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Abstract—We present Continuously Adaptive Dynamic
Voltage/Frequency scaling in Linux systems running on Intel i7
and AMD Phenom II processors. By exploiting slack, inherent in
memory-bound programs, our approach aims to improve power
efficiency even when the processor does not sit idle. Our
underlying methodology is based on a simple first-order
processor performance model in which frequency scaling is
expressed as a change (in cycles) of the main memory latency.
Utilizing available monitoring hardware we show that our model
is powerful enough to i) predict with reasonable accuracy the
effect of frequency scaling (in terms of performance loss) and ii)
predict the core energy under different V/f combinations. To
validate our approach we perform highly accurate, fine-grained
power measurements directly on the off-chip voltage regulators.
We use our model to implement various DVFS policies as Linux
“green” governors to continuously optimize for various power-
efficiency metrics such as EDP or ED2P, or achieve energy
savings with a user-specified limit on performance loss. Our
evaluation shows that, for SPEC2006 workloads, our governors
achieve dynamically the same optimal EDP or ED2P (within 2%
on avg.) as an exhaustive search of all possible frequencies.
Energy savings can reach up to 56% in memory-bound
workloads with corresponding improvements of about 55% for
EDP or ED2P.

Keywords: DVFS, Performance and Power Modeling,
Perfomance Monitoring Hardware.

I.  INTRODUCTION

The power-aware architecture landscape has been
dominated by techniques based on supply voltage and clock
frequency scaling. Dynamic Voltage and Frequency Scaling
(DVFS) offers great opportunities to dramatically reduce
energy/power consumption by adjusting both voltage and
frequency levels of a system according to the changing
characteristics of its workloads. The great potential of DVFS
in energy savings has been widely studied in a variety of
research communities (from circuit to system designers) and
has been extensively used in commercial systems as well.
Intel XScale, AMD Mobile K6, and Intel Pentium M are
typical low-power processors that feature DVFS management
capabilities. Example processors from the high-performance
area are the AMD Opteron and the Intel Core i7 processor. At
the operating system level, DVFS policies are coarse-grained,
either based on user requests (the user requests a desired level
of power/performance) or reacting to changes in the system
load (when system load is low the processor is put in a low-
power mode).

While one can expect to lower power consumption by
sacrificing performance, the promise of DVFS techniques lies
in the exploitation of slack or “idleness.” The objective is to

take advantage of slack so that performance is affected little
by frequency scaling while at the same time a cubic benefit in
power consumption —by scaling the voltage— is achieved.
Slack can appear at different levels and various approaches
have been proposed for each level [10]. This work is
concerned with the instruction slack due to long-latency off-
chip memory operations. In contrast to the OS-level DVFS
policies available today that save power when the processor
has little to do (system-level slack), we aim to save power even
when the processor is busy executing programs (as long as
these programs have memory access slack in them).

In our previous work [11], we developed two simple
analytical models that are able to drive run-time DVFS
decisions for aggressive superscalar OoO processors. The
realization that inspired the development of these models is
that scaling of the core frequency is nothing more than
changing the memory latency measured in cycles [11].

Previous approaches [6-8,12,13,18,19,21] in the area rely
on empirical models requiring large profiling, training and
trial-and-error steps or significant compiler assistance. In
contrast, our models require minimal input and calculations
[11] allowing for efficient run-time implementations. The
reason for this is that our models are able to isolate the core
events that directly correlate DVFS to processor behavior.

The simple nature (minimal input and calculations) and the
good accuracy of our models [11], inspired us to apply them
in practice. While our previous work was conducted in a
controlled simulation environment —a cycle accurate
simulator augmented with power models— here, we discuss
our experiences on real systems: the Intel Core i7 and the
AMD Phenom II processors. Using run-time performance
counters and accurate on-line power measurements for
validation, we implemented OS kernel module governors that
can dynamically predict performance and energy consumption
of a workload at any target V/f point with good accuracy. This
allows various DVFS policies to be implemented and we
show three such policies. To our knowledge, these are the first
practical, continuously adaptive DVFS Linux governors able
to detect memory slack.

To validate the performance of the governor in terms of the
accuracy of its decisions, we compare its resulting EDP or
ED2P to the optimal EDP or ED2P that we can find with an
exhaustive search of all the possible V/f pairs for a given
workload. Our results show that the run-time governor is
within 2% of the best results of the exhaustive search.
Structure of the paper. Section II surveys related work.
Section III provides an overview of our analytical DVFS
models [11] and Section IV the implementation of our Linux



DVFS governors. Section V discusses power-related details
of i7 and Phenom II processors and our evaluation
methodology. Section VI presents the results of our
evaluation. Section VII summarizes the paper.

II.  RELATED WORK

In this work our target is to provide a practical
methodology for continuous and adaptive DVFS management
in real processors. One of the first approaches in the area was
by Grunwald et al. [20]. The authors used a rather complex
infrastructure (extra PCs for logging and processing the
required information and heavy modifications to Linux
kernel) to control the power of the Itsy Pocket Computer (a
research platform based on StrongARM). Their DVFS
decisions were based on the fraction of time the Linux idle
process enters the foreground for execution.

Almost all the related approaches for power estimation and
management in real processors were motivated by the
existence of a rich set of performance monitoring counters.
The initial goal was to estimate the power consumed by the
processor by selecting the appropriate monitoring events;
subsequently DVFS policies were provided. However, all
these approaches rely on empirically derived models requiring
large profiling, preprocessing and/or training steps.

Joseph and Martonosi [15] use counter events to estimate
the power of the Pentium Pro. Their approach requires 12
performance counters (but only two can be read
simultaneously). They gather data for multiple benchmark
runs forming an offline power model. In [14], the authors use
five counters to estimate power for different frequencies on an
XScale system. They also collect data from multiple runs in
order to derive power weights for V/f pairs and at a later step
to create a parameterized linear model. A similar approach
was developed by Rajamani et al. [17], but in this case the
target was the Pentium M processor. None of these methods
are intended for on-line use.

Lee and Brooks [16] predict power via statistical models.
They build correlations based on hardware parameters
identifying the most significant parameters to train their
model. They perform an offline profiling of the design space
and they estimate power based on random traces. A similar
approach was followed by Goel et al. [18].

Isci et al. collect various performance counter events to
create a history of “fingerprints” of a program's power
behavior [6]. More recently, Isci et al. extended their
technique by predicting future power behavior [7]. In [8], Isci
et al. extended their methodology to multicore processors.
Again, the proposed model is prohibitively costly for run-time
power estimation and optimization. It requires four complete
program executions with different counter configurations to
collect the necessary information. In [13], the authors follow a
similar methodology with multithreaded applications and per-
thread performance counters. The set of performance counters
is empirically derived through extensive trial-and-error steps.
Lastly, Shelepov and Fedorova [19] and Jimenez et al. [21]
provide scheduling policies to reduce power in a
heterogeneous multicore system by extracting architectural
“signatures” of the applications. Again, such signatures must
be known a priori through extensive offline analysis.

III.  INTERVAL-BASED ANALYTICAL MODELS FOR DVFS 
MANAGEMENT

In our previous work [11], we show that a successful way
to model DVFS in an OoO processor is to account only for the
stall cycles introduced in the machine due to off-chip non-
overlapping misses (Last-Level Cache or LLC misses). The
idea is that only these misses directly correspond to the stall
cycles that are affected by the processor’s frequency. Based
on this, we introduced a model, called miss-based model,
which takes as input the number of stalls introduced in the
machine due to non-overlapping LLC misses and outputs the
execution time and energy under different frequencies with
less than 1% (avg.) error. We also introduced a simpler model,
called stall-based model, which is not able to distinguish
overlapping of the LLC misses. The stall-based model still
yields acceptable results (5% error on average). A deeper
examination of this model shows that the extra error is
introduced because the model disregards useful work
performed by the processor when a LLC miss occurs (i.e.,
from the occurrence of the miss to the point when no new
instructions can enter the execution window).

Both our models derive from the interval-based
performance model [2,9]. Intervals are marked by miss-events
that upset the “steady state” execution of the program. A miss-
interval starts with a miss-event (LLC misses in our case) and
lasts until the IPC reaches again a steady state (a period
related to the memory latency). Periods between miss-
intervals are steady–state intervals. Figure 1.a shows the
different areas of a LLC miss interval.
Stall-based Model. The simpler stall-based model takes as
input the cycles which correspond to the full stall+IQ Drain
areas and assumes that this quantity is equal to memory
latency measured in cycles i.e., it disregards the ROB (Re-
Order Buffer) fill area. Note that this area, measured in cycles,
remains intact at all frequencies. The error of the stall-based
model is apparent in the following assumption:

The sum of stalls in overlapping misses (Figure 1.b) is also
approximated to memory latency:

Figure 1.   Useful instructions issued in the case of (a) an isolated and 
(b) overlapping LLC load misses.
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In the stall-based model we assume that (i) the stalls
generated by an isolated miss and (ii) the sum of stalls
generated by overlapping misses are both approximately
equal to the memory latency (in cycles). Since memory
latency is proportional to core frequency, these quantities are
approximately proportional to frequency as well.
Consequently, the total number of stall cycles is
approximately proportional to frequency, while the total
number of non-stall cycles (steady state) is independent of
frequency.

Let c be the total cycles of a program execution and ST be
the total number of stall cycles in max frequency fmax. In core
frequency fmax/k the total number of cycles would be:

If the clock period under frequency fmax is Tfmax, then
under frequency fmax/k the clock period is k×Tfmax. The
execution time under frequency fmax/k is:

Using equation (4) we are able to predict the execution
time under different frequencies by counting the total cycles
and the stall cycles under frequency fmax. On the other hand, if
the starting point is a frequency f where f=fmax/l, we can
predict the corresponding values for the maximum frequency
cfmax=c-ST+STxl and STfmax=STxl and then substitute in Eq.
4 cfmax and STfmax instead of c and ST [11].

The advantage of this model is that only in-core
information is needed to predict performance under various
frequencies. However, the model assumes that ROB-fill is
negligible, which is a source of error especially in benchmarks
characterized by little dependence between instructions and
thus large ROB-fill times.
Miss-based Model. The more accurate miss-based model
acknowledges that the whole miss interval equals memory
latency and thus scales proportionally to frequency.
Furthermore, it is able to recognize that only the miss interval
of the first miss in a cluster of misses scales with frequency,
while the miss intervals of overlapping misses remain intact
with frequency scaling. Another way to express this is that if a
miss occurs y cycles (Figure 1.b) after the initial miss, it will
also be serviced y cycles after the first miss is serviced so the
extra stall cycles introduced by the overlapping miss do not
change with frequency [11].

The methodology followed in the miss-based model is
similar to the stall-based model, but instead of stall cycles, the
quantity that scales proportionally to the frequency is the
number of clusters of misses multiplied by the memory
latency. Unfortunately, there is no easy way in either the Intel
i7 or the AMD Phenom II to account for the stalls introduced
in the machine due to non-overlapping LLC misses. In other
words, there are no specific performance counters to measure
the Memory-Level Parallelism of the LLC misses, as pointed
out also in [3]. We will not expand further on the miss-based
model since it cannot be supported adequately in
contemporary processors; instead, we refer the interested
reader to [11] for further details.

IV.  CONTINUOUS ADAPTIVE DVFS GOVERNORS

This section describes the high-level operation of our
DVFS governor. The governor is called at regular intervals.
Each time it is invoked it uses performance counter
measurements collected during the previous interval to predict
the performance/energy of the workload at all possible V/f
pairs and select the most appropriate V/f pair for the next
interval. The assumption here is that measurements collected
during an interval are valid inputs for our model to predict the
next interval.

The actual V/f pair chosen for the next interval depends on
the model prediction and on the DVFS policy we follow. In
this work, we have implemented three DVFS policies which
aim for power-efficiency:
• Optimize EDP (OptEDP): this policy from all the possible

V/f pairs selects the one that yields the minimum energy-
delay product (EDP). EDP is a common power-efficiency
metric that gives equal weight to both energy and
performance (delay).

• Optimize ED2P (OptED2P): this policy gives more
emphasis on performance since it tries to minimize the
product of energy and delay-square. Thus it will only
sacrifice performance if the energy benefit is significant.

• Optimize EDP (ED2P) under a performance penalty
limitation, OptEDPlimit (OptED2Plimit): This policy
minimizes EDP (ED2P) but under the constraint that
performance cannot be penalized by more than a user-
selected factor (e.g., 10%).
Note that our methodology does not impose a particular

DVFS policy but allows arbitrary policies to be constructed.
A. Predicting Performance at Different f

To predict the performance of a program at a different
frequency than the one it is currently executing, the stall-
based model discussed in Section III (Eq. 4) requires as input
the number of stalls strictly due to LLC misses. Given the
available set of performance counters, in practice, we can only
implement an approximation of the stall-based model. There
are no performance counters for LLC stalls in either the Intel
i7 or the AMD Phenom II. Instead, we approximate LLC
stalls by taking the minimum between all pipeline stalls
(which may include stalls due to branch mispredictions, L1
cache misses, etc.) and the worst case for the LLC stalls
assuming that no miss overlaps with any other. The worst case
LLC stalls are simply the number of misses multiplied by the
miss latency.

The average error of our stall–based model implemented in
the i7 is below 5% for all SPEC2006. We measure the error in
predicting execution time for a very large frequency change:
running each SPEC at the max frequency and predicting
execution time in the minimum frequency or vice versa. In
general, memory–bound programs exhibit larger prediction
errors. This is an inherent property of the stall–based model,
since this model ignores the ROB-fill effect. Similarly the
error in performance prediction for the Phenom II is also
below 5%. As we will see in the evaluation part, run-time
governors achieve near-optimal decisions despite these
approximations.
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B. Predicting Energy at Different f

Predicting energy is more complicated since static energy
is not negligible and needs to be taken into account in addition
to dynamic energy. Our methodology in predicting the total
energy of a program is the following: we measure (off-line)
static power in idle state under all available different
frequencies. We use a model to calculate dynamic energy
based on performance counter information. On-line power
measurements are used for validating the predictions at the
end of each window (Section V).

Several models have been proposed that correlate various
performance events to dynamic energy with good accuracy
[8,13-19,21]. However, we are restricted by the small number
of concurrently measurable events in the i7 and Phenom II.
After measuring processor stalls (required for the
performance prediction) we are left with only two
performance counters in the i7 and the Phenom II. Related
work [18] indicates that instructions executed in the i7 and
instructions retired in the Phenom II, are the best, single-
event correlations available to estimate dynamic energy.

We correlate instructions1 executed (i7)/retired (Phenom
II) per cycle to the effective capacitance term (activity factor
× capacitance) of the dynamic power equation. Frequency
and supply voltage are known and unrelated to what is being
executed. Figure 2 shows the derived relation for the two
processors and the resulting correlation factor (R2) using all
SPEC2006 as data points.

Figure 3 shows the total energy prediction error compared
to actual fine-grain power measurements (Section V). For
these results we let the governor predict the total energy for a
new interval based on the performance counter measurements
of its preceding interval. At the end of the new interval the
prediction is compared to real power measurements taken in
its duration. In most cases (all SPEC2006), the error is below
5% for the i7 and 9% for the Phenom II. Exceptions are some
exceedingly memory-bound workloads (e.g., mix1, mix3, and
mix4, discussed in Section V) which yield very low IPC that
was not accounted for in the correlation.

An alternative to using a performance counter model to
make energy predictions, is to use actual power
measurements. Our current measurement setup easily allows
this and upcoming processors (e.g., Intel Sandy Bridge [5])
will be able to measure power directly. We can measure total
energy on-line, feed it back to the governor, subtract static
energy (Section V), and derive the relationship of dynamic
energy to frequency. To predict dynamic energy at a new
frequency, however, we need to know how the processor is
clock gated. This information is not available [4]. We,
therefore, consider two extremes: that of a fully clock-gated
and that of a fully non-clock-gated processor. Dynamic
energy in the former case is proportional to the square of the
voltage (E~V2), while in the latter case the energy should be
computed according to the formula: E~f×V2×t. Our
experimental findings reveal that the i7 core is not highly
clock-gated. Since we do not know the clock gating of these
processors, even the measurement of actual power can only
give us approximate predictions for the dynamic energy at
different frequencies. Section V discusses our power
measurement methodology that can be used for this purpose.

C. Multicore DVFS

Our discussion so far focused on DVFS policies for a
single core running a single program. However, both the Intel
i7 and the AMD Phenom II are multicore chips and can run
simultaneously multiple programs. Furthermore, there is an
important difference between them with respect to DVFS. The
Intel i7 can scale V/f only for the whole chip (e.g., for all 4
cores) whereas the AMD Phenom II can scale f individually
per-core but has to scale V for the whole chip.

Concerning the DVFS policies in a multicore, the question
that arises is how do we define EDP or ED2P for multiple
programs running simultaneously? In the case of the Intel i7
which can only select a single frequency for the whole chip
we compute for each possible frequency the impact on
performance (delay) for each running program and then use
the average delay over all running programs to compute a
chip-wide EDP or ED2P. In the case of the AMD for each
running program we compute the impact on its performance

Figure 2.  The measurement was done at 1.6 GHz for Intel and at 2.1 
GHz for AMD processors. The lower constant factor in the extracted 

equations indicates that the Intel processor is more clock-gated 
compared to AMD Phenom. The lower coefficient of determination 

(R2) in AMD Phenom is due to the non-accounting of the 
speculatively executed instructions.

1 micro-ops according to Intel/AMD terminology
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for each possible frequency and then use the average delay in
the EDP and ED2P calculation. For the OptEDPlimit and
OptED2Plimit policies, the performance limit applies to each
of the applications (not to their total delay) —but other
approaches are of course possible. Figure 4 shows the
pseudocode for the governor that optimizes EDP (without any
restrictions). The governor calculates performance/energy
predictions for all possible V/f pairs and selects the one that
yields the minimum EDP.

D. Governor Overhead and Invocation Frequency

The invocation frequency of the governors impacts two
important factors: governor overhead and prediction accuracy.
Overhead in our case consists of three components: running
the code, reading performance counters, and scaling V and f.
The fewer invocations of the governor, the less these
overheads impact end performance.

At the time scale of the Linux scheduling quantum (10ms),
these overheads are negligible. Accessing performance
counters incurs a negligible cost [14,18,21] and DVFS
transitions incur an overhead of tens of microseconds [22,23]
—three orders of magnitude smaller than the scheduling
quantum. Performance and energy prediction calculations are
lightweight and thus not a concern.

Moreover, the time scale for the governor invocation
affects prediction behavior. Governors invoked at very short
time intervals may react to short-lived changes in program
behavior and erroneously change voltage/frequency for the
next interval. At the other end, long intervals limit the
optimization opportunities. In between, prediction accuracy is
application dependent. Since we use a “last value” predictor
(measurements taken during an interval are used for the next),
the ideal interval length must track application program
phases. But the time scale of program phases varies
significantly and there is no single value that can
accommodate all applications. The problem becomes more
complicated if more sophisticated predictors are employed
(e.g., using hysteresis in the prediction).

To balance these diverging requirements we explore a
range of interval lengths that are multiples of the scheduling

quantum (from 10ms to 1s). Below the scheduling quantum a
separate entry into the Linux kernel is required and overheads
start to become apparent. For the application mix we consider,
an interval 5×the Linux quantum (50ms) strikes the best
balance between accuracy and overheads and we use this for
the rest of the paper. A more formal methodology to select the
governor interval is planned in our future work.

V.  EXPERIMENTAL SETUP

A. Applications and OS

We run our experiments on an Ubuntu Linux 9.10 system
with the 2.6.31-22 kernel. The kernel is patched to enable our
techniques to run as kernel modules. We use the entire
SPEC2006 suite with all the ref. inputs.1 We compiled the
benchmarks with gcc 4.3 as 64-bits binaries and -O3
optimization. We use full benchmark runs to get a complete
view of the benchmark behaviour (the benchmarks run for
several minutes in our machines). Finally, the measurement of
the performance counters runs as a kernel module, enabling
counting in the OS. This way, no changes to the target
applications are required and the overhead remains minimal
(well below 1%).

B. Intel Core i7 and AMD Phenom II: main features

The Intel Core i7 is a quad-core CMP. Each core supports
hyperthreading execution. The Core i7 family is enhanced
with a special power-aware characteristic, called Speedstep
technology [4] which allows fast run-time voltage/frequency
scaling between 9 steps, from 1.6 to 2.66GHz (i7 920). The i7
also supports various idle states, called C-states, in which it is
possible to completely deactivate the clock and cut-off the
power supply to a combination of cores (not available in the
AMD). The quad-core AMD Phenom II supports 4 different
frequencies2 (0.8GHz, 2.1GHz, 2.5GHz and 3.2GHz). Each
core can operate at an independent frequency but all cores are
supplied by the same voltage (defined by the core running at
the highest frequency).

C. Measuring Power and Energy

Both i7 and Phenom II comprise of two main voltage
islands: core (exec. and fetch units, OoO, paging logic, L1/L2
caches, branch prediction) and uncore/northbridge (L3 caches
and memory controller) in i7/Phenom II respectively. To

Figure 4.  Governor Pseudocode

# Offline: Compute static power for all frequency steps
#      and typical core temperature ranges
# Store results in table Pstatic[f,T] (indexed by freq.
#      step f and operating temperature range T)

green_governor() # invoked every q ms
# obtain the measurement of total energy
#      for the previous window:
  measured_P = obtain_measurement_from_USB
  measured_E = measured_P * t
# stalls[core]: perf. counter measurement of stalls
# IPC: perf counter measurement of instructions issued
#      per cycle (i7) or retired per c (Phenom II)

  min_edp=inf
  for all frequencies f
    for all cores
      # invoke Eq.4:
      predicted_D[core]=stall-model(stalls[core],f)
    total_D = sum(predicted_D[core])
    predicted_E = Dynamic_model(IPC) + Pstatic[f,T] * t
# validate the prediction using real power measurements 
# not part of the governor - used only for validation
#   error = difference(predicted_E, measured_E)
    edp = predicted_E * total_D
    if edp < min_edp
      min_edp = edp

TABLE I. POWER CONSUMED BY I7 CORES IN THE IDLE STATE.

NUMBER OF ACTIVE 
CORES

2.66 GHZ (NOMINAL 
FREQ.)

1.6 GHZ (MINIMUM 
FREQ.)

4 CORES 15.8W 7.6W
2 CORES 10.4W 2.1W
1 CORE 2.6W 1W

TABLE II. POWER CONSUMED BY THE PHENOM II IN THE IDLE STATE.

FREQUENCY (GHZ) IDLE POWER (W)
3.2 27.5W
2.5 17.11W
2.1 11.29W
0.8 5.7W

1 Due to space limitations, for the benchmarks with multiple inputs, we
only include in the graphs the average over all inputs.

2 For simplicity, the lowest frequency we consider in this work is 2.1GHz.



isolate core power, we compute core power dissipation by
directly measuring voltage and current from the off-chip
voltage regulator (ADP4000 for i7 and ISL6323B for Phenom
II) residing in the motherboard. While measuring voltage in
both processors is straightforward, measuring current is
highly dependent on the regulator design. In i7’s regulator
there is a pin monitoring total output current. In Phenom II’s
voltage regulator there is no current monitor pin, but output
current can be estimated by measuring the voltage drop when
the processor is under load. By hacking the motherboard
(connecting wires to the appropriate pins) we are able to
measure power while the processor is under normal operation.
We use a sampling period of 10ms. Power measurements are
fed to the Linux kernel using DLP-IO8, a USB analog–to–
digital converter.
D. Static Power

When the processor is in the idle state, it consumes only
static power since the clock is cut-off (the off-chip voltage
regulator still provides voltage to the core). To get a full
picture of how much power is consumed in the idle state, we
deactivate different number of cores from the BIOS (available
only in i7). The assessed idle power under different
frequencies is gathered off-line by our kernel module. The
stored power numbers are then used to predict the processor
power at run-time. Tables 1 and 2 show idle power for both
processors under different frequencies. Our methodology is
able to take into account the dependence of static power to
temperature (by sampling periodically the processor’s
temperature sensors), but here we statically use the
appropriate measurements for the operating temperature.

VI.  EVALUATION

Intel i7. In the first set of experiments we run a single
SPEC2006 benchmark in one of the i7’s cores, let the

governor pick the V/f pair to optimize EDP without any
constraints (OptEDP) and with a constraint of 10% on
performance loss (OptEDPlimit), and normalize to Linux
OnDemand governor case (i.e. max frequency). Figure 5
shows the performance impact, the energy savings
(measured), and the resulting EDP for the two policies for all
SPEC2006. In some CPU-bound programs there is a slight
worsening in EDP, since the performance of such programs is
very sensitive to frequency changes and any misjudgment in
the governor’s decisions impacts EDP negatively. This
negative impact is reduced when we impose a restriction on
performance loss (10% in these experiments). In contrast, in
memory-bound programs (libquantum, mcf, milc, etc.) EDP
benefits can be substantial (exceeding 36% improvement in
libquantum).

These results reflect the run-time decisions of the governor.
But how far away are these results from the optimal EDP we
could achieve with an exhaustive search of all possible V/f
pairs? Figure 6 compares OptEDP to the “best static” case
resulting from an exhaustive search. In the same figure we
also show the “worst static” EDP, i.e., how bad one could do
by selecting the worse possible V/f pair for each benchmark.
For both OptEDP and “worst static” the percentage difference
to the best static is shown. Note that in the static cases a single
V/f pair is selected for the whole program while OptEDP
dynamically changes V/f during the whole execution. In some

Figure 5.  Performance, Energy and EDP (norm. to fmax) for the OptEDP and OptEDPlimit governors on the Intel i7.
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Figure 6.  OptEDP governor and worst static comparison to best 
static profiling run (Intel i7).
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Figure 7.  Multicore OptEDP and OptEDPlimit governor with 4 
programs (Intel i7).

TABLE III. MIXED WORKLOADS. SHADED APPS ARE MEMORY-BOUND.

APP1 APP2 APP3 APP4
MIX1 GAMESS CALCULIX LIBQUANTUM MILC

MIX2 GAMESS H264REF SJENG LIBQUANTUM

MIX3 LIBQUANTUM MILC OMNETMPP  CALCULIX

MIX4 LIBQUANTUM LIBQUANTUM MILC MILC

Intel i7
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cases, this results in our governor even beating the best static
policy (negative error), since it is able to shape its decisions to
program phases.

Finally, Figure 7 shows the results of the OptEDP and the
OptEDPlimit governor when running four mixed workloads
(shown in Table 3) in the quad-core i7. mix1 consists of two
CPU-bound (gamess and calculix) and two memory-bound
programs (milc and libquantum). While all four programs are
running, the governor selects the lowest frequency and this is
why gamess shows such a high performance penalty. gamess
remains CPU-bound even with three other programs running
at the same time. calculix also shows a significant
performance penalty. The two memory-bound programs have
small performance penalties —even though a low frequency
is employed— but yield substantial energy savings. calculix is
the longest-running program and still runs when all the other
three programs have finished. At this point the governor
realizes that it has a CPU-bound program and increases the
frequency to the maximum. Overall, the governor yields close
to 18% improvement in EDP over the Linux OnDemand
governor. Finally, mix4 is pure memory-bound workload
(four memory-bound programs). In this case, OptEDP
correctly selects to run all programs at the lowest available
frequency with minimal performance overhead (below 2%),
but with substantial energy benefits (56% reduction in EDP).
AMD Phenom II. For the AMD Phenom II we use the
OptED2P governor which optimizes ED2P. Optimizing EDP
in the Phenom II is simply not interesting: in the course of our
study we discovered that all SPEC2006 programs have their
optimal EDP at 2.1GHz! Even CPU-bound programs do not
exhibit a better EDP at the highest frequency (3.2GHz). This
is because of the high supply voltage (1.32V) required at high
frequencies, the high static power dissipation, and the fact that
the temperature of the Phenom II rises noticeably when

running at full speed (increasing static power). Using ED2P,
instead, gives us the opportunity to study the governor when
emphasis is given to performance. Figure 8 shows the
resulting benefit compared to running with Linux OnDemand
governor for all SPEC2006. Again we see substantial benefit
for memory-bound programs (up to 41% for libquantum) but
also some negative results for bwaves and cactusADM.

In bwaves, the governor errs because of the improper
accounting of the LLC stall cycles (up to 24% performance
prediction error) resulting in adverse frequency transitions.
The situation in cactusADM is more complex. As it is
depicted in Figure 9, even selecting the worst static V/f (for
the whole program run) performs better than OptED2P
governor. This is a non-intuitive behavior because even if our
OptED2P makes wrong decisions, the resulting ED2P should
be at least equal to the ED2P of the worst case scenario
(lowest frequency in this case). The reason is the following.
Our OptED2P governor selects to alternate between low and
high frequency at almost every interval. The frequent changes
have an interesting side effect: the processor die is kept hot (as
it runs at max frequency) even for the small periods running at
the lowest frequency. As a result, during the low frequency
intervals, the static power dissipation is considerably high
(due to the high temperature) resulting in higher chip power
dissipation compared to the case when the lowest frequency is
set for the whole run. Solving this issue requires our
governors to take into account the thermal dissipation as an
input which we plan as future work.

Considering the main advantage of the AMD Phenom II in
terms of DVFS capabilities, the per-core frequency scaling,
we expected it to be much more versatile than the Intel i7

Figure 8.  Performance, Energy and ED2P (norm. to fmax) for the OptED2P and OptED2Plimit governors on AMD Phenom II.
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Figure 9.  OptED2P governor and worst static comparison to best 
static profiling run (AMD Phenom II).
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Figure 10.  Multicore OptED2P and OptED2Plimit governor with 4 
programs (AMD Phenom II).
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when it comes to optimizing the ED2P of multiple programs
simultaneously. Our study, however, shows that the limiting
factor is the common supply voltage for the whole chip. Even
though each core can be clocked independently, the supply
voltage needs to be the highest voltage required by the highest
frequency employed in the chip. As a result, the energy
benefits between the Intel i7 and the AMD Phenom II are
almost the same in all mixes (except mix2) invalidating the
potential for higher energy savings due to the per-core DVFS.

Consider for example mix1 (Figure 10). What we would
expect to happen with per-core DVFS is that the two CPU-
bound programs (gamess and calculix) would run at the
highest frequency while the two memory-bound programs
(milc and libquantum) at the lowest. However, the two CPU-
bound programs force the supply voltage to its highest level,
raising the static power dissipation in the cores that run the
memory-bound programs. Even though the two memory-
bound programs run at low frequency they do not get the
benefit in dynamic energy savings that comes from a reduced
supply voltage. Our governor computes the OptED2P using
the chip-wide supply voltage and arrives at a different
frequency setting from the one sketched above: it chooses the
lowest frequency for all programs even for the CPU-bound
programs (as in i7). Thus, gamess experiences a significant
performance penalty (exactly the same as in i7). The
difference between Intel i7 and AMD Phenom II in mix2
comes from the fact that we use different power efficiency
metrics for the two machines (EDP in i7, ED2P in Phenom II).
In this case, the OptED2P governor correctly picks to limit the
performance penalty of the applications, reducing, however,
the potential for higher energy benefits.

Overall, in the presence of memory-bound programs we
see substantial reductions in total energy (with corresponding
ED2P improvements), which can exceed 50% for purely
memory-bound workloads (mix4).

VII.  CONCLUSIONS

In this work we describe our experience in creating a
framework for accurate, continuously adaptive DVFS in real
systems. We implement Linux DVFS governors based on our
analytical DVFS models (in particular on the stall-based
model [11]). Our aim is to optimize power-efficiency
(expressed either as EDP or ED2P) even when a processor is
not lightly loaded and executes programs. To do this we rely
on the inherent slack in memory-bound programs that can be
exploited by DVFS. A unique characteristic of our approach
(compared to previous approaches) is that it requires minimal
input and calculations to make accurate performance/energy
predictions for any target frequency. The input for
performance predictions is approximated using available
performance counters in contemporary processors. For energy
predictions, static power is measured off-line and stored for
run-time calculations; dynamic power is approximated using a
model based on performance counters.

Based on these inputs, our green governors accurately
predict the effect of voltage/frequency scaling with minimal
calculations. The whole approach runs in kernel space thus
introducing minimal timing overhead in the execution of the
applications. The benefits can be substantial for memory-

bound workloads, in some cases exceeding 55% improvement
in EDP or ED2P.
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