases can be identified for the detection
of instructions to reuse and to control the operation of the
proposed CLU method: i) instructions are fetched until a
reusable loop is found; ii) the loop is buffered and fixed in
the ROB; iii) the instructions are directly provided by the
ROB. It is worth noting that the instructions of the loop
can be directly reused from the ROB, since they are stored
in program order.

As in the previous methods, in the CLU method the front-

end is decoupled from the usual instruction path when the
alternative path, shorter than the main one, starts provid-
ing the reusable instructions. In all the methods this is the
main source of power savings, because the fetch mechanism
is gated-off. Table 1 provides an overview of the main char-
acteristics of the CLU method and compares them with the
ones of the remaining methods. In the CLU, although the
rename stage is not bypassed, all the unnecessary look-up
schemes used in previous works are avoided. Moreover, in
contrast with the IQ method described in section 2, only one
iteration of the loop is buffered at a time. During the scan
phase, a potential loop is only considered when a group of
sequential instructions between two backward branches with
the same address is detected.

The ROB is a structure that consumes a relevant amount
of power [7] because, as stated before, it is a large and com-
plex structure accessed simultaneously in several stages of
the processor, i.e., it needs several I/O ports and it is used
for each and avery instruction. If the loop instructions are
not inserted in the ROB during the reuse phase, i.e., the
loop is not unrolled inside the ROB, the number of accesses
to the ROB is reduced and consequently the overall power
consumption. Moreover, to implement this process we do
not need to store the redundant information mentioned be-
fore, but only the renamed destination register in a small
structure, as will be explained in the following section.

4. INTEGRATION OF THE PROPOSED
CLU METHOD IN THE
MICROARCHITECTURE

4.1 Microarchitecture
The microarchitecture has to be modified, in order to sup-

port the proposed CLU instruction reuse method. The fol-
lowing mechanisms have to be implemented in the super-
scalar microarchitecture: i) loop detection, to detect a loop
fetched from the memory and activate the reuse method; ii)
loop buffering, to buffer the loop in the ROB before it can be
reused; iii) loop reuse, which should enable the Log struc-
ture (docked to the ROB) to start storing the information
needed and to unroll the loop.

Therefore, two structures are introduced in the typical
superscalar microarchitecture to support these mechanisms:
the Log and the Small Loop Finder (SLF), as shown in the
block-diagram presented in Figure 2. The SLF implements
an FSM that controls the loop detection, the loop buffer-
ing and the loop reuse. The Log structure is a buffer where
the instruction’s renaming information is stored during loop
reuse, i.e., it keeps track of the physical registers allocated
in each loop iteration. In this case, the registers used in a
specific iteration can only be freed and the corresponding
instructions committed if the iteration was correctly exe-
cuted (a misprediction did not occur) and all the previous
iterations were committed.

The recovery misprediction mechanism has to be modi-
fied. In case of a misprediction the reuse mechanism has to
proceed as follows:

• the registers allocated for the instructions after the
mispredicted branch are freed and the respective fields
in the Log are invalidated; when a misprediction occurs
some instructions are still in execution and will arrive

Figure 2: Microarchitecture with the CLU method.

later at the write-back stage. A tag is used to validate
this instructions;

• the valid instructions still inside the Log are executed
and committed normally;

• the FSM controlling the loop detection does not insert
a new loop in the Log, while instructions from a pre-
vious loop are in use to guarantee that the old loop
finishes correctly;

• when a Log reaches the last iteration, the Reused fields
in the ROB are reset and the FSM can introduce a new
loop.

4.2 The Finite State Machine
The identification of small loops is accomplished by a de-

tection mechanism based in a simple FSM with four states
(see Figure 3). Functionally, the four states correspond to
the sequence depicted in Figure 4. In the first phase, it scans
the instructions to find two sequential branch instructions in
the same path with the same PC value. There are two sepa-
rate steps during this phase: in the first step the FSM tries
to find a branch instruction and in the second step it checks
the basic block ahead to find a reusable
loop. Only the loops containing valid instructions, i.e., the
ones that do not contain any jump, call, indirect branch
and/or return instructions, can be reused (example in Fig-
ure 4). If these conditions are met, the possibility of a pseudo
basic-block to be executed several times is high, and there-
fore it can be reused.

Figure 3: Loop detection Finite State Machine.

The loop has to be identified in an in-order processing
phase, which means that it has to be identified before the
dispatch phase or during the commit phase. On the one
hand, the identification in the commit phase guarantees that
the loop was really executed and is not in a mispredicted
path. On the other hand, most of the times the loop would
be identified too late and there is no advantage on reusing
its instructions anymore. Therefore, the detection in this
work is performed in an early phase: after the Instruction
Decoding by the SLF block, as illustrated in Figure 2.

After identifying a loop, it has to be buffered in the ROB
so that it can be reused. Then, the detection mechanism
switches to the second phase. To buffer the instructions,
a new flag bit “Reused” is introduced in the ROB (see Fig-
ure 5). When the instruction has this flag set, the instruction
is no longer directly committed from the ROB. Instead, the
commit stage starts checking the Log. If the instruction path
is changed during the buffering, i.e., the branch followed a
different path, then the mechanism restarts in the first state
and the loop is invalidated.

With one iteration of the loop buffered in the ROB the
detection mechanism switches to the third phase. During
this new state the instructions are picked from the ROB
and the fetch stage is gated-off. The renaming information
of the reused instructions is inserted in the Log, instead of
reinserting these instructions in the ROB.

Figure 4: Loop detection example.

While executing sequential iterations of a small loop, a
speculative approach is followed until a misprediction ap-
pears. When reusing instructions, the dynamic branch pre-
diction is turned off and a static approach is followed instead
of the dynamic one used during the normal execution. This
works well for most of the loops, since the branches usually
tend to maintain the same path of instructions.

When the processor starts reusing instructions a signal is
also sent to the fetch stage. The fetch stage, after receiv-
ing this signal, updates the PC to the alternative branch
path and is turned off. The fetch stage is awaken once more
(gated-on) when the signal is turned off. This can happen
for two different reasons: i) when the loop ends with a mis-
prediction, in this case the fetch stage restarts directly from
the new PC allowing a faster restoration of the system’s
state; ii) due to a misprediction from a previous branch or
other type of fault, in this case a normal restoring procedure
is performed. Both cases imply that the detection mecha-
nism transits again to the first state. If, after a mispredic-
tion, there are still active instructions in the Log structure
waiting for commitment, the detection mechanism is neither
allowed to transit from the first phase nor to buffer a new
loop.

4.3 The Log Structure
During the reuse phase the instructions are not reinserted

in the ROB (saving power). In fact, only the new infor-
mation from the Rename Stage is stored in a smaller Log
structure. The Log structure keeps the physical allocated
registers identification, because this information has to be
used later in the commit stage or in case of a misprediction.

Between two iterations of a small loop it is possible to have
anti-, output and data dependencies that are solved with re-
naming, in-order issuing and in-order commit. When the
loop is unrolled, the instructions pass through the renam-
ing stage, where the operands physical locations are read
from the register alias table (RAT) and a position is allo-
cated to new data. Reusing the instructions does not affect
this procedure, since the information about the renaming
of each instruction is stored in the Log structure. When
executing a loop it is also necessary to guarantee that all
the instructions in each iteration were executed before com-
mitting. This is guaranteed using a counter for each itera-
tion. Each instruction has a tag with size, in bits, equal to
the logarithm of the maximum number of iterations. This
tag is also used for validation when a misprediction occurs
(section 4.1), and at the end of the execution the counter
corresponding to its iteration is incremented. Whenever the
counter reaches the number of instructions in the loop, the
iteration is finished and can be committed. Stores and loads
are executed using a separated queue to allow speculation.

The Log structure can be organized as a matrix, as de-
picted in Figure 6(a), or along only one dimension, as repre-
sented in Figure 6(b). In both cases, the Log is able to store
a maximum number of iterations (“log y max”) for loops
with a maximum number of instructions (“log x max”). If a
loop is detected with more instructions than this limit, then
it is not reused. The fixed sized matrix (structure with two
dimensions) is the straightforward way to implement this
structure. However, if a loop with a small number of in-
structions is reused a lot of space in the structure is wasted.
The 1D approach allows a more flexible and efficient usage
of the structure, because the amount of iterations handled

Figure 5: Fields added to a ROB entry.

by the Log (“log x max”) is modified according to the size
of the loop.

With the 1D structure, the number of handled iterations
(“log y max”) also depends on the number of counters avail-
able to use, since the maximum number of iterations is now
variable. The number of counters is equal to the maximum
number of iterations in a loop and the size of each counter
(in bits) is at least the logarithm (base 2) of the maximum
number of instructions in a loop. If the min loop size (the
minimum number of instructions in a loop) is very small
(less than 4 instructions), the number of counters is huge
and the structure turns out to be inefficient. To use both
characteristics of this unidimensional structure, a suitable
min loop size has to be chosen, and only a discrete number
of sizes considered, up to log x max. If the considered sizes
are powers of two, from the minimal number chosen, larger
counters can be built based on smaller ones, reducing the
cost. For instance, counters of modulo 4 and 16 can be built
with 2 counters of 2 bits, enabling to accommodate 2 itera-
tions for loops with at most 4 instructions and 1 iteration for
loops up to 16 iterations. Therefore, the total cost of these
counters is similar to the cost of the counters used for the

(a)

(b)

Figure 6: The Log structure: (a) 2-D organization;
(b) 1-D organization.

two-dimensional structure. With this assumption the max-
imum number of iterations (mni) in the one dimensional
structure is calculated by:

mni =

—
log x max× log y max

min loop size

�
(1)

4.4 Size Analysis
Although there is no closed form solution for computing

the optimal size of the Log, a reasonable size for the struc-
ture has to be precomputed independently of the applica-
tion. The ideal size of the structure should be such that the
processor never stops due to the lack of space in the Log.
To do so, it has to handle all the instructions executing on-
the-fly, plus the instructions in the reservation stations and
the ones waiting for commitment. This also depends on the
number of physical registers, but we can consider that all
the registers needed are available. With this assumption, it
is easy to compute the worst case for the Log structure size,
when all the instructions can be dispatched except one: the
one in the first iteration of the loop and with the highest-
possible latency. In this case, the first iteration can not be
committed and all the following iterations have to wait in
the Log structure for commitment until this instruction fin-
ishes.

To compute this value, the average latency (w lat) of a
load with a miss in the several levels of memory should be
used. These latencies are dynamic, depending on the pro-
gram that is running. In a worst case scenario the applica-
tion may have inter dependencies between load instructions
in different iterations. In order to obtain a reasonable value
for the Log size, it is used a weighted average between the
latency, in cycles, of a memory access and the higher latency
of any arithmetic operation.

w lat = weightmem × latmem + weightarit × latarit (2)

The obtained ideal size (is), according to the demonstra-
tions provided in [11], is:

is =

„‰
w lat× disp wd

log x max

ı
+ 1

«
× log x max [entries] (3)

The final result obtained should be compared with PRF size
log x max

(PRF represents the Physical Register File), since it reflects
approximately the original number of iterations that can fit
into the ROB. The quasi-ideal size should be approximate
to the original value in order to keep up the performance
due to the loop constraint. The lesser amount of iterations
handled by the structure implies the need to wait more time
before inserting a new one. Moreover, whenever the loop has
too many instructions the time needed until one iteration is
committed is higher, which may reduce the performance. On
the other hand, a huge structure could prevent power sav-
ing. The size of this structure should be carefully selected
according to this trade-off, in order to achieve valuable re-
sults.

Table 2: Simplescalar baseline configuration
Parameters Configuration

BTB 1024 sets, 4 way associativity

Branch Predictor

Meta-table, RAS: 4096, 32 entries
Combined Predictor (bimodal+2-level)

Bimodal: 4096 entries
PAg: l1=1024; l2=1024; 10-bit history

Branch misprediction
2 cycles

penalty
L1 I-cache 32KB, 32B blocks, 1 way assoc., 1 cycle, LRU
L1 D-cache 256KB, 32B blocks, 8 way assoc., 1 cycle, LRU

L2 unified cache 1024KB, 64B blocks, 8 way assoc., 6 cycles, LRU
Memory 97 cycles for first chunk, 1 cycle the rest

TLB
ITLB: 16 sets, 4-way DTLB: 32 sets, 4-way

4KB page size, 30 cycle penalty, LRU
Fetch queue size 8 entries

Fetch/Decode/Issue
4 instructions

and Commit Width
RUU size 128 entries
LSQ size 80 entries

Function Units
4IALU, 1IMULT, 4FPALU, 1FPMULT

Worst case latency: 24 cycles

Figure 7: Ratio between the number of instructions reused and the total number of executed instructions.

5. PERFORMANCE EVALUATION
This section describes the experimental setup used during

the simulations and presents the results obtained for power
and performance.

5.1 Setup
The Simplescalar and Wattch tools have been used in or-

der to evaluate the performance of the proposed CLU IR
method. The SPEC CPU2000 benchmarks [5] were selected
since we are interested in general purpose computing and
also because these benchmarks are developed from actual
real user applications allowing to measure the performance
of the processor.

The Simplescalar v3.0 toolset [2] simulates an architec-
ture closely related with the MIPS (MIPS-IV ISA [12]); it
is a suite of powerful execution-driven computer simulation
tools. In this work we used the sim-outorder tool from Sim-
plescalar v3.0, which is the detailed, out-of-order issue, su-
perscalar processor simulator with support for non-blocking
caches and speculative execution. The Wattch v1.02 [1] soft-
ware tool was also used to implement a power evaluation
methodology within the Simplescalar tool set. It was used
in this work in order to analyze the power dissipation for
all the major units of the processor, namely the ROB and

the Log. The load capacitances considered in the Wattch
are calculated with the assistance of the CACTI tool, ac-
cording to suppositions similar to the ones used by Jouppi
et al. [9, 17].

Since simulating the complete execution of the benchmark
suite is a very time consuming task, the SimPoint tool [3]
was applied to reduce simulation time without introducing
significant errors.

Table 2 presents the configurations used as baseline dur-
ing the simulations. Both the Simplescalar and the Wattch
were modified to include the SLF and the Log structures.
To correctly analyze the effects of the CLU method, several
configurations of the Log structure were considered during
the simulations. These configurations use Log size, closer to
the values obtained from the empirical analysis presented in
section 4.4. In this work we present only the most relevant
results for a Log structure with a size of 16x12 (log x max×
log y max), i.e., a Log with about 1.5kbit. From the per-
formed simulations, we have concluded that this is the most
balanced configuration.

5.2 Obtained Results
The simulation results are normalized with respect to the

baseline configuration described in Table 2 for the super-
scalar microarchitecture. In the first phase, each test was

Figure 8: Performance Related Results. Figure 9: Energy Per Instruction Results.

simulated only once for a Log structure reusing loops with a
maximum of 16 instructions. The ratio of reusable instruc-
tions in each benchmark program, obtained by simulation,
is presented in Figure 7.

From the results presented in Figure 7, in some bench-
marks there is a large potential for instruction reuse; as an
example, the art 110 potentially allows to reuse about 60%
of the instructions. On the other hand, the tests equake,
parser, vortex, vpr, mesa and twolf present lower ratio of
reusable instructions (less than 5%). However, these tests
can be of great importance: they allow to assess the impact
on the processor performance when the proposed technique
can not be used. Based in the simulation time, we use the
tests mesa and twolf to perform this evaluation.

Figure 8 presents the performance results when the pro-
posed CLU technique is used in a Log structure with 1.5kbit.
The presented values include the impact in the overall time
execution (in cycles), in the fraction of IPC and in the
branch misprediction rate. As it can be seen, the increase in
the branch misprediction rate is less than 2%, showing that
the static approach for the branch prediction does not have
a significant impact in the performance. On the other hand,
the IPC slightly increases for all benchmarks, except for gzip,
where it has a significant increase. Finally, we can also ob-
serve that the execution time, in cycles, does not increase
more than 2% and has a reduction of up to 8% for the gzip
simulations. This is an interesting result due to the shorter
ROB-based path delivering the instructions faster into the
execution, and thus increasing the number of instructions
issue in each cycle (IPC gorws more that 20%). Therefore
more ILP is exploited and less cycles are required to execute
a task. Consequently, the performance of the processor is
almost not affected, and sometimes it is even improved.

Power consumption results were obtained with the Wattch
tool, together with the number of accesses reported by the
simplescalar out-of-order simulator. These results are also
used to evaluate the power consumption presented by the
additional Log structure that we have proposed. In this sec-
tion the results are shown in relative percentages. For each
clock cycle in which an architecture module is not accessed,
the Wattch tool considers 0% (ideal) and 10% (non ideal)
of the power consumption for the module. In the later case,
the tool can also provide results when the ROB is considered
to be segmented in 4 parts.

Figure 9 presents the power related results. Such values
include the reduction in the L1 I-cache accesses, the front-
end energy per instruction (EPI) savings and the total EPI
savings. As it can be observed from the figure, in most of
the tests at least 10% of the cache accesses can be redirected
to the ROB, enabling significant energy savings achieved
through gating-off instruction fetch and decode units. The
most significant energy savings in the front-end occur for
the art test. However, the results obtained for the total EPI
show that not only the art but also the gzip provide high
results for the reduction of the power consumption (in both
tests, the saving is more than 8%). As it was expected, tests
with fewer loops, such as mcf, mesa and twolf, present lower
EPI savings.

6. CONCLUSIONS
This work proposes a new constrained loop unrolling (CLU)

method and discusses the functional and structural implica-
tions that arise from its implementation in a superscalar
processor. Two new hardware structures are included in the
baseline superscalar microarchitecture: a controller and a

small Log buffer to store important information when in-
structions are reused.

The simulations performed using the SPEC CPU200 bench-
mark suite show that the instruction reuse CLU method can
reduce the power consumption and improve the efficiency of
superscalar processors. Simulation results reveal that there
is an average improvement in the power efficiency of the pro-
cessor for the considered configuration of more than 6% and
a peak gain of 10% for the gzip log program.

Better results are expected for applications with regular
processing, such as signal processing, data compression, and
multimedia as perceived from the good results obtained with
the benchmarks art, bzip2 and gzip. Moreover, the obtained
results show that the power consumption in the front-end
of the processor is reduced by 15%, in average, when the
CLU method is applied. As a final conclusion, it can be
stated that the design of the Log structure is an important
step when implementing the proposed CLU method, since
its characteristics affect the overall power consumption and
performance of the processor.

7. ACKNOWLEDGMENTS
This work has been supported by the HiPEAC European

Network of Excellence.

8. REFERENCES
[1] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a

framework for architectural-level power analysis and
optimizations. In Proceedings of the 27th Annual
International Symposium on Computer Architecture
(ISCA’00), pages 83–94, June 2000.

[2] D. Burger and T. M. Austin. The simplescalar tool
set, version 2.0. SIGARCH Comput. Archit. News,
25(3):13–25, 1997.

[3] G. Hamerly, E. Perelman, J. Lau, and B. Calder.
Simpoint 3.0: Faster and more flexible program
analysis. The Journal of Instruction-Level Parallelism,
7, Sep 2005.

[4] J. L. Hennessy and D. A. Patterson. Computer
Architecture: a Quantitative Approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
3rd edition, 2003.

[5] J. L. Henning. SPEC CPU2000: Measuring CPU
Performance in the New Millennium. Computer,
33(7):28–35, 2000.

[6] J. S. Hu, N. Vijaykrishnan, S. Kim, M. Kandemir, and
M. J. Irwin. Scheduling reusable instructions for power
reduction. In DATE ’04: Proceedings of the
Conference on Design, Automation and Test in
Europe, page 10148. IEEE Computer Society,
February 2004.

[7] S. Manne, A. Klauser, and D. Grunwald. Pipeline
gating: Speculation control for energy reduction.
ISCA ’98: Proceedings of the 25th Annual
International Symposium on Computer Architecture,
00:132–141, 1998.

[8] G. E. Moore. Cramming more components onto
integrated circuits. Proceedings of the IEEE, 86:82–85,
Jan 1998.

[9] S. Palacharla, N. P. Jouppi, and J. E. Smith.
Complexity-effective superscalar processors. In ISCA
’97: Proceedings of the 24th annual international
symposium on Computer architecture, pages 206–218,
1997.

[10] S. J. Patel, D. H. Friendly, and Y. N. Patt. Critical
issues regarding the trace cache fetch mechanism.
Technical Report CSE-TR-335-97, University of
Michigan, July 1997.

[11] F. Pratas. Low power microarchitecture with
instruction reuse. Technical Report 21, INESC-ID,
September 2007.

[12] C. Price. MIPS IV Instruction Set, revision 3.2. MIPS
Technologies, Inc., Mountain View, CA, September
1995.

[13] J. P. Shen and M. H. Lipasti. Modern Processor
Design: Fundamentals of Superscalar Processors.
McGraw-Hill Companies, Inc., New York, NY, USA,
1st edition, 2005.

[14] A. Sodani and G. S. Sohi. Dynamic instruction reuse.
In Proceedings of the 24th Annual International
Symposium on Computer Architecture (ISCA’97),
pages 194–205, June 1997.

[15] E. Talpes and D. Marculescu. Power reduction
through work reuse. In ISLPED ’01: Proceedings of
the 2001 International Symposium on Low Power
Electronics and Design, pages 340–345, 2001.

[16] E. Talpes and D. Marculescu. Execution cache-based
microarchitecture power-efficient superscalar
processors. IEEE Trans. Very Large Scale Integr.
Syst., 13(1):14–26, 2005.

[17] S. Wilton and N. Jouppi. Cacti: An enhanced cache
access and cycle time model. IEEE Journal of
Solid-State Circuits, 31:677–688, may 1996.

[18] C. Yang and A. Orailoglu. Power-efficient instruction
delivery through trace reuse. In PACT ’06:
Proceedings of the 15th International Conference on
Parallel Architectures and Compilation Techniques,
pages 192–201, Sept. 2006.

