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Abstract

Techniques for analyzing and improving memory referenc-
ing behavior continue to be important for achieving good
overall program performance due to the ever-increasing per-
formance gap between processors and main memory. This
paper offers a fresh perspective on the problem of predicting
and optimizing memory behavior. Namely, we show quanti-
tatively the extent to which detailed timing characteristics of
past memory reference events are strongly predictive of future
program reference behavior. We propose a family of time-
keeping techniques that optimize behavior based on observa-
tions about particular cache time durations, such as the cache
access interval or the cache dead time. Timekeeping tech-
niques can be used to build small, simple, and high-accuracy
(often 90% or more) predictors for identifying conflict misses,
for predicting dead blocks, and even for estimating the time
at which the next reference to a cache frame will occur and
the address that will be accessed. Based on these predic-
tors, we demonstrate two new and complementary time-based
hardware structures: (1) a time-based victim cache that im-
proves performance by only storing conflict miss lines with
likely reuse, and (2) a time-based prefetching technique that
hones in on the right address to prefetch, and the right time to
schedule the prefetch. Our victim cache technique improves
performance over previous proposals by better selections of
what to place in the victim cache. Our prefetching tech-
nique outperforms similar prior hardware prefetching propos-
als, despite being orders of magnitude smaller. Overall, these
techniques improve performance by more than 11% across the
SPEC2000 benchmark suite.

1 Introduction

For several decades now, memory hierarchies have been
a primary determinant of application performance. As the
processor-memory performance gap has widened, increas-
ingly aggressive techniques have been proposed for under-
standing and improving cache memory performance. These
techniques have included prefetching, victim caches, and
more [3, 7, 8, 12, 15, 16, 17, 18]. More recently, the static
and dynamic power dissipation of cache structures has also
been a vexing problem, and has led to another set of tech-
niques for improving cache behavior from the power perspec-
tive [6, 9, 13, 19, 23].

For most of these cache power and performance optimiza-
tions, a key hurdle for their success lies in classifying behavior
such that hardware and software can deduce which optimiza-
tions to apply and when. For example, classification schemes

that identify conflict misses or that predict upcoming reuse
may be useful in determining which items would be best to
store in a victim cache.

Most prior work on caches has focused on time-
independent reference activity. In these approaches, event
ordering and interleaving are of prime importance. In con-
trast, the time durations between events play a lesser role. For
example, Tam et al. propose managing multi-lateral caches
using cache-line access information [20]. They take into ac-
count the number of times a cache line is accessed but not any
timing information about the accesses themselves. Charney
and Reeves were first to propose address correlation in hard-
ware for data prefetching [2]. Likewise, Joseph and Grunwald
propose a Markov-based predictor to guide prefetch, but they
use a time-independent Markov model; it tracks the sequence
of accesses but not the time durations between them [7].

In contrast, this paper shows quantitatively that the timing
characteristics of reference events can be strongly predictive
of program reference behavior. Time-based tracking of mem-
ory references in programs can be a powerful way of under-
standing and improving program memory referencing behav-
ior. Just as one example, tracking the time duration between
when a cached item is last successfully used and when it is
evicted (i.e., the dead time) can be an accurate predictor of
whether the cached data is involved in a mapping conflict for
which a victim cache may be helpful.

Mendelson et al. proposed an analytical model for predict-
ing the fraction of live and dead cache lines [14] of a process,
as a function of the process’ execution time and the behavior
of other processes in a multitasking environment [11]. Wood
et al. introduced one notion of time-based techniques as a
way of improving the accuracy of cache sampling techniques
in simulations [22]. They showed that one can deduce the
miss rates of unprimed references at the beginning of refer-
ence trace samples by considering the proportion of cycles a
cache line spends dead or waiting to be evicted. More re-
cently, work on cache decay is another example of time-based
methods for managing cached data [9]. Here each cache line
has a 2-bit timer associated with it to track recency of accesses
to it. That work used this tracking to propose that cache lines
that have not been recently accessed be turned off, or “de-
cayed”, in order to save leakage energy.

Our work studies the predictive and classificatory role of
timing statistics more broadly. In particular, this paper shows
that time-based techniques are quite effective in deducing as-
pects of cache behavior that have previously been either hard
to discern on-the-fly in a single program run, or hard to dis-
cern at all. For example, identification of conflict misses often
uses multiple simulation runs [5] or elaborate hardware struc-
tures [3]. Our work here shows that conflict misses can be
identified with good accuracy simply based on small cache



line counters.
The paper makes contributions at three levels:

� First, we construct an expanded set of useful metrics
regarding generational behavior in cache lines, and we
provide quantitative characterizations of the SPEC2000
benchmarks for these metrics.

� Second, using these metrics, we introduce a fundamen-
tally different approach for on-the-fly categorization of
application reference patterns. We give reliable predic-
tors of conflict misses, dead blocks and other key aspects
of reference behavior.

� Third, based on our ability to discover these reference
patterns on-the-fly, we propose hardware structures that
exploit this knowledge to improve performance. In par-
ticular, we propose and evaluate mechanisms to man-
age victim caches and prefetching. Our victim cache
technique improves over previous proposals by better
selecting what to place in it. Our hardware prefetch-
ing technique also outperforms prior related proposals
and is orders of magnitude smaller as well. These tech-
niques improve performance by more than 11% across
the SPEC2000 benchmark suite.

More broadly, we expect that these metrics and methods
will offer researchers even more intuition for further hardware
structures in the future.

The remainder of the paper is structured as follows. Sec-
tion 2 presents the experimental methods used in the paper.
Section 3 outlines terminology and gives overview statistics
regarding the generational aspect of cache behavior which is
fundamental to our approach. Then, in Section 4, we present
a hardware-efficient method to improve victim cache perfor-
mance using timekeeping techniques. Section 5 then dis-
cusses an even more aggressive application of timekeeping
techniques: we propose a prefetching system based on (i)
dead block prediction, (ii) reuse analysis, and (iii) reference
timing, all mainly discerned from simple-to-implement time-
keeping metrics. Finally, Section 6 discusses some remaining
details and offers our conclusions.

2 Methodology and Modeling

2.1 Simulator

To evaluate our proposals, we use a modified version of
Simplescalar 3.0 [1] to simulate an aggressive 8-issue out-of-
order processor. The main processor and memory hierarchy
parameters are shown in Table 1. Because contention can have
important influence on performance, we have incorporated a
simulator modification that accurately models contention at
the L1/L2 and memory buses [10]. As in [10], the busses al-
ways give processor memory requests priority over hardware
prefetch requests.

2.2 Benchmarks

We evaluate our results using the SPEC CPU2000 bench-
mark suite [21]. The benchmarks are compiled for the Alpha
instruction set using the Compaq Alpha compiler with SPEC
peak settings, which include aggressive software prefetching.

Processor Core
Clock rate 2GHZ
Instruction Window 128-RUU, 128-LSQ
Issue width 8 instructions per cycle
Functional Units 8 IntALU,3 IntMult/Div,

6 FPALU,2 FPMult/Div,
4 Load/Store Units

Memory Hierarchy
L1 Dcache Size 32KB, 1-way, 32B blocks

64 MSHRs
L1 Icache Size 32KB, 4-way, 32B blocks
L1/L2 bus 32-byte wide, 2GHZ
L2 I/D each 1MB, 4-way LRU,

64B blocks,12-cycle latency
L2/Memory bus 64-byte wide, 400MHZ
Memory Latency 70 cycles

Prefetcher
Prefetch MSHRs 32
Prefetch Request Queue 128 entries

Table 1: Configuration of Simulated Processor

In our simulation, we treat these software prefetches as normal
memory reference instructions. In section 5, we also experi-
ment with ignoring all the software prefetches to evaluate the
effect of software prefetching on our timekeeping prefetching.

For each program, we skip the first 1 billion instructions to
avoid unrepresentative behavior at the beginning of the pro-
gram’s execution. We then simulate 2 billion instructions us-
ing the reference input set. We include some overview statis-
tics here for background. Figure 1 shows how much the per-
formance (IPC) of each benchmark would improve if all con-
flict and capacity misses in L1 data cache could be eliminated.
This is the target we aim for in our memory optimizations.
The programs are sorted from left to right according to the
amount they would speed up if conflict and capacity misses
could be removed. Figure 2 breaks down the misses of these
programs into three stacked bar segments denoting cold, con-
flict and capacity misses. An interesting observation here is
that the programs that exhibit the biggest potential for im-
provement (RHS of Figure 2) also tend to have comparatively
more capacity misses than conflict misses. Thus, we expect
that eliminating capacity misses will result in larger benefit
than eliminating conflict misses. This is confirmed in later
sections. Although we focus mainly on those benchmarks that
benefit the most from the elimination of conflict and capacity
misses, we also present results for other benchmarks for com-
pleteness.
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Figure 1: Potential IPC improvement if all conflict and capacity
misses in L1 data cache could be eliminated for SPEC2000 bench-
marks.
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Figure 2: Breakdown of program L1 data cache misses into three
categories: conflict, cold and capacity.

3 Generational Behavior of Cache Lines:
Metrics and Motivation

The generational behavior of cache lines is a well-
established phenomenon. As illustrated in Figure 3, each gen-
eration is defined as beginning with a cache miss that brings
new data into this level of the memory hierarchy. A cache line
generation ends when data leaves the cache because a miss to
some other data causes its eviction. Each cache line genera-
tion is divided into two parts: the live time of the cache line,
where the line is actively accessed by the processor and the
dead time, awaiting eviction.

Load A

A A A A A B

ReLoad A

live time dead time

access interval

reload interval

B B ...

Evict A

A A AAA

Figure 3: Timeline depicting a generation of the cache line with A
resident, followed by A’s eviction to begin a generation with B resi-
dent. Eventually, A is re-referenced to begin yet another generation.

The live time of a cache line starts with the miss that brings
the data into the cache and ends with the last successful hit be-
fore the item is evicted. The dead time is defined as the time
duration where the cached data will not be used again suc-
cessfully within this generation. That is, the dead time is the
time between the last hit and when the data is actually evicted.
Many times we see only a single miss and then eviction. We
consider these cases to have zero live time; therefore the gen-
eration time equals to the dead time. Such cases are important
for classifying misses, as we will show in later sections.

There are further metrics that also turn out to be of practical
interest. These include the access interval and reload interval.
Access interval refers to the time intervals between successive
accesses to the same cache line within the live time of a gen-
eration. In contrast, reload interval is used to denote the time
duration between the beginnings of two generations that in-
volve the same memory line. The reload interval in one level
of the hierarchy (eg, L1) is actually the access interval in the
next lower level of the hierarchy (eg, L2) assuming the data is
resident there.

We examine four of the metrics illustrated in Figure 3 (live
time, dead time, access interval and reload interval) and give
an initial sense of their distributions and how they compare.

Ultimately, the goal of these data is the following. Imagine
that execution is at some arbitrary point along the timeline de-
picted in Figure 3. We can know something about past history
along that timeline, but we wish to predict what is likely to
happen soon in the future. First, we wish to deduce where we
currently are. That is, are we currently in live time or dead
time? Dead time cannot be perfectly known until it is over,
but if we can predict it accurately, we can build power and
performance optimizations based on this dead block predic-
tion. Second, we wish to deduce what will happen next: a
re-reference of the current cached data? Or a reference to new
data that begins a new generation? Accurately deducing what
will be referenced next and when is a crux issue for building
effective victim caches and prefetchers. This paper demon-
strates quantitatively that our timekeeping techniques allow
effective predictions and optimizations that address both of
these questions.

Overview Distributions: Live Time, Dead Time, Access
Interval and Reload Interval Figure 4 illustrates a distri-
bution for SPEC2000 benchmarks of live times and dead times
within cache generations. Recall that Live time is defined
as the time duration between when a memory line arrives in
cache, and when it experiences its last successful use (last hit)
before it is evicted to end the generation. Dead time is defined
as the time duration between when an item in the cache is last
used successfully as a cache hit, and when it is evicted from
the cache. An effective prefetching technique might be based
on deducing when a line will be dead, and then proactively
prefetching the next line that will map there. We discuss such
strategies in Section 5.

Dead times are in general much longer than average live
times. For example, over all of the SPEC suite, 58% of live
times are 100 cycles or less. In contrast, only 31% of dead
times are less than 100 cycles. This is a useful observation
because it hints that we can succeed in discerning dead versus
live times a priori based on the durations observed.
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Figure 4: Distribution of live times and dead times for all generations
of cache lines in the SPEC2000 simulations.
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Figure 5: Distribution of access intervals and reload intervals for all
generations of cache lines in the SPEC2000 simulations.

Two additional metrics: access interval and reload interval,
also help to classify references. Access interval is the time
duration between successive references (hits) within a cache
live time. In contrast, reload interval is the time between the
beginnings of two successive generations involving the same
memory line. For data resident in L2 cache, a reload interval
in the L1 cache corresponds to the access interval of the same
data in the L2 cache, down one level in the hierarchy. Figure
5 illustrates access interval and reload interval distributions.
Note that reload intervals are plotted with the x-axis 1000X
space cycles rather than 100X as in the access interval graph.
The distributions here are even more distinct. 91% of access
intervals are less than 1000 cycles, while only 24% of reload
intervals are in that range. In addition to the distributions of
absolute values for these metrics, their variability over time is
also of interest. We revisit this issue in Section 5.

dead
time

dead block
prediction

conflict miss
identification

victim cache
management

prefetching

reload
interval

access
interval

live
time

Metrics:

Predictions:

Mechanisms:

address
prediction

Figure 6: Timekeeping metrics, some resulting predictions based on
them, and related hardware mechanisms.

From Statistics to Hardware Figure 6 depicts the stages
one goes through in using timekeeping metrics to build mech-
anisms for improving memory behavior. In the top layer are
basic metrics, all of which appear in Figure 3. They include
reload interval, dead time, access interval, and live time. As
subsequent sections will show, these metrics can be used to

identify predictions about program behavior. These predic-
tions might include identifying conflict misses or deducing
dead cache blocks. Interestingly, sometimes more than one
metric can be used as a predictor of the same behavior. For
example, reload interval, dead time, and live time can each be
turned into a conflict miss predictor (see Section 4), each with
different tradeoffs in terms of predictive accuracy and cover-
age. Finally, these predictions can, in turn, be composed into
mechanisms that actively respond and optimize based on the
prediction. Tracking the timekeeping metrics requires little
hardware; essentially just coarse-grained simple counters that
are ticked periodically (but not necessarily every cycle) from
the global cycle counter provided on most microprocessors.
We discuss mechanisms and their implementations in the sec-
tions that follow.

4 Timekeeping Metrics to Identify and Avoid
Conflict Misses

Canonically, cache misses are classified into 3 categories:
cold miss, conflict miss and capacity miss [4]. Cold misses
occur when a cache line is loaded into the cache the first time.
Conflict misses are those misses which can be eliminated by a
fully-associative cache. Capacity misses are those which will
miss even with a fully-associative cache.

Interpreting Hill’s definitions with generational behavior, a
conflict miss occurs because its last generation was unexpect-
edly interrupted—something that would have not happened
in a fully associative cache. Similarly, a capacity miss oc-
curs because its last generation was ended because of lack
of space—again, something that would not have happened in
a larger cache. In this section we quantitatively correlate the
miss types with timekeeping metrics. When we correlate met-
rics to a miss type we always refer to the timekeeping metrics
of the last generation of the cache line that suffers the miss.
In other words, what happens to the current generation of a
cache line tells us something about its next miss.

4.1 Identifying Conflict Misses

By Reload Interval While Figure 5 showed reload intervals
over all generations, Figure 7 splits the reload interval distri-
bution into two graphs for different miss types. These statis-
tics show vividly different behavior for conflict and capac-
ity misses. In particular, reload intervals for capacity misses
are overwhelmingly in the tail of the distribution. In contrast,
reload intervals for conflict misses tend to be fairly small: an
average of roughly 8000 cycles. The average reload interval
for a capacity miss is one to two orders of magnitude larger
than that for a conflict miss! Large reload intervals for capac-
ity misses make sense: for an access to an item to be classified
a capacity miss, there must be at least 1024 (total number of
blocks in the cache) unique accesses to drive the item out of
a fully-associative cache after its last access. In a processor
that typically issues 1-2 memory accesses per cycle, the time
for 1024 accesses is on the order of a thousand cycles, and
it may take much longer before 1024 unique lines have been
accessed. On the contrary, a conflict miss has no more than
1024 unique cache accesses after their last access; this leads
to their small reload intervals.
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Figure 7: Distribution of reload interval for conflict (Top) and capac-
ity (Bottom) misses
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Figure 8: Accuracy and coverage for conflict miss predictions based
on reload interval. Each data point indicates what the accuracy or
coverage would be for predicting conflict misses to be all instances
where the reload interval is less than the quantity on the x-axis.

Reload intervals make excellent predictors of conflict
misses. Figure 8 shows accuracy and coverage when reload
interval is used as predictor. For each point on the x-axis, one
curve gives the accuracy of predicting that reload intervals less
than that x-axis value denote conflict misses. The other curve
gives the coverage of that predictor: i.e., how often it makes a
prediction.

When conflict misses are defined as small reload inter-
vals (about 1000 cycles or less) prediction accuracy is close
to perfect. Coverage, the percent of conflict misses captured
by the prediction, is low at that point, however, about 40%.
The importance of reload interval, though, shows in the be-
havior of this predictor as we increase the threshold: up to
16K cycles, accuracy is stable and nearly perfect, while cov-
erage increases to about 85%. This is appealing for selecting
an operating point because it means we can walk out along
the accuracy curve to 16K cycles before accuracy sees any
substantive drop. The clear drop there makes that a natural
breakpoint for setting up a conflict predictor based on reload
intervals smaller than 16K.

By Dead Time Figure 9 shows the distribution of dead
time divided by miss types. Again, we see trends similar

to reload interval distribution, though not as clear cut. That
is, dead times are typically small for conflict misses, while
much larger for capacity misses. These observations about
dead times hint at a phenomenon one could exploit. Namely,
one can deduce that an item has been “prematurely” evicted
from the cache due to a conflict miss, if its dead time is quite
short. Where dead times are quite large, it hints at the fact
that the item probably left the cache at the end of its “natural
lifetime”; that is, it was probably evicted as a capacity miss at
the end of its usage.
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Figure 9: Distribution of dead time for conflict (Top) and capacity
(Bottom) misses
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Figure 10: Accuracy and coverage for conflict miss predictions based
on dead time. Each data point indicates what the accuracy or cover-
age would be for predicting conflict misses to be all instances where
the dead time is less than the quantity on the x-axis.

Figure 10 shows accuracy and coverage of a predictor that
predicts an upcoming conflict miss based on the length of the
dead time of the current generation. Namely, for a point on
the x-axis, accuracy and coverage data indicate what the pre-
diction outcome would be if one considered dead times less
than that value as indicators of conflict misses. Coverage is
essentially the fraction of conflict misses for which we make
a prediction. Accuracy is the likelihood that our prediction is
correct, for the instances where we do make a prediction.



As Figure 10 shows, predicting a conflict miss if the dead
time of its last generation is smaller than a given threshold is
very accurate (over 90%) for small thresholds (100 cycles or
less). But coverage is only about 40% (attesting to the fact that
most dead times are large). Increasing the dead-time threshold
degrades accuracy but increases coverage. A likely method
for choosing an appropriate operating point would be to walk
down the accuracy curve (i.e., walk out towards larger dead
times) until just before accuracy values drop to a point of in-
sufficient accuracy. One can then check that the coverage at
this operating point is sufficient for the predictor’s purpose.
In Section 4.2, we describe a hardware mechanism that uses
dead-time predictions of conflict misses to filter victim cache
entries.

By Live Time Live time is also highly biased between con-
flict (very small live times) and capacity misses (larger live
times). A very important special case here is when we have
a live time equal to zero. This special case makes for a sim-
ple and fairly accurate predictor of conflict misses. In fact, a
single (“re-reference”) bit in each L1 cache line is all that is
needed to distinguish between zero and non-zero live times.
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Figure 11: Accuracy and coverage of using “live time = 0” as a pre-
dictor of conflict misses.

Figure 11 shows the accuracy and coverage of such a pre-
diction. Accuracy is very high: for many programs, accuracy
is close to one. The geometric mean for all SPEC2000 is 68%
accuracy, but coverage is low. Coverage varies from bench-
mark to benchmark with a geometric mean of roughly 30%.
In contrast to the previous approaches this prediction has no
knobs to turn to trade accuracy for coverage. Because of the
low coverage and its specialized nature, live-time conflict pre-
diction is likely to be useful in few situations. We include it
here mainly to demonstrate how different metrics can classify
or predict behavior.

Prediction Location Conflict predictors based on dead
times (or live times) rely only on L1-centric information. In
contrast, conflict predictors based on reload intervals would
most likely be implemented by monitoring access intervals in
the L2 cache. As a result, one’s choice of how to predict con-
flict misses might depend on whether the structure using the
predictor is more conveniently implemented near the L1 or L2
cache.

4.2 Utilizing Conflict Miss Identification:
Managing a Victim cache

A victim cache is a small fully-associative cache that re-
duces L1 miss penalties by holding items evicted due to re-
cent conflicts. Victim caches help with conflict misses, and
in the previous subsection we discussed timekeeping metrics
that can be used as reliable indicators of conflict misses, par-
ticularly dead time and reload interval.1 Here, we propose
using these conflict indicators to manage the victim cache.
In particular, we want to avoid entering items into the victim
cache that are unlikely to be reused soon.

Small reload intervals are highly correlated to conflict
misses and they are an effective filter for a victim cache. The
intuition that ties reload intervals to victim caches is the fol-
lowing: Since the size of victim cache is small, a victim block
will stay only for a limited time before it is evicted out of the
victim cache. In terms of generational behavior, this means
that only victim blocks with small reload intervals are likely to
hit in the victim cache. Blocks with large reload intervals will
probably get evicted before their next access so it is waste-
ful to put them into the victim cache. Unfortunately, reload
intervals are only available for counting in L2. This makes
it difficult for their use as a means to manage an L1 victim
cache.

Besides short reload intervals, short dead times are also
very good indicators of conflict misses. Dead times are readily
available in L1 at the point of eviction and as such are a natural
choice for managing a victim cache associated with the L1.
We use a policy in which the victim cache only captures those
evicted blocks that have dead times of less than a threshold
of 1K cycles. Figure 9 shows that these blocks are likely to
result in conflict misses.

The hardware structure of the dead-time victim filter is
shown in Figure 12. A single, coarse-grained counter per
cache line measures dead time. The counter is reset with every
access and advances with global ticks that occur every 512 cy-
cles. Upon a miss the counter contains the time since the last
access, i.e., the dead time. An evicted cache line is allowed
into the victim cache if its counter value is less than or equal
to 1 (giving a range for the dead time from 0 to 1023 cycles).
Our experiments show that for a 32-entry victim cache man-
aged in this way, the traffic into the victim cache is reduced
by 87%. This reduction is achieved without sacrificing per-
formance, as seen in Figure 13.2

Collins et al. [3] suggest filtering the victim cache traffic
by selecting only victims of possible conflict misses. Their
solution requires storing an extra tag for each cache line
(remembering what was there before) to distinguish conflict
misses from capacity misses. Comparing our approach with a
Collins-style filter in Figure 13, we see similar traffic reduc-
tion, but our timekeeping based filter leads to higher IPC for
most of the benchmarks. Note that as in Figure 1, in Figure
13 the potential for speedup increases to the right, but the ra-
tio of conflict misses to total misses increases to the left. In
Figure 13, the programs that experience the largest speedups

1We do not further examine the zero-live-time predictor because of its
relatively low coverage and significant overlap with the technique based on
dead time.

2The traffic reduction by our filter also implies power reduction but we
have not examined this in depth since it is beyond the scope of this paper.



with our timekeeping victim filter are clustered in the mid-
dle of the graph. Programs to the far left have little room
for improvement. Programs to the far right whose misses are
overwhelmingly capacity misses are negatively affected with
an unfiltered victim cache, but they retain their performance
if a conflict filter (either Collins-style or timekeeping) is em-
ployed.

L1 data cache 2-bit
counters

< threshold?

victim cache L2 cache

if dirtyyes no

Figure 12: Implementation of a timekeeping victim cache filter

-2%

-1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

fm
a3

d

eq
ua

ke ga
p

vo
rte

x

m
es

a

eo
n

ap
si

six
tra

ck

ga
lg

el

cr
af

ty

gz
ip

pe
rlb

m
k

wu
pw

ise

bz
ip

2

lu
ca

s

vp
r

gc
c

fa
ce

re
c

pa
rs

er

ap
pl

u

tw
ol

f

m
gr

id ar
t

sw
im

am
m

p

m
cf

IP
C

im
pr

ov
em

en
to

ve
rb

as
ec

as
e(

%
)

victim w/o filter victim w/ collins filter victim w/ decay filter

0.00

0.05

0.10

0.15

0.20

fm
a3

d

eq
u a

ke ga
p

vo
rte

x

m
e s

a

eo
n

ap
si

si x
tra

c k

ga
l ge

l

cr
a f

ty

gz
ip

pe
rl b

m
k

wu
pw

i se

bz
ip 2

l uc
a s vp

r

gc
c

fa
c e

re
c

pa
rs

e r

ap
p lu tw
ol f

m
g r

id ar
t

sw
im

am
m

p

m
c f

[g
e o

m
ea

n]

#e
nt

ry
en

te
re

d/
cy

cle

victim w/o filter victim w/ collins filter victim w/ decay filter

Figure 13: IPC improvement (Top) and fill traffic to victim cache
(Bottom) for timekeeping victim cache filter compared to Collins
filter.

The performance of our timekeeping victim filter indicates
that the parameters (dead-time threshold, cache sizes, etc.) are
well matched. This is not coincidental. What makes our time-
keeping techniques invaluable is that they provide a sound
framework to reason about such parameters rather than to re-
vert to trial-and-error. We will informally “prove” that the
optimal dead-time threshold actually stems from the size of
the victim cache and the reuse characteristics of the program.
It is essentially a form of Little’s Law, from queueing theory.
The reasoning is as follows:

1. We can think of a victim cache as providing associativ-
ity for some frames of the direct-mapped cache. Without
any filtering, associativity is provided on a first-come,
first-served basis: every block that is evicted gets an en-
try in the victim cache.

2. Our timekeeping filtering based on dead time results in a
careful selection of the frames for which the victim cache
is allowed to provide associativity. Timekeeping filtering
culls out blocks with dead times greater than the thresh-
old. In turn, the dead-time threshold controls the number
of frames for which associativity is provided for.

3. Our filtering ensures that the victim cache will provide
associativity only for the “active” blocks that are fairly-
recently used at the time of their eviction.

4. Since the victim cache cannot provide associativity to
more frames than its entries, the best size of the victim
cache relates to the amount of cache in active use. A
larger set of “active” blocks dilute the effectiveness of
the victim cache associativity. In the data here, with a
1K cycle dead time threshold, only about 3% of cache
blocks resident at any moment meet the threshold. Since
3% of 1024 total cache blocks is 30.72, a 32-entry victim
cache is a good match.

The relation of the dead-time threshold and the size of the
victim cache not only gives us a good policy to statically select
an appropriate threshold, but also points to adaptive filtering
techniques. Although beyond the scope of this paper, adap-
tive filtering adjusts the dead time threshold at run-time so the
number of candidate blocks remains approximately equal to
the number of the entries in the victim cache. With a modest
amount of additional hardware an adaptive filter would per-
form even better than static filter shown above, which already
outperforms previous proposals.

5 Timekeeping Metrics for Dead-Block Predic-
tion and Prefetch

In addition to identifying conflict misses, timekeeping met-
rics are also of much broader use. We show them here used
as a guide in coordinating data prefetches. Managing data
prefetch can be thought of in terms of three sub-problems:

� Identifying dead blocks in cache, into which we should
prefetch the next block to be referenced.

� Identifying which next block should be prefetched
� Identifying when the prefetch must occur, in order for it

to be timely.

Timekeeping metrics can form the basis of building efficient
hardware prefetch mechanisms. Predicting prefetch targets
can be orthogonal to the timeliness of the prefetch, but as we
will show in this section it can also be integrated well with
time predictions.

5.1 Dead Block Prediction

Dead block prediction is important for prefetch, because
prefetches that arrive into the cache before the resident block
is dead will induce extra cache misses. Live time, dead time
and access interval statistics are closely related to the liveness
of a block. In this section, we explore these correlations to
construct predictors for dead blocks. First, we discuss a sim-
ple predictor which simply differentiates among large dead
times and short access intervals. We then propose a dead
block predictor that is based on the regularity of live times.



5.1.1 By Dead Time
One method of identifying dead blocks is by measuring time
between accesses [9]. If we measure an inordinately large
time since the last access, and we have yet to encounter the
next access then chances are that we are within dead time.

Both access intervals and dead times refer to time between
consecutive accesses to the same cache frame. The difference
is that during the dead time the current block in the frame turns
out to be dead. A dead block predictor can be constructed by
dynamically distinguishing dead times from access intervals.
From Figure 5, we observe that most access intervals are very
short and clustered around zero. On the other hand, a number
of dead times are quite large and thus clearly distinguishable
from access intervals. Based on this observation, a dead block
predictor could be constructed as follows: if the idle time of a
block exceeds some threshold, we predict that it is in its dead
time. Figure 14 shows the accuracy and coverage of this pre-
dictor with different threshold values. To get high accuracy,
the threshold must be more than 5120 cycles. At this point the
coverage (the percent of the blocks for which we do make a
prediction) is only about 50%.
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Figure 14: Dead block prediction based on dead time: Accuracy and
coverage.

5.1.2 By Live Time
Dead block prediction based on dead time is very successful
in reducing leakage energy in caches, because that applica-
tion benefits from the many CPU cycles spent in the heavy tail
of the dead time distribution. But for prefetching, dead-time
prediction does not have enough coverage to be useful. Even
more important, once one waits a long decay interval to make
a decision about deadness, it could potentially be too late to
do a timely prefetch. In this section, we will look at an alter-
nate way of determining that a block is dead (and therefore
ready for something to be prefetched on top of it.) If we can
accurately predict how long a live time is, then we will know
that prefetches arriving just after this live time ends should be
timely. This paper is the first to show the degree to which live
times can be predicted; we then use this to schedule timely
prefetches.

As with other predictors, past history is our guide in pre-
dicting the next live time of a block. The simplest history-
based predictor is to predict that the live time of a block will
be the live time of its previous generation. To test this, we
profiled variability of consecutive live times per block using
counters with a resolution of 16 cycles. Figure 15 shows
the profiling results for selected SPEC2000 programs (which
have significant speedup potential and are discussed in detail

in section 5.2.3) and for the geometric mean for all SPEC2000
programs. A significant percentage (more than 20%) of the
differences are less than 16 cycles.
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Figure 15: Distribution of absolute difference (Top) and cumulative
distribution of relative ratio (Bottom) of consecutive live times.

Based on this regularity of the live times we can construct
a predictor for dead blocks as follows: at the start of a block’s
generation we predict that its live time is going to be similar
to its last live time. After its predicted live time is over, we
wait a brief interval and then we predict the block to be dead.
The question is: how long should we wait before predicting
the block is dead? To account for some variability in the live
time we could add a fixed number of cycles to the predicted
live time. Because live times have a wide range in magnitude,
however, we chose instead to scale the added time to the pre-
dicted live time. To choose an appropriate scaling factor, the
second graph of Figure 15 shows the cumulative distribution
of the ratio of the current live time divided by the previous
live time. As we can see in this graph, on average, about 80%
of the current live times are less than twice the previous live
time.

Thus, a simple heuristic is to predict that a block is dead at
a time twice its previous live time from the start of its current
generation. Additional justification for this predictor comes
from our observation in Section 2 that dead times are signifi-
cantly larger than live times. Using this dead block predictor,
Figure 16 shows the accuracy and coverage for the SPEC2000
programs. Coverage in this case refers to the percentage of
blocks for which we do make a prediction. Blocks with a
generation shorter than twice their predicted live time have
already been evicted by the time of the prediction so they are
not covered by our predictor. On average (for all SPEC2000),
accuracy is around 75% and coverage about 70%, both better
than those of the dead-time dead block predictor in the pre-
vious section. There is also a discernible trend for increased
accuracy and coverage to the right of the graph towards the
programs with significant percentage of capacity misses and
significant potential for speedup.
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Figure 16: Accuracy and coverage of live time based dead block
prediction

5.2 Timekeeping Prefetch

A full-fledged prefetching mechanism needs to establish
both what to prefetch and when to prefetch it. Regarding
what to prefetch, a history-based predictor can help to pro-
vide accurate address prediction, as discussed, for example,
in [2], [7] and [10]. Regarding when to prefetch, a live-time
dead-block prediction is an efficient mechanism to schedule
prefetches but this also requires a predictor structure to pre-
dict live times.

In this section we show that the same structure that can
predict addresses can also predict live-times (or vice-versa),
unifying the two predictors into a single structure. We pro-
pose a compact, history-based, predictor for both addresses
and live-times that outperforms previous proposals for most
of the SPEC2000 benchmarks. Furthermore, it requires only
a tiny fraction of the area compared to prior proposals: about
two orders of magnitude smaller than [10].

5.2.1 Address and Live-Time Predictor
Our predictor is a correlation table not unlike the Dead Block
Correlating Predictor (DBCP) table in [10]. In our case, the
reference history used by our predictor is just the most recent
miss address per frame, which is readily available in L1. In
contrast, the DBCP approach also requires a PC trace which,
in many cases, is complex to obtain from within the out-of-
order core. We use miss address per cache frame, rather than
the global miss trace of the cache. This means that a predic-
tion that refers to a specific frame takes into account only the
miss trace of this frame. The issue is complicated somewhat
in set-associative caches where we use per set miss trace his-
tory but we still perform all timekeeping and accounting on
a per frame basis. Per set miss trace history removes some
of the conflict misses that are dispersed within the history of
the capacity misses. This is an advantage for our prefetching
mechanism since it caters mostly to capacity misses as we will
show later in this section.

Each predictor entry stores both the prediction for the
prefetch address and the predicted live time of the block to be
replaced by the prefetch. We use a 1-miss history to get these
predictions. For example, assume that block A occupies a
cache frame. At the point when block B replaces A we access
the predictor using the (per-frame) history (A,B). The predic-
tor returns a prediction that block C should replace B and a
prediction for the live time of B. Using the predicted live time
of B, we apply our live-time-based dead-block prediction and
we “declare” B to be dead at a time twice its predicted live
time. At that point in time, we schedule the prefetch to C to

occur. (One could also estimate when C needs to arrive, and
exploit any slack to save power or smooth out bus contention.)

Address Correlaction Table

C lt(B)index' B

B

A

+

tag'

8 ways

L1 data cache

m
(7)

n
(1)

previous current next

A B C

tag

tag

next tag

time

tag live time

data

index offset

D
a sample access sequence in a cache set

Figure 17: Structure of Timekeeping Address Correlation Table

5.2.2 Implementation Details
Figure 17 shows how we access the address correlation ta-
ble and in particular the indexing mechanism we use. When
block B replaces block A in a cache frame we add the tags of
A and B (using truncated addition as per [10]). When com-
bined with A and B’s common index, the sum of the tags gives
us a pointer to the correlation table. The pointer is constructed
by taking m bits from the sum of the tags and n bits from the
index. The correlation table is typically set-associative so the
pointer selects a set in this table. We then select the correct
entry in the set by matching the tag of the block B to the iden-
tification tag in the predictor entry. The selected predictor
entry predicts the tag of the block to be prefetched. The in-
dex is implied and is the same as in A and B. The same entry
also gives a prediction for the live time of B. This live-time
prediction is at the crux of our ability to do timely prefetch.

We have tested several sizes of this table ranging from
megabytes to just a few kilobytes. Even very small tables
work surprisingly well. An interesting observation arises
when we index this table using mainly tag information and
only partial index information (n less than 10). In this case,
histories from different cache frames (or sets) may map to the
same entry. This results in constructive aliasing and allows
our table to have much smaller size than the table in [10]. The
intuition behind this constructive aliasing is that often multi-
ple distinct data structures are traversed similarly. If accesses
in one data structure imply accesses to another data structure,
it does not matter what particular element is accessed in the
one or the other. A contrived and simplistic example is to
imagine a loop that adds elements of two arrays and stores
them in a third array. Many triads of elements accessed can
share a single entry in the correlation table as long as their tags
remain the same! They all exhibit the same access pattern.

Within every cache line, we need the following timekeep-
ing hardware for our prefetch: two counters, a register, and
two extra tag fields, as shown in Figure 18. The two coun-
ters and the register are only 5 bits long each. The results
we present in this paper are for an 8KB, 8-way set-associative



correlation table. We index the table using seven bits from the
sum of tags (m=7) and one bit from the cache index (n=1).

One counter (gt counter) and one register (lt register) are
needed to track live time as follows. The gt counter is ini-
tialized at the beginning of a generation and is continuously
incremented by the global tick until the next miss. At this
point the counter contains the generation time. At every inter-
mediate hit the gt counter is copied over to the lt register so at
any point in time the lt register trails the gt counter by one ac-
cess. Thus, when a generation ends, the value of the lt register
is the time from the start of the generation to the last access,
i.e., the live time. An additional counter (prefetch counter)
and a tag field (next tag) are needed to schedule a prefetch
while another tag (prev tag) is needed for predictor update as
discussed below.

OoO core

correlation
table

(D, A)
TAG DATA

next
tag

lt
ctr

gt
ctr

prefetch
ctr

prev
tag

L1 cache

Update: B, lt(A)

OoO core

L2 cache

prefetch
queue

correlation
table

L1/L2 bus

(A, B)

2 * lt(B)

C

TAG DATA

L1 cache

predict

next
tag

lt
ctr

gt
ctr

prefetch
ctr

prev
tag

Figure 18: Update of a predictor entry (Top) and predictor access to
make a prediction (Bottom)

Figure 18 shows the overall structure for timekeeping
prefetch. The correlation table sits besides the L1 cache. As-
sume we have the following sequence of blocks in a cache
frame: D,A,B,C, as shown in the top part of Figure 17. When
a miss on address B attempts to replace block A, the lt counter
contains the live time of A, the prev tag contains D, and the
following actions occur:

1. A demand fetch is sent to the L2 for block B.
2. Predictor update (top diagram of Figure 18). An index

is computed from A and its precursor D. The predictor
table is accessed with history (D,A) and the entry cor-
responding to A is updated with B as the predicted next
tag and lt(A) as the next prediction for the live time of A.
Then A is installed in prev tag.

3. Predictor access (bottom diagram of Figure 18). An in-
dex is computed from B and the currently evicted block
A. The predictor is accessed with history (A,B) and an
entry is selected that corresponds to B. Predictions for
the live time of B and the next tag C are obtained and

installed in the prefetch counter and the next tag respec-
tively. (The live time is doubled by shifting one bit be-
fore it is installed in the prefetch counter.) The prefetch
counter is decremented with every tick. When it reaches
zero the prefetch to C is put into an 128-entry prefetch
queue (which is modeled as in other prefetching work).

5.2.3 Results
Figure 19 shows the IPC improvement over the base config-
uration. We include results for our 8KB timekeeping corre-
lation table and we compare to the prior proposed DBCP ta-
ble of 2MB size. Our timekeeping based prefetch achieves
higher IPC improvement than DBCP in all SPEC2000 bench-
marks except mcf and ammp. In addition, it improves per-
formance for all but four of the SPEC2000 programs. Over-
all, our prefetch mechanism achieved 11% IPC improvement
while DBCP only achieved about 7% improvement. Refer-
ring back to Figure 1, we see that our prefetching mechanism
achieves significant speedups for many of the programs with
a very large percentage of capacity misses (programs to the
right of the graph in Figures 1 and 19) without harming those
heavy on conflict misses (programs to the left of the graphs).
The best performers are gcc, facerec, applu, mgrid, art, swim,
ammp, and mcf. From the programs with the highest poten-
tial for speedup only two, twolf and parser, do not benefit
from prefetch. These two programs exhibit very low accuracy
in address prediction which results in a slight performance
loss for twolf; the same programs are problematic even with a
2MB DBCP.
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Figure 19: IPC improvement using timekeeping prefetch with an
8KB correlation table vs. DBCP prefetch with a 2MB correlation
table

Considering only the eight best performers we see that,
although the achieved speedups are significant, there is still
room for improvement when compared to the ideal case. The
differences are explained by close examination of the accu-
racy and coverage of our address prediction and the timeliness
of our prefetches. Figure 20 shows the address accuracy and
coverage for our 8KB address correlation table. Coverage in
this case refers to the hit rate of the predictor; if we miss in
the predictor we cannot make an address prediction. Figure
21 classifies the timeliness of the prefetches for the correct
and wrong address predictions. Each bar (from bottom to top)
shows prefetches that are:

� “early,” arrived early and displaced the current live block
� “discarded,” thrown out of the prefetch queue before

been issued to the L2 to make space for new prefetches
� “timely,” arrived within the dead time and before the next

miss



� “started but not timely,” issued, but arrived late (after
the next miss)

� “not started,” did not even issue before the next miss

From Figures 20 and 21 we can deduce the following. For
two programs mgrid and facerec, while their address accu-
racy and coverage are fair, only 40% and 30% respectively of
their correct prefetches are timely, while most of their other
prefetches are late. This is because these two programs have
short generation times and it is difficult to pinpoint their dead
times. Two programs, art and to a lesser extent gcc, have a lot
of discarded prefetches because of burstiness. This was also
observed in DBCP prefetching. In addition art suffers from
low address accuracy. The reason why mcf does not achieve
its full potential is because of its low address accuracy. This
program benefits from very large address correlation tables
and this is the reason why it is doing well with a 2MB DBCP.
We observed better performance for mcf with our timekeep-
ing prefetch when we used a larger address correlation table of
2MB. Finally, ammp which speeds up by 257% — almost all
of its potential — shows very good address accuracy and cov-
erage and in addition shows very timely prefetches. As a gen-
eral observation, the timeliness of our prefetches, especially
with respect to earliness, correlates well with the accuracy of
the address prediction: when we predict addresses well, we
tend not to displace live blocks (Figure 21).

The results shown in this section are obtained using
SPEC2000 binaries compiled with peak compiler settings,
which aggressively employ software prefetching. We ob-
served similar results when ignoring all compiler inserted
prefetches. The interaction between compiler prefetch and
timekeeping prefetch is out of the scope of this paper, but
makes an interesting topic for future work.
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Figure 20: Address accuracy of the 8KB correlation table for the
eight best performers

6 Conclusions

This paper demonstrates the predictive power of using
time-based techniques to identify and optimize for various as-
pects of memory referencing behavior. We show that tim-
ing generational characteristics such as live times, dead times,
access intervals, and reload intervals allows one to classify
misses and deduce other characteristics of reference behavior
with high accuracy. Only few, small counters per cache line
are needed to obtain the time measurements we use for miss
classification or prediction.
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Figure 21: Timeliness of prefetches for correct (Top) and wrong
(Bottom) address predictions

We first observe that our time-based metrics can be used
to distinguish among conflict and capacity misses. Typically
a block’s generation is expected to exhibit a short live time
followed by a long dead time, a characteristic exploited in
cache decay. However, conflict misses are “catastrophic” to
the typical generation of a block in that they cut its live time
or dead time short. A generation resulting from a conflict
exhibits either a zero live time or an inordinately short dead
time. Furthermore, since the block is thrown out of the cache
despite being alive, its reload interval (the access interval in
the next lower level of the cache hierarchy) is also very short.
These observations lead to three different run-time predictions
of conflict misses. We explore the accuracy and the cover-
age of these predictions and we propose a mechanism to take
advantage of such run-time prediction. Specifically, we pro-
pose filtering a victim cache so as to feed it only with blocks
evicted as a result of a conflict. We demonstrate this filter us-
ing a dead time conflict predictor. Our victim cache filtering
results in both IPC improvements and significant reduction in
victim cache traffic. Our filter outperforms a previous pro-
posal that predicts conflict misses remembering previous tags
in the cache.

We then use our timekeeping techniques to tackle the prob-
lem of predicting when a block is dead and prefetch another
block in anticipation of the next miss. With this technique
we attempt to address the problem of capacity misses. Cache
decay readily offers such a dead block prediction based on
the time difference among access intervals and dead times.
Unfortunately, the accuracy and coverage of decay, although
fine for leakage control, are not ideally suited for prefetching.
One of the contributions of this paper is the discovery that live
times, when examined on a per cache-frame basis, exhibit reg-
ularity. Predicting the live time of the current block (based on
its previous live times) allows us to schedule a prefetch to take
place shortly after the block “dies.” To implement a timekeep-
ing prefetch we need both an address and a live time predictor.
We propose a new history-based predictor that provides both



predictions simultaneously. Our predictor is a correlation ta-
ble accessed using the history of the previous and current miss
in a frame. It predicts the live time of the current block, and
the address to prefetch next. Because we index this predictor
using mostly tag information we observe significant construc-
tive aliasing both for addresses and live times. This allows us
to outperform a 2MB DBCP predictor [10] using just 8KB
of predictor state for all SPEC2000 with an average IPC im-
provement (over the base configuration) of 11%.

To summarize how our contributions affect the perfor-
mance of the programs in the SPEC2000 suite we present an
overview in the form of a Venn diagram in Figure 22. The
diagram depicts three intersecting sets of programs:

1. programs with few memory stalls (negligible speedup is
expected for these programs),

2. programs helped by timekeeping victim cache filter,

3. programs helped by timekeeping prefetch

Next to each program we indicate the IPC improvement (for
programs in the intersections of the sets we indicate the maxi-
mum improvement). We note that, for the most part, our time-
keeping victim cache filter helps with programs that suffer
mostly from conflict misses while our timekeeping prefetch
helps with programs suffering from capacity misses. Few
programs benefit from both mechanisms. Overall, Figure 22
shows that our mechanisms are complementary in handling
potential memory stalls.

gap

eon
vortex

sixtrack

benchmarks
with few memory
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cache with
timekeeping filter
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fma3d
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gzip [1%]
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bzip2 [1%]
twolf [2%]

gcc [21%]
mcf [34%]
swim [39%]
mgrid [27%]
applu [21%]
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ammp [257%]

Figure 22: Effect of timekeeping victim cache and timekeeping
prefetch on SPEC2000 benchmarks

Although our mechanisms cover many of the programs for
which speedup can be expected, there is still some room for
improvement. Timekeeping techniques can offer new per-
spective for predicting memory behavior and improving pro-
gram memory performance. Using these techniques, we ex-
pect that researchers will be able to uncover other effective,
hardware-efficient performance and power optimizations.
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