
IDENTIFICATION AND OPTIMIZATION OF SHARING PATTERNS
FOR SCALABLE SHARED-MEMORY MULTIPROCESSORS

by

STEFANOS KAXIRAS

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy
(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN-MADISON

1998

© Copyright by Stefanos Kaxiras 1998
All Rights Reserved

Abstract

Distributed shared-memory architectures typically employ a directory-based protocol to main-

tain cache coherence. Identifying sharing patterns in parallel programs and applying special-

ized optimizations can increase cache-coherence protocol efficiency and yield performance

improvements. In this thesis, I propose and study both optimizations to sharing patterns and

techniques to identify sharing patterns.

The main thrust of the thesis is GLOW, a comprehensive optimization for wide sharing—a

sharing pattern that is a serious obstacle to scalability to large numbers of processors. I present

GLOW in the form of extensions to the SCI ANSI/IEEE standard. GLOW is implemented in special

network switches and incorporates characteristics that are not found together in previous pro-

posals: scalable writes and scalable reads, network locality (by exploiting the abundance of

widely-shared data to satisfy requests locally), simplicity, transparency to the base protocol,

and network topology independence. With simulation, I show that for programs with wide

sharing, GLOW can be more than twice as fast as SCI in large systems.

Furthermore, I examine techniques to identify sharing patterns. I propose a novel approach

based on maintaining the history of load and store instructions in relation to coherence events

(e.g., cache-misses) and predicting their future behavior. This instruction-based approach, dif-

fers from previously proposed adaptive protocols (address-based techniques) which maintain

data-access history and predict future accesses. Instruction-based prediction can offer accurate

detection of sharing patterns using few resources in the form of small predictors per node.

I examine instruction-based prediction for three sharing patterns: wide sharing, migratory

i

sharing, and producer-consumer sharing. For wide sharing, instruction-based prediction com-

pares favorably to static identification and to two novel dynamic address-based identification

schemes. For migratory sharing, instruction-based prediction matches or exceeds the perfor-

mance of previously proposed adaptive protocols (for seven benchmark programs). For pro-

ducer-consumer sharing, instruction-based prediction is coupled with speculative pre-send—a

novel optimization based on speculative execution. The low mis-speculation rates of this

scheme show promise for performance improvements.

ii

Acknowledgments

I dedicate this thesis to the memory of my father Vasileios, my mother Ekaterini and my

beloved partner Angeliki. The love of my mother, my brother Efthimios, my sister Eleni and

her family, as well as Angeliki’s family kept us going through graduate school.

I would like to thank my advisor and mentor, professor James R. Goodman for supporting me.

I am grateful to professor David A. Wood for his insight, professor Gurindar S. Sohi for his

support, and professor Mark D. Hill for his help. Their sound advice helped me to complete

my Ph.D.

Also, I would like to thank all my friends and colleagues at the University of Wisconsin, espe-

cially Scott Breach, Doug Burger, Babak Falsafi, Alain Kägi, Andreas Moshovos, Shubu

Mukherjee, Dionisios Pnevmaticatos, Yannis Schoinas, and T.N. Vijaykumar for the many

technical conversations, assistance, and advice. My thanks to Todd Bezenek who has proof-

read an entire version of this thesis. All remaining errors are solely my responsibility.

This work was supported in part by NSF Grants CCR-9207971 and CCR-9509589, funding

from the Apple Computer Advanced Technology Group, an unrestricted grant from the Intel

Research Council, and equipment donations from Sun Microsystems. Our Thinking Machines

CM-5 was purchased through NSF Institutional Infrastructure Grant No. CDA-9024618, with

matching funding from the University of Wisconsin Graduate School. This work was also par-

tially supported by the National Center for Supercomputing Applications and utilized the

Thinking Machines CM-5 at NCSA, University of Illinois at Urbana-Champaign.

iii

Table of Contents

Abstract ... i

Acknowledgments ... iii

Table of Contents... iv

List of Figures ...viii

List of Tables ...xiii

Chapter 1 Introduction.. 1
1.1 Sharing patterns and optimizations ... 4

1.1.1 Wide sharing ... 4
1.1.2 Migratory sharing.. 7
1.1.3 Producer-consumer sharing... 8

1.2 Identification of sharing patterns... 9
1.2.1 Static techniques ... 10
1.2.2 Dynamic address-based techniques .. 10
1.2.3 Dynamic Instruction-based techniques:

Instruction-based prediction.. 11
1.3 Contributions ... 15
1.4 Thesis roadmap ... 17

Chapter 2 Evaluation Methodology.. 19
2.1 Wisconsin Wind Tunnel .. 20
2.2 Network... 23
2.3 Benchmarks... 26

2.3.1 GAUSS .. 27
2.3.2 SPARSE... 28
2.3.3 APSP, TC... 28
2.3.4 CG .. 29
2.3.5 BARNES .. 29
2.3.6 CHOLESKY.. 30
2.3.7 MP3D.. 30
2.3.8 PTHOR .. 31
2.3.9 OCEAN.. 31

Chapter 3 Wide Sharing.. 33
3.1 Widely-shared data.. 34
3.2 The idea behind GLOW: exploit redundancy of widely-shared data 37
3.3 Related work ... 40

3.3.1 Sharing trees.. 40

iv

3.3.1.1 STEM kiloprocessor extensions to SCI 41
3.3.1.2 STP and TD .. 46

3.3.2 Request combining.. 47
3.3.3 Caching in the network ... 48
3.3.4 Hierarchical directories ... 48

3.4 GLOW ... 51
3.4.1 GLOW features ... 51
3.4.2 An overview of the GLOW extensions ... 54

3.5 GLOW on SCI .. 56
3.5.1 SCI GLOW Agents... 56
3.5.2 Creation of sharing trees ... 61
3.5.3 Multilevel inclusion .. 64
3.5.4 Invalidation of sharing trees.. 67
3.5.5 Latency of reads and writes .. 72
3.5.6 Replacements in sharing trees... 77
3.5.7 Replacements and GLOW cache size ... 81
3.5.8 Update of sharing trees ... 85

3.6 Memory consistency and GLOW .. 88
3.6.1 Memory models .. 88
3.6.2 GLOW and relaxed memory models... 89
3.6.3 Update protocols and memory models ... 91

3.7 Other possible GLOW implementations ... 93
3.7.1 Full-map directory protocols... 93

3.7.1.1 The agent addressing problem in full-map protocols 94
3.7.1.2 A sample GLOW design for DirnNB 94
3.7.1.3 Summary of GLOW on DirnNB 101

3.7.2 Limited pointer directory protocols .. 103
3.7.3 GLOW and pruning caches ... 104
3.7.4 Software GLOW (SOFTGLOW)... 105

3.7.4.1 SOFTGLOW and software combining 106
3.7.4.2 Related work .. 107

3.8 Summary ... 108

Chapter 4 Static and Dynamic Optimizations for Wide Sharing............ 111
4.1 Static optimizations for wide sharing.. 113

4.1.1 Static address-based GLOW ... 113
4.1.2 Static instruction-based GLOW .. 114

4.2 Performance of static optimizations.. 117
4.2.1 Basic performance: GLOW with and without data cache............. 119
4.2.2 Dataset... 124
4.2.3 Analysis of read and write performance 126
4.2.4 Relaxed consistency .. 129
4.2.5 Update protocol... 132

4.3 Dynamic address-based optimizations for wide sharing......................... 134

v

4.3.1 Congestion-based detection of widely-shared data..................... 135
4.3.1.1 Request-combining in GLOW .. 135
4.3.1.2 AGENT DETECTION of widely-shared data 136
4.3.1.3 Performance of congestion-based optimizations 138

4.3.2 DIRECTORY DETECTION of widely-shared data............................ 144
4.3.2.1 Adapting back .. 148

4.4 Dynamic instruction-based optimizations for wide sharing.................... 152
4.4.1 Latency.. 154
4.4.2 Directory feedback.. 155
4.4.3 Implementation issues... 157
4.4.4 Results... 159
4.4.5 Static instruction-based optimizations for widely-shared data ... 160

4.5 Performance comparisons and read-run analysis 163
4.6 Summary ... 174

Chapter 5 Migratory Sharing .. 177
5.1 Address-based optimizations for migratory sharing 181
5.2 Instruction-based optimizations for migratory sharing 183

5.2.1 QOLB.. 183
5.2.2 Static instruction-based optimizations .. 183
5.2.3 Dynamic instruction-based optimizations................................... 184
5.2.4 Cache-block anti-dependence prediction 185
5.2.5 Migratory sharing optimization on SCI 192
5.2.6 Results... 194

5.3 Summary ... 197

Chapter 6 Producer-Consumer Sharing .. 199
6.1 Related work ... 201

6.1.1 Address-based optimizations .. 201
6.1.2 Instruction-based optimizations .. 201

6.2 Dynamic instruction-based optimizations... 203
6.2.1 Pairwise-sharing prediction... 203
6.2.2 Producer-consumer prediction with

speculative-execution optimization... 204
6.2.3 In search of the consumers.. 205
6.2.4 Prediction .. 206
6.2.5 A novel optimization: speculative pre-send 208
6.2.6 How can a processor read external speculative data? 209
6.2.7 Results... 211

6.3 Predictor interactions... 216
6.4 Summary ... 218

Chapter 7 Summary and Future Directions .. 219
7.1 The GLOW optimization for wide sharing.. 220

vi

7.2 Instruction-based prediction.. 222
7.3 Future directions.. 224

References .. 227

Appendix 1: SCI Cache Coherence .. 237

Appendix 2: Enhancements for the Construction of GLOW Trees 243

Appendix 3: Critical Section Detection ... 245

vii

List of Figures

Figure 2.1. 2-dimensional and 3-dimensional networks made of SCI rings. 22
Figure 2.2. SCI ring interface assumptions. ... 24
Figure 2.3. Queueing in a node (only one ring interface shown for clarity).

The GLOW server is close to the ring interface and does not
have to go through the bus to communicate with other nodes.
This is because the GLOW server represents the switch that
connects multiple ring interfaces together and transfers messages
from one to the other... 24

Figure 3.1. Read-run histogram and corresponding Reads/Invalidations
for GAUSS running in 128 nodes. .. 35

Figure 3.2. STEM cache pointers.. 42
Figure 3.3. STEM sharing tree construction. .. 43
Figure 3.4. STEM sharing tree invalidation. ... 45
Figure 3.5. COMA architectures. A request for non-local data traverses

the hierarchical directories until it locates a directory entry
that specifies the location of the data. For example, when
node 0 requests data block “b” it will find it in its immediate
vicinity; when it requests data block “d” it has to ascend to
the root of the hierarchical directory structure to find the data
block in the remote node 3. .. 49

Figure 3.6. Logical k-ary sharing tree. Black nodes are GLOW agents,
white nodes are sharing nodes. ... 55

Figure 3.7. A GLOW agent in a 2-ring SCI system. .. 57
Figure 3.8. The behavior of a GLOW agent is independent of topological

information; it depends only on the direction of the request traffic. 58
Figure 3.9. Schematic representation of a GLOW agent holding 2 child lists............ 59
Figure 3.10. Internals of a GLOW agent. The right scheme is a representation

of an uncompressed GLOW entry in the directory cache......................... 60
Figure 3.11. GLOW agent intercepts node’s request and generates its own

request (miss in the agent’s directory).. 62
Figure 3.12. Hit in agent; node joins a pre-existing child list. 63
Figure 3.13. Hit in agent, node joins a new child list. .. 63
Figure 3.14. GLOW sharing tree on a 3-ary 3-cube (virtual tails not shown). 65

viii

Figure 3.15. Deadlock! Two expanding sharing trees (shown in the middle)
conflict in a pair of GLOW agents (topology shown in the left).
Each tree needs the GLOW entry of the other tree to continue
building toward its target home node memory directory.
To break the deadlock each agent ignores the request of the
other agent and passes it toward its destination
(shown in the right)... 66

Figure 3.16. Invalidation of a GLOW sharing tree.. 70
Figure 3.17. Read latency micro-benchmark results in 2-dimensional topologies..... 74
Figure 3.18. Read latency micro-benchmark results in 3-dimensional topologies..... 75
Figure 3.19. Write latency results in 2-dimensional topologies. 75
Figure 3.20. Write latency results in 3-dimensional topologies. 76
Figure 3.21. Micro-benchmark for writes... 76
Figure 3.22. LINEARIZING ROLLOUT.. 80
Figure 3.23. Sensitivity to directory cache size for GAUSS. .. 82
Figure 3.24. DESTRUCTIVE vs. LINEARIZING ROLLOUT for GAUSS. 82
Figure 3.25. Sensitivity to directory cache size for SPARSE.. 83
Figure 3.26. Sensitivity to directory cache size for APSP. ... 83
Figure 3.27. Internals of a GLOW agent in a DirnNB-based system.

The right scheme is a representation of a GLOW entry in the
directory cache.. 95

Figure 3.28. Hypothetical example of a four node system. A GLOW agent
assumes the identity of node 1 for widely-shared data and
intercepts requests from nodes 0 and 3 as well as locally
from node 1... 97

Figure 3.29. Invalidation of a GLOW sharing tree in a DirnNB system.

The hypothetical four node example of figure (3.28) is used................. 98
Figure 3.30. Invalidation message returns to the writer node which is

also a GLOW agent... 99
Figure 3.31. Replacement of a GLOW agent in a DirnNB system.

The hypothetical four node example of figure (3.28) is used............... 100
Figure 4.1. GAUSS: Normalized speedup (base system is SCI on 16 nodes)

for 2- and 3- dimensional networks. GLOW with and without
data cache. .. 121

Figure 4.2. SPARSE: Normalized speedup (base system is SCI on 16 nodes)
for 2- and 3- dimensional networks. GLOW with and without
data cache. .. 122

ix

Figure 4.3. APSP: Normalized speedup (base system is SCI on 16 nodes)
for 2- and 3- dimensional networks. GLOW with and without
data cache. .. 122

Figure 4.4. TC: Normalized speedup (base system is SCI on 16 nodes)
for 2- and 3- dimensional networks. GLOW with and without
data cache. .. 122

Figure 4.5. BARNES: Normalized speedup (base system is SCI on 16 nodes)
for 2- and 3- dimensional networks.
GLOW with and without data cache... 123

Figure 4.6. CG: Normalized speedup (base system is SCI on 16 nodes)
for 2-dimensional network. GLOW with and without data cache. 123

Figure 4.7. Absolute speedup (over a single node) for GAUSS in 2 dimensions
with three input set sizes: 256x256, 512x512, 768x768. 125

Figure 4.8. Absolute speedup (over a single node) for APSP in
2 dimensions with two input set sizes: 256x256 and 512x512. 125

Figure 4.9. Absolute speedup (over a single node) for TC in
2 dimensions with two input set sizes: 256x256 and 512x512. 126

Figure 4.10. Write latency micro-benchmark results for GLOW with
serial invalidation.. 128

Figure 4.11. Normalized speedup for GAUSS and SPARSE with serial GLOW.
Base system is SCI on 16 nodes. ... 128

Figure 4.12. Normalized speedup for APSP and TC with serial GLOW.
Base system is SCI on 16 nodes. ... 129

Figure 4.13. Normalized speedup for GAUSS and SPARSE with relaxed-consistency
memory model. Base system is SCI on 16 nodes. 130

Figure 4.14. Normalized speedup for APSP and TC with relaxed-consistency
memory model. Base system is SCI on 16 nodes. 131

Figure 4.15. Normalized speedup for BARNES with relaxed-consistency
memory model. Base system is SCI on 16 nodes, 131

Figure 4.16. Normalized speedup for full update in SPARSE.
Base system is SCI on 16 nodes. ... 133

Figure 4.17. Normalized speedup for full update in GAUSS.
Base system is SCI on 16 nodes. ... 133

Figure 4.18. Speedup for GAUSS (with respect to SCI on 16 nodes)
in 2 and 3 dimensions (16 to 128 nodes). ... 139

Figure 4.19. Speedup for SPARSE (with respect to SCI on 16 nodes)
in 2 and 3 dimensions (16 to 128 nodes). ... 140

Figure 4.20. Speedup for APSP (with respect to SCI on 16 nodes)
in 2 and 3 dimensions (16 to 128 nodes). ... 140

x

Figure 4.21. Speedup for TC (with respect to SCI on 16 nodes)
in 2 and 3 dimensions (16 to 128 nodes). ... 140

Figure 4.22. Sensitivity analysis for the size of the recent-addresses queue
(speedup of AGENT DETECTION with respect to SCI on 16 nodes). 141

Figure 4.23. Speedup results with slower switches. Contention in the switch
nodes makes ordinary combining competitive but it also slows
down the whole system. Speedups for SCI, combining, dynamic
and static GLOW are shown with respect to SCI on 16 nodes
with fast switches. .. 143

Figure 4.24. Instruction-based prediction for wide sharing. 153
Figure 4.25. Datapaths for the prediction mechanisms

(according to its location). .. 157
Figure 4.26. Comparison of SCI, static GLOW, and the two dynamic

instruction-based schemes for GAUSS and SPARSE.
Base system is SCI on 16 nodes. ... 161

Figure 4.27. Comparison of SCI, static GLOW, and the two dynamic
instruction-based schemes for APSP and TC.
Base system is SCI on 16 nodes. ... 161

Figure 4.28. Comparison of SCI, static GLOW, and the two dynamic
instruction-based schemes for BARNES.
Base system is SCI on 16 nodes. ... 161

Figure 4.29. Normalized speedup (over SCI) for GAUSS in 2 and 3
dimensions (16 to 128 nodes)... 164

Figure 4.30. Read-run compression for GAUSS (128 nodes 2-dimensions).
Accesses corresponding to large read-runs are shifted toward
smaller read-runs using GLOW extensions. ... 165

Figure 4.31. Normalized speedup (over SCI) for SPARSE in 2 and 3
dimensions (16 to 128 nodes)... 167

Figure 4.32. Compression of read-runs for SPARSE (128 nodes, 2 dimensions).
Accesses corresponding to large read-runs are shifted toward
smaller read-runs using GLOW extensions. ... 167

Figure 4.33. Normalized speedup (over SCI) for APSP for 2 and 3
dimensions (16 to 128 nodes)... 168

Figure 4.34. Normalized speedup (over SCI) for TC in 2 and 3
dimensions (16 to 128 nodes)... 168

Figure 4.35. Read-run compression for APSP (128 nodes, 2 dimensions).
Accesses corresponding to large read-runs are shifted toward
smaller read-runs using GLOW extensions. ... 169

xi

Figure 4.36. Normalized speedup (over SCI) for CG in 2 and 3
dimensions (16 to 64 nodes)... 170

Figure 4.37. Read-run compression for CG (64 nodes, 2 dimensions).
Accesses corresponding to large read-runs are shifted toward
smaller read-runs using GLOW extensions. ... 170

Figure 4.38. Normalized speedup (over SCI) for BARNES for 2 and 3
dimensions (16 to 128 nodes)... 171

Figure 4.39. Read-run compression for BARNES (64 nodes, 2 dimensions).
Y-axis (no. of accesses) not in logarithmic scale.................................. 172

Figure 5.1. Migratory sharing optimization. ... 178
Figure 5.2. Typical critical sections in MP3D and OCEAN. 184
Figure 5.3. Cache block anti-dependence prediction mechanism........................... 187
Figure 5.4. Alternative implementation for the prediction mechanism:

Correspondence of a load and a store is established
via an external structure.. 190

Figure 5.5. Alternative implementation for the prediction mechanism:
Correspondence of a load and a store is established
via the cache block. .. 190

Figure 5.6. Migratory sharing optimization on SCI. .. 193
Figure 8.1. SCI sharing list. ... 238
Figure 8.2. Creation of a sharing list... 239
Figure 8.3. Additions to a SCI sharing list... 240
Figure 8.4. SCI cache rollout. .. 241
Figure 8.5. SCI sharing list invalidation... 241
Figure 8.6. Example of an MP3D critical section with migratory data.

Entry is through a number of different synchronization algorithms
based on different atomic/synchronization primitives: Swap,
Test&Swap, and QOLB. The MCS algorithm is implemented using
Test&Swap. The USE_WITH algorithm is based on QOLB.
Special writes (implementing memory fences) or the QOLB release
primitive are used to exit the critical section. 246

xii

List of Tables

Table 1. Techniques to identify a sharing pattern.. 9
Table 2. Previously proposed identification techniques for three sharing

patterns (shaded cells). .. 15
Table 3. Identification techniques proposed in this thesis....................................... 16
Table 4. Benchmarks used in this work. For each benchmark, the input size,

the cache and block size, and prominent sharing patterns are
described. The references point to papers where the benchmarks are
described or used in the same way as in this work.................................... 26

Table 5. Wide sharing: static and dynamic, address-based and
instruction-based methods to apply the GLOW optimizations.
Related work is shown in the shaded cells. ... 111

Table 6. Actual speedups (over a single node) for SCI. The shaded rows
are speedups for the 16-node systems with 2- and 3-dimensional
topologies that are used as the base cases for normalizing
GLOW speedups.. 118

Table 7. Speedup of static GLOW (S) over SCI on 16 to 128 nodes,
2 and 3 dimensions. ... 119

Table 8. GLOW speedup over SCI for (running on the same number of nodes)
for GAUSS for three inputs. .. 124

Table 9. Speedup using combining (C), AGENT DETECTION (A), and
static GLOW (S) over SCI on 16 to 128 nodes, 2 and 3 dimensions.......... 138

Table 10. Speedup using fast and slow switches for SCI (SCI), combining (C),
AGENT DETECTION (D), and static GLOW (S).
The base case is SCI on 16 nodes with fast switches. 144

Table 11. Results for wide sharing optimizations (speedup over SCI). 160
Table 12. Statistics for wide sharing prediction (directory-feedback scheme). 160
Table 13. Techniques to apply the migratory sharing optimization. 179
Table 14. Simulation results for migratory sharing optimizations

(32 nodes, speedup over SCI)... 196
Table 15. Statistics for instruction-based prediction. .. 199
Table 16. Producer-consumer sharing optimizations .. 194
Table 17. Statistics for producer-consumer LAST-PREDICTION with

speculative pre-send (32 nodes). ... 212
Table 18. Statistics for producer-consumer INTERSECTION-PREDICTION with

speculative pre-send (32 nodes). ... 213

xiii

xiv

1

1 Introduction

The shared-memory multiprocessing paradigm is well established for small-scale parallel

machines such as bus-based multiprocessors. The uniform global address space of the shared-

memory model, through which all data communication is performed, leads to a clean and ele-

gant programming model that is preferable in many situations over the message-passing pro-

gramming model.

Larger shared-memory machines built of smaller bus-based symmetric multiprocessors (SMP

nodes) are also advancing in the marketplace. Because buses do not scale beyond a small

number of processors (usually up to 16), larger shared-memory machines are built by physi-

cally distributing the memory among a number of nodes connected with a network. To drive

development costs down and shorten time-to-market, distributed shared-memory systems

leverage existing commodity parts such as processors, main-boards, and networks designed to

support fine-grain communication [41].

Typically, in such architectures, a directory-based coherence protocol is employed to maintain

cache coherence (CC) among the SMP nodes. Contemporary examples of such architectures

include the HP/Convex Exemplar [26] and Sequent STiNG [68] that use Scalable Coherent

Interface (SCI) networks and SCI cache coherence [41], and the SGI Origin 2000 [62] that uses

a directory-based cache coherence protocol originating in Stanford’s DASH multiprocessor

[65].

The widespread use of hardware shared-memory systems (especially SMP’s) presents an

2

opportunity to promote shared-memory parallel programming to a much larger audience of

programmers than ever before. However, for widespread use of shared-memory, we need to

address performance issues that arise in distributed shared-memory machines. Weber and

Gupta’s research [100] has revealed the existence of various sharing patterns in shared-mem-

ory programs. For example, sharing patterns such as migratory sharing and producer-con-

sumer sharing have been identified and optimizations specific to such patterns have been

proposed.

In this thesis I examine optimizations for hardware distributed shared-memory architectures

and for various sharing patterns. The main thrust of the thesis is on wide sharing, but I also

examine migratory sharing, and producer-consumer sharing. I propose a new optimization for

wide sharing called GLOW and a new optimization based on speculative execution for pro-

ducer-consumer sharing. For migratory sharing I study an optimization inspired by previous

work [28,93].

Because these optimizations are specific to a sharing pattern they should not be applied indis-

criminately for all accesses. Doing so may result in performance loss. Therefore, we need to

identify the data affected by a sharing pattern, or the accesses that belong to a sharing pattern,

and selectively apply the corresponding optimization.

Identification of the sharing pattern is orthogonal to the optimization for the sharing pattern.

In this thesis I examine the identification of sharing patterns in two dimensions. The first

dimension corresponds to the time the identification takes place. Identification can take place

at compile-time, or statically. In this case the programmer or the compiler identifies the shar-

ing pattern. Alternatively, identification can take place at run-time, or dynamically. In this

3

case, run-time mechanisms identify a sharing pattern and invoke the corresponding optimiza-

tion.

The second dimension corresponds to the method used for the identification. Either the data

that are affected by a sharing pattern can be identified, henceforth called address-based iden-

tification, or the memory instructions that are involved in a sharing pattern can be identified,

henceforth called instruction-based identification. Dynamic instruction-based identification,

using prediction is one of the major contributions of this thesis.

In the rest of this chapter I introduce the optimizations to the three sharing patterns (Section

1.1) and the corresponding dynamic/static and address-based/instruction-based identification

techniques (Section 1.2).

4

1.1 Sharing patterns and optimizations

Several classes of sharing patterns in shared-memory applications have been identified

(migratory, read-only, frequently-written sharing, etc. [22,100]). In this thesis I examine wide

sharing, and to a lesser degree migratory sharing and producer-consumer sharing. The charac-

teristics of these sharing patterns and the optimizations I propose are introduced below.

1.1.1 Wide sharing

Widely-shared data that are read simultaneously by many—usually all—processors is a dis-

tinct sharing pattern that imposes increasingly significant overhead as systems increase in

size. When all processors read widely-shared data there is much contention in the home node

for servicing the requests as well as in the network around the home node which becomes a

hot spot [78]. Similarly, when the widely-shared data are written, there is a large number of

invalidations (or updates) to be sent all over the system (i.e., non-locally). For systems with no

provision for efficient broadcast or multicasts, these invalidations consume much network

bandwidth, in a wasteful manner.

In this thesis, I argue that in fact, widely-shared data inherent in some parallel algorithms are a

more serious problem than previously recognized, and that furthermore, it is possible to pro-

vide support that gives an advantage to widely-shared data. The idea of read-combining

[36,95] evolved because of the concern for network contention for widely-shared data. Read-

combining is highly dynamic, and reduces traffic in the network by recognizing that simulta-

neous requests can be merged. The probability of occurrence of simultaneous requests only

becomes a factor when serious network contention extends the latency of individual requests,

5

and in general, the best that combining can hope to achieve is a reduction in latency of access

to widely-shared data to the latency that would be experienced in an unloaded network.

Alternatively, it is possible to access widely-shared data even faster than non-widely-shared

data. The presence of redundant copies of a datum in multiple caches throughout the system

offers this possibility: if data are widely shared there has to be network (geographical) local-

ity—if some data that are needed by a node are widely shared, it is likely that a cached copy of

the data is closer than the original data in the home node. This situation has some resemblance

to cache-only memory (COMA) machines [37], where data are quickly accessed if they reside

in a cache close to the requester. If an architecture can exploit this fact to improve accessibility

of widely-shared data, programmers would find that the best algorithms make extensive use of

widely-shared data rather than eschewing it. Thus, the potential for systems that provide high-

quality support for widely-shared data may be much larger than would be indicated by a sam-

ple of current shared-memory programs, which generally avoid such data wherever possible.

Previous proposals for a wide sharing optimization, such as the STEM Kiloprocessor Exten-

sions to SCI [44] and others [17,69,76] have largely ignored network locality in the network or

they are closely tied to a network that is physically hierarchical. In this thesis, I propose a

comprehensive solution to optimize wide sharing that borrows from the best attributes of pre-

vious proposals. The solution is given in the form of extensions (called GLOW extensions) to

other directory-based cache-coherence protocols. The GLOW extensions offer scalable reads

and scalable writes to widely-shared data. Scalable reads are achieved by caching directory

information in the network, a technique inspired by the request combining proposed for

CHoPP [95] and subsequently for the NYU Ultracomputer [36]. Because the directory infor-

6

mation is more long-lived, this technique can be effective even when multiple requests are not

generated simultaneously. Scalable writes are achieved by exploiting the topology to invali-

date or update sharing nodes in logarithmic time. The three main goals that guided the design

of GLOW were:

• TO CREATE SHARING TREES THAT MAP WELL ONTO ARBITRARY TOPOLOGIES, thus

achieving low-latency protocol messages. To achieve this goal, GLOW builds logical shar-

ing trees that follow the request patterns in the network. Multilevel inclusion Appendix 13

is not enforced thus, GLOW is topology independent and effectively avoids deadlocks in

arbitrary topologies.

• TO PROVIDE SCALABLE READS by exploiting request combining, independent of the tim-

ing of requests.

• TO PROVIDE SCALABLE WRITES by using the tree structure to invalidate or update shar-

ing nodes in parallel.

The GLOW cache-coherence protocol extensions are specifically designed to handle accesses

to widely-shared data. GLOW should not be applied to non widely-shared data because in this

case the overhead of building a sharing tree may outweigh the benefit.

Through detail execution-driven simulation I study a GLOW implementation on top the SCI

IEEE/ANSI standard cache-coherence protocol for six programs that do have widely-shared

data and for various system configurations. For the systems and the workload I have studied, I

found:

• GLOW provides scalable reads and writes lacking in the base coherence protocol (SCI).

7

• Widely-shared data start to become detrimental to performance for large systems (for 16

nodes and up).

• In systems with GLOW, the six programs I have studied scale better even with a fixed input

size. Increasing the input size increases the performance difference more than linearly

among systems with support for wide sharing (GLOW) and systems without.

• Relaxed memory models improve performance by hiding write latencies but cannot

replace GLOW which directly reduces both read and write latencies. Thus, GLOW on a strict

memory model such as sequential consistency is significantly better than SCI with a

relaxed memory model.

I have also studied two sharing-tree replacement algorithms for GLOW and to a limited extent

update protocols in GLOW.

1.1.2 Migratory sharing

Migratory sharing refers to data that are read, modified, and written by a single processor at

time. Typically, such data are accessed within critical sections. In previous work (by Cox and

Fowler [28], and by Stenström, Brorsson, and Sandberg [93]) the optimization is to collapse

the coherent read (that first accesses the migratory data) and the coherent write (that updates

the migratory data) in a single transaction. This optimization is performed by the home node

directory, which is responsible to dynamically detect migratory sharing. For migratory data

the directory simply returns a writable copy to a read request (after invalidating any older cop-

ies). The optimization used in this work is initiated by a node that is accessing migratory data

by simply converting the first coherent read of the migratory data to a coherent write. This first

appeared in the form of a specialized coherence protocol for migratory sharing in the Munin

8

software Distributed Shared Memory (DSM) system [22].

1.1.3 Producer-consumer sharing

Producer-consumer sharing is one of the more difficult sharing patterns to optimize because

conceptually, all sharing can be classified under this pattern. However, optimizations have

been proposed for stable producer-consumer sharing. The goal of such optimizations is to

transfer newly created values from the producer to the consumer as soon as possible. The opti-

mizations are various update protocols and variations of Data Forwarding [59,3,62]. Update

protocols have well known problems such as superfluous update messages and implementa-

tion constraints with sequential consistency [61,5]. Data Forwarding totally relies on the pro-

grammer/compiler for correctness.

In this thesis, I propose a novel optimization for producer-consumer sharing that is both trans-

parent and independent of the memory model. The idea is to pre-send data speculatively to

potential consumers. The consumers can use the data speculatively, provided that they eventu-

ally verify the correctness of the data through the cache-coherence protocol. In this way, pro-

cessors can race ahead speculatively, while coherence enforcement follows behind.

This optimization trades bandwidth for latency. Because the simulation environment I use in

this thesis does not allow speculative execution, I only report mis-speculation statistics (analo-

gous to branch prediction studies). The low mis-speculation rates for four programs indicate

that there is potential for performance gains but further research is needed to quantify the per-

formance of this optimization.

9

1.2 Identification of sharing patterns

Along with the sharing pattern optimizations (primarily the GLOW extensions for wide sharing

but also the speculative pre-send for producer-consumer sharing) the major contribution of

this thesis is a thorough examination of techniques to identify sharing patterns and selectively

apply optimizations. I divide the techniques into dynamic and static and into address-based

and instruction-based. Table 1 shows all possible cases.

Static vs. Dynamic: To change the interface or not?—The choice between static and

dynamic depends on: (i) whether it is possible to change the software/hardware interface and

(ii) implementation costs. Static methods require an interface to pass information from the

program to the hardware. Various reasons may render such an interface infeasible. For exam-

ple, compatibility reasons or commodity hardware may pose problems. Additionally, the static

methods require the involvement of the user (programmer) or, at the very least, the compiler.

Static methods may also be undesirable since they subtract from the elegance of the shared-

memory programming paradigm. On the other hand, dynamic methods require more expen-

sive mechanisms at run-time to detect sharing patterns. The advantage of dynamic approaches

is that they are transparent to the architecture and to the user/compiler. However, they require

TIME

Compile-time (Static)

(user/compiler)

Run-time (Dynamic)

(run-time mechanisms)

TYPE Address Static address-based Dynamic address-based

Instruction Static instruction-based Dynamic instruction-based

Table 1. Techniques to identify a sharing pattern.

10

custom hardware and incur hardware costs.

Address vs. Instruction: Examine what happens to the data or what the program is trying to

do?—The choice between address-based or instruction-based approaches depends on many

factors. Static address-based and static instruction-based methods are comparable: both

require involvement of the user and/or compiler, both have the same implementation problems

(software/hardware interface) and their performance depends on the ability to correctly define

a sharing pattern using addresses or instructions. Dynamic address-based and dynamic

instruction-based techniques differ considerably. In this thesis, I will show that the dynamic

instruction-based techniques require few hardware resources and can outperform the more

expensive dynamic address-based techniques.

1.2.1 Static techniques

Static address-based techniques have been proposed for all three sharing patterns (Table 2). I

discuss previous work and describe static instruction-based techniques to distinguish sharing

patterns. However, I evaluate only the dynamic counterparts of these techniques (instruction-

based prediction).

1.2.2 Dynamic address-based techniques

Dynamic address-based detection has been previously proposed for migratory sharing and

producer-consumer sharing (Table 2). I propose and evaluate two dynamic address-based

identification techniques for wide sharing:

• AGENT DETECTION: This scheme is inspired by request combining [36] and is based on

observing requests in the network switch nodes that implement the GLOW extensions (also

11

called GLOW agents). The switch nodes (agents) observe requests and intercept the ones

that appear to repeat frequently. This dynamic scheme tracks closely the performance of

the static address-based GLOW while it outperforms ordinary request combining for the

programs and the systems I have examined.

• DIRECTORY DETECTION: In this scheme, the memory directory discovers widely-shared

data by counting the number of reads between writes. Information about widely-shared

data is distributed to the nodes which subsequently use the GLOW extensions to access

them. In the evaluation I show that this scheme works well when the nature of the widely-

shared data is persistent over time.

1.2.3 Dynamic Instruction-based techniques: Instruction-based
prediction

Prediction is used for the three dynamic instruction-based techniques to identify sharing pat-

terns. The main idea of instruction-based prediction is to examine—at run-time—the behavior

of load and store instructions in relation to coherence events. In every node, the past behavior

of its load and store instructions is stored in a small predictor table. Whenever dynamic

instances of load and store instructions generate coherence events (such as misses, or write-

faults on read-only cache blocks) we consult the predictors for optimization hints. This means

that the optimizations affect the behavior of the processor toward the cache-coherence proto-

col (e.g., on a load-miss the processor may ask for permission to write) in contrast to address-

based prediction optimizations that affect the behavior of the cache-coherence protocol toward

the processor (e.g., the cache-coherence protocol—on its own—may decide to return a writ-

able block to a processor that asks for a read-only block).

12

Instruction-based prediction is not new in the uniprocessor world: it is established research

that already appears in commercial processors. Branch prediction is the pioneering instruc-

tion-based prediction method studied extensively by many researchers including Smith [92]

and Yeh and Patt [105]. Abraham et al. showed that very few loads are responsible for most

cache misses [4] and subsequently Tyson et al. proposed instruction-based prediction to selec-

tively bypass the cache for such loads [98]. Gonzalez, Aliagas, and Valero used instruction-

based prediction to steer data on caches optimized differently for spatial and temporal locality

[33]. Moshovos, Breach, Vijaykumar, and Sohi introduced memory-dependence prediction

[72]. They proposed dependence predictors accessed using the address of memory instruc-

tions. Subsequently, Moshovos and Sohi proposed memory optimizations based on depen-

dence predictions [73]. Tyson and Austin also proposed similar memory optimizations [97].

This thesis is the first research effort to bring these techniques in the world of parallel shared-

memory architectures. Although I believe that such techniques can be generally applicable

(from bus-based cache coherence to software-based coherence), in this thesis I present the

techniques for hardware directory-based coherence.

The benefits of instruction-based prediction/optimization can be significant:

1. Concise representation of history: Code is much smaller than datasets—static loads and

stores can be only so many while the dataset can be arbitrarily large—and keeping track of

the history of load and store instructions rather than memory blocks and/or cache blocks

consumes far fewer resources.

2. A single technique for many optimizations: The technique I propose can be used to opti-

mize several sharing patterns using a common, small predictor structure per node. In con-

13

trast, each address-based prediction scheme is tailored for a specific sharing pattern. Each

may require its own states in the coherence protocol and its own storage (usually on a per

block basis) for history information. Although Mukherjee and Hill showed how to general-

ize address-based prediction [75], the issue of excessive storage for history information

remains.

However, there are important issues involved with instruction-based prediction in shared-

memory:

1. Implementation issues: Instruction-based prediction calls for a tight integration of the pro-

cessor core and the coherence mechanisms because information from both places is needed

in the predictor.

2. Performance issues: Address-based prediction inherently keeps large amounts of history

information and in some situations this might be preferable to the “concise” information

we can gather regarding load and store instructions.

The instruction-based prediction techniques I examine for the three sharing patterns are:

• Wide sharing: Predict whether a load will access widely-shared data. I propose and

evaluate two schemes to predict whether a load instruction will access widely-shared data.

These schemes consistently outperform both the AGENT DETECTION and DIRECTORY

DETECTION dynamic address-based schemes for the programs studied (Chapter 4).

• Migratory sharing: Predict whether a load-miss will be followed by a store-write-

fault. This prediction can lead to optimization of migratory sharing patterns. The reason-

ing is that migratory sharing patterns often generate load-misses closely followed by

14

store-write-faults. For a set of seven programs studied for this sharing pattern, instruction-

based prediction requires far less resources than the (dynamic address-based) adaptive

migratory protocols while performing comparably (Chapter 5).

• Producer-consumer sharing: Predict which node is going to consume a value gener-

ated by a store. This scheme examines store instructions that generate write-faults and

keeps track of the potential readers of the newly written cache-blocks. The goal is to pre-

dict upon seeing a store-write-fault, whether there is a stable producer-consumer relation-

ship and to predict the identity of the consumer(s). This scheme is inspired by

uniprocessor dependece prediction work Appendix 72. There are three degrees of optimi-

zation (from conservative to aggressive): (i) Using a simple predictor we can initiate pair-

wise sharing with direct cache-to-cache transfers without involving the home directory,

(ii) switch to an update protocol—though this is not transparent in the case of a sequential

consistent memory system—, and (iii) using enhanced predictors we can speculatively

pre-send the newly created values to the predicted consumers. In this thesis I examine the

first and third cases (Chapter 6).

15

1.3 Contributions

Here, I summarize the contributions of this thesis. Table 2 illustrates how previous work maps

into the optimization space. Table 3 illustrates the contributions of this thesis. The union of

these two tables covers all possible cases.

In brief, I propose:

• For wide sharing: the GLOW optimization; a static address-based, a static instruction-

based, two dynamic address-based, and two dynamic instruction-based methods to selec-

tively apply the optimization.

WIDE SHARING Static Dynamic

Address EC [17]

PROXIES [96][15]

STEM [44]

Combining [36]

Instruction — —

MIGRATORY SHARING Static Dynamic

Address Munin [22] Adaptive protocols for migratory
data [28][93]

Instruction — —

PRODUCER-
CONSUMER SHARING Static Dynamic

Address Munin [22]

Update protocols

Competitive Update

Instruction Data Forwarding [59][3][62] —

Table 2. Previously proposed identification techniques for three sharing patterns
(shaded cells).

16

• For migratory sharing: a dynamic instruction-based method to apply an optimization

(which is inspired by previous work). Additionally, I discuss a static instruction-based

method.

• For producer-consumer sharing: a dynamic instruction-based method to apply a novel

optimization based on speculative execution. I discuss three variations of this method.

WIDE SHARING Static Dynamic

Address Static GLOW-address 1) Agent Detection

2) Directory Detection

Instruction Static GLOW-Instruction Instruction-based prediction:

1) Latency

2) Directory feed-back.

MIGRATORY SHARING Static Dynamic

Address — —

Instruction Critical Section Instruction-based Prediction

PRODUCER-
CONSUMER SHARING Static Dynamic

Address — —

Instruction — Instruction-based prediction with

Speculative pre-send:

1) Last prediction

2) Intersection prediction

3) Two-level adaptive

Table 3. Identification techniques proposed in this thesis.

17

1.4 Thesis roadmap

Following the Introduction, in Chapter 2 I present the evaluation methodology used through-

out this thesis. In Chapter 3, I present the GLOW extensions to optimize wide sharing. GLOW is

independent of how wide sharing is defined statically or detected dynamically. Thus, in Chap-

ter 4 I describe a set of techniques (static, dynamic, address-based and instruction-based) to

distinguish wide sharing and selectively apply the GLOW optimizations. Chapter 5 describes

the dynamic instruction-based prediction for migratory sharing. Chapter 6 presents instruc-

tion-based prediction for producer-consumer sharing and the optimization based on specula-

tive execution. Finally, in Chapter 7, I summarize this thesis and conclude.

Nomenclature: In this thesis I use the following naming conventions: load, store are the

actual instructions; read, write are the cache coherence actions resulting from loads and

stores. A cache block that is not Invalid can be either ReadOnly (RO) or ReadWrite (RW). A

load or store can experience a cache miss which results in a coherent read or write; further-

more a store can experience a write fault on a RO cache block which results in a coherent

write.

18

19

2 Evaluation Methodology

This section presents the experimental methodology used for all evaluations in this thesis.

Simulation is applied to study the effects of optimizations for wide sharing, migratory sharing

and producer-consumer sharing. In Section 2.1, I discuss the Wisconsin Wind Tunnel (WWT)

[79] simulation environment. To study optimizations for wide sharing, I enhanced WWT with

detailed network simulation described in Section 2.2. Finally, in Section 2.3, I describe the

benchmark programs used throughout this thesis.

20

2.1 Wisconsin Wind Tunnel

A detailed study of the optimizations proposed in this thesis requires execution driven simula-

tion because of the complex interactions among the processors, their caches, the memory

modules, and the network. The Wisconsin Wind Tunnel [79] is a well-established tool for

evaluating large-scale parallel systems through the use of massive, detailed simulation. WWT

simulates shared-memory systems on a message-passing host system (a Thinking Machines

Corp. CM-5 [40]). It executes target parallel programs at hardware speeds (without interven-

tion) for the common case when there is a hit in the simulated coherent cache. In the case of a

miss, the simulator takes control and executes the appropriate actions defined by the simulated

protocol. WWT keeps track of virtual time in processor cycles. The direct execution nature of

WWT poses certain limitations: only instructions that generate coherence events are observ-

able; the coherent caches are blocking; the cache-block size must be a power-of-two multiple

of the hardware cache-block size (32 bytes) of the host system (CM-5); and finally speculative

execution is not supported.

Kägi, Aboulenein, Burger, and Goodman have simulated SCI extensively under WWT [47] and

all the optimizations I study (for wide sharing, for migratory sharing, and for producer-con-

sumer sharing) have been applied to this simulation environment. I simulated systems that

resemble SCI systems made of readily available components such as SCI rings and workstation

nodes.

For the evaluations in Chapters 3 and 4—which require detailed network simulation—I have

simulated k-ary n-cube systems (such as the Wisconsin Multicube proposed by Goodman and

21

Woest [34]) from 16 to 128 nodes in two and three dimensions. For practical reasons, in the

evaluations of Chapters 5 and of 6—where accurate network simulation is not critical—I sim-

ulated a constant latency (100 processor cycles) network.

The nodes comprise a processor, an SCI cache, memory, a memory directory, a GLOW agent

that implements the GLOW extensions, and a number of ring interfaces. The processors run at

500MHz and execute one instruction per cycle in the case of a hit in their cache. Each proces-

sor is serviced by a 64K 4-way set-associative cache with a cache-block size of either 32 or 64

bytes (see the discussion of cache parameters in Section 2.3). Processor, memory, and network

interface (including GLOW agents) communicate through a 166 MHz 64-bit split-transaction

bus (1.266 GB/s peak bandwidth). The bus transfers 64 bits per bus cycle (every 3 processor

cycles). Memory and directory accesses require 4 bus cycles (12 processor cycles) before the

start of the data transfer while cache access requires 1 bus cycle (3 processor cycles).

The GLOW agents are enhanced switches that connect the ring interfaces and pass messages

from one to the other. To implement the GLOW optimizations for widely-shared data each

GLOW agent is equipped with a 1024-entry directory cache and 64K of data storage. To mini-

mize conflicts, the agent’s directory is organized as a 4-way set-associative cache. Although I

assume uniprocessor nodes, GLOW applies equally well to symmetrical multiprocessor (SMP)

nodes. In this case, the GLOW agent resides in the network interface of the SMP node and is

responsible for servicing the set of processors inside the node.

22

2.2 Network

For the evaluation of the wide-sharing optimizations it is imperative to accurately simulate the

network of a parallel system. This is because the effect of widely-shared data on the network

performance is critical. Although the GLOW extensions described in the next chapter can be

applied to many different topologies, I use the k-ary n-cube networks of SCI rings in 2 and 3

dimensions. Because of its scalability, this topology has great appeal in real world systems

such as the CRAY T3D [21] and T3E [87], SGI Origin 2000 [62], Convex Exemplar 2000 [1].

The rings use a 500 MHz clock; 16 bits of data can be transferred every clock cycle through

every link, giving a total of 1GB/sec bandwidth. This is equivalent to the actual IEEE 1596

standard which describes a 250 MHz network that sends 16 bits of data at both clock edges.

I simulate contention throughout the network, but messages are never dropped since I assume

infinite queues. The model I use deviates from the SCI specification in that I do not simulate

SCI’s bandwidth allocation algorithms (based on the so-called “Go-bits” [41]), nor SCI’s

scheduling between ring traffic and outgoing traffic from the nodes. As can be seen in Figure

Figure 2.1. 2-dimensional and 3-dimensional networks made of SCI rings.

23

2.2, the SCI interface specifies three classes of queues: the Input queues, the Output queues

and the Bypass buffer. The Input and Output queues are actually pairs of queues, each pair

comprises a queue for requests and a queue for responses. The Bypass buffer captures the ring

traffic while the output link is busy with outgoing traffic from the Output queue. SCI specifies

that while the Bypass buffer is not empty, the Output queue cannot be drained. SCI guarantees

fairness in bandwidth allocation with Go-bits that throttle the outgoing traffic of nodes. Even-

tually, the Bypass buffer will be empty and the Output queue can transmit. I do not model the

arbitration between the Output queue and the Bypass buffer. Any messages in these queues are

interleaved with a total FIFO order. I do not model the Go-bits algorithm for bandwidth alloca-

tion. However, since both the Output queue and the Bypass buffer have equal access to the

output link, there is no starvation of the Output queue.

Queues are simulated using WWT’s servers. A WWT server keeps autonomous virtual time and

can generate and accept messages. A server’s virtual time is updated on message arrivals and

also internally, by advancing its virtual clock by some cycles. The WWT has three default serv-

ers per node: the CPU server, the cache server, and the directory server. WWT orders messages

in virtual time and delivers them to the appropriate server. In the network model, each queue is

a different server with its own virtual time. The queueing in a node is shown in Figure 2.3. The

ring interfaces are connected to the processor, cache, memory, and directory through the sys-

tem bus. However, the GLOW agent and the ring switch are directly connected to the ring inter-

faces. I simulate all queues with a fixed latency of 10 processor cycles and a transfer latency of

1 processor cycle per 16 bits.

I performed comparisons with a different model of the SCI network developed by Burger

24

Figure 2.2. SCI ring interface assumptions.

Figure 2.3. Queueing in a node (only one ring interface shown for clarity). The GLOW
server is close to the ring interface and does not have to go through the bus to
communicate with other nodes. This is because the GLOW server represents the switch
that connects multiple ring interfaces together and transfers messages from one to the
other.

In the standard SCI ring Interface, messages
in the Output buffer are not transmitted while
the Bypass buffer is not empty. Eventually
the Bypass buffer will empty because of the
bandwidth allocation algorithms of the SCI

ring.

In the simplified model the arbitration
between the Bypass and Output buffer is
missing, hence a single queue for both.

Bypass

InputOutput

Ring Ring

BusBus

Bypass
InputOutput/

Ring Ring

BusBus

Input

Ring Interface

GLOW server

Processor/Cache servers Memory/Dir server

Output/
Bypass
server

Bus server

server

or switch server

25

[19,20]. This model uses finite queues and retransmissions. It takes into account the arbitra-

tion between the Output queues and the Bypass buffers, but it does not implement the Go-bit

algorithm for bandwidth allocation on the rings (hence it does not guarantee forward progress

for the Output queues). The difference of the execution time of two benchmarks (GAUSS and

SPARSE benchmarks described in Section 2.3) for 32- and 64-node 2-dimensional systems

using the two network models—setting all other parameters to equivalent values—is less than

5% (Burger’s simulation model is consistently faster). Since the two network models produce

similar read and write latencies, the discrepancy in execution time is due to other simulator

differences, such as the modeling of contention in the local bus. Burger’s network simulation

is centralized in one node: messages are routed to a single node for the purpose of network

simulation and then to their final destination. Unfortunately, this is unsuitable for studying

wide-sharing optimizations (discussed in the next chapter) which require the availability of

the messages in many places along their network path.

26

2.3 Benchmarks

Here, I describe the ten benchmark programs used in this thesis to study optimizations for

three types of sharing: wide sharing, migratory sharing and producer-consumer sharing. The

benchmarks were chosen because they exhibit one or more of the sharing patterns. Bench-

marks that do not exhibit a sharing pattern are used as control benchmarks to study potential

negative effects on performance. The ten programs are:

• GAUSS, SPARSE, APSP, TC, CG, BARNES (wide sharing)

• CHOLESKY, MP3D, PTHOR (various degrees of migratory sharing)

• OCEAN (producer-consumer sharing)

Table 4 summarizes the benchmarks. The input size describes the input data set of the pro-

grams. Because I use detailed network simulation, multiple WWT servers per node (eight or

Benchmark

Input Size

Cache
size/
Block
size

Wide
Sharing

Migratory
Sharing

Prod.-
Cons.
Sharing References

CHOLESKY bsstk14 64K/32 Yes [91][28][93]

MP3D 10K/10 iter 64K/32 Yes [91][28][93]

PTHOR risc 64K/32 Little [91][28][93]

GAUSS 512x512 64K/64 Yes (dyn.) Yes [17][25][50]

SPARSE 512x512 64K/64 Yes (static) [50]

APSP 256x256 64K/64 Yes (dyn.) [17][50]

TC 256x256 64K/64 Yes (dyn.) [50]

BARNES 4K part. 64K/64 Yes (static) [91][50]

CG 128x128 256K/64 Yes [14]

OCEAN 130x130 64K/32 Yes [91][47]

Table 4. Benchmarks used in this work. For each benchmark, the input size, the cache
and block size, and prominent sharing patterns are described. The references point to
papers where the benchmarks are described or used in the same way as in this work.

27

more compared to WWT’s default of three), and because I simulate multiple target nodes per-

host node (I simulate target systems of up to 128 nodes on 32 host nodes) it is feasible to sim-

ulate only small datasets. Large datasets either exceed the memory capacity of the host system

or take an unreasonably long time to simulate. Nevertheless, I simulated a limited number of

cases with large datasets to examine scalability. I used 64K caches for all benchmarks. This

size is somewhat large for most of the small datasets of the benchmarks. Although capacity

misses are not eliminated, the emphasis is on coherence misses. I used 64-byte cache blocks

for studying wide-sharing optimizations. SCI defines 64-byte cache blocks and this size gener-

ally results in good performance for the base SCI case. I used 32-byte cache blocks for the

migratory and producer-consumer optimizations where finer-grain sharing works better.

2.3.1 GAUSS

The GAUSS program solves a linear system of equations using the well-known method of

Gaussian elimination. Details of the shared-memory program are discussed by Chandra et al.

[25]. A coefficient matrix N×N is filled with random numbers and then the linear system is

solved using a known vector. The work is divided among the processors by distributing the

rows block-wise.

GAUSS consists of two phases: In the first phase, for each column, a pivot row is chosen

between all processors. Subsequently, this pivot row is read by all processors, multiplied by a

factor and subtracted from the rest of the rows. In the second phase (the backward substitution

phase), processors compute the vector of the unknown variables, starting from the last row. As

each variable is computed, every processor reads it and the appropriate factor is subtracted

from every row.

28

The program has three structures that are widely shared:

1. In every iteration of the first phase a pivot row is read by all processors; in subsequent iter-

ations, elements of previous pivot rows are updated. Potentially, every row of the coeffi-

cient matrix can be widely shared since the pivot row can change in every iteration. The

pivot row of an iteration is only known at run time.

2. An unknown variable vector is widely shared in the second phase as every variable that is

computed is read by most processors.

3. Some variables used for reduction operations are widely shared.

2.3.2 SPARSE

This program solves AX=B, where A and B are matrices (A being a SPARSE matrix) and X is a

vector. The main data structures in the SPARSE program are A, the N×N SPARSE matrix, and X,

the vector that is widely shared. This vector has N elements (the number of columns in the

SPARSE matrix) and is not updated. Three more global variables in the program (used in reduc-

tion operations) are also widely shared and are frequently updated. In SPARSE, the nature of

the data does not change during the execution of the program.

2.3.3 APSP, TC

The All-Pairs Shortest Path program (APSP) solves the problem of finding the shortest paths

between all pairs of vertices in a graph. For this program I used a dynamic-programming for-

mulation that is a special case of the Floyd-Warshall [27] algorithm.

In this program, an N-vertex graph is represented by an N×N adjacency matrix. The (i,j) ele-

ment of this matrix represents the weight, or distance, between the i and j vertices. The Floyd-

29

Warshall algorithm computes a series of N new matrices, each based on the previous matrix. I

have parallelized the algorithm using row decomposition and optimized it by grouping reads,

computations, and writes to reduce the number of barriers between iterations. The resulting

program is reasonably optimized for SCI. The input graphs used for the simulations are 256-

and 512-vertex dense graphs (most of the vertices are connected). The adjacency array con-

tains widely-shared data. However, wide sharing depends on the input graph.

Transitive Closure (TC), is another application of the Floyd-Warshall algorithm. In this pro-

gram an N×N matrix represents the connectivity of the graph with ones and zeroes. Again the

algorithm iterates N times and in each step it updates the matrix based on what was computed

in the previous step. The inputs are 256- and 512-vertex graphs with a 50% chance of two ver-

tices being connected. APSP and TC differ considerably in their write behavior. Similarly to

APSP, TC has also been reasonably optimized for SCI. The main array in TC contains widely-

shared data, but again wide sharing depends on the input graph.

2.3.4 CG

In the CG program, the conjugate gradient method is applied to solve a Poisson equation. The

code is structured similarly to the NAS CG benchmark [14]. CG is computationally intensive

and simulation is limited to small inputs of 64×64 or 128×128. Abandah studied the behavior

of CG and found that it exhibits significant wide sharing [2].

2.3.5 BARNES

The BARNES benchmark from the SPLASH suite [91] simulates the interaction of a system of

bodies (such as celestial objects) in a three-dimensional space. The main data structure in

30

BARNES is an octree [91] that divides the three-dimensional space into cubes of various vol-

umes. Since eight small cubes fit in a larger cube—of twice the edge length—the octree has a

degree of 8. BARNES is an example of a program with little widely-shared data. The top of the

octree is widely shared. However, it is difficult to determine statically how many levels of the

octree are widely shared.

2.3.6 CHOLESKY

CHOLESKY is a kernel that factors a SPARSE matrix into the product of a lower triagonal matrix

and its transpose [91]. A task queue is used to distribute work to the nodes. The handling of

the task queue involves migratory sharing. I use CHOLESKY to study optimizations for migra-

tory sharing (Chapter 5) and also as a control benchmark for wide sharing optimizations

(Chapter 4).

2.3.7 MP3D

MP3D employs a Monte Carlo method to perform fluid flow simulation (such as simulation of

an obstacle placed in a wind-tunnel) [91]. In MP3D, a number of particles move though a wind

tunnel colliding with each other and with obstacles in the wind tunnel. A particle array is dis-

tributed statically to the nodes. Many processors can update cells of the particle array and cells

of a space array which describes the position of the particles. Regardless of whether accesses

to the cells of the particle array and the cells of the space array are protected by locks, these

two arrays constitute migratory data. Thus, I use MP3D to study migratory-sharing optimiza-

tions (Chapter 5).

31

2.3.8 PTHOR

PTHOR is a parallel, event-driven simulator of logic circuits. For the evaluations, a simple

RISC processor executing instructions is simulated. PTHOR has a task queue which involves

migratory sharing (Chapter 5).

2.3.9 OCEAN

OCEAN, from the SPLASH 2 benchmark suite [101], is an improved version of the original

SPLASH OCEAN [91]. This program simulates currents and water movement in oceans. The

SPLASH 2 OCEAN uses a multigrid equation solver. I use OCEAN to study producer-consumer

optimizations (Chapter 6) and as a control program for wide sharing (Chapter 4, Section 4.4)

and migratory sharing (Chapter 5).

32

33

3 Wide Sharing

In this chapter I present the GLOW extensions designed to optimize accesses to widely-shared

data. I first motivate the need for an efficient method to handle widely-shared data (Section

3.1) and subsequently I present the main idea of the GLOW framework, which is to exploit the

redundancy of widely-shared data to provide scalable reads and scalable writes (Section 3.2).

GLOW incorporates various features found scattered in previous research efforts. In Section

3.3, I review related work and briefly discuss features and shortcomings of the various

schemes previously proposed. I then proceed with an overview of GLOW (Section 3.4), where I

discuss how GLOW integrates and builds upon ideas from previous work to provide compre-

hensive support for wide sharing. The main part of this chapter (Section 3.5) presents a

detailed GLOW implementation on top of SCI, an IEEE standard cache coherence protocol.

Other generic implementations are outlined at the end of this chapter in Section 3.7.

34

3.1 Widely-shared data

Widely shared are the data that are read by many or all the nodes in a system between succes-

sive writes. In contrast, migratory data, although read by many or all the nodes in a system,

they are only read by a single node between successive writes. Typically, widely-shared data

represent a small percentage of the dataset of a program. Weber and Gupta have studied

shared-memory parallel programs and observed that the average degree of sharing (the num-

ber of nodes that simultaneously share the same data) is low [100]. Their observation, how-

ever, does not indicate the serious performance degradation resulting from accessing such

data. Even if widely-shared data represent a negligible percentage of the dataset, they can be

detrimental to performance because the number of reads (or invalidates) corresponding to

such data can be excessively large: widely-shared data imply that a great many processors

read them simultaneously.

To make this point clear I use the concept of read-runs as a tool to investigate sharing behav-

ior. In Section 4.5 of Chapter 4 I am making extensive use of read-run analysis to explain the

performance of various GLOW schemes. Analogous to a write-run defined by Eggers and Katz

[29], I define a read-run for a data block as a sequence of reads (from any processor) between

two writes (from any writer). The size of a read-run is thus related to the number of simulta-

neous cache copies in the system (if we ignore for a moment multiple reads because of

replacements). Figure 3.1 shows the sharing behavior of the GAUSS program (discussed in the

previous chapter) running on 128 nodes. The left graph in Figure 3.1 is the read-run histogram

for GAUSS. The horizontal axis is the read-run size and the vertical axis is the number of times

35

a read-run appears in the execution of the program. Despite the fact that the number of read-

runs of size 128 (corresponding to widely-shared data) is negligible, and despite the modest

degree of sharing of 2.75, about one half of all the reads (or alternatively invalidates) in the

program correspond to widely-shared data. The abundance of reads (invalidates) correspond-

ing to widely-shared data is evident in the right graph of Figure 3.1, which shows the number

of accesses (reads or invalidates) that correspond to read-runs of various sizes (horizontal

axis). The explanation for this is that each read-run of size W contains W reads (or W invalida-

tions) and even the very few—but large—read-runs encompass as many reads (or invalida-

tions) as a great number of small read-runs.

Not only are the accesses to widely-shared data numerous but they are also the most expensive

in terms of latency, because they create congestion in the network and even worse congestion

in the home node directories of the data. When many nodes simultaneously access a single data

block, each experiences much greater latency than if all nodes accessed different data blocks in

different home node directories.

Figure 3.1. Read-run histogram and corresponding Reads/Invalidations for GAUSS
running in 128 nodes.

0

50000

100000

150000

200000

250000

300000

0 20 40 60 80 100 120

’WRITE-RUNS’

0

50000

100000

150000

200000

250000

300000

0 20 40 60 80 100 120

’READS-INVALIDATES’

Histogram of read-runs

Size of Read-runs

Widely-shared data
(too small to see)

Number of
read-runs

Average degree of sharing: 2.75

Size of corresponding Read-run

Number of
Accesses

36

Providing support for such accesses is essential for scalability of programs. A simple applica-

tion of Amdahl’s law shows why: as the system size grows, widely-shared data accesses even-

tually will dominate the execution time of programs (since their number is a function of

system size and they become increasingly expensive because of congestion). Thus, the speed-

up will be limited by widely-shared data, regardless of how much the execution time of the

rest of the program is reduced.

37

3.2 The idea behind GLOW: exploit redundancy of widely-shared
data

The GLOW extensions are intended to provide support for widely-shared data. Such data are a

serious threat to the performance of large systems. Typically, a large distributed shared-mem-

ory multiprocessor comprises a number of nodes (16 or more) —each containing one or more

processors, caches and a part of the global memory. The nodes are connected with a high-per-

formance network. In real systems (CRAY T3D [21] and T3E [87], SGI Origin 2000 [62],

Convex Exemplar 2000 [1]), large diameter networks such as multi-dimensional torri are pre-

ferred over large centralized switches (e.g., crossbar-switches), since the latter can be signifi-

cantly more expensive with current technology. GLOW is intended for systems with non-trivial

network topologies (such as those mentioned above), rather than for systems that are based on

large crossbar switches where all nodes are equally distant.

For many such network topologies, the bisection bandwidth does not grow linearly with the

bandwidth needed for random communication. As the diameter of the network increases with

system size, we must optimize communication patterns to make efficient use of the network

bandwidth. Increasing communication locality (by making communicating nodes neighbors in

the network) is a promising course of action. Not only does locality reduce read and write

latencies (since node communication is localized), but it also yields better utilization of the

network by allowing multiple communication patterns to coexist in the network without con-

flict. In general, increased communication locality can be achieved by statically or dynami-

cally mapping the data in the nodes [62] or by dynamically mapping the computation to the

nodes [55,56].

38

Widely-shared data offer a better opportunity for exploiting locality than other data. By their

nature widely-shared data are usually present in many nodes in the system. Thus, instead of

satisfying read requests for widely-shared data by going to the home node directory (which

may be at the far end of the system), we can simply access the closest copy of the data. The

GLOW framework provides the mechanisms to do exactly this. Similarly, instead of invalidat-

ing or updating all sharing nodes using multiple point-to-point messages that travel all over

the network and consume bandwidth, we can follow a hierarchical approach where invalida-

tion/update is initiated locally and expands through the network recursively. The communica-

tion pattern of such a hierarchical invalidation/update technique bears close resemblance to a

spanning tree of the network topology (whose root is the initiator of the invalidation/update).

Again the GLOW framework specifies such a recursive invalidation/update technique.

GLOW specifies, in the network domain, similar functionality to hierarchical directories (dis-

cussed in the next section). GLOW’s main function is to intercept requests for widely-shared

data and locate the closest copy to satisfy them. GLOW is not constrained by a physical hierar-

chy (as for example the hierarchical directories of cache-only memory architectures [37,57])

and it can be implemented in any network topology—even completely random topologies.

GLOW implements a hierarchical directory structure that is based on a logical hierarchy result-

ing from the convergence of requests to the home node of the requested data. The home node

directory is the root of any GLOW hierarchy. A significant difference between GLOW and previ-

ous work with hierarchical directories is that GLOW does not impose multilevel inclusion

Appendix 13 among its logical hierarchical levels. This is a significant advantage (as it will be

discussed in Section 3.5.3) because it allows tremendous flexibility. GLOW is intended only for

39

widely-shared data since only in this case the probability of finding a copy nearby significant

to justify the effort.

Central to the GLOW framework is the concept of the agent in the network. A GLOW agent han-

dles requests from a small set of nodes. It is responsible for servicing requests for widely-

shared data by locating the nearest copy. It is also responsible for invalidating or updating

nodes that it has serviced. GLOW agents are discussed in detail in Section 3.4.

40

3.3 Related work

A major concern for distributed shared-memory systems is their scalability. Scalability in the

context of this work refers to speeding-up parallel programs by increasing the number of pro-

cessors in the system. Ideally, this means making the performance of primitive operations

(such as loads, stores, locks and unlocks) independent of the number of processors in the sys-

tem. In reality, engineering and cost considerations largely prohibit this. For example, one

could envision a system with a “free” broadcast capability (e.g., with a fully connected net-

work where each node has a dedicated link to every other node). In such a system, the cost of

writing shared data (and consequently invalidating or updating all other copies of the data in

the system) is independent of the number of nodes sharing the data and therefore independent

of the total number of nodes in the system. However, such a system would be impractical. The

next best thing is to make the cost of operations (at worst case) a logarithmic function of the

total number of nodes in the system. This was the route followed by many researchers who

proposed sharing tree structures and hierarchical directories for scalable writes and request

combining for scalable reads. In the following sections, I describe these three approaches and

specific examples of each.

3.3.1 Sharing trees

A sharing tree is a directory structure that keeps track of the location of copies of data blocks

throughout the system. The appeal of a sharing tree stems from its potential to offer scalable

writes: all the nodes of a sharing tree can be invalidated or updated in time proportional to the

logarithm of their number. In previous work, sharing tree protocols have been proposed, such

41

as the Scalable Tree Protocol (STP) [76], the Tree Directory (TD) [69], and —by far the most

serious design— the STEM extensions to SCI [44].

Theoretically, all these protocols (STP, TD, and STEM) offer logarithmic invalidation under the

assumption of unit latency messages. In reality, message latency does depend on the network

topology, the size of the system, and the congestion characteristics of the network. Scott dis-

cusses the scalability of latency in his thesis and argues that asymptotically latency must

increase as at least O(N1/2), where N is the number of nodes in the system [86]. Since the

aforementioned protocols do not take into account network locality—their tree structure maps

arbitrarily on top of the network topology—the latency of their writes is worse than logarith-

mic. Furthermore, these protocols actually increase traffic in the network over non-tree-based

protocols [76,69,44].

3.3.1.1 STEM kiloprocessor extensions to SCI

The STEM extensions to SCI, originally developed by Johnson [44], provide a logarithmic-time

algorithm to build, maintain and invalidate a binary sharing tree (as opposed to GLOW’s k-ary

trees) without regard to the topology of the interconnection network. STEM is a complete

upgrade of the SCI protocol, although STEM and SCI nodes interoperate at the lower level of

performance. STEM does not distinguish between widely-shared data and the rest of the data,

since it can be used for all accesses. In the case of non-widely-shared data, STEM has the same

performance as the SCI protocol with similar transactions

STEM employs combining in the interconnect to provide scalable reads. Combining operates

on two requests that happen to be in a queue at the same time, generating a single new request

42

along with a response to one of the original requests. Combining depends heavily on traffic

patterns and in fact will rarely occur, except in the presence of substantial congestion [78].

Combining only returns list-pointer information (and not data, which are returned later). This

is much simpler than other approaches (such as the typical NYU Ultracomputer combining

[36]), which leave residual state within the interconnect for modifying the responses when

they return.

STEM defines one additional pointer for the SCI caches. The representation (triangle) of a STEM

cache (devised by James [43]) is shown in Figure 3.2. The forward and backward pointers are the

same as the ones in SCI caches. The down pointer is used to build the binary sharing trees.

Notice that in Figure 3.2 the different pointers correspond to the different vertices of the trian-

gle.

STEM sharing tree creation—The STEM sharing tree creation starts with an ordinary SCI

prepend list (Figure 3.3 A). Nodes prepend to this list and eventually they will get the data. A

merge process converts this linear list into a list of subtrees. In this structure, the subtrees are

strictly ordered according to their height. The first subtree (connected directly to the memory

directory) is of height one. Larger subtrees are placed further away from the memory direc-

tory. Nodes attaching in front of a stable list of subtrees will trigger further merges: adjacent

equal-height subtrees merge to form a single higher subtree, until a stable subtree structure is

Figure 3.2. STEM cache pointers.

forwardbackward

down

43

formed. Up to three transactions are needed to merge subtree pairs.

The merge process is distributed and performed concurrently by the sharing caches. Data dis-

tribution is partially performed during the merging process. Multiple steps are involved (some

overlapped in time), one for each level of the binary tree that is created. Under ideal condi-

tions, the first step of the merge process generates a list of subtrees of height one (Figure 3.3

B), the second generates a list of subtrees of height two (Figure 3.3 C), etc. The process con-

tinues until the sharing list has reached a stable state, as illustrated in Figure 3.3 D.

During the subtree-merge process, a distributed algorithm selects which pairs of subtrees are

merged. To avoid conflicts, nodes two and one cannot be merged if one and zero are being

Figure 3.3. STEM sharing tree construction.

Initial prepend list

1st merge

2nd merge

Final merge and data distribution

Mem
Dir

Mem
Dir

Mem
Dir

Mem
Dir

Data distribution

Step 0

1

2

2

3

3

4 4

45

5

6 6

6

6

0123456789bcde a

0

1

2

3

4

5

6

7

8

9

a

b

1

02

3

5

46

7

9

8a

b

c

c

de

de

0

1

2

3

5

46

7

9

8a

b

c

de

A

B

C

D

44

merged. To generate balanced trees, nodes three and two should be merged if nodes one and

zero are being merged. Techniques for selecting the nodes to be merged are discussed by

James [43] and by Johnson [44]. Following the merge, data are distributed to the nodes. Data

are propagated by cache-to-cache writes, as illustrated in Figure 3.3 D. Some of these transac-

tions can take place concurrently with the sharing-tree creation.

STEM rollout—Rollout in STEM occurs for the same reasons as in SCI caches. Rollouts are

more complex for trees than for lists when the rolling out node has two children. In this case,

the rolling out node walks down the tree to a leaf node, removes the leaf from the tree, and

finally replaces itself with the leaf node.

If a node has zero or just one child, the basic SCI rollout protocol is used. If a node has two

children, it must find a replacement for itself before it rolls out in order to keep the tree struc-

ture intact. The leaf node that is used to replace the rollout node is found by first using the

down pointer and then the forward pointer. This search procedure creates a one-to-one corre-

spondence among nodes with two children and leaf nodes and there is no overlap between

paths that connect pairs of nodes. After a leaf node has been located with the walkdown, the

leaf is swapped with the rollout node. The walkdown and node replacement protocols can

introduce up to eight transactions per deleted node. However, half of the nodes in any binary

tree are leaf nodes, so the walkdown is only performed half of the time. Furthermore, the aver-

age number of walkdown steps required for nodes in a balanced binary tree is one and this

average becomes smaller as the tree becomes unbalanced.

STEM sharing tree invalidation—Sharing tree invalidation is initiated by the writer that is the

45

root of the tree (connected directly to the memory directory). In the first phase, invalidations

are distributed to other nodes in the sharing tree, as illustrated in Figure 3.4 A. The forwarding

of invalidations stops with the leaf nodes. In the second phase, leaf nodes invalidate them-

selves and notify their parents. This trims the leaf nodes from the sharing tree all the way up to

the root node, as illustrated in Figures 3.4 B and C.

The sharing tree can also be updated with new values rather than invalidated. As in the first

phase of invalidation, updates rather than invalidates are distributed all the way to the leaves

(Figure 3.4 A). In the second phase, acknowledgments are returned to the root node (writer)

without affecting the sharing tree (Figure 3.4 D).

Figure 3.4. STEM sharing tree invalidation.

Mem
Dir

Mem
Dir

Mem
Dir

A. Invalidation or Update First phase

B. Invalidation Second phase

C. Invalidation Second phase (cont.)

Distribution of Invalidations

Acknowledgment return from

newly created leaves (shaded)

Acknowledgment return from

newly created leaves (shaded)

(or Updates)

Acknowledgment return for

Write Update
Mem

Dir

D. Write Update Second phase

46

The STEM extensions have not yet been implemented in full detail because of their complexity.

However, Johnson simulated the behavior of STEM for regular access patterns and in his thesis

[44] he shows that indeed its performance for both reads and writes is O(logN), where N is the

number of nodes sharing. The simulations were performed with the assumption of unit-latency

messages.

3.3.1.2 STP and TD

The Scalable Tree Protocol (STP) proposed by Nilsson and Stenström [76] defines a sharing-

tree protocol that speeds up the writing of shared data by invalidating the tree in logarithmic

time. The notable feature of the protocol is that additions to and deletions from the tree leave

the tree balanced. The tree does not map onto the underlying topology (thus the protocol does

not benefit from physical locality). This is because its structure depends on the timing of the

requests, and deletions from the tree (replacements) change its structure without respect to the

underlying topology. Furthermore, no support has been proposed to speed up reads (e.g., com-

bining). Nilsson and Stenström’s STP work did not address correctness issues such as dead-

locks, starvation etc. Simulation [76] shows a 15% speedup over SCI for the GAUSS program in

a 16 node system but also a 35% increase in network traffic. This may be a serious drawback

for larger systems.

The Tree Directory (TD) protocol, proposed by Maa, Pradhan, and Thiebaut[69], is based on a

K-ary tree structure that is maintained in the sharing caches. This scheme was proposed to

improve the storage overhead problem of limited directories. It is a limited pointer directory

expanded in a tree structure. TD does not take into account physical locality—the sharing tree

does not map onto the network topology—and it does not provide for scalable reads. TD

47

strictly enforces multilevel inclusion, so nodes have a unique position in the tree. The authors

report improvements in performance compared to a basic limited directory but equivalent per-

formance compared to a chained directory scheme such as SCI.

The two sharing tree protocols described above were applied indiscriminately on all data. This

diminishes the potential benefit since the overhead of the more complex protocols is incurred

for all accesses. Building a sharing tree does not come for free and doing so for data that is not

widely shared may result in degradation for the most common access patterns. Only when the

number of nodes that participate in the sharing tree is large is the overhead sufficiently lever-

aged. Bianchini and LeBlanc distinguished widely-shared data (“hot” data) from other data in

their work [17]. This is feasible as long as we can distinguish requests and responses for

widely-shared data and for non-widely-shared data. In this thesis, I decouple the optimization

to a sharing pattern from the identification of the sharing pattern and show that there are many

identification techniques with different tradeoffs.

3.3.2 Request combining

Sharing-tree coherence protocols provide support for writes. However, a truly effective solu-

tion should also provide support for reads. Traditionally, request combining hardware in the

network (explored by Gottlieb et al. in the NYU Ultracomputer [36]) provides scalable reads

and alleviates hot spots [78] in the system. Many types of combining are discussed in detail by

Lebeck and Sohi [63]—who also introduced a classification of combining schemes. The suc-

cess of Interconnect-Interconnect-Combining—using the terminology of Lebeck and Sohi

[63]—such as the NYU Ultracomputer combining, depends on whether requests happen to be

in the same network queue at the same time. This in turn depends on many factors such as the

48

timing of the requests, the latencies in the system, the size of the network queues, and unre-

lated network activity taking place concurrently. Although combining is most often successful

when it is most needed (when there is congestion in the network), and where it is most needed

(at the hot spot), clearly its success depends on network characteristics. Of the sharing tree

protocols described previously, only STEM employs combining in the interconnect to provide

scalable reads.

3.3.3 Caching in the network

Caching in network switches has been proposed by Mizrahi, Baer, Lazowska, and Zahorjan

[71]. In the context of this proposal, network caching is used to “migrate” the functionality of

the home node close to where the data are actively used. This proposal was not intended for

wide sharing and it does not handle widely-shared data. GLOW is performing a similar func-

tion: it transfers the functionality of the home node close to where the data are accessed, but it

does so in a much larger scale with many GLOW agents impersonating the home node.

3.3.4 Hierarchical directories

The GLOW concept is similar to that of the Hierarchical Full Map Directory (HFMD) [69],

which is based on full-map directories embedded in the network topology. HFMD is strictly

based on the inclusion property. In contrast, GLOW is far more general (since it does not

impose the multilevel inclusion property) and can be easily applied to many topologies. Rele-

vant ideas to the GLOW framework have also been proposed for Cache-Only Memory Archi-

tectures (COMA) such as the Data Diffusion Machine (DDM) proposed by Hagersten et al. [37]

and the Kendall Square Research KSR-1 [57].

49

In COMA architectures, a data block does not have a fixed home node location as in the typical

directory-based cache-coherent DSM architectures. Instead, data blocks reside in the cache-

like memory or Attraction Memory (AM) [37] of the nodes that access them (Figure 3.5).

Thus, in a COMA system, a read request for a non-local data block does not have an a priori

fixed destination. Instead, a copy of the data block is first located and the read-request is

directed toward that copy. As in the case of widely-shared data, satisfying requests from the

closest copy leads to increased communication locality. In COMA machines such as the KSR-

1, this is achieved by providing an explicitly hierarchical directory structure. Although the

first DDM implementation was built using a common bus to connect the nodes, its abstract

design also called for a hierarchical directory structure. In such architectures, requests are first

routed to the lowest level of the hierarchical directory that keeps track of the data blocks in the

Figure 3.5. COMA architectures. A request for non-local data traverses the hierarchical
directories until it locates a directory entry that specifies the location of the data. For
example, when node 0 requests data block “b” it will find it in its immediate vicinity;
when it requests data block “d” it has to ascend to the root of the hierarchical directory
structure to find the data block in the remote node 3.

a c, bb d

a -> 0
b -> 1

b -> 2
c -> 2

a -> 0
b -> 1,2
c -> 2
d -> 3

Node 0 Node 1 Node 2 Node 3

Attraction
Memory

Hierarchical
Directories

d -> 3

50

immediate vicinity of the requesting node; if a copy is not located in this level the request is

routed to the next level of the directory that keeps track of data blocks available in a larger part

of the system; eventually the request will locate a copy in some directory level or it will reach

the top level of the directory (root level) that keeps track of the location of all data blocks in

the system. However, this hierarchical directory has proven to be a serious disadvantage of the

COMA architecture and it has been discarded in subsequent proposals such as the Flat-COMA

[94] or Simple-COMA (S-COMA) [82], which specify home nodes for the data blocks. A serious

shortcoming of the hierarchical directory approach is its mandatory use for all requests

whether or not they are likely to locate a copy in lower levels of the hierarchical directories.

51

3.4 GLOW

The goal of GLOW is to preserve the simplicity and elegance of the shared memory paradigm

and to avoid modifying parallel algorithms that depend on widely-shared data, by providing—

transparently—the necessary mechanisms for efficient access of such data. To avoid limiting

the scope of this work, instead of proposing GLOW as specific cache coherence protocol to

handle widely-shared data, I describe it as a set of extensions for existing cache coherence

protocols. The extensions specify how to enhance networks using special switches —the

GLOW agents— that know how to build sharing trees by recursively applying the underlying

cache coherence protocol. Only the GLOW agents are aware of the sharing trees; the rest of the

nodes in the system need only use the base cache coherence protocol.

The GLOW extensions are intended to provide support exclusively for widely-shared data.

However, they are independent of how the widely-shared data are identified and exposed to

the hardware. For purposes of discussing the extensions I assume the existence of special

requests that are used to access widely-shared data. In subsequent sections I describe how to

generate such special requests either statically or dynamically.

3.4.1 GLOW features

The GLOW extensions improve on previous efforts (TD [69], STP [76], STEM [44]) by embod-

ying the following four characteristics:

• TRANSPARENCY: GLOW is not a protocol itself but rather extensions to other protocols to

improve their handling of widely-shared data. The functionality of the GLOW extensions is

implemented in selected network switch nodes called GLOW agents. A requirement for all

52

GLOW implementations is that the GLOW agents be uniquely identified. When GLOW is

applied to linked-list protocols such as SCI, GLOW agents can have their own unique identi-

fiers (IDs) and can be implemented as stand-alone nodes anywhere in the topology (Sec-

tion 3.5). However, in full-map protocols (e.g., DirnNB [8]) the node addressing is more

restrictive. In situations where we cannot assign unique IDs to GLOW agents, these can be

unified with ordinary nodes and share the nodes’ ID (Section 3.7.1). GLOW agents inter-

cept special requests for widely-shared data, but other requests (for non-widely-shared

data) remain unaffected and proceed through the switch nodes at full speed. For the SCI

protocol—and to a large extent for full-map directory protocols—the node caches and the

node memory directories are unaware of the existence of the GLOW agents. Minimal

changes are needed for the base cache-coherence protocol. In contrast, other proposals

(e.g., STEM, STP, TD) call for a complete upgrade of the cache-coherence protocol in all

nodes.

• SIMPLICITY: The GLOW agents behave both as memory directories and cache nodes using

the underlying cache coherence protocol recursively: GLOW agents impersonate remote

memory nodes toward a local cluster of nodes they service; toward the home node direc-

tory, agents behave as if they were ordinary caches. Implementing a GLOW agent is there-

fore a matter of copying the protocol implemented in the node caches, copying the

protocol implemented in the memory directories, and providing the necessary glue logic to

make them behave as a single entity.

• NETWORK (GEOGRAPHICAL) LOCALITY. A sharing tree is constructed out of the GLOW

agents and other caches in the system to match the tree that fans-in from all the sharing

53

nodes to the actual home node of the widely-shared data. GLOW captures network (geo-

graphical) locality so that neighboring nodes in the sharing tree are in physical proximity.

• NO MULTILEVEL INCLUSION. In contrast to hierarchical directory schemes for cache coher-

ence, GLOW does not impose multilevel inclusion Appendix 13 in its sharing trees. In hier-

archical directory schemes, each level of the hierarchy includes all the information of the

lower level. In GLOW, each hierarchical level of the sharing tree is independent of the one

below. The sharing nodes do not have a fixed level in the tree, but they can occupy any

level. Thus, the involvement of the GLOW agents is optional. This characteristic gives

GLOW the necessary flexibility to be applicable to many different network topologies with-

out fear of deadlock (see Section 3.5.3 for a detailed discussion). Additionally, it allows

for algorithms that are impossible with multilevel inclusion, such as the LINEARIZING ROLL-

OUT algorithm that handles replacements in the sharing trees (see Section 3.5.6 for a

detailed discussion).

• SCALABLE READS. Since the GLOW agents intercept multiple requests for a data block and

generate only a single new request toward the home node, an effect similar to read-com-

bining is achieved, eliminating hot spots [78].

• SCALABLE WRITES. On a write, GLOW invokes in parallel the underlying protocol’s inval-

idation or update mechanisms. On receipt of an invalidation (update) message, an agent

recursively starts the invalidation (update) process on the other agents or nodes it services.

This parallel invalidation (update), coupled with the geographical locality of the tree, per-

mits fast, scalable writes that require low bandwidth.

54

3.4.2 An overview of the GLOW extensions

Every cache coherence protocol has two facets: the memory and the cache facet. In GLOW,

selected switch nodes in the topology (the GLOW agents) behave both as memory and cache

nodes. A GLOW agent behaves as the home node memory directory (thus giving the illusion of

memory being nearby, locally) toward the nodes it services. Toward the actual home node

memory directory the GLOW agents act as ordinary caches.

The GLOW agents are directory caches in the network (with optional data storage) whose func-

tion is to cache the structure of sharing trees in the network. A sharing tree consisting of these

agents and other caches in the system is constructed to match the tree that fans-in from all the

sharing nodes to the actual home node of the widely-shared data. Nodes become children of a

GLOW agent when their requests for widely-shared data are serviced by that agent. The GLOW

agents themselves join the sharing tree when they send their own requests toward the remote

memory in order to service their children (other nodes or other agents). The sharing tree is

thus created recursively, bottom-up. In general, the sharing nodes will be the leaves of the

sharing tree and the GLOW agents will comprise the internal nodes. The root of the tree is the

home node directory of the widely-shared data. However, because the involvement of the

GLOW agents is optional, any mix of nodes and agents in any level of the tree is allowed.

An example of a general K-ary sharing tree that can be formed using GLOW agents is shown in

Figure 3.6. In this figure the home node directory is represented by the square in the top-left

corner, nodes that have a copy of the data block by white circles and GLOW agents by black

circles. As far as the home node directory is concerned, it points to a number of sharing nodes,

whereas in reality it points to the first level of agents that hold the rest of the sharing tree. Sim-

55

ilarly, as far as the nodes that actually share the data (the leaves of the sharing tree) are con-

cerned, they are serviced directly by the home node directory, where in fact they are serviced

by the agents impersonating the memory.

GLOW extensions can be implemented on top of a wide range of topologies, including hyper-

cubes, meshes, trees, butterfly topologies [45] and many others. For linked-list protocols (SCI)

the GLOW agents can be stand-alone nodes anywhere in the network topology (Section 3.5) but

with other protocols such as full-map directory protocols GLOW agents may be restricted to

coincide with other nodes in the topology (Section 3.7.1). GLOW can also be used in irregular

topologies (e.g., an irregular network of workstations). As I described in the previous chapter,

I study GLOW on k-ary n-cube topologies that have proven to be popular with real implementa-

tions (CRAY T3D [21], T3E [87], SGI Origin 2000 [62], Convex Exemplar 2000 [1]).

Figure 3.6. Logical K-ary sharing tree. Black nodes are GLOW agents, white nodes are
sharing nodes.

Memory/Dir

(home node)

56

3.5 GLOW on SCI

In this section, I describe a detailed implementation of GLOW on top the IEEE/ANSI standard

SCI cache coherence protocol. This implementation demonstrates that GLOW is feasible on top

of a very complex and feature-rich protocol. GLOW requires virtually no changes to the basic

SCI protocol. A few special considerations to accommodate GLOW are pointed out in the

description. Since GLOW makes heavy use of the underlying cache-coherence protocol, a full

description of the SCI protocol appears in Appendix 1. Here, I describe in detail the GLOW

agents in an SCI system and how they can create, invalidate (update), and manipulate sharing

trees in the network.

3.5.1 SCI GLOW Agents

Central to any GLOW implementation are the special network switches, the GLOW agents, that

build the sharing trees. In an SCI network a GLOW agent is implemented on a switch node that

transfers messages from one ring to another. In Figure 3.7 I show a small SCI system built of

two SCI rings (ovals) and six nodes (squares). A single switch (triangle) connects the two

rings.

To perform transactions safely with other memory directories and other caches, the agent has

its own unique node identifier. Lets assume that widely-shared data reside in the top node

(labeled “M”) and all nodes access them. Instead of letting the requests of the three lower

nodes pass through to the upper ring, the GLOW agent intercepts them and requests its own

copy of the data, pretending to be a simple cache node in the upper ring. The agent then pre-

tends to be the remote memory node “M” locally on the lower ring. The three lower nodes get

57

their data from the agent, as if the actual home node serviced them.1 They form an SCI list that

is confined to the lower ring. This list is called a child list of the GLOW agent. The resulting

sharing tree is shown in the right of Figure 3.7. It consists of two levels, each being a standard

SCI sharing list. The key observation is that the GLOW agent looks like a cache node in the top

level of the sharing tree and as a memory node for the lower level of the sharing tree.

An important characteristic of any GLOW agent is that its behavior does not depend on any

topological parameters other than the direction of the request traffic. The GLOW agents are

unaware of the network topology and of their position in the network. The only thing they

know is which direction is the way to the home node for any request. The way to the home

node is the way to a higher level of the GLOW hierarchy; everything else is the lower level.

Thus, based on the direction of the request traffic, the single agent in Figure 3.8 can assume

the role of memory for the lower ring for one sharing tree (left sharing tree in Figure 3.8) and

1 That a node with a different node identifier than the home node of the data serviced the
requests makes no difference in the SCI protocol. However, the backward pointer of the head
of the small SCI list must point to the agent. This pointer is undefined in SCI because it is
implicitly assumed that it points to the home node of the data.

Figure 3.7. A GLOW agent in a 2-ring SCI system.

M M

G G

Topology Sharing Tree

58

at the same time assume the role of memory on the upper ring for another sharing tree (right

sharing tree in Figure 3.8).

The behavior of the GLOW agents is slightly more complex than the simplified version

described above:

• First, a GLOW agent can appear as multiple distinct memory directories for a single data

block. This capability is necessary for the agent to support different child lists for the dif-

ferent rings it handles. The number of distinct child lists an agent can support is called the

degree of the agent. The maximum useful degree of an agent is one less than the total

number of rings connected by the agent, since one of the rings is the way to home node

and cannot have a child list. The minimum useful degree is two, since a degree of one

leads to one-dimensional trees. The degree of an agent is an implementation parameter,

reflecting both topology and cost considerations.

• Second, in contrast to the memory directories which only point to the head of a list, the

GLOW agents hold child lists from both ends. This is achieved by the agent presenting

Figure 3.8. The behavior of a GLOW agent is independent of topological information; it
depends only on the direction of the request traffic.

M

G

M M

M

C
M

M
C

Request traffic

Request traffic

59

itself as a virtual tail to the first node that joins each child list. The reason is that the agents

need a way to pass the data fetched from memory to their waiting child lists. Since waiting

SCI nodes always get the data from their downstream neighbor (except tail nodes that get

them from memory), appearing as a virtual tail is a transparent method for the agent to dis-

tribute data. This also facilitates rollout algorithms such as the LINEARIZING ROLLOUT

described in Section 3.5.6.

In Figure 3.9 the agent is represented by a triangle and the SCI caches by rectangles. For every

child list, the GLOW agent has a memory forward pointer and a virtual-tail backward pointer

(see Figure 3.9 and Figure 3.10). The agents also have a forward and a backward pointer, per-

mitting them to join SCI lists and act like ordinary SCI caches.

The internals of a GLOW agent can be designed in many different ways. Figure 3.10 depicts a

sample design that is used in all the subsequent sections. The GLOW agent is a switch that is

connected to a number of rings and to the bus of a corresponding node. This arrangement is

used in the k-ary n-cube topologies, where there is an agent for every node in the system.

Figure 3.9. Schematic representation of a GLOW agent holding 2 child lists.

forwback

Head Mid Mid Head Mid Mid VirtualVirtual
Tail

forwback

forw_0 forw_1 back_1back_0

Tail

forw_0

back_1

forw_1

back_0

GLOW agent’s
pointers

60

However, in the general case, GLOW agents can be a stand-alone switch nodes.

The agent can pass a message from any ring to any other ring. If a request is a special GLOW

request, it is taken out of the rings and delivered to the GLOW control logic. This logic accesses

the GLOW directory cache that in the case of Figure 3.10 is a 4-way set-associative cache. This

cache can be expanded with data storage. However, as I will show in Section 4.2.1, data stor-

age does not provide enough performance improvement to be cost-effective. The control logic

also contains a Task Buffer (TB) which accommodates up to 64 tasks, as defined by the SCI

standard [41]. The Task Buffer can temporarily hold the equivalent of a few GLOW entries that

are in the process of being replaced or invalidated, each associated with multiple outstanding

tasks. The task buffer is not a victim cache; all its entries are temporary and soon-to-be

Figure 3.10. Internals of a GLOW agent. The right scheme is a representation of an
uncompressed GLOW entry in the directory cache.

X-BAR

GLOW
Control

4-way GLOW entry
(directory) cache

ring 0 ring 1 ring 2

Memory entries

forw_0 forw_1 forw_2

GLOW Agent entry

forwback

Virtual Tail Cache entries

back_0 back_1 back_2

ring
interface

TB

bus

NODE

61

deleted.

Each GLOW entry in the GLOW directory cache can store the necessary pointers and state for

each personality of the GLOW agent. Figure 3.10 shows a fully-expanded GLOW entry which

has: (i) a single cache entry (two pointers and state) to impersonate a cache in the high-level

ring, (ii) a per-ring memory directory entry (a single forward pointer and state) to hold a child

list, (iii) a per-ring cache entry (a single backward pointer and state) to impersonate a virtual

tail. At any time, the memory directory entry and the virtual tail entry for the high-level ring

are unused and can be discarded completely, at the expense of having to dynamically rename

the rest of the entries to correspond to the correct rings. The GLOW entry depicted in Figure

3.10 is a fully-expanded entry, meaning that it has full support for all the rings. However, as

mentioned above, the degree of the agent is an independent parameter and GLOW implementa-

tions are not required to support all the rings.

3.5.2 Creation of sharing trees

The GLOW sharing trees are constructed with the involvement of the GLOW agents that imper-

sonate the memory directory in various places in the topology. A node uses a special request

to access a block of widely-shared data. A normal request would pass through the GLOW

agents and would reach the actual home-node memory directory. In this case, the node would

be instructed to attach to an SCI list and get the data from the head (if the list was stable) or the

last node that joined the list if the data were still in transit (explained in Appendix 1 and

depicted in Figure 8.3). However, the special request is intercepted at the first agent (where the

request would change rings) at the agent’s discretion. The intercept causes a lookup in the

agent’s directory storage to find information (a GLOW entry) about the requested block. The

62

lookup will result in a hit if there is an allocated tag or a miss otherwise:

• If the lookup results in a miss, the agent sends its own special request for the data block

toward the home node (Figure 3.11). The agent instructs the requesting node to attach

itself to a child list comprised only of the virtual tail (the agent itself) and wait for the data.

As soon as the agent gets a copy of the data, it will pass them to the child lists via the vir-

tual tails. By using virtual tails, the SCI nodes cannot tell the difference between a GLOW

agent and the actual memory directory.

• If the lookup results in a hit, the requesting node is instructed to attach itself to the appro-

priate child list. It will get the data from either the agent (if it caches data) or the previous

head of the child list (Figure 3.12).

The requesting node might be the first node in a new child list, even when a GLOW agent

already has multiple child lists. In this case, when the requesting node attaches directly to the

virtual tail in a new child list, the agent has to fetch the data from one of its other child lists

(Figure 3.13). The agent cannot repeat its request to get the data, since this would result in

Figure 3.11. GLOW agent intercepts node’s request and generates its own request (miss in
the agent’s directory).

Virtual Tail

Memory Dir.

SCI list

node’s

agent’s
request

request waiting

prepend
for data

request
intercept

data
distribution

63

joining the sharing tree twice. The fetching of data is achieved by the agent attaching as a vir-

tual head in front of one of its populated child lists and reading the data. For the duration of

the fetch operation, an additional temporary pointer is allocated to the GLOW entry for the vir-

tual head. The fetch operation can be applied recursively (descending the sharing tree) until a

node that has the data is found.

Figure 3.12. Hit in agent; node joins a pre-existing child list.

Figure 3.13. Hit in agent, node joins a new child list.

request

Memory Dir. Memory Dir.

agentagent

child list child list

High-level list High-level list

request

Memory Dir.

agent

Memory Dir.

agent

Memory Dir.

agent

agent
attaches
as Virtual Head
to fetch data

pre-existing
child list

new
child list

child list child list

High-level list High-level list High-level list

64

In the case of a miss in the agent, the agent sends its own request which will be treated the

same way at the next agent. Eventually, the last agent before the home node will get the data

(either from memory or from the node connected directly to the memory directory) and pass

them to its child lists. When all nodes simultaneously read a cache block (for example, after a

global barrier) all the child lists can be constructed in parallel. Copies of the cache block are

distributed down the tree concurrently with list construction.

To visualize a GLOW sharing tree in a complex topology, Figure 3.14 shows the mapping of a

k-ary sharing tree on a 3-ary 3-cube. The GLOW agents are represented by triangles and the SCI

caches by circles. For clarity the virtual tails are not shown. Lists are in hierarchical levels and

the agents can have child lists in different levels. The nodes in the lists are drawn in perfect

order (which is not the common case). The nodes’ positions within a list depend on the timing

of their requests as seen by the GLOW agent. The general structure of the tree, however, does

not depend on the timing of requests.

3.5.3 Multilevel inclusion

As I described previously, when a node reads widely-shared data, it initiates a specially-

tagged request addressed to the home node of the data. A GLOW agent can intercept this

request at the point where it changes rings. However, the request can be completely ignored by

the GLOW agent and passed toward the next hierarchical level, if there is danger of deadlock.

That an agent may choose to ignore a request completely, does not affect GLOW’s correctness,

but it may have a negative impact on performance. When an agent ignores a request it is

passed to the next hierarchical level where hopefully it will be serviced by a higher-level

agent. In this case, the node that issued the original request joins an SCI list at a higher hierar-

65

chical level than normally. The request may be ignored by multiple agents, all the way to the

home node, where it will be serviced by the memory directory.

To avoid deadlocks because of storage conflicts, the agents may ignore certain requests. This

arises only for conflicting data blocks which have different home nodes but map to the same

entry in the GLOW directory caches. A request is always ignored when it requires an entry in

the agent’s directory cache that is currently taken by another non-stable sharing tree (i.e., a

sharing tree in a transitional state). However, if the directory entry is taken by an older, stable

tree it can be evicted to make room for the new tree. A deadlock example is shown in Figure

3.15, where two sharing trees conflict in the topology shown on the left. In Figure 3.15, the top

tree has advanced halfway toward its target home-node directory which is in the node desig-

Figure 3.14. GLOW sharing tree on a 3-ary 3-cube (virtual tails not shown).

Mem
Dir

3-ary 3-cube topology of SCI ringsTopology Nodes

GLOW sharing tree

GLOW agents

SCI caches

66

nated by “M” in the lower ring. Similarly, the bottom tree has advanced halfway toward its

own home-node directory (the “M” node in the top ring). To proceed, each sharing tree

requires the GLOW entry occupied by the other tree. However, the top agent ignores the request

of the bottom agent (and passes it directly to the top “M” node) since this request requires a

GLOW entry that is not part of a stable tree. Similarly, the bottom agent ignores the request of

the top agent.

Thus, the GLOW agents intercept requests selectively. The selective behavior of the agents

means that multilevel inclusion is not imposed on GLOW sharing trees: the position of a node

in the sharing tree is decided dynamically. This is a very powerful characteristic because it

allows great flexibility: GLOW is not tied to any particular physical hierarchy. As described

above, to avoid deadlocks agents ignore certain requests. This can be extended to other situa-

Figure 3.15. Deadlock! Two expanding sharing trees (shown in the middle) conflict in a
pair of GLOW agents (topology shown in the left). Each tree needs the GLOW entry of the
other tree to continue building toward its target home node memory directory. To break
the deadlock each agent ignores the request of the other agent and passes it toward its
destination (shown in the right).

G G

G G

M

M

G

G

M

M

Conflict

Topology Sharing trees Topology

Deadlock
Avoidance

67

tions. For example, various agent implementations can ignore requests because they are too

busy or because—somehow—they decide that some intercepts are not important. Further-

more, this flexibility allows advanced agents as described in Section 4.3.1. These agents adapt

to wide sharing dynamically: they start intercepting requests only after they discover that the

requests are repeated often enough.

3.5.4 Invalidation of sharing trees

A significant part of the performance benefit of GLOW comes from scalable writes. A GLOW

tree can be invalidated or updated very fast when the agents work in parallel to invalidate or

update their child lists. The invalidation or update starts when a node writes the data. Before a

node can modify a cache block, it must first become the head of the top-level list connected

directly to the memory directory of the data-block’s home node. In this position, the node is

the root of the sharing tree and the only node with write permission to its cache block. If a

sharing node is not already the root it has to leave the sharing tree before becoming the root.

An SCI node simply disconnects from a child list, as it would from any SCI sharing list. It then

sends a write request, that cannot be intercepted by the GLOW agents, to the home-node direc-

tory. This guarantees that the node will become the root of the sharing tree. The node then pro-

ceeds with the actual write. After the cache block is written, invalidation messages are

forwarded down the tree in parallel by the GLOW agents.

Parallelism is crucial during the invalidation or update because otherwise there is not much to

be gained over the serial invalidation of the SCI sharing list (see Chapter 4, Section 4.2.3 for

serial tree invalidation). However, parallelism assumes request forwarding. Request forward-

ing means a request arriving at a node is forwarded to one or more new nodes. This is a signif-

68

icant departure from SCI that guarantees forward progress (i.e., that eventually all transactions

will make progress) and deadlock absence by partitioning finite hardware resources (i.e.,

queues and buffers) into two separate sets for requests and responses. A strict one-to-one cor-

respondence of requests to responses and priority of response processing over request process-

ing guarantees forward progress and deadlock avoidance. Request forwarding, however,

nullifies the one-to-one correspondence of requests to responses and requires special care to

avoid starvation and deadlock.

Fortunately, a solution —attributed to D. V. James and described in Johnson’s thesis [44]—has

been proposed to render request forwarding safe with regard to forward progress and dead-

locks. Request forwarding implies that a request arriving at a node can generate multiple new

requests. This can lead to deadlock by filling up the limited hardware request queues. The

solution is to expand the capacity of the request queues using virtual request queues. A virtual

request queue is built by chaining the corresponding cache entries (either node cache entries

or GLOW directory entries). Every request arriving at a node corresponds to a cache entry. If

the resources to forward new requests are not available (i.e., the hardware request queues are

full), the cache or GLOW entry is appended to a first-in-first-out (FIFO) virtual request queue

comprising the cache entries waiting to finish their forwarding. While the request forwarding

queue is not empty, new requests arriving at the node cause the corresponding cache entries to

be appended to the virtual request queue. This guarantees that every cache entry that received

a request will eventually complete its requested operation. Head and tail pointers are required

to point to the first and last cache entries of the queue and a pointer in each cache entry points

to the next one in the queue. The latter pointer can occupy the data space of the cache entry in

69

cases where the data space is no longer needed (i.e., in the case of invalidation where the data

are discarded).

At a minimum the GLOW agents must support request forwarding. When only the GLOW agents

support it I call it partial request forwarding. Request forwarding could be applied to the

entire GLOW sharing tree (full request forwarding) if the SCI protocol in the nodes is upgraded

to support it. The invalidation algorithm depends on whether partial or full request forwarding

is employed:

Partial request forwarding—The fully SCI compatible GLOW extensions use SCI’s invalidation

mechanism to invalidate their children and use request forwarding amongst them. All the

GLOW agents in parallel assume a role similar to the head nodes in SCI and invalidate their

child lists using the SCI invalidation [49].

The invalidation of a GLOW sharing tree is shown in Figure 3.16 (the initial tree is shown in

Figure 3.16A). After the cache block is written, the node starts invalidating the highest level of

the sharing tree using the SCI invalidation protocol (Figure 3.16B, transaction 1). However, the

GLOW agents react differently than the SCI caches to invalidation messages. On receipt of an

invalidation message the GLOW agent does the following concurrently:

1. It replies to the node that sent the invalidation message by sending a negative acknowledg-

ment pretending that it is about to leave the tree or rollout (Figure 3.16B, transactions 1b

and 2b). In SCI rollout, the operation of leaving the tree has precedence over invalidation.

This causes the invalidating node to wait for the rollout so it can get the pointer to the

70

downstream node and continue the invalidation. However, the GLOW agent will complete

the rollout only when it becomes the tail of its list. At this point the agent will return a null

pointer to the invalidator.

2. It forwards the invalidation to its downstream neighbor (Figure 3.16, transaction 2). If the

downstream node happens to be an SCI node and responds with a new pointer, the agent

Figure 3.16. Invalidation of a GLOW sharing tree.

Mem.
Dir.

writer

writer

writer

Mem.
Dir.

Mem.
Dir.

Mem.
Dir.

Invalidate Forward (2)

Attach &
Invalidate

Rollout (7)
Rollout (8)

(1)

(2,3,4)

Attach &
Invalidate
(3,4,5,6)

Initial GLOW sharing tree

Agents forward invalidation requests among them

Agents invalidate child lists using SCI invalidation

Agents rollout when done with invalidation

Wait ... I am about to rollout

(1b) (2b)

A

B

C

D

71

proceeds with invalidating the next node.

3. It attaches itself to all its child lists as a virtual head and starts invalidating them using the

SCI invalidation algorithm (Figure 3.16C, transactions 2,3,4,5, and 6). The attach operation

is necessary because the head nodes of the child lists—falsely—believe that they are con-

nected directly to the actual memory directory and they only expect a new head node to

invalidate them.

When the agent is done invalidating its child lists it waits until it becomes the tail of its list.

This will happen because it will either invalidate all its downstream nodes, or they will rollout

by themselves (if they are GLOW agents). When the agent is childless and is the tail of its list it

invalidates itself and rollouts from its upstream neighbor, freeing it to invalidate itself (Figure

3.16D, transactions 7 and 8).

Full request forwarding—Assuming that all nodes in the sharing tree can forward requests, a

more efficient invalidation algorithm can be applied. Full request forwarding invalidation

works in two steps: (i) invalidation distribution down the tree, and (ii) acknowledgment return

to the root. Both GLOW agents and SCI caches, upon receiving an invalidation message, for-

ward it to their downstream neighbor. When the invalidation messages reach the tails of the

lists, the tails invalidate themselves and send an acknowledgment back. GLOW agents wait for

the acknowledgment of all the invalidation messages they forwarded, invalidate themselves,

and return their own acknowledgment. In a well-structured tree, invalidation is fast because all

the messages are exchanged locally, among nodes within the same ring. Note, for a scheme

that can exploit broadcast effectively, confining lists to a single ring offers potentially signifi-

cant reductions both in message traffic and invalidation latency. A similar algorithm can also

72

be used to implement an update protocol where updates are serialized at the root of the tree.

New values are distributed down the tree and their receipt is confirmed with acknowledgments

back to the root.

3.5.5 Latency of reads and writes

GLOW is not a protocol per se, but rather a set of extensions to other protocols. To demonstrate

how GLOW is applied to unmodified SCI I use partial request forwarding for invalidation as the

base case for all evaluations. In this section, I use micro-benchmarks—small programs that

generate controlled access patterns—to study how GLOW affects read and write latency. Fur-

thermore, I demonstrate the performance difference of partial and full request forwarding for

writes.

Reads—To measure the latency of reads I use a small program in which a number of nodes are

chosen at random to read a shared variable. All nodes participating in the read start at the same

time. The process is repeated with many different groups of nodes reading the widely-shared

data. The percentage of nodes reading varies from 100% (all nodes) to 50%, 25%, and finally

12.5% (one eighth of the nodes reading). The read latency reported in the results is the aver-

age latency experienced by the readers.

This micro-benchmark is nearly the worst case scenario for SCI and the case where GLOW is

most effective. Nodes read simultaneously after a barrier, creating considerable contention in

the memory directory and in the network. The SCI sharing list is created by nodes attaching

one in front of the other and the data are distributed serially from the tail node to the head

node. In contrast, GLOW creates the sharing tree in parallel and distributes the data in parallel.

73

Figures 3.17 and 3.18 show micro-benchmark results in 2- and 3-dimensional topologies,

respectively. The top two graphs of each figure show the latency of read requests for SCI (left

graph) and GLOW (right graph). In each graph, the four curves correspond to 100%, 50%,

25%, and 12.5% of nodes sharing. In SCI, read latency increases dramatically from 16 to 128

nodes and the increase is most prominent when 100% of the nodes share. In fact, for 128 node

systems, the latency when all nodes are reading is more than twice the latency when half of

the nodes are reading. GLOW significantly reduces the read latency, but for the 2-dimensional

topology (where the degree of the GLOW trees is at most two) GLOW’s read latency increases

for large systems and for 100% sharing. Going to the 3-dimensional topology we observe that

both SCI and GLOW show lower read latencies. However, GLOW benefits considerably more

than SCI: not only is the 3-dimensional network better overall, but the GLOW trees have a

degree of three, offering greater parallelism. These observations are supported by the bottom

graphs of Figures 3.17 and 3.18. These graphs show the ratio of the SCI latency to the GLOW

latency. For example, Figure 3.17 shows that GLOW is actually slower than SCI for 16 node

systems when only 12.5% of the nodes are reading (2 nodes), while it is up to 4.4 times faster

than SCI for 128 node systems when 100% of the nodes are reading. The ratio lines curve

upwards, signifying that GLOW is increasingly better than SCI in larger systems.

Finally, the GLOW latency curves (and as a consequence the ratio curves) are not smooth but

rather they show slight variations as the size of the system changes. This is a characteristic of

GLOW that is also evident in the performance of programs. The reason for the slight variations

has to do with network asymmetry (e.g., the 32 node 2-dimensional topology is an asymmetric

8 by 4 mesh) and data placement, which defines the orientation of the GLOW trees in the net-

74

work. In Figures 3.17 and 3.18, GLOW shows a small dip in performance for 32 node systems.

This is because the widely-shared data are allocated in node 2 and the resulting GLOW trees

comprise 4 agents, each with 8 children, instead of the higher-performing configuration of 8

agents, each with 4 children.

Writes—To measure latencies for writes I used the simple loop shown in Figure 3.21. In each

iteration a different writer node writes the data. Similar to the micro-benchmark for reads, the

number of nodes reading after the second barrier (and thus, the size of the sharing list or shar-

ing tree being invalidated) varies from 100% to 50%, to 25%, and to 12.5%. Nodes are chosen

at random to read the data and the process is repeated multiple times, each time with a differ-

Figure 3.17. Read latency micro-benchmark results in 2-dimensional topologies.

16 32 64 1280

10000

20000

30000

16 32 64 1280

10000

20000

30000

16 32 64 1280

1

2

3

4

5

SCI GLOW

100%
50%
25%
12.5%

100%
50%
25%
12.5%

SCI/GLOW

100%
50%
25%
12.5%

Nodes

Nodes Nodes

P
ro

ce
ss

or
 c

yc
le

s

P
ro

ce
ss

or
 c

yc
le

s

75

Figure 3.18. Read latency micro-benchmark results in 3-dimensional topologies.

Figure 3.19. Write latency results in 2-dimensional topologies.

16 32 64 1280

10000

20000

30000

16 32 64 1280

10000

20000

30000

16 32 64 128 Nodes0

2

4

6

8

SCI GLOW

100%
50%
25%
12.5%

100%
50%
25%
12.5%

SCI/GLOW

100%
50%
25%
12.5%

P
ro

ce
ss

or
 c

yc
le

s

Nodes Nodes

16 32 64 1280

10000

20000

30000

40000

16 32 64 1280

10000

20000

30000

40000

16 32 64 1280

2

4

6

8

10

16 32 64 1282

4

6

8

10

SCI GLOW

100%
50%
25%
12.5%

100%
50%
25%
12.5%

SCI/GLOW

100%
50%
25%
12.5%

SCI/Full request forw.

SCI/Partial request forw.

P
ro

ce
ss

or
 c

yc
le

s

(ratio) (ratio)

Nodes Nodes

Nodes Nodes

76

ent set of random nodes. Write latency results are averaged for many different writers and

many different runs.

Figures 3.19 and 3.20 show results for 2- and 3-dimensional topologies respectively. Similar

to reads, average write latency for SCI grows very fast with system size, especially when all

Figure 3.20. Write latency results in 3-dimensional topologies.

Figure 3.21. Micro-benchmark for writes.

16 32 64 1280

10000

20000

30000

16 32 64 1280

10000

20000

30000

16 32 64 1280

5

10

15

20

16 32 64 1280

5

10

15

20

SCI GLOW

100%
50%
25%
12.5%

100%
50%
25%
12.5%

SCI/GLOW

100%
50%
25%
12.5%

SCI/Full request forw.

SCI/Partial request forw.

P
ro

ce
ss

or
 c

yc
le

s

Nodes Nodes

NodesNodes

void node_code(){
repeat{

choose a random set of readers
if (I belong to the readers) read widely-shared data;
for(i=0;i<num_nodes;i++){

barrier();
if (I am node # i) write widely-shared data;
barrier();
if (I belong to the readers) read widely-shared data;

}}}

77

nodes read before the write. GLOW significantly reduces this latency for the 2-dimensional

topology and even more for the 3-dimensional topology. The ratio of SCI latency to GLOW

latency (bottom graphs of Figure 3.19 and Figure 3.20) shows that as we go to larger systems

the GLOW latencies grow increasingly slower compared to the SCI latencies. For 128 node sys-

tems where all nodes share the data, the GLOW write latency is 17.5 times less than that of SCI.

Finally, the bottom-right graphs of Figures 3.19 and 3.20 demonstrate the performance differ-

ence for writes when partial or full request forwarding is used. The graphs show results for the

case when all nodes are reading, which is also where the performance difference of the two

schemes is most pronounced. The two curves represent the ratio of SCI latency to GLOW

latency for the two schemes. Full request forwarding is faster than partial request forwarding

(from 1.03 to 1.08 in 2 dimensions and from 1.02 to 1.16 times in 3 dimensions). This perfor-

mance difference has little to do with the behavior of the two schemes in terms of messaging

since both partial and full request forwarding generate the same number of messages. The per-

formance difference lies in the utilization of the GLOW agents and the writer node. With Partial

request forwarding, GLOW agents are responsible for sending all the invalidation messages to

their children (and for receiving all responses). This drives the utilization of the GLOW servers

up and creates queueing delays. In contrast, with full request forwarding, the responsibility for

sending messages is distributed to the children and the response of the GLOW agents is better.

In general, operations involving many massages processed by a single server lead to hot spot

phenomena.

3.5.6 Replacements in sharing trees

An ordinary node leaves the tree (rolls out) either because of a cache block replacement or to

78

become head-of-list for writing the data. For an SCI node the standard SCI protocol is applied

for rollout. GLOW agents may roll out because of conflicts in their directory/data storage or

because they are left childless. Childless agents are not permitted in the tree, unless they also

cache data. The SCI protocol does not permit nodes already in the sharing list to issue a second

request, since this would put them in the list twice. Thus, when the last child rolls out, the

agent also rolls out. When an agent finds itself childless it is only connected to the sharing tree

with its forward and backward pointers. In this case the rollout is the standard SCI rollout.

When an agent with children must roll out because of a conflict in its directory storage, it must

first deal with its child lists, and then roll out as before. Two approaches for dealing with the

child lists are described below. When the first is used, the rollout is called destructive because

it destroys parts of the tree. When the second is used, the rollout is called linearizing because

it connects the child lists into an extended linear list.

DESTRUCTIVE ROLLOUT—This simple solution is borrowed from hierarchical caches that

enforce multilevel inclusion. When an agent rolls out, it invalidates all its descendents using

the invalidation algorithm described in Section 3.5.4. When the invalidation completes, the

agent is childless and it can roll out as usual. This scheme has great appeal because of its sim-

plicity. However, it can lead to thrashing behavior when the amount of widely-shared data in

the system exceeds the directory capacity of the agents. Under such circumstances, nodes that

actively share a data block might be invalidated, thus immediately repeating their requests for

the data. These new requests will lead to more conflicts in the GLOW agents. This behavior is

difficult to avoid because agents do not have information about the access frequency of their

children. Thus, it is impossible for an agent to ascertain whether its children still access the

79

data or have long before ceased to. Any replacement strategy for the agents’ directory caches

is based only on information available at the time the sharing tree was created. For example, if

the Least Recently Used (LRU) replacement strategy is used, the LRU information concerns

only agent activity (at creation time) and not the access activity of their children. Nevertheless,

this scheme is viable because in many programs the amount of widely-shared data actively

accessed at any point in time is low.

LINEARIZING ROLLOUT—This scheme attempts to preserve the sharing tree as much as possi-

ble, degrading the structure of the tree gracefully. This is possible because GLOW does not

require multilevel inclusion. LINEARIZING ROLLOUT is based on concatenating the child lists

(i.e., chaining them tail-to-head into a single, linear list) and subsequently substituting the

concatenated list in place of the agent in the tree. The head of the first child list connects to the

tree in the position of the agent’s backward pointer. The tail of the last list connects to the tree

in the position of the agent’s forward pointer. The chaining process involves only the head and

tail nodes of the child lists. The process is shown in Figure 3.22. A part of a sharing tree is

shown in Figure 3.22A. The agent in the middle rolls out. It first attaches itself in front of all

its child lists as a virtual head by sending attach requests (Figure 3.22 A). Temporary pointer

storage is required for the agent to appear as multiple virtual heads. However, this pointer stor-

age is allocated only for rollouts and need not be part of every glow entry. When the agent

becomes virtual head in all its child lists, the previous heads become middle nodes. All virtual

nodes (virtual heads and virtual tails) are in reality only one entity (the agent itself) and there

is no change in the pointers of any node. Since the virtual tail of a child list and the virtual

head of the next child list are the same node (the agent) they rollout atomically, as one, and

80

leave the two child lists connected into one (Figure 3.22 B and 3.22 C). In this way, any num-

ber of child lists can be concatenated into one list in one step. Concurrently, the agent rolls out

as virtual head and virtual tail of the concatenated child lists (Figure 3.22 C). The sharing tree

after the agent rollout is shown in Figure 3.22 D.

In LINEARIZING ROLLOUT, when an agent rolls out and later rejoins the tree, the relation of the

agent and its children is lost at the point of the rollout. If the agent rejoins the tree, it may do

so in another position in the linear list of the appropriate hierarchical level. New requesting

nodes that would otherwise become heads in the old child lists will join newly created child

Figure 3.22. LINEARIZING ROLLOUT.

HeadMid Mid HeadMid Mid VirtualVirtual
Tail Tail

Mid Mid Mid Mid Mid Mid Virtual

Virtual
Tail

Tail
Virtual
Head

Virtual
Head

Mid Mid Mid Mid Mid Mid Virtual
Tail

Virtual
Head

Mid Mid Mid Mid Mid Mid

Rollout

A

B

C

D

attach

rollout

rollout rollout

81

lists under the agent. Although the sharing tree degrades over time as the agents leave and

rejoin, leaving child lists scattered over multiple rings, this scheme is potentially more effec-

tive than DESTRUCTIVE ROLLOUT. Two arguments support this claim. First, there is minimal

interference to other nodes: while in DESTRUCTIVE ROLLOUT many shared copies that are

potentially in use are invalidated, LINEARIZING ROLLOUT requires only the participation of the

head and tail nodes to complete the concatenation of the child lists. Second, the latency of

invalidating a subtree can be much higher than the latency of chaining the child lists together

and substituting the agent. Therefore, replacements in the agent’s directory storage can be

much faster. The performance difference between the two schemes becomes apparent only

when thrashing is caused by very small directory caches in the GLOW agents. In such situa-

tions, DESTRUCTIVE ROLLOUT hurts performance significantly.

3.5.7 Replacements and GLOW cache size

In this section, I show that the performance of GLOW does not change significantly, even if the

size of the GLOW caches is considerably reduced. However, for very small cache sizes, GLOW

agents start to thrash and DESTRUCTIVE ROLLOUT creates havoc in the system. Although LIN-

EARIZING ROLLOUT and DESTRUCTIVE ROLLOUT do not show a performance difference with

larger GLOW caches, in the extreme case (thrashing) LINEARIZING ROLLOUT behaves much bet-

ter.

The replacement rate in the GLOW agents depends on the amount of widely-shared data in a

program and the size of the GLOW directory caches. Typically, at any point in time, widely-

shared data are a small percentage of the data set of a program. For example, in GAUSS the

whole data set is potentially widely shared, since all rows can be pivot rows but only one row

82

is widely shared during an iteration of the algorithm. SPARSE needs at least 64 GLOW entries

for the widely shared vector X and a few more for the widely shared variables that are fre-

quently written. Although the widely-shared data in APSP depend on the input, its replacement

rates are low. This characteristic of widely-shared data suggests small sizes are best for the

GLOW directory caches.

Here, I show results for the DESTRUCTIVE and the LINEARIZING ROLLOUT, for three programs

(GAUSS, SPARSE, APSP) running in 16-node to 128-node systems with a 2-dimensional topol-

Figure 3.23. Sensitivity to directory cache size for GAUSS.

Figure 3.24. DESTRUCTIVE vs. LINEARIZING ROLLOUT for GAUSS.

16 32 64 1280

10

20

30

40

16 32 64 1280

100000

200000

300000

400000

500000

A
bs

. S
pe

ed
up

R
ep

la
ce

m
en

ts

SCI

32

64

256

16

1K

4K entries

GAUSS (DESTRUCTIVE ROLLOUT)

Nodes Nodes

16 64 1K0

10

20

30

40

16 64 1K0

10

20

30

40

32 256 4K32 256 4K

GAUSS 32 Nodes

GLOW cache size GLOW cache size

A
bs

.S
pe

ed
up

A
bs

. S
pe

ed
up

SCISCI

GAUSS 64 Nodes

SCI

DESTRUCTIVE

LINEARIZING

83

ogy (figures 3.23, 3.25, and 3.26). GLOW is used to access widely-shared data that are defined

by directives in the source program. I examine four-way set-associative directory caches with

16, 32, 64, 256, 1024, and 4048 entries, and show the effects on performance.

DESTRUCTIVE ROLLOUT—The cache size seriously affects performance only if it drops under

a critical size (under 32 entries for GAUSS, under 64 entries for SPARSE, and under 32 entries

for APSP). At this point, the large number of replacements (which delete entries from the shar-

ing nodes) kills performance, especially in the 16- and 32-node cases where GLOW does not

Figure 3.25. Sensitivity to directory cache size for SPARSE.

Figure 3.26. Sensitivity to directory cache size for APSP.

16 32 64 1280

5

10

15

20
SPARSE (DESTRUCTIVE ROLLOUT) SCI

64

1K

4K entries

16

SCI 16 64 1K 4K0

5

10

15

20
SPARSE 32 nodes

SCI

DESTRUCTIVE

LINEARIZING

Nodes GLOW cache size

A
bs

. S
pe

ed
up

A
bs

. S
pe

ed
up

16 32 64 1280

10

20

30

40
APSP (DESTRUCTIVE ROLLOUT) SCI

32

64

256

16

1K

4K entries

Nodes
0

10

20

30

40
APSP 32 nodes

SCI DESTRUCTIVE

LINEARIZING

16 64 1K32 256 4K
GLOW cache size

SCI

A
bs

. S
pe

ed
up

A
bs

. S
pe

ed
up

84

offer significant performance improvements, even with large directory caches. However, in the

64- and 128-node cases, even with a very small cache (and therefore a large number of

replacements), performance improvements are possible for GAUSS and APSP (figures 3.23, and

3.26). In SPARSE (Figure 3.25), DESTRUCTIVE ROLLOUT with a very small cache creates an

adverse effect: when the vector X does not fit in the GLOW agents, DESTRUCTIVE ROLLOUT

continuously invalidates sharing nodes forcing them to repeatedly request new copies of X

with detrimental effects on performance. Without GLOW, elements of X would remain cached

in the sharing nodes. An interesting effect of DESTRUCTIVE ROLLOUT is that its performance

improves as the cache size decreases and suddenly (crossing a critical cache size) its perfor-

mance drops tremendously. The performance increase as the cache size decreases is due to a

purging effect. This is noticeable in all node configurations for GAUSS and for the 32-node

configuration for APSP, but it is practically absent in SPARSE. The purging effect occurs when

replacements in the GLOW agents destroy parts of the sharing trees that are no longer needed.

When the widely-shared data are written, only a small part of the sharing tree remains to be

invalidated. Thus, the purging effect manifests as a reduction in write latency.

LINEARIZING ROLLOUT—This scheme maintains the sharing nodes by gracefully degrading

the structure of the sharing tree. Thus, it does not exhibit a purging effect similar to that of

DESTRUCTIVE ROLLOUT. With very small cache sizes LINEARIZING ROLLOUT outperforms

DESTRUCTIVE ROLLOUT because it does not interfere with sharing nodes. For SPARSE the per-

formance of LINEARIZING ROLLOUT does not drop at all (Figure 3.25). Even when the read-

only vector X does not fit in the GLOW agents, its copies in the sharing nodes remain valid

(unlike the DESTRUCTIVE ROLLOUT case). As long as the GLOW agents can cache the few

85

widely shared variables that are frequently written the full performance gain is obtained. For

GAUSS (Figure 3.24) and APSP (Figure 3.26) the performance of LINEARIZING ROLLOUT drops

slowly as the cache size decreases. In these cases, although agent rollouts are faster than those

of DESTRUCTIVE ROLLOUT, the large number of replacements affects the ability of the GLOW

agents to function efficiently. Furthermore, using LINEARIZING ROLLOUT, the write latency

consistently worsens as the cache size decreases because sharing trees degrade to sharing lists.

Since both rollout algorithms work equally well with larger GLOW caches, I use DESTRUCTIVE

ROLLOUT for all subsequent evaluations. I also use a directory cache size that accommodates

the same number of entries as the number of cache blocks in an SCI cache with the same asso-

ciativity. Note that there can be no more than N different full sharing trees in the system,

where N is the number of lines in an SCI cache. Thus, for systems with 64KB SCI caches with

64-byte cache blocks, I use 1K-entry directory caches in the GLOW agents. Since a GLOW entry

can be compressed to a much smaller size than a 64-byte line, the size of the GLOW caches is a

fraction of the size of the SCI caches.

3.5.8 Update of sharing trees

An opportunity for more performance is to use an update protocol instead of an invalidation

protocol. Update protocols are not always a clear win since they suffer from unnecessary

updates [18]. These unnecessary updates can be classified into updates that are overwritten by

subsequent updates without an intervening read and updates to the wrong nodes (i.e., nodes

that are no longer interested in the data block). Solutions that eliminate some of the unneces-

sary updates of the first class have already been proposed (e.g., coalescing buffers or write

caches [46]). For the second class of unnecessary updates, other solutions have been pro-

86

posed, such as competitive update protocols, where cache blocks are invalidated after receiv-

ing a number of updates without an intervening read [13]. Additionally, special care must be

taken to ensure that update protocols support sequential consistency [61] (discussed in the

next section).

With a GLOW update protocol, a sharing tree is constructed and subsequently used to distribute

updates. There are two variations of the update protocol. The first, full update, updates both

the agents and the SCI nodes in the tree. The second, partial update, assumes that only the

GLOW agents are updated. The SCI nodes in the sharing tree are invalidated and have to request

the data again.

Full Update—The SCI coherence protocol can be extended to update rather than invalidate a

sharing list. Depending on whether only the GLOW agents or all the nodes support request for-

warding, the update algorithm can take one of the following two forms:

• Full update with partial request forwarding: The update algorithm resembles the standard

SCI serial invalidation algorithm, but it sends update messages (carrying the new data)

instead of invalidation messages. The writer sends an update message to a node in the list

(starting with the first node after the writer) which, upon receiving the new data, responds

with the pointer to the next node. The GLOW agents use this update algorithm on their child

lists to propagate the updates down the GLOW sharing tree. Amongst themselves, the

agents forward the updates as described in Section 3.5.4 for the invalidations.

• Full update with full request forwarding: A writer node becomes the root of the tree and

sends updates down the tree. When updates reach the leaves of the sharing tree, acknowl-

87

edgments are returned to the root. The root node prohibits any other node from becoming

root until it receives all required acknowledgments.

Similar to the way the invalidation algorithm is affected by full or partial request forwarding

(see Section 3.5.5 for the relevant data), full update with partial request forwarding is slightly

slower than full update with full request forwarding. Again this is because in the former, the

GLOW agents have to send and receive many messages (half of them carrying data), while in

the latter the same work is distributed over many nodes. In Chapter 4, Section 4.2.5, I present

results for the full request forwarding scheme.

Partial Update—A partial update of the sharing tree means that only the GLOW agents will be

updated, while the SCI nodes will be invalidated. In this way, the update traffic is decreased by

updating only a few GLOW agents and by bringing the data closer to nodes that might poten-

tially access them in the future. In this scheme, update messages (carrying the new data) are

used only for GLOW agents, while invalidation messages are sent to the SCI nodes. This method

is complex because it requires knowing beforehand whether a node is a GLOW agent or an SCI

node in order to send the correct message (update or invalidation). In effect, this requires

abandoning the transparency of the GLOW agents. A similar method, eager combining, was

studied by Bianchini and LeBlanc [17] in the context of software DSM.

88

3.6 Memory consistency and GLOW

In this section I discuss the relationship between the GLOW extensions and memory consis-

tency models. In Section 3.6.1 I briefly review memory models and in Section 3.6.2 I discuss

the relative importance of GLOW under different memory models. Update protocols violate the

simple memory model called sequential consistency (SC) [61] that is typically assumed by

programmers [38]. In Section 3.6.3 I describe what is needed to make GLOW update compati-

ble with SC.

The strength of the GLOW extensions lies in their ability to reduce both read and write laten-

cies for a particularly expensive sharing pattern. As I have shown in Section 3.5.5, the read

and write latencies when accessing widely-shared data can be excessively large because of

hot-spot phenomena and inefficient use of network bandwidth. The GLOW approach, as well as

other work dealing with wide sharing, is a direct approach that targets the actual read and

write latencies.

There are other indirect approaches that try to reduce the apparent read and write latencies by

overlapping coherence transactions with other work. This is commonly referred to as “hiding”

the latency. For reducing the apparent read latency, prefetching has been extensively

researched. For reducing the apparent write latency, overlapping writes with other operations

has been proposed.

3.6.1 Memory models

Lamport first described how to build a multiprocessor system that correctly executes multipro-

89

cessor programs as a system that behaves as a multiprogrammed uniprocessor. This restricts

the behavior of the memory system to a specific model called sequential consistency (SC). In

SC: “the result of any execution is the same as if the operations of all the processors were exe-

cuted in some sequential order, and the operations of each individual processor appear in this

sequence in the order specified in its program” [61].

SC poses restrictions in the design of a multiprocessor system to support it. A simple imple-

mentation of SC is to require a processor to stall until a memory operation has been completed

globally. Adve and Hill showed that this is a sufficient condition to guarantee SC but not a nec-

essary condition [5]—more aggressive implementations exist which still provide a sequen-

tially consistent memory model. However, since the WWT allows only one outstanding

coherent memory operation, I enforce SC using this simple condition.

To avoid restrictions imposed by SC on the order of memory requests, several relaxed memory

models have been proposed, including: weak ordering, release consistency (RC)[32], and

data-race-free-0 [6]. The relaxed memory models overlap writes with other operations, hiding

the write latency. However, certain restrictions must be imposed at synchronization points to

guarantee correct execution. Thus, synchronization points typically require the completion of

outstanding operations (either all operations or just specific operations denoted by the user

[32]), before allowing the processors to proceed.

3.6.2 GLOW and relaxed memory models

One of GLOW’s goals is to provide fast and scalable writes. Relaxed memory models also

affect the (apparent) latency of writes. The issue then is whether a relaxed memory model

90

reduces the relative value of GLOW by speeding up writes. In this thesis I argue that GLOW is

useful for programs with wide sharing regardless of the memory model.

The latencies involved in accessing widely-shared data are extremely large, as shown in Sec-

tion 3.5.5. No matter how aggressively the memory model can overlap writes with other oper-

ations, it is unlikely that there will be enough operations to cover latencies on the order of tens

of thousands processor cycles (when an ordinary memory transaction is on the order of a few

hundred processor cycles). In this case, benefit could come from overlapping multiple writes

by the same processor to widely-shared data, each of which would incur a significant latency.

Because in SCI it is the writer that is responsible to invalidate the sharing list, allowing multi-

ple writes to widely-shared data to proceed concurrently makes sense only when the node can

handle the protocol processing overhead (sending and receiving many messages). For the sys-

tems I simulate and for the six programs I use, I have found that this is not the case. For other

protocols such as DirnNB or DASH, allowing multiple writes (to widely-shared data) by the

same processor to proceed concurrently would be a win, if different home-node directories

were involved for each invalidation (thus achieving a significant overlap). Additionally, results

in Section 4.2.3 indicate that read latency is very important for overall performance and GLOW

can offer significant performance improvement under any memory model.

In Section 4.2.4 I present simulation results using a relaxed memory model for both SCI and

GLOW. The results show that a relaxed memory model helps both SCI and GLOW. However,

when it comes to wide sharing, a relaxed memory model cannot compete with the overall per-

formance improvement offered by GLOW. Thus, GLOW with sequential consistency is signifi-

cantly better than SCI with a relaxed memory model. Since SC is the natural memory model for

91

programmers, the combination of GLOW and SC is very appealing because of its transparency.

This result supports Hill’s view that multiprocessor systems should implement sequential con-

sistency [38].

3.6.3 Update protocols and memory models

Update protocols can violate SC because different processors can observe writes in different

order. A technique to make an update protocol sequentially consistent, is to use a two-phase

commit algorithm so that all nodes are stalled until an update is performed globally. Intu-

itively, this imposes an order among concurrent updates. In GLOW this means that when a

writer wants to update a sharing tree it must initiate an operation to lock all the caches and

GLOW agents in the sharing tree so that read requests cannot be satisfied. In the meantime the

writer does not let any new node read or write the data by refusing to allow a prepend in front

of the sharing tree. After the writer receives acknowledgment that all caches and GLOW agents

have been locked it can update the data. The caches and GLOW agents are unlocked and freed

to process requests as the acknowledgments are returned to the root (the writer). This process

would significantly complicate the update algorithm. Corner cases are especially troublesome.

The locking phase must take into account that GLOW agents may have already accepted a

request and cannot be locked until it is satisfied. The performance of such an update is also

questionable because the sharing tree must be traversed twice.

Because of the complexity of a sequentially consistent update protocol and because of its

questionable performance benefit, I did not implement it. Instead, I implemented the update

algorithm described in Section 3.5.8 to conform to a relaxed memory model. The implementa-

tion stalls a writer at synchronization points until an outstanding update has been acknowl-

92

edged by all nodes in the sharing tree. This implementation works for programs which

implement correct synchronization and are data-race-free. In Section 4.2.5, I report results for

this update implementation. The results show that an update protocol offers little performance

improvement over the invalidation protocol. This further enhances the argument that it is

unlikely that a sequentially-consistent update protocol will be cost-effective.

93

3.7 Other possible GLOW implementations

In this section I discuss possible applications of the GLOW extensions to other cache coherence

protocols besides SCI. In Section 3.7.1 I describe how GLOW can be applied to full map proto-

cols such as DirnNB [8] and DASH [65]. Although these protocols do not suffer from a serial

invalidation algorithm such as that of SCI, GLOW can offer performance improvements because

of its scalable reads and because of better utilization of network bandwidth for writes. In Sec-

tion 3.7.2 I discuss how GLOW can transparently offer pointer storage for limited pointer pro-

tocols, thus offering the potential to improve their performance for wide sharing considerably.

In Section 3.7.3 I discuss the relation of pruning caches [88] and GLOW. Finally, in Section

3.7.4 I discuss how GLOW can be applied in software-based shared memory.

3.7.1 Full-map directory protocols

GLOW can implemented on top of full-map cache coherence protocols (e.g., DirnNB, or DASH)

but some constraints are required to satisfy the different node addressing methods of these

protocols. The node addressing problem and the constraints it imposes are discussed in detail

below. With respect to performance, the full-map protocols do not face a performance degra-

dation comparable to that of SCI for writes, where the invalidation algorithm is serial. How-

ever, GLOW is also applicable to these protocols since it can offer significant benefits from

request combining and reduction of the load in the network by using the tree structure for

invalidations. This claim is supported in Chapter 4, Section 4.2.3, where I present data indicat-

ing that the performance improvement from GLOW’s scalable reads is more important for over-

all performance than the performance improvement from scalable writes.

94

3.7.1.1 The agent addressing problem in full-map protocols

In any GLOW implementation, the GLOW agents must be uniquely identified, so direct mes-

sages can be sent to them (e.g., invalidation or replacement messages). In SCI this is easily

solved by assigning the GLOW agents their own unique node addresses or node identifiers

(IDs). This is transparent, since SCI uses pointers (not bit-maps as the full-map protocols do)

that can address up to 65536 nodes. A simple partitioning of this address space is sufficient to

distinguish simple nodes from agents. When, in an SCI implementation, only a few pointer bits

are implemented instead of the full 16 bits, as defined by the standard [41], the overhead

required to accommodate GLOW agents is minimal. An additional bit in every pointer automat-

ically doubles the node address space.

The situation is different with full-map protocols, where each directory entry must include at

least as many bits as the number of nodes in the system. In the general case, increasing the

node address space to accommodate agents with their own unique IDs is prohibitive in terms

of storage, unless techniques such as dynamic allocation of directory entries—proposed by

Simoni and Horowitz [90]—are used. If such techniques are an option and the increased stor-

age requirements to accommodate unique IDs for the agents are not a significant problem, the

GLOW extensions for the full-map protocols are similar to the SCI GLOW extensions. Here,

however, I will discuss the case where the node address space cannot be increased (no more

bits can be added to the directory bit-maps) and I will describe in detail how GLOW can be

implemented under this constraint.

3.7.1.2 A sample GLOW design for DirnNB

One method to solve the GLOW agent addressing problem in DirnNB-type protocols is to unify

95

the GLOW agents with the nodes so that they share the same IDs. This is a compromise that

negates one of the characteristics of GLOW: transparency. A DirnNB system must be designed

from the start to accommodate GLOW.

Figure 3.27 shows the sample design of a DirnNB GLOW node. The GLOW agent is the switch

node that routes messages among the three—in this example—network links. A GLOW entry

contains data storage, necessary bit-maps, and state to impersonate three memory directory

entries (one for each link—although only two can be active at any time). There is also a bit, L-

bit,2 that indicates that the node cache itself has a copy of the data. Since the agent takes over

2 The L-bit is actually redundant (it substitutes one bit of one of the GLOW entry’s bit-maps)
but it is used for algorithmic clarity.

Figure 3.27. Internals of a GLOW agent in a DirnNB-based system. The right scheme is a
representation of a GLOW entry in the directory cache.

X-BAR

GLOW
Control

Link 0 Link 1 Link 2

Memory bit-maps and local bit

GLOW Agent entry

Network
Interface

TB

Node cache

data

local bus

0 1 2

NODE

GLOW cache

L

96

the ID of the node for the specific memory address, this bit is required to indicate whether the

node also has a copy of the data (see also the agent replacement algorithm below). The agent

must snoop all incoming and outgoing node traffic. In addition, the agent intercepts special

GLOW requests that pass through the switch—but not necessarily all of the GLOW requests.

An alternative implementation is to split the GLOW entry into two parts: (i) the part that con-

tains the directory bit-maps and state and, (ii) the part that resides in the node cache and con-

tains the data (in which case no L-bit would be needed). In this implementation, each GLOW

entry corresponds to a node cache entry (but the reverse does not necessarily hold). Although

this implementation does not replicate the data in two places inside a node, it requires far more

transactions between the GLOW logic and the node cache over the node’s local bus. This could

potentially degrade performance.

Subsequently, I will describe how reading, writing, and agent replacement are performed with

DirnNB GLOW using the agent implementation depicted in Figure 3.27.

Reading—When a GLOW request, passing through an agent, is intercepted, or when the local

node sends a GLOW request through the node’s agent, the agent allocates an entry (if possible)

and sends its own request—using the node ID—toward memory (as in the example of Figure

3.28 A). The agent may ignore any read request to avoid possible deadlocks, if the entry

required is taken by another sharing tree and it is in a transitional state (see Section 3.5.3 for

the analogous situation in SCI GLOW). In the time it takes for a response to the agent’s own

request, more requests may be intercepted (as in the example of Figure 3.28 B). Upon receiv-

ing the data, the agent satisfies the request of the corresponding nodes indicated in its bit-maps

97

(as in example of Figure 3.28 C).

The local bit, when set, indicates that the local node also has the data (or has requested the

data). Because the node cache can obtain a copy of the data in other ways (e.g., using a non-

GLOW request), the agent must perform a lookup on the local node cache when it allocates a

new entry. If the data are found locally no new request is sent. Unless the allocation of GLOW

entries is very frequent, the lookup in the node cache—a relatively inexpensive operation—is

not going to affect significantly the performance of GLOW, nor the performance of the node’s

processors.

Using the above technique we guarantee the following invariant for the sharing tree: each

node ID is registered in exactly one bit-map (either the home-node’s bit map or an agent’s bit-

map). In other words, the node and the agent that share the same ID are never allowed to be

registered in two different places in the sharing tree.

Figure 3.28. Hypothetical example of a four node system. A GLOW agent assumes the
identity of node 1 for widely-shared data and intercepts requests from nodes 0 and 3 as
well as locally from node 1.

GLOW Agent entry (node 1)

0 1 L2

Request intercepted
from node 0

0 1 L2

Request intercepted
from nodes 3 and 1

New request
to node 2 from node 1

Node 2
returns the data

data

0 1 L2

to 0 to 3

locally
to 1

A B C

98

Writing—A writer node sends a non-interceptable request to the home node which starts the

invalidation process. The home node sends invalidation messages to all the nodes designated

in its bit-map, possibly including the writer node. Agents that receive an invalidation message

forward it to all the nodes indicated in all their bit-maps and wait for acknowledgments. The

invalidation messages can reach the writer node either directly from the home node or from an

Figure 3.29. Invalidation of a GLOW sharing tree in a DirnNB system. The hypothetical
four node example of figure (3.28) is used.

data

0 1 L2

Node 2

Node 1

Node 3Node 0

Memory
Directory

GLOW entry local
node cache

cache entrycache entry

cache entry

Write Invalidate (writer is node 0)

Invalidate (writer is node 0)

0 1 L2

Node 2

Node 1

Node 3Node 0

Memory
Directory

GLOW entry local
node cache

cache entrycache entry

cache entry

Ack

Ack

Ack Ack

Dotted lines show the sharing tree.
Solid lines denote messages.

Node 0 sends a write request to the
home node (node 2) which, in turn,
sends an invalidation message to node
1. Node 1 is actually a GLOW agent that
has serviced nodes 0,1, and 3. The
agent sends invalidation messages to all
its children.

The invalidation messages carry the
identity of the writer. Node 0 receives an
invalidation message and discards it
since it is the writer.

Acknowledgments are returned back.
The agent sends its acknowledgment to
the home directory when it receives
acknowledgments from all its children.

Ack

99

agent, if the writer is registered in an agent’s bit-map. Thus, the writer node must be prepared

to ignore its own invalidation request. To avoid problems when multiple nodes write the same

data block, the identity of the writer must be carried with the invalidation messages so that the

writers recognize their own invalidation requests. Even if a GLOW agent recognizes the writer

node from the invalidation message, it will still send the writer node an invalidation message

exactly as the home node would do. This is necessary because the writer node may be an agent

itself. For example, in Figure 3.30 node 1 is the writer node and is also an agent. The home

node sends the invalidation message back to node 1, where it is intercepted by the agent. The

agent sends its own invalidation messages which include an invalidation message to the local

node (because of the set L-bit). This invalidation message is a result of the node writing and it

is ignored.

Figure 3.30. Invalidation message returns to the writer node which is also a GLOW agent.

data

0 1 L2

Node 2

Node 1

Node 3Node 0

Memory
Directory

GLOW entry local
node cache

cache entrycache entry

cache entry

Write Invalidate (writer is node 1)

Invalidate (writer is node 1)

Writer node IGNORES invalidation
request

Invalidate (writer is node 1)

100

Replacements—In DirnNB, when a node evicts a cache block, it notifies the home node direc-

tory. When a sharing tree exists for the relevant data-block there are three cases:

1. The cache block is a child of the GLOW agent that coincides in the same node. In this case,

since the agent monitors the outgoing traffic of the node, the replacement message will be

intercepted and the agent will reset the L-bit of the corresponding GLOW entry.

Figure 3.31. Replacement of a GLOW agent in a DirnNB system. The hypothetical four
node example of figure (3.28) is used.

data

0 1 L2

Node 2

Node 1

Node 3Node 0

Memory
Directory

GLOW entry local
node cache

cache entrycache entry

cache entry

Node 2

Node 1

Node 3Node 0

Memory
Directory

cache entrycache entry

cache entry

0 1 L2
OR()=

Old vector OR New vector (nodes 0,1,3)

The GLOW agent computes the logical OR
of all its bit-maps (the local bit L is also
taken into account).

Bit-map: nodes 0,1,3

101

2. The cache block is a child of the home node directory (i.e., the node ID is registered

directly in the home node bit-map). In this case, the replacement message must reach the

home node. Even if it is intercepted in intermediate agents it will be re-routed toward the

home node since the node ID is only registered in the home node.

3. The cache block is a child of an agent in a different node. This means that a local GLOW

entry does not exist. In this case, the replacement message must arrive at the correct agent.

This can only be guaranteed, if the agents intercept all replacement messages without

exception and there is a unique path to the home node. Adaptive routing techniques are

incompatible with this algorithm. However, adaptive routing partially attacks the same

problems as GLOW (e.g., network congestion) and because of complexity of the two solu-

tions it may be not be cost-effective to use them simultaneously.

Agent replacement, on the other hand, is straightforward and it is depicted in Figure 3.31. The

agent computes the union of its bit-maps (using a logical OR function) and sends this bit-map

toward the home node in a replacement message. This message may be intercepted by a

higher-level agent or it may arrive at the home node. Regardless of the actual destination, the

bit-map is merged with the appropriate bit-map at the node that services the replacement mes-

sage (again a logical OR function). In Figure 3.31, the agent’s bit-map arrives at the home

node and its is merged with the home-node bit-map.

3.7.1.3 Summary of GLOW on DirnNB

Assuming that in a DirnNB system we cannot provide the GLOW agents with their own unique

IDs, we can integrate them with other nodes. With this compromise, GLOW maintains most of

its characteristics described in Section 3.4.1, some with modifications:

102

1. Simplicity: The DirnNB protocol is replicated in the GLOW agents similar to SCI.

2. Network locality: the sharing trees created in DirnNB GLOW map on the network topology.

However, topologies are restricted to ones where switches coincide with nodes.

3. No multilevel inclusion is enforced: the GLOW agents can ignore any read request even

requests coming from the same node. However, before an agent allocates a new GLOW entry

it must perform a lookup in the node cache (in case the data are already there and the node

ID is registered in the bit-map of the home node or another agent).

4. Scalable reads. Similar to SCI.

5. Scalable writes. Although in DirnNB the invalidation algorithm is not serial as in SCI, the

network locality of the sharing tree reduces the bandwidth requirements by sending a com-

parable number of messages in much shorter distances.

Transparency is compromised because of the unification of the GLOW agents and the nodes.

GLOW is not transparent since the system must be designed to accommodate it: network

switches must be integrated with nodes and network topologies where switches do not coin-

cide with nodes are excluded. In the sample design presented above, the main differences

from the SCI version of GLOW are:

1. The GLOW agents are enhanced nodes and cannot be stand-alone entities (because of lack

of node addressing space).

2. GLOW agents must always carry data. This is because, in contrast to SCI where nodes can

actually get the data from other caches, in DirnNB nodes always get the data from the

memory node.

3. GLOW agents must snoop at all incoming and outgoing traffic of the corresponding node. A

103

GLOW agent assumes the identity of the corresponding node for the cache blocks that are

active in its (GLOW) cache. Messages (e.g., invalidation messages) addressed to the node ID

may be destined either for the node itself or for the GLOW agent, which is given priority.

The replacement algorithm also requires monitoring of the outgoing traffic. This require-

ment does not compromise the policy of not enforcing multilevel inclusion, which relates

to the action taken upon intercepting a read request.

4. Modifications to the base protocol (DirnNB) are required: invalidation messages must carry

the identity of the writer.

3.7.2 Limited pointer directory protocols

A consideration with full-map protocols is the memory requirement for directory storage. A

thousand-node Dir1024NB (1024 pointers, No Broadcast) machine requires 1Kbit of tag for

every data block in memory. Proposed solutions are to implement a limited pointer directory

(e.g., DiriB, which has i pointers and broadcasts invalidations for more that i nodes sharing),

LimitLESS directories [24], where additional pointers beyond what the hardware provides are

handled in software, or sparse directories that hold sharing information for a limited number

of data blocks. GLOW, however, can provide an alternative solution offering not only support

for widely-shared data but also additional pointer storage in its agents. The agents are unified

with nodes and are implemented as described in the previous section. A well designed DiriB

system with GLOW would have at most i GLOW agents in the first level after memory. The

memory directory would rarely see more than i requests for any data block (regardless of

whether it is widely-shared or not).

GLOW attacks different weaknesses in different environments. SCI is scalable with respect to

104

the memory required for directory information by distributing this information in lists.

Because of this, SCI pays the price of serial invalidations. GLOW provides a solution to this

weakness. DirnNB suffers from scalability problems because of directory memory require-

ments. Limited pointer variations attack this problem, but create a new one: exceeding the

pointer capacity. These protocols pay the price of invalidation broadcasts, even for the cases

where broadcasts are an overkill. LimitLESS directories pay a severe penalty whenever the

pointer capacity is exceeded. GLOW provides a solution to this situation by providing dynamic

pointers, making solutions such as dynamic pointer allocation [90] unnecessary.

3.7.3 GLOW and pruning caches

Pruning caches, proposed by Scott and Goodman [88,86] are hierarchical directories based on

the multilevel inclusion property. Pruning caches allow a directory entry in a sharing tree to be

replaced without invalidating its subtrees. However, for any subsequent operation (e.g., invali-

dation) the conservative assumption must be made that the subtrees of the replaced entry are

fully populated [86].

The concept of pruning caches can also be applied to GLOW potentially offering higher perfor-

mance. The scheme depends on the observation that entire child lists in SCI GLOW are typically

(but not always) contained within a single ring. This fact, and the expectation that a modest

number of nodes will be attached to a single ring, suggests the possibility of storing directory

information related to a single list not in the form of a doubly-linked list, but as a bitmap with

local scope (restricted to the nodes of a ring). Storing the information as a bitmap opens up a

range of alternative algorithms, using broadcast.

105

The pruning cache concept depends on the observation that if the bitmap information is lost,

the tree can be reconstructed conservatively, that is, by including all possible siblings in the

child list. While nodes not in the tree may be inadvertently inserted into the tree, they need not

contain data, so no harm is created by adding them (except that the tree is unnecessarily larger

than it need be, and extra traffic may be generated in destroying it).

One of the benefits of the bitmap scheme is that a node can leave the tree for free. Note that

this feature meets a basic requirement of the bit-mapped scheme: all lists must be contained

within a single ring. This scheme therefore always forms the perfect tree, and avoids the prob-

lems of patching ill-formed trees. However, this also means that multilevel inclusion is

enforced in the tree: nodes or agents cannot occupy any arbitrary level of the tree but strictly

the one necessary by the topology. In this case, special care must be employed to avoid dead-

locks in arbitrary topologies (see Section 3.5.3).

3.7.4 Software GLOW (SOFTGLOW)

GLOW can be applied on software-based shared-memory platforms (shared virtual memory

implementations such as Munin [22], IVY [67], Treadmarks [10], etc. are prime examples). A

class of machines exemplified by the Typhoon [80] and FLASH [60] architectures provide

necessary hardware mechanisms to assist the implementation of shared memory, but they also

implement all their protocols in software. GLOW can be implemented in software (called SOFT-

GLOW) without hardware GLOW agents. In this case the GLOW agents exist only as abstractions

and are implemented as software handlers, along with the rest of the protocols.

The importance of SOFTGLOW is justified as follows:

106

1. It applies to a large class of shared-memory platforms that are considered cost-effective.

2. There is no direct hardware cost associated with implementing GLOW agents; instead cost

appears as resources occupied in the nodes.

3. It can offer considerable benefits to these machines.

One way GLOW can benefit such systems is by reducing the network load. More importantly,

GLOW may alleviate hot spots, which is especially relevant for the classes of machines men-

tioned above. In these machines the network interface (NI) is possibly a significant bottleneck.

GLOW may be able to reduce the load on the NIs by distributing widely-shared data accesses

more evenly across the system.

SoftGLOW can be implemented in any platform that provides both:

• the ability to implement the GLOW agent abstraction in software in any node (i.e. the abil-

ity to use intermediate nodes as replicas of home nodes);

• and the ability to direct accesses to GLOW home-node replicas instead of the actual home

nodes.

3.7.4.1 SOFTGLOW and software combining

Since SOFTGLOW is a group of software handlers for widely-shared data, it is related to soft-

ware combining techniques [106,107] (software trees etc.). Software combining is imple-

mented at the application level, thus changing the program itself and introducing substantial

software overhead. SoftGLOW is implemented in a lower level where it is transparent to the

application and the overhead is small and hidden from the application level. The program need

not execute more instructions other than the single load or store to the widely-shared data, in

107

contrast to the software combining techniques. Thus, SOFTGLOW provides for efficient han-

dling of widely-shared data in a manner that is transparent to the application, leading to

cleaner, simpler and more elegant shared-memory programs.

3.7.4.2 Related work

Systems similar to SOFTGLOW have already been implemented. In particular, Bianchini and

LeBlanc have proposed eager combining (EC) [17] and Bennett, Kelly, Refstrup and Talbot

have proposed proxies [96], that are similar to the concept of GLOW home-node replicas. EC

uses specified nodes as servers for widely shared pages or hot pages. These pages are updated

in the server nodes (using eager sharing). Clients request the data from the servers, rather than

the actual home node. EC is similar to GLOW in that the authors only use it for widely-shared

data. However EC does not take into account network topology, it uses partial update for the

servers, and caches the actual data, which is optional in GLOW. The authors report speedup

over DASH in the range of 2 to 3 for up to 128 processors. Proxies are another approach to soft-

ware support for wide sharing, similar to EC. While EC employs a partial update protocol (only

the server nodes are updated and not the sharing nodes), proxies employ an invalidation proto-

col. Many of the SOFTGLOW’s features are covered by the proxies work.

108

3.8 Summary

In this chapter I argued that widely-shared data are a more serious problem than previously recog-

nized, and that furthermore, it is possible to provide transparent support that actually gives an

advantage to widely-shared data by exploiting their redundancy to improve accessibility. The

GLOW extensions to cache-coherence protocols provide such support for widely-shared data by

defining functionality in the network domain.

A GLOW implementation described in detail in this thesis, encompasses six characteristics that

are found together for the first time in a single proposal. These are:

1. TRANSPARENCY. GLOW is not a protocol, but a transparent extension to other protocols.

However, for some GLOW implementations, this characteristic is compromised (Section

3.7.1).

2. SIMPLICITY. GLOW agents behave both as memory directories and cache nodes, using the

underlying cache coherence protocol recursively.

3. NO MULTILEVEL INCLUSION. GLOW does not impose multilevel inclusion in its sharing

trees. The implication is that GLOW builds logical sharing trees on top of any physical

topology, efficiently avoiding deadlocks.

4. NETWORK (GEOGRAPHICAL) LOCALITY. The logical GLOW trees follow—to the extent pos-

sible, but not necessarily—the tree that fans-in from all the sharing nodes to the actual

home node of the widely-shared data.

5. SCALABLE READS. GLOW offers long-lived directory storage in the network thus achieving

request combining and elimination of hot spots.

109

6. SCALABLE WRITES. GLOW employs parallel invalidation (update) which, coupled with the

network locality of the sharing tree, offers fast and scalable writes making efficient use of

network bandwidth.

To demonstrate GLOW, I successfully implemented it transparently on top of a complex coher-

ence protocol (SCI). The main part of this chapter describes this implementation. The policy of

not enforcing multilevel inclusion allows two algorithms (DESTRUCTIVE ROLLOUT and LIN-

EARIZING ROLLOUT) to handle replacements in the sharing tree. I have shown that both per-

form equally well over a wide range of GLOW directory cache sizes. In the extreme cases

where the directory storage in the GLOW agents cannot accommodate the small amount of

widely-shared data (actively used at any point in time), DESTRUCTIVE ROLLOUT suffers

because it interferes negatively with sharing nodes.

Finally, I have discussed invalidation and update protocols, the effects of relaxing the memory

model for both SCI and GLOW (and argued that GLOW with sequential consistency is better than

SCI with a relaxed consistency memory model), and proposed GLOW implementations on top

of other hardware and software coherence protocols.

The GLOW extensions are an optimization for wide sharing. Because the GLOW extensions

incur overhead for building a sharing tree (which is not leveraged when very few nodes are

sharing), they should not be applied indiscriminately on all data (or for all accesses). Doing so

results in performance loss. The GLOW extensions are independent of methods to define (stati-

cally) or discover (dynamically) widely-shared data or instructions that access widely-shared

data. In the next chapter I discuss several such methods.

110

111

4 Static and Dynamic Optimizations for Wide
Sharing

In the previous chapter I described the GLOW mechanisms to handle widely-shared data. The

mechanisms are engaged only for special requests that indicate wide sharing. However, the

GLOW mechanisms are independent of how these special requests are generated, i.e., they are

independent of how widely-shared data are distinguished from other data. In this chapter I

describe both static [50,51] and dynamic methods [52,53] to generate special requests for

wide sharing. Table 5 is an overview of all the methods I propose and study. The methods are

divided into static (compile-time) and dynamic (run-time), address-based (i.e., widely-shared

data are distinguished by their addresses) and instruction-based (i.e., widely-shared data are

distinguished by the instructions that access them). Related work (EC, proxies, STEM, combin-

ing) appears with references in the shaded cells.

Section 4.1 presents the static (address-based and instruction-based) methods to generate

GLOW requests. I consider the static address-based method as the base case for the perfor-

WIDE SHARING Static Dynamic

Address-based EC [17], PROXIES [15][96] STEM [44]

COMBINING [36]

Static GLOW address-based Agent-Detection

Directory-Detection

Instruction-based Static GLOW instruction-based Instruction-based Prediction

1) Latency

2) Directory-feedback

Table 5. Wide sharing: static and dynamic, address-based and instruction-based
methods to apply the GLOW optimizations. Related work is shown in the shaded cells.

112

mance of GLOW and I compare all dynamic methods to this case. Using the static address-

based method I examine various aspects of GLOW performance in Section 4.2.

In the next two sections I present the dynamic methods to apply the GLOW extensions. In Sec-

tion 4.3 I present two address-based methods. The first is called AGENT DETECTION and it is

inspired by request combining. The second is called DIRECTORY DETECTION and in this

method the directory is responsible for discovering wide sharing. Section 4.4 presents two

instruction-based methods in which, when a load instruction misses in the coherent cache, we

can predict (based on its past history) whether it will access widely-shared data or not.

In the two sections where I describe the address-based and instruction-based dynamic meth-

ods, I present specific results to illustrate various aspects of each. A full-blown comparison of

all the methods (static and dynamic) is presented in the last section of this chapter (Section

4.5). In this section, to interpret the results, I examine how the various methods affect the

read-runs of the programs.

113

4.1 Static optimizations for wide sharing

In the static methods the user identifies, at compile-time, either the widely-shared data

(address-based) or the code that accesses widely-shared data (instruction-based). Conceptu-

ally, this can be done automatically by a compiler (this is beyond the scope of this thesis). In

cases where identification is difficult, profiling could provide the necessary information.

Identifying the widely-shared data in the source program is only the first step. The appropriate

information must then be passed to the hardware so special requests for widely-shared data

can be generated to invoke the GLOW agents. Thus, the static methods require an interface to

pass information from the program to the hardware. Only when such an interface is possible

and has an acceptable implementation do the static methods make sense. Otherwise, the

dynamic methods presented later in this chapter must be used to transparently provide detec-

tion of widely-shared data.

4.1.1 Static address-based GLOW

Conceptually, address-based identification of widely-shared data is simple: directives in the

source code define and un-define widely-shared data. During run-time, data that are defined as

widely shared are accessed using GLOW. A possible hardware implementation of this method

uses address tables—structures that store arbitrary addresses (or segments) of widely-shared

data. Address tables can be implemented in the network interface (NI) or as part of the cache-

coherence hardware. In both cases the user must have access to these tables in order to define

and un-define widely-shared data. Implementing these structures, however, is not trivial. The

main issues are:

114

• Security: Access to hardware resources must be protected by the operating system. The

operating system must support these tables with a special application interface (API).

• Allocation: Multiple competing processes may want to access the tables concurrently. In

this case the operating system must partition the tables to multiple processes or in some

way multiplex their accesses.

• Address translation: Another consideration is that translation from virtual to physical

addresses may be needed for these address tables. Schoinas and Hill have studied the gen-

eral problem of address translation in NIs and discuss several solutions [85].

The address tables could be virtualized by the operating system, but this solution is also unsat-

isfactory since (i) it requires operating system support and (ii) it will slow down access to

these tables.

Alternatively, address-based identification can be accomplished by mapping widely-shared

data to a predefined memory area (to a pre-defined set of pages if virtual addresses are visible

at the GLOW agents, or to predefined physical frames if only physical addresses are available).

The NI could generate GLOW requests for addresses that fall in some predefined area. The

drawback of this method is that it is not flexible enough to handle data that change behavior

dynamically (without resorting to data movement in memory). For example, in the GAUSS

benchmark, memory mapping of widely-shared data is not convenient because the pivot row

changes with every iteration.

4.1.2 Static instruction-based GLOW

The observation that led to all the instruction-based schemes is that the nature of the data may

115

change dynamically, but the nature of the code often does not. For example, in the GAUSS pro-

gram, the pivot row (i.e., widely-shared data) is accessed at a very specific point. Finding the

instructions that access the pivot row is enough to generate wide-sharing requests, even if the

pivot row changes in every iteration.

If specific code is used to access widely-shared data, the programmer can annotate the source

code and the compiler can generate memory operations for this code that are interpreted as

wide-sharing requests. I propose the following implementations:

• COLORED OR FLAVORED LOADS: The processor is capable of tagging load and store opera-

tions explicitly. Currently this method enjoys little support from commercial processors.

• EXTERNAL REGISTERS: A two-instruction sequence is employed. First, a special store to an

uncached, memory mapped, external register is issued, followed by the actual load or

store. This special store sets up external hardware that will tag the following memory

operation as a widely-shared data operation. While it is desirable that the two operations

be performed atomically, this is not a requirement for correctness, so no extraordinary

measures need be employed to handle discontinuities caused by exceptions. The main

drawback of this scheme is that it requires external hardware close to the processor, which

may not be feasible in a system that is built with commodity main-boards.

• PREFETCH INSTRUCTIONS: If the microprocessor has prefetch instructions they can be used

to indicate to the external hardware which addresses are widely shared. Again, external

hardware is required close to the processor, making this a “custom hardware” approach.

• ADDRESS MANIPULATION: An instruction accessing widely-shared data could be preceded

by code that sets an unused bit (e.g., the most significant bit) in the address accessed. The

116

GLOW agents can be set to intercept addresses with the specific bit set. The drawback of

this method is that it reduces the address space available to the program by half, in order to

avoid address conflicts. Appropriate mappings in the virtual system must also be set to

avoid bogus page faults.

The performance of static instruction-based GLOW is discussed in connection with that of its

dynamic counterpart instruction-based prediction (Section 4.4).

117

4.2 Performance of static optimizations

The static address-based GLOW is the base case for the GLOW optimizations, against which all

other static and dynamic GLOW methods are compared. In this section, I study aspects of the

performance of the static address-based GLOW:

1. In Section 4.2.1: Basic performance compared to SCI. Effect of caching data in the GLOW

agents. Effects of 2- and 3-dimensional topologies.

2. In Section 4.2.2: Effect of the input size on scalability of programs.

3. In Section 4.2.3: Analysis of read and write performance.

4. In Section 4.2.4: Effect of relaxing the memory model.

5. In Section 4.2.5: Update protocols.

I examine six programs (GAUSS, SPARSE, APSP, TC, BARNES, CG) in various system configura-

tions (2-dimensional and 3-dimensional networks with 16 to 128 nodes). I included directives

in the source code to define and undefine widely-shared data. I model a very small overhead of

6 processor cycles for defining and undefining widely-shared data at run-time, using address

tables. Since changes to the address tables are infrequent for all programs, execution time is

affected minimally.

I use the 3-dimensional topologies to show how network scalability affects the GLOW exten-

sions. In general the results show that GLOW offers greater performance advantage with higher

dimension networks, because it can create shorter trees with larger fan-out.

I measure execution time for each program and present speedups normalized to a base case. I

118

selected the base case to be SCI on 16 nodes with the appropriate 2- or 3-dimensional network

(shaded rows in Table 6). This presentation of the results achieves two goals: (i) since all sim-

ulations start at 16 nodes (SCI on 16 nodes has a normalized speedup of 1.00) the normalized

speedup directly gives the performance gain when the number of processors is increased two-

, four-, and eight-fold, and (ii) the normalized speedup curves are the same as the speedup-

over-one-node curves but scaled by a constant factor. In contrast, GLOW speedup over SCI for

the same number of nodes does not provide scalability information.

The programs I use do not scale beyond 32 or 64 nodes for SCI (Table 6). The GLOW exten-

sions allow these programs to scale to 128 nodes but the performance difference between 64

and 128 nodes is generally small. A limitation of the simulation methodology is that the input

size of the programs is kept constant and relatively small. This is necessary because of practi-

cal constraints pertaining to simulation time and memory limitations of the host system (CM-

5). With larger datasets these programs scale to more nodes for the base SCI case and the

GLOW extensions yield increasingly higher performance improvements, as I will show in Sec-

tion 4.2.2.

Nodes GAUSS SPARSE APSP TC BARNES CG

2-D 16 16.57 5.86 11.70 14.45 7.22 15.99

32 25.34 8.57 19.36 20.10 8.56 24.24

64 22.95 12.68 21.02 19.27 12.69 37.26

128 12.92 12.53 14.74 13.20 — —

3-D 16 16.77 6.09 11.77 14.51 7.23 —

32 26.33 10.01 19.88 20.60 8.54 —

64 25.27 15.73 21.93 20.14 12.56 —

128 16.18 18.54 15.94 14.28 — —

Table 6. Actual speedups (over a single node) for SCI. The shaded rows are speedups for
the 16-node systems with 2- and 3-dimensional topologies that are used as the base cases
for normalizing GLOW speedups.

119

4.2.1 Basic performance: GLOW with and without data cache

In this section I present results that show: (i) how the programs scale using SCI and using

GLOW, (ii) the effects of the dimensionality of the network in performance, and (iii) the effect

of caching data in the GLOW agents. Table 7 shows the speedup of GLOW—without data stor-

age—over SCI for 2- and 3-dimensional networks.

GAUSS—GAUSS (Figure 4.1) on SCI does not scale beyond 32 nodes, showing serious perfor-

mance degradation with higher numbers of nodes. For GLOW I define the unknown vector and

the pivot row as widely-shared data (see Section 2.3.1 for a description of the widely-shared

data in the GAUSS program). The pivot row is re-defined for every iteration. The GLOW exten-

sions scale to 64 nodes in 2 dimensions and to 128 nodes in 3 dimensions (although the addi-

tional speedup is negligible). Static, address-based GLOW (without data storage) is up to 2.22

times faster than SCI in 2 dimensions and up to 2.44 times faster in 3 dimensions (speedups

over SCI are shown in Table 7). Data storage in the GLOW agents provides marginal perfor-

mance improvement.

SPARSE—SPARSE (Figure 4.2) scales to 128 nodes for both 2- and 3-dimensional networks

Nodes GAUSS SPARSE APSP TC BARNES CG (128)

2-D 16 1.04 1.19 1.04 1.04 0.99 1.40

32 1.14 1.13 1.11 1.14 1.00 1.52

64 1.53 1.26 1.52 1.55 1.00 1.58

128 2.22 1.26 2.20 2.22 — —

3-D 16 1.03 1.16 0.93 1.04 0.99 —

32 1.15 1.24 1.17 1.19 1.00 —

64 1.58 1.38 1.62 1.67 1.00 —

128 2.44 1.31 2.59 2.64 — —

Table 7. Speedup of static GLOW (S) over SCI on 16 to 128 nodes, 2 and 3 dimensions.

120

(although the increase in performance from 64 to 128 nodes in 2 dimensions is negligible).

For GLOW I define vector X as widely-shared data (see Section 2.3.2). GLOW is up to 1.26 and

up to 1.36 times faster than SCI in 128 nodes in 2 and 3 dimensions (Table 7). Data storage in

the GLOW agents offers 5% improvement in 128 nodes in 3 dimensions and less for the other

configurations.

APSP and TC—With SCI, APSP (Figure 4.3) does not scale beyond 64 nodes and TC (Figure 4.4)

does not scale beyond 32 nodes. Since it is impossible to determine at compile-time the

widely-shared data for both programs, the whole array that represents the graph is defined as

widely-shared data. GLOW scales to 128 nodes but the performance increase from 64 to 128

nodes in 2 dimensions is negligible (for TC performance drops). For APSP, static GLOW is up to

2.20 times faster than SCI in 2 dimensions and up to 2.59 times faster in 3 dimensions (see

Table 7). Similarly, for TC, static GLOW is up to 2.22 and up to 2.64 times faster than SCI for 2

and 3 dimensions, respectively (Table 7). Data storage offers negligible performance improve-

ments.

BARNES—BARNES (Figure 4.5) scales to 64 nodes for both SCI and GLOW even with the very

small input set used. For BARNES, static address-based GLOW does not offer performance

improvements. This is because, I defined only the root of the oct-tree as widely-shared data

and I do not dynamically define other levels as widely-shared data. The dynamic GLOW

schemes presented in subsequent sections are able to detect widely-shared data effectively and

show good performance improvements over SCI.

CG—CG (Figure 4.6) scales well for both SCI and GLOW with a 128x128 input. The main array

121

of CG is defined as widely shared. GLOW offers good performance improvement that increases

with system size. Data storage offers negligible performance improvement.

To summarize:

• GLOW does not show performance improvement over SCI for less than 16 nodes because

widely-shared data only become detrimental to scalability for larger system sizes.

• Even with the small inputs used, GLOW offers good performance improvement over SCI

and allows scaling to larger systems.

• The performance improvements are higher for the 3-dimensional topologies where GLOW

trees are better.

• Data storage in GLOW agents does not significantly help performance. This is expected

since the only case where data storage makes a difference is when a GLOW agent with child

lists creates a new child list. Without data storage the agent would have to fetch the data

from one of its older child lists. This is not the common case. Typically, a node gets the

data directly from the head of the child list.

Figure 4.1. GAUSS: Normalized speedup (base system is SCI on 16 nodes) for 2- and 3-
dimensional networks. GLOW with and without data cache.

16 32 64 1280

1

2

3

16 32 64 1280

1

2

3

SCI

GLOW

GLOW+DATA

Norm. SpeedupNorm. Speedup

Nodes Nodes

122

Figure 4.2. SPARSE: Normalized speedup (base system is SCI on 16 nodes) for 2- and 3-
dimensional networks. GLOW with and without data cache.

Figure 4.3. APSP: Normalized speedup (base system is SCI on 16 nodes) for 2- and 3-
dimensional networks. GLOW with and without data cache.

Figure 4.4. TC: Normalized speedup (base system is SCI on 16 nodes) for 2- and 3-
dimensional networks. GLOW with and without data cache.

16 32 64 1280

1

2

3

4

5

16 32 64 1280

1

2

3

4

5

SCI

GLOW

GLOW+DATA

Norm. SpeedupNorm. Speedup

Nodes Nodes

16 32 64 1280

1

2

3

4

16 32 64 1280

1

2

3

4

SCI

GLOW

GLOW+DATA

Norm. SpeedupNorm. Speedup

Nodes Nodes

16 32 64 1280

1

2

3

16 32 64 1280

1

2

3

SCI

GLOW

GLOW+DATA

Norm. SpeedupNorm. Speedup

Nodes Nodes

123

Figure 4.5. BARNES: Normalized speedup (base system is SCI on 16 nodes) for 2- and 3-
dimensional networks. GLOW with and without data cache.

Figure 4.6. CG: Normalized speedup (base system is SCI on 16 nodes) for 2-dimensional
network. GLOW with and without data cache.

16 32 640

0.5

1

1.5

2

16 32 640

0.5

1

1.5

2

SCI

GLOW

GLOW+DATA

Nodes Nodes

Norm. SpeedupNorm. Speedup

16 32 640

1

2

3

4

SCI

GLOW

GLOW+DATA

Norm. Speedup

Nodes

124

4.2.2 Dataset

Because of practical simulation constraints, I keep the input size constant regardless of the

system size. Thus, the programs usually do not scale beyond 32 (or at most 64) nodes. The

reason is that there is not enough work to be distributed among the nodes in the large systems

and the communication to computation ratio in such cases is very high. In addition, SCI is

slowed down by widely-shared data (GLOW is always faster than SCI in the larger systems).

Using larger datasets, GLOW scales much better than SCI. This is evident for GAUSS when it is

run with larger data sets. Figure 4.7 shows actual speedup (over a single node) for SCI and

GLOW for three different datasets:

• 256x256: With the small dataset, SCI does not scale (the performance improvement from

16 to 32 nodes is negligible). Its performance is also diminished by wide sharing. GLOW’s

speedup increases very slowly up to 64 nodes and then drops. However, GLOW remains

significantly faster than SCI (Table 8).

• 512x512: With the medium dataset, SCI still does not scale beyond 32 nodes but GLOW

scales better. GLOW’s speedup over SCI is not as high as in the previous case especially for

the small systems. This dataset is used for all further evaluation.

256X256 512X512 768X768

16 1.06 1.04 1.02

32 1.32 1.14 1.07

64 2.14 1.53 1.49

128 3.81 2.22 2.69

Table 8. GLOW speedup over SCI for (running on the same number of nodes) for GAUSS

for three inputs.

125

• 768x768: With the large dataset, the picture changes: SCI scales up to 64 nodes and GLOW

scales up to 128 nodes. However, widely-shared data only become significant for the 64-

and 128-node systems. Thus, GLOW’s speedup over SCI is less than that the previous case

(medium dataset) for the smaller systems but it is higher for the 128-node system.

Similar observations hold for APSP and TC when run with two input set sizes: 256x256 which

is the default dataset for all further evaluation, and 512x512. Figures 4.8 and 4.9 show the

actual speedups (over a single node) for APSP and TC. With larger data sets GLOW scales much

Figure 4.7. Absolute speedup (over a single node) for GAUSS in 2 dimensions with three
input set sizes: 256x256, 512x512, 768x768.

Figure 4.8. Absolute speedup (over a single node) for APSP in 2 dimensions with two
input set sizes: 256x256 and 512x512.

16 32 64 1280

20

40

60

80

16 32 64 128 16 32 64 128

SCI

GLOW
256x256 512x512 768x768

Abs. speedup

Nodes

16 32 64 1280

20

40

60

80

100

16 32 64 1280

20

40

60

80

100

SCI

GLOW

256x256 512x512

NodesNodes

Abs. speedup

Abs. speedup

126

better but it only becomes significantly faster than SCI for large systems. BARNES and CG also

show the same trends.

4.2.3 Analysis of read and write performance

GLOW provides both scalable reads and scalable writes. The purpose of this section is to

attempt to separate the performance components attributed to reads and to writes. This is diffi-

cult to do by simply examining how GLOW affects read and write latencies (as it was presented

in Appendix 3.5.5 for micro-benchmarks) because of the complex overlap of operations in a

program.

Instead, I modified the invalidation algorithm to operate serially (without any request forward-

ing). Thus, the sharing trees are built as before, obtaining the full read performance, but they

are invalidated similarly to a sharing list. Although the serial sharing tree invalidation algo-

rithm is slower, it is only a rough approximation to the serial sharing list invalidation

because of three significant differences: (i) in the sharing tree, more nodes (the GLOW agents)

are invalidated and this slows the invalidation, (ii) the sharing tree has more network locality

Figure 4.9. Absolute speedup (over a single node) for TC in 2 dimensions with two input
set sizes: 256x256 and 512x512.

16 32 64 1280

20

40

60

16 32 64 1280

20

40

60

SCI

GLOW

256x256 512x512

NodesNodes

Abs. speedupAbs. speedup

127

—invalidation transactions among agents and SCI nodes are usually confined to single rings—

and this speeds up the invalidation, and (iii) in the sharing tree invalidation (serial or parallel),

no single node is responsible for all invalidation transactions, as opposed to a sharing list

where only the head node sends all invalidation messages. This may speed up the invalidation

because no single server is busy for the duration of the invalidation.

Figure 4.10 compares the write latency of SCI, GLOW with serial invalidation, and GLOW with

parallel invalidation (the last graph gives the ratio of the SCI latency to the latency of serial

GLOW). As is evident from Figure 4.10 the serial sharing tree invalidation is considerably

slower than the parallel sharing tree invalidation, but not quite as slow as the sharing list inval-

idation. When all nodes are involved (100%) SCI write latency can be as high as 1.6 times the

serial GLOW latency. When fewer nodes are reading (25% and 12.5%) the extra GLOW agents

in the sharing tree slow down the serial GLOW invalidation to the point where it becomes

slower than the SCI invalidation.

Given this behavior of serial GLOW invalidation, a comparison with parallel GLOW invalidation

for four benchmarks3 shows the following:

• For GAUSS the reduction of the write latency is a significant component of the overall

GLOW performance since the serial GLOW performs considerably worse than the parallel

GLOW.

• For SPARSE, however, the serial GLOW invalidation does not affect performance. This is

because only three widely shared variables are written frequently.

3 BARNES is not included because STATIC GLOW does not offer any performance over SCI.

128

Figure 4.10. Write latency micro-benchmark results for GLOW with serial invalidation.

Figure 4.11. Normalized speedup for GAUSS and SPARSE with serial GLOW. Base system is
SCI on 16 nodes.

16 32 64 1280

10000

20000

30000

40000

16 32 64 1280

10000

20000

30000

40000

SCI Write latency GLOW serial Invalidation

100%
50%
25%
12.5%

100%
50%
25%
12.5%

1 2 3 40

10000

20000

30000

40000

GLOW parallel Invalidation

100%
50%
25%
12.5%

1 2 3 40

0.4

0.8

1.2

1.6

2
SCI/GLOW serial Invalidation

Cycles

Cycles

Cycles

NodesNodes

Nodes Nodes

16 32 64 1280

1

2

3

16 32 64 1280

1

2

3
GAUSS 2-D SPARSE 2-D

SCI

Serial GLOW

GLOW

Nodes Nodes

Norm. SpeedupNorm. Speedup

129

• For APSP and TC the write latency matters only for large systems where the it becomes sig-

nificant; otherwise, the reduction of the read latency is responsible for most of the perfor-

mance benefit.

These results indicate that scalable reads are more important for overall GLOW performance

than scalable writes, which become important only in the largest systems. The implication is

that GLOW is useful even in protocols that have better-than-serial invalidation algorithms (e.g.,

DirnNB, or DASH-like) and do not suffer from write latency nearly as much as SCI.

4.2.4 Relaxed consistency

The results presented so far are for a sequentially-consistent memory system. Relaxing the

memory model provides the opportunity to overlap write operations, thereby achieving greater

concurrency.

I used the relaxed consistency model (henceforth called r1) developed by Kägi et al. [47].

This model allows the processor to continue past writes after it becomes the head of the shar-

ing list, thus overlapping the invalidation of the sharing list or sharing tree—by far the most

Figure 4.12. Normalized speedup for APSP and TC with serial GLOW. Base system is SCI
on 16 nodes.

16 32 64 1280

1

2

3

16 32 64 1280

1

2

3
APSP 2-D TC 2-D

SCI

Serial GLOW

GLOW

Nodes Nodes

Norm. SpeedupNorm. Speedup

130

expensive part of the write—with computation or other writes. More aggressive schemes are

possible but Kägi et al. [47] have shown that although they offer additional performance

improvement they also impose a significant increase in complexity over r1. Synchronization

operations implement memory fences that stall the processor until all outstanding memory

operations have been completed. This model is not as aggressive as relaxed consistency [32],

which blocks the processor on synchronization operations until properly labeled memory

operations have been globally performed.

The results for all the benchmarks (GAUSS, SPARSE, APSP, TC and BARNES) are shown in Fig-

ures 4.13, 4.14, and 4.15. Relaxed consistency helps both SCI and GLOW since all writes are

relaxed. A significant result is that GLOW with SC is significantly better than SCI with r1. This

is because the latencies involved in wide sharing are very large and cannot be hidden with r1.

In contrast, GLOW attacks the problem directly, reducing the latency of reads and writes. This

result supports Hill’s argument for implementing a simple memory model such as SC [38].

An additional advantage of GLOW is that is that it shows slightly higher performance improve-

Figure 4.13. Normalized speedup for GAUSS and SPARSE with relaxed-consistency
memory model. Base system is SCI on 16 nodes.

16 32 64 1280

1

2

3

16 32 64 1280

1

2

3

SCI SC

SCI r1

GLOW r1

GLOW SC

GAUSS 2-D SPARSE 2-D

Nodes Nodes

Norm. SpeedupNorm. Speedup

131

ment with r1 than SCI. There are two effects at play here. The first is that GLOW makes better

use of the network bandwidth because of its network locality. Therefore, more bandwidth

remains available for relaxing the memory model and allowing more memory requests in the

network concurrently. The second effect has to do with server utilization in the writer nodes.

Recall that operations involving many messages tend to create hot spots. Since in SCI the writ-

ers invalidate the sharing list, relaxing the memory model allows more requests to be issued

from the writer node before the invalidation of the sharing list has completed. This increases

Figure 4.14. Normalized speedup for APSP and TC with relaxed-consistency memory
model. Base system is SCI on 16 nodes.

Figure 4.15. Normalized speedup for BARNES with relaxed-consistency memory model.
Base system is SCI on 16 nodes,

16 32 64 1280

1

2

3

16 32 64 1280

1

2

3

SCI SC

SCI r1

GLOW r1

GLOW SC

APSP 2-D TC 2-D

Nodes Nodes

Norm. SpeedupNorm. Speedup

16 32 640

0.5

1

1.5

2

SCI SC

SCI r1

GLOW r1

GLOW SC

BARNES 2-D

Nodes

Norm. Speedup

132

the utilization of all resources in the writer node. In contrast, when GLOW is in use, writer

nodes invalidate only the highest level of the sharing tree and the rest of the invalidations are

distributed to the GLOW agents. In APSP and TC the performance of r1 drops in the 128-node

cases for both SCI and GLOW because of the pressure in the network and the cache servers of

the writer nodes.

4.2.5 Update protocol

I also extended the GLOW protocol to do updates rather than invalidates. This extension is full

update with full request forwarding and does not assume sequentially consistent memory.

However, I have been able to ascertain that there are no data races in the benchmarks.

The update protocol shows considerable performance improvement for SPARSE, while for the

other benchmarks the performance improvement is either small or negative. This is because

only in SPARSE do the widely-shared data remain the same (and do not change behavior). In all

other benchmarks the widely-shared data change overtime. Thus, in SPARSE we can update the

widely-shared data without fear of sending bogus updates. However, for the other bench-

marks, updating a sharing tree (i.e., all the nodes) when the data are not widely shared carries

a penalty that increases with system size.

Figure 4.16 compares invalidation and update for GLOW for SPARSE in 2- and 3-dimensional

topologies. The update protocol is up to 1.20 times faster than the invalidation protocol in 2

dimensions and up to 1.16 times in 3 dimensions. In contrast, the update protocol performs

worse than the invalidation protocol for GAUSS (Figure 4.17). In larger systems the perfor-

mance of the update protocol worsens since the number of superfluous update messages

133

increases. The effect is most pronounced in the 2-dimensional topology where bandwidth is

precious.

Figure 4.16. Normalized speedup for full update in SPARSE. Base system is SCI on 16
nodes.

Figure 4.17. Normalized speedup for full update in GAUSS. Base system is SCI on 16
nodes.

16 32 64 1280

1

2

3

4

5

16 32 64 1280

1

2

3

4

5

SCI

GLOW

GLOW UPD.

SPARSE 2-D SPARSE 3-D

Nodes Nodes

Norm. SpeedupNorm. Speedup

16 32 64 1280

1

2

3

16 32 64 1280

1

2

3

SCI

GLOW

GLOW UPD.

GAUSS 2-D GAUSS 3-D

Nodes Nodes

Norm. SpeedupNorm. Speedup

134

4.3 Dynamic address-based optimizations for wide sharing

Shared-memory computers will only be used if they are inexpensive, fast and easy to program.

Even if efficient handling of widely-shared data can be achieved using static identification

methods, such methods might put so much burden on the programmer and the computer

design, that they turn out to be too expensive. The static methods have three serious disadvan-

tages:

1. Involvement of the programmer (and/or possibly the compiler) is required. This puts a bur-

den on the user that contradicts the desire to keep the shared-memory paradigm simple

while increasing its efficiency.

2. It is not always trivial to determine the addresses of widely-shared data statically, nor the

instructions that access such data. In so called data-driven programs, the access patterns are

decided at run time, according to the data values used. Also, if for other reasons the nature

of data changes frequently and unpredictably, the static approaches may be inadequate.

3. An interface is required to transfer information from the program to the hardware. This

leads to implementation difficulties. Both static alternatives (identifying addresses or iden-

tifying instructions) have implementation problems, especially in systems built of com-

modity parts. Address tables may require operating system support for their virtualization.

Identifying instructions that access widely-shared data requires custom hardware, unless

the processor itself provides appropriate support in the form of flavored loads. Address

manipulation halves the available address space of the program.

For situations where the above three disadvantages are intolerable, I propose dynamic meth-

135

ods to discover widely-shared data or the instructions that access them. The three approaches I

propose are:

• Congestion-based detection of widely-shared data which is inspired by request combining

(Section 4.3.1).

• Directory detection of widely-shared data which is an address-based scheme where the

directory is responsible to discover the widely-shared data (Section 4.3.2).

• Instruction-based prediction which detects instructions that access widely-shared data

(Section 4.4). This is the dynamic counterpart of the instruction-based scheme described

in Section 4.1.2.

4.3.1 Congestion-based detection of widely-shared data

The appeal of the methods described in this section lies in that they are strictly confined to the

network domain and specifically to the GLOW agents themselves. Thus, only the GLOW hard-

ware need change, without affecting other commodity parts in the system.

Conceptually, a GLOW agent could intercept every request that passes through and do a lookup

in its directory cache. This would result in slowing down the switch node, polluting the direc-

tory caches with non-widely-shared data, and incurring the overhead of building a sharing tree

for non-widely-shared data. Instead, we want to filter the request stream and intercept only the

requests that are likely to refer to widely-shared data. Detection of such requests can be

assisted by the congestion they create in the network.

4.3.1.1 Request-combining in GLOW

The same technique as request-combing (proposed for the NYU Ultracomputer [36]) can be

136

used to detect requests for widely-shared data. The idea is that requests for widely-shared data

that are initiated at the same time are likely to create congestion in the network and collide in

the GLOW agents as the requests change rings on their way to the home node. Thus, when an

agent detects that its message queues are filling up with requests for the same data, it can

intercept them, take them out of the queues, and deliver them to the GLOW hardware.

The problem with such combining is that it is based too much on luck. Requests combine only

if they happen to be in the same queue at the same time, which might happen only in the pres-

ence of congestion. Combining is highly dependent on the network timing and queuing char-

acteristics as well as the congestion characteristics of the application (Section 4.3.1.3).

4.3.1.2 AGENT DETECTION of widely-shared data

Since combining is not guaranteed to work successfully, I propose a new method (henceforth

called AGENT DETECTION) to discover widely-shared data. The idea of AGENT DETECTION is

that the GLOW agents can artificially increase and keep constant the window of observable

requests, regardless of congestion, by remembering the last requests that passed through.

Thus, the agents observe the request traffic and detect addresses that are repeatedly requested.

Requests for such addresses are then intercepted.

The GLOW agents are switch nodes in the network and their main responsibility is to channel

traffic. To implement AGENT DETECTION, besides its ordinary message queues, each agent

keeps a small queue (possibly implemented as a circular queue) of the last N read requests it

has observed. The actual contents of the queue are the target addresses of the requests, hence

its name: recent-addresses queue. Using this queue each agent maintains a sliding window of

137

the request stream channeled through its ports.

When a new request arrives at the agent, its address is compared to those previously stored in

the recent-addresses queue (which can be searched associatively). If the address is found in

the queue the request is immediately intercepted by the agent as a request for widely-shared

data.4 Otherwise, the request is forwarded to its destination. In any case its address is also

inserted in the queue.

This method results in some lost opportunities. For example, the first request for an address

that is later repeated in other requests is not intercepted. Also, if a stream of requests for the

same address is diluted sufficiently by other intervening requests, AGENT DETECTION fails to

recognize it as a stream of widely-shared data requests. Finally, AGENT DETECTION does not

intercept all requests for widely-shared data and this is possible because GLOW does not

impose the multilevel inclusion property (disused in Section 3.5.3).

In the absence of congestion (i.e., when the agent’s message queues are empty) we need to

search the recent-addresses queue in slightly less time than it takes for a message to pass

through the agent. Since the recent-addresses queue is a small structure located at the heart of

the switch it can be searched quickly. The minimum latency through the switch will dictate the

maximum size of the queue. For the switches I model in the simulations a size of 128 entries

could be feasible.

4 A small threshold can be applied requiring an address to be present in the queue more than
once for a request to be intercepted.

138

4.3.1.3 Performance of congestion-based optimizations

In this section I compare SCI, static address-based GLOW, combining, and AGENT DETECTION.

Combining only observes requests delayed in the message queues because of congestion,

while AGENT DETECTION employs a 128-entry recent-addresses queue to discover repetition in

the addresses. The results in this section show that combining is sensitive to application and

network characteristics, while AGENT DETECTION always works better and, in addition, it is

insensitive to the size of the recent-addresses queue. Table 9 shows the speedup of the three

schemes over SCI running on the same number of nodes. Results for BARNES and CG are pre-

sented in a later section (Section 4.5).

GAUSS—Figure 4.18 shows the normalized speedups (with regard to SCI on 16 nodes) for the

GAUSS program. The two graphs present results for the 2- and 3-dimensional networks. Com-

bining reaches about half the performance improvement of static GLOW while AGENT DETEC-

TION remains within 5% of the performance of static GLOW.

SPARSE—For this program (Figure 4.19) AGENT DETECTION with recent-addresses queues out-

GAUSS SPARSE APSP TC

Nodes C A S C A S C A S C A S

2-D 16 1.01 1.01 1.04 1.00 1.11 1.19 0.98 0.99 1.04 1.00 1.01 1.04

32 1.08 1.11 1.14 1.00 1.10 1.13 0.99 1.08 1.11 1.00 1.09 1.14

64 1.19 1.45 1.53 1.00 1.29 1.26 1.00 1.40 1.52 1.01 1.42 1.55

128 1.61 2.01 2.22 1.01 1.29 1.26 1.01 1.97 2.20 1.01 1.96 2.22

3-D 16 1.01 1.00 1.03 1.00 1.08 1.16 0.98 0.98 0.93 1.00 1.01 1.04

32 1.08 1.13 1.15 0.99 1.16 1.24 0.99 1.10 1.17 1.00 1.13 1.19

64 1.32 1.52 1.58 1.00 1.25 1.38 1.01 1.51 1.62 1.01 1.53 1.67

128 1.80 2.31 2.44 1.01 1.33 1.31 1.03 2.38 2.59 1.04 2.39 2.64

Table 9. Speedup using combining (C), AGENT DETECTION (A), and static GLOW (S) over
SCI on 16 to 128 nodes, 2 and 3 dimensions.

139

performs static GLOW (in the 64- and 128-node systems in 2 dimensions and in the 128-node

system in 3 dimensions). This is because SPARSE actually contains more widely-shared data

than just the vector X described previously (Section 2.3.2) and AGENT DETECTION can handle

them effortlessly and better than static GLOW. AGENT DETECTION performs up to 1.29 times

faster than SCI in 2 dimensions and up to 1.33 times faster in 3 dimensions. Combining fails to

provide any significant performance improvement.

APSP and TC—APSP (Figure 4.20) and TC (Figure 4.21) show similar behavior. For both pro-

grams combining again fails to show any performance improvement while AGENT DETECTION

works satisfactorily compared to the static, address based GLOW.

To summarize the results: AGENT DETECTION consistently tracks the performance of static

GLOW while combining only works for some program (GAUSS and BARNES). These results

show that combining is sensitive to the congestion characteristics of the application. The

behavior of combining also changes depending on the network characteristics (e.g., link or

switch latency), while the behavior of AGENT DETECTION is largely unaffected by the number

of intercepted requests.

Figure 4.18. Speedup for GAUSS (with respect to SCI on 16 nodes) in 2 and 3 dimensions
(16 to 128 nodes).

0.0

1.0

2.0

3.0

0.0

1.0

2.0

3.0

16 32 64 128 Nodes 16 32 64 128 Nodes

SCI

Combining

Static GLOW

Agent Det.

2-D 3-D

N
or

m
al

iz
ed

 S
pe

ed
up

140

Figure 4.19. Speedup for SPARSE (with respect to SCI on 16 nodes) in 2 and 3 dimensions
(16 to 128 nodes).

Figure 4.20. Speedup for APSP (with respect to SCI on 16 nodes) in 2 and 3 dimensions (16
to 128 nodes).

Figure 4.21. Speedup for TC (with respect to SCI on 16 nodes) in 2 and 3 dimensions (16
to 128 nodes).

0.0

1.0

2.0

3.0

4.0

5.0

0.0

1.0

2.0

3.0

16 32 64 128 Nodes 16 32 64 128 Nodes

SCI

Combining

Static GLOW

Agent Det.

2-D 3-D

N
or

m
al

iz
ed

 S
pe

ed
up

0.0

1.0

2.0

3.0

0.0

1.0

2.0

3.0

4.0

16 32 64 128 Nodes 16 32 64 128Nodes)

SCI

Combining

Static GLOW

Agent Det.

2-D 3-D

N
or

m
al

iz
ed

 S
pe

ed
up

0.0

1.0

2.0

3.0

0.0

1.0

2.0

3.0

16 32 64 128 Nodes 16 32 64 128 Nodes

SCI

Combining

Static GLOW

Agent Det.

2-D 3-D

N
or

m
al

iz
ed

 S
pe

ed
up

141

Sensitivity to window size—One interesting result is that AGENT DETECTION is largely insensi-

tive to the size of the recent-addresses queue, especially for the larger systems. However, the

programs I use in this work are small scientific codes and other workloads may need large

queues to capture repetition in requests.

Figure 4.22 shows the performance of the GAUSS and APSP programs for four different sizes of

the recent-addresses queue: 8, 32, 128 and 256 entries. Other benchmarks exhibit similar

behavior. It is evident in Figure 4.22 that the window size does not seriously affect the perfor-

mance of AGENT DETECTION. In fact, for GAUSS, the smallest window of size 8 performs

slightly better than the larger windows. This is because with larger windows there is the possi-

bility of intercepting requests for non-widely-shared data (thus incurring the overhead of the

extensions when there is no benefit), simply because they are repeated often. The implication

of the insensitivity to the window size is that the recent-addresses queue can be made small

and fast (i.e., without unwanted side-effects in the performance of the switch nodes) while still

performing well.

Figure 4.22. Sensitivity analysis for the size of the recent-addresses queue (speedup of
AGENT DETECTION with respect to SCI on 16 nodes).

0.0

1.0

2.0

3.0

0.0

1.0

2.0

3.0

16 32 64 128 16 32 64 128

Queue 8
Queue 32

Queue 256

Queue 128

GAUSS 2-D APSP 2-D

N
or

m
al

iz
ed

 S
pe

ed
up

NodesNodes

142

Sensitivity to switch latency—That AGENT DETECTION works well for all benchmarks exam-

ined in this thesis, while combining works partially for only one of them, suggests the latter is

sensitive to the congestion characteristics of applications. To confirm that combining is also

sensitive to network parameters (while AGENT DETECTION is not) I perform a sensitivity study

on network parameters. In particular, I examine what happens when the switches are slowed

down by increasing the latency to transfer a message from one ring to another through the

switch.

Other network parameters include the latency of the point-to-point links that comprise the

rings and end-point latencies at the node ring interfaces. However, increasing these latencies

compared to the switch latency actually decreases congestion, because this tends to space

messages farther apart. In contrast, increasing the switch latency creates more congestion.

The results presented in the previous sections assume very aggressive switches whose laten-

cies are equal to the point-to-point link latencies (10 processor cycles). The minimal conges-

tion we observe is mainly a result of multiple messages from different rings being routed to

the same destination. To observe significant congestion I increase the switch latency eight-

fold.

Figure 4.23 shows results for the four benchmarks for a system with slow switches. I use the

same base case as before, to assess the effect of the slow switches on performance. Thus, I

derive speedups by dividing the execution time of SCI on 16 nodes with fast switches by the

execution time of SCI, combining, AGENT DETECTION and static GLOW with slow switches (for

16 to 128 nodes).

143

Because of the slow switches, SCI exhibits lower speedups than before (see Figure 4.18). How-

ever, static and AGENT DETECTION are affected less than SCI. This is because the GLOW exten-

sions considerably reduce the number of ring crossings —the switches are used less to

transport messages across rings. Table 10 summarizes the speedups for fast and slow switches

for the four programs (for 16 to 128 nodes in 2 dimensions). Comparing the speedups we

observe that the greater the GLOW benefit for systems with fast switches, the less is the perfor-

mance hit using slow switches. In other words, when GLOW works well the importance of the

switch latency diminishes.

Figure 4.23. Speedup results with slower switches. Contention in the switch nodes makes
ordinary combining competitive but it also slows down the whole system. Speedups for
SCI, combining, dynamic and static GLOW are shown with respect to SCI on 16 nodes with
fast switches.

0

1.0

2.0

3.0

0

1.0

2.0

3.0

16 32 64 128

SPARSE 2-D

SCI

Combining

Static

Agent Det.

N
or

m
al

iz
ed

 S
pe

ed
up

GAUSS 2-D

16 32 64 128
 NodesNodes

0

1.0

2.0

3.0

0.0

1.0

2.0

3.0

16 32 64 128

APSP 2-D

16 32 64 128

SCI

Combining

Static

Agent Det.

N
or

m
al

iz
ed

 S
pe

ed
up

TC 2-D

 Nodes Nodes

144

The performance of combining relative to AGENT DETECTION and static GLOW improves for all

benchmarks and especially for the three benchmarks whose performance was previously unaf-

fected by combining (SPARSE, APSP, and TC). Combining reaches at least half the performance

benefit of AGENT DETECTION. The performance of AGENT DETECTION is still higher than com-

bining but drops relative to the performance of static GLOW. Again this has to do with the utili-

zation of the switches. Static GLOW makes the least use of the switches to transport messages

across rings and therefore is able to maintain higher performance.

4.3.2 DIRECTORY DETECTION of widely-shared data

In this scheme, henceforth called DIRECTORY DETECTION, the directory is responsible for iden-

tifying widely-shared data. DIRECTORY DETECTION is the address-based dynamic scheme for

GLOW. It resembles limited pointer directories such as DiriB [8], which switch from point-to-

point messaging to broadcasting if the number of readers exceeds some threshold. Similarly,

DIRECTORY DETECTION identifies wide sharing by keeping track of the number of readers and

informs the nodes in the system about the nature of the data. After the nodes learn that a data

GAUSS (FAST/
SLOW)

SPARSE(FAST/
SLOW)

APSP (FAST/SLOW) TC (FAST/SLOW)

N. SCI C D S SCI C D S N. SCI C D S SCI C D S

16 1.00/
0.87

1.01/
0.89

1.00/
0.91

1.03/
0.95

1.00/
0.68

1.00/
0.72

1.10/
0.74

1.19/
0.79

16 1.00/
0.83

0.95/
0.76

0.98/
0.82

1.04/
0.97

1.00/
0.88

0.99/
0.87

1.00/
0.91

1.04/
1.00

32 1.49/
1.23

1.60/
1.38

1.66/
1.49

1.69/
1.58

1.46/
1.01

1.43/
1.10

1.61/
1.29

1.65/
1.35

32 1.65/
1.42

1.63/
1.47

1.79/
1.56

1.84/
1.76

1.39/
1.21

1.40/
1.30

1.52/
1.36

1.59/
1.52

64 1.35/
0.99

1.69/
1.31

1.95/
1.60

2.06/
1.87

2.16/
1.52

2.20/
1.82

2.78/
2.14

2.73/
2.30

64 1.79/
1.56

1.81/
1.80

2.51/
2.17

2.73/
2.59

1.33/
1.15

1.35/
1.33

1.89/
1.63

2.06/
1.96

128 0.76/
0.58

1.23/
1.00

1.53/
1.24

1.69/
1.53

2.14/
1.80

2.18/
2.09

2.76/
2.39

2.69/
2.39

128 1.26/
1.11

1.30/
1.63

2.48/
2.13

2.77/
2.64

0.91/
0.82

0.95/
1.25

1.79/
1.56

2.03/
1.93

Table 10. Speedup using fast and slow switches for SCI (SCI), combining (C), AGENT

DETECTION (D), and static GLOW (S). The base case is SCI on 16 nodes with fast switches.

145

block is widely shared they use the GLOW extensions to access it.

DIRECTORY DETECTION works when data blocks are widely shared for many read-write cycles.

Since the opportunity to optimize the first read-write cycle may be lost, this scheme does not

provide any performance improvement when data blocks are widely shared only once. Fur-

thermore, it may degrade performance by incorrectly treating such data blocks as widely

shared when they are not.

In contrast to AGENT DETECTION that is transparent to the rest of the system, DIRECTORY

DETECTION requires modifications to the directory protocols. This is feasible in many com-

mercial or research systems where the cache coherence protocols are implemented as a com-

bination of software and hardware and can be upgraded (e.g., STiNG [68], Typhoon [80],

Flash [60]).

Since the home-node directory is a single point in the system that can observe the request

stream for its data blocks, it is in a position to detect wide sharing. In directories such as

DirnNB [8] the number of readers is readily available. However, in SCI, where only a single

pointer to the head of the sharing list is kept, the directory must count the number of reads

between writes. A counter associated with each data block counts up for each read and is reset

with a write. Data blocks for which the corresponding counter reaches some threshold value

are deemed widely shared. In SCI this is a heuristic since:

• The directory in SCI does not always see the write-faults. In SCI, when the writer is the

head node it has permission to write the cache block (provided that it will invalidate the

sharing list). Therefore, write-faults of the head nodes are not communicated to the direc-

146

tory. In contrast, when the writer is a middle or tail node, it has to roll out of the sharing

list and re-attach in front of the sharing list as a head node. This makes the write-fault vis-

ible to the directory. For widely-shared data, where the sharing list is very large, it is

unlikely the writer will be the head of the list. If the writer does not change frequently, it is

most likely the tail node. In the random case, a writer has only 1/N probability to be the

head of a sharing list of N nodes. To address this problem, I use a sticky bit in every direc-

tory entry to indicate wide sharing. This bit is set when the counter exceeds the pre-

defined threshold and is reset by writers who verify the directory’s claim that a data block

is widely shared.

• The directory might incorrectly deem a data block as widely shared just by seeing multiple

reads from the same node. Determining whether read requests actually come from differ-

ent nodes is possible if we keep a bitmap of the readers (similarly to DirnNB [8]). How-

ever, this would be an expensive addition to the SCI directory and I do not examine it

further.

In the evaluation I extended the SCI directory tag with a small 2-bit saturating counter and a

wide sharing bit. I have tested this scheme and found that the performance of DIRECTORY

DETECTION does not change for threshold values above four.

When the directory discovers a data block to be widely shared this information must be trans-

mitted to all nodes in the system so that the GLOW extensions will be used to access this data

block in the future (via GLOW requests). To transfer this information from the directory to the

nodes I propose three methods: (i) direct-notification, (ii) broadcast, and (iii) invalidation car-

ried notification:

147

• Direct notification: Upon detecting widely-shared data, the directory returns responses to

new requests indicating (with a single set bit in the response) that the data accessed are

widely shared. Nodes will use GLOW the next time they access this data block.

• Broadcast: Upon detecting widely-shared data, the directory broadcasts the address of the

data block so that all nodes learn about it. Such broadcast consumes considerable band-

width and typically, by the time it reaches the nodes they have already sent their requests

without using GLOW. If the data block is not widely shared beyond this read cycle, the

opportunity to optimize wide sharing is lost. The performance of this method in tests was

not satisfactory and I have not examined it further.

• Invalidation carried notification: Information about a widely shared block is transferred

to the nodes when the data block is written. Upon a write, the directory (or the writer in

SCI) sends invalidation messages that notify the nodes about the nature of the data block.

Since the information is carried with the invalidation messages it does not consume extra

bandwidth. However, with this method only the nodes that participated in the first read

will learn about the data block and the opportunity to optimize the first read cycle is lost

since the information is carried to the nodes after the data block is written.

When information about data blocks is transferred to the nodes, it needs to be stored for future

reference. The nodes need to remember what data blocks are widely shared so they can use

GLOW to access them. I propose two solutions:

• Address Tables: Information about which data blocks have been found to be widely

shared is kept in address tables similar to those described for the static address-based

GLOW (Section 4.1.1).

148

• Hot Tags: Information about wide sharing is stored in the cache tags themselves. How-

ever, this information is not thrown away when the cache tags are invalidated. Instead the

tags are kept in the cache like other valid tags and are not available for immediate replace-

ment as junk.5 I call these tags hot tags. If a node tries to access a hot tag it will experience

a miss but it will send a request for widely-shared data which will be handled by the GLOW

agents.

4.3.2.1 Adapting back

A consideration about DIRECTORY DETECTION is that it adapts easily from non-wide sharing to

wide sharing but it is very hard to adapt the other way around. If a data block is widely

accessed only once, the directory will observe very few read requests between writes after the

first read-write cycle. However, it cannot determine whether it sees very few requests because

the data block is no longer widely shared, or because the GLOW extensions absorb most of the

requests in the network. On the other, hand the directory might see many read requests with-

out an intervening write simply because sometimes write-faults are not visible to the directory.

To solve these problems, once a directory detects a large number of reads for a data block it

assumes that it is widely shared and continuously indicates this in its responses until it is

directed to do otherwise. The sticky wide-sharing bit in the directory tag is set to indicate wide

sharing. The writers are responsible for verifying—and if necessary, correcting with an extra

transaction—the directory’s claim that a data block is widely shared, by counting the number

of nodes they invalidate (in SCI the writer node invalidates all other sharing nodes rather than

5 But they are candidates under the cache’s replacement algorithm (e.g., LRU, random, etc.).

149

the directory). To get an accurate count of the nodes in the sharing tree, the GLOW agents

recursively count the number of SCI nodes they have invalidated. They return this count, added

to the counts they receive from any downstream neighbors, to the node that sent the invalida-

tion message. The recursive invalidation algorithm (Section 3.5.4) guarantees that the writer

will eventually learn the total number of nodes in the sharing tree.

With this scheme, DIRECTORY DETECTION works as follows:

1. The first read cycle requests go to the directory. If the counter exceeds a pre-defined thresh-

old the sticky wide-sharing bit is set. Responses carry this bit to the nodes.

2. Nodes which receive responses with the wide-sharing bit set store the information in

address tables or in the cache tags themselves (which might become hot tags when invali-

dated).

3. When the data block is written, the writer gets the wide-sharing bit from the directory and

checks to see whether the data block was actually widely shared. If the number of invali-

dated nodes does not exceed the pre-defined threshold, the writer resets the wide-sharing

bit (but not the sharing counter) in the directory.

4. In the next read cycle the data block might remain widely shared or change to a different

(non-wide sharing) access pattern. In any case, the nodes believe the data block to be

widely shared and will use GLOW to access it. The responses of the GLOW agents to the

nodes carry the wide-sharing bit received from the directory. If the wide-sharing bit has

been reset the nodes erase the relevant information from the address tables or the cache

tags. However, the wide-sharing bit might be set anew in the directory if the request

counter exceeds the threshold.

150

5. Goto 3.

This scheme is complex and adapts slowly, requiring a full read-write cycle to detect a change

in the behavior of the data block. A pathological case that can result in performance loss

occurs when the data block becomes migratory after being marked widely shared. In this case,

many subsequent reads will incur the overhead of invoking GLOW agents because it will take

many read-write cycles to erase the wide sharing information from all the nodes in the system.

However, I have not encountered the transition from wide sharing to migratory sharing in any

of the programs I use in this work.

The complexity of the scheme to adapt back makes DIRECTORY DETECTION unattractive. For-

tunately, the hot tag concept provides a natural way to adapt from wide sharing to non-wide

sharing. If the data block is not widely accessed, the hot tags in the system will be replaced

and the nodes will lose the information that the block was widely shared.

Alternatively, wide-sharing information in the directory can be deleted randomly using a

counter per directory.6 The counter is decremented with every access to data blocks that have

the wide-sharing bit set. When the counter crosses zero, the wide-sharing bit of the currently

accessed data block is reset. If the wide-sharing bit of a data block is wrongly reset the data

block has to be tagged widely shared anew the next time it is accessed. The appeal of this

adapt-back technique is that it is easy to implement.

To evaluate DIRECTORY DETECTION, I use direct notification to transfer information from the

directories to the nodes. This information is stored in the cache tags (which become hot tags

6 This technique was suggested by M. D. Hill.

151

upon invalidation). Hot tags are easier to implement than address tables and they provide an

easy way to adapt back. Results are presented in Section 4.5.

152

4.4 Dynamic instruction-based optimizations for wide sharing

The congestion-based and the directory-based schemes detect wide sharing by examining

addresses. In this work, I propose a novel approach to identify and optimize sharing patterns.

This approach is based on dynamically examining instructions rather than addresses; in

essence examining what the program is trying to do, rather than what happens to the data. In

Section 4.1.2, I have proposed a static approach where the user identifies instructions that

access widely-shared data. In this section, I propose its dynamic counterpart. Specifically, I

propose a mechanism to predict which load instructions are likely to access widely-shared

data.

The prediction is based on previous history. If a load accessed widely-shared data in the past

then it is likely to access widely-shared data in the future. This behavior can be traced to the

way parallel programs are structured. For example, in Gaussian elimination the pivot row is

widely shared and it is accessed in a specific part of the program. Therefore, once the load

instruction that accesses the pivot row has been identified it can be expected to continue to

access widely-shared data. I found that this prediction is very strong for all the benchmarks

examined in this thesis.

For wide sharing, a simple predictor works well. The predictor is a small fully-associative

cache with LRU replacement. A predictor entry comprises an address tag for the program

counter (PC) of the load instruction and a small (e.g., 2-bit) saturating counter used to make

predictions. To reduce the size of the predictor entries only a few PC bits (e.g., a few low order

bits) can be stored in the predictor entry. Alternatively, the address field can be omitted alto-

153

gether. In this case, the predictor is a directly indexed column of counters. Although truncat-

ing or eliminating the address field may introduce mistakes in accessing or updating the

predictor, the smaller size of each predictor entry translates to many more entries for a fixed

transistor budget. This may be preferable for large programs.

The first few times a load misses and we discover that it is accessing widely-shared data its PC

is inserted in the predictor. In subsequent misses, this small prediction cache is probed using

the PC of the load. If the probe results in a hit and the corresponding counter indicates that the

load accessed widely-shared data a few times in a row, GLOW is used for the new access. I

have identified two citeria to determine whether a load accessed widely-shared data:

• latency: If the miss latency exceeds a threshold value the load is considered to have

accessed widely-shared data. The latency scheme is discussed in detail in Section 4.4.1.

• directory feedback: The directory is responsible to determine whether a load accesses

widely-shared data. This scheme is discussed in detail in Section 4.4.2.

Figure 4.24 depicts a working example of instruction-based prediction for wide sharing. Upon

a load-miss the predictor is probed for information. At first the predictor is empty (predictor

Figure 4.24. Instruction-based prediction for wide sharing.

Load

Cache miss

Response (with Directory info)

Probe predictor

Update predictor

Hit

ctr>threshold: Predict Wide Sharing

ctr<=threshold: Predict Normal Sharing

Miss

Hit Update predictor using
Latency/Dir information

Miss

No prediction (Normal Sharing)

Allocate new entry and reset
using Latency/Dir information

count Latency

154

miss). The load-miss generates a coherent read. The response to this read will update the pre-

dictor according to the criterion used (latency or directory-feedback). A new entry is allocated

in the predictor and its counter is reset to 0. This will happen two more times before the

counter exceeds the threshold. At this point a predictor probe returns a positive prediction for

wide sharing and instead of an ordinary read, a special GLOW read is issued. The GLOW read

will trigger the creation of sharing trees in the network.

4.4.1 Latency

Whether a load accessed widely-shared data can be judged by its miss latency. A very large

miss latency suggests an access to widely-shared data. Using latency as the basis for the pre-

diction is not as farfetched as it sounds: access latency of widely-shared data is significantly

larger than the average access latency of non-widely-shared data. This is because of network

contention and most importantly because of contention in the home-node directory, which

becomes a hot spot [78]. For example, the latency of 128 requests going to the same node is

much higher that the latency of 128 requests going to 128 different nodes. Microbenchmark

results discussed earlier (see Section 3.5.5) confirm this observation. The latency threshold for

widely-shared data is a tuning parameter that can be set independently for different applica-

tions.

This scheme does not guarantee that it will detect wide sharing and only wide sharing; it can

be invoked by misses that have long latency for other reasons (e.g., the home node is a hot spot

for other data). In these situations invoking GLOW agents unnecessarily does not have a signif-

icant impact on performance (the miss latency was very large to begin with). In fact, in some

situations invoking a GLOW agent even for non-wide sharing may alleviate performance prob-

155

lems.

Adapting back—The simple instruction-based prediction described above adapts easily to

wide sharing but it is not trivial to adapt the other way around. If a load ceases to access

widely-shared data and GLOW extensions are used for non-widely-shared data, very few nodes

incur all the overhead of building scalable sharing trees in the network without other nodes

benefiting. Thus, we need to detect when wide sharing has ceased and refrain from using

GLOW. Here, I describe a scheme to adapt back.

It is virtually impossible to obtain reliable feedback for the latency-based prediction because a

low miss latency can be attributed either to lack of wide sharing or success of the GLOW exten-

sions in handling wide sharing. To adapt back in this situation we can use an expiration

counter (I call it poison counter) for each predictor entry. The counter is set to a non-zero

value and each time the predictor entry is used the counter is decremented. When the poison

counter hits zero the predictor entry is deleted. This scheme can also be used in the directory-

feedback prediction scheme described below.

4.4.2 Directory feedback

This scheme is the result of combining the instruction-based and address-based techniques: it

is instruction-based prediction, but it uses DIRECTORY DETECTION (the dynamic address-based

scheme presented earlier in Section 4.3.2) to detect when instructions access widely-shared

data.

In DIRECTORY DETECTION, information about the nature of the data is supplied by the direc-

tory. If the number of reads between writes exceeds a certain threshold, the directory’s

156

responses indicate that the data block is widely shared. The threshold is again a tuning param-

eter and for this work I set it to 4 (i.e., more than 4 out of the 32 nodes reading is considered

wide sharing). This scheme is more focused on wide sharing than the latency-based scheme,

which could be fooled by random long-latency operations. However, in this scheme, a few

first nodes will receive responses from the directory claiming that data are not widely shared

and the rest of the nodes will receive responses claiming that data are widely shared. Thus, it

may be possible that initially the same load instruction is treated differently in various nodes.

Eventually, if the load instruction is executed repeatedly, all nodes will learn about the nature

of the accessed data. This is because, the order in which the nodes read the data varies consid-

erably, especially when the same load instruction reads data in different home nodes.

Adapting back—The problem with directory-feedback prediction is that the actual number of

sharers cannot be reliably tracked by the directories when GLOW is in use, because of GLOW’s

read-combining. To solve this problem the same mechanism for adapting back as the one dis-

cussed in Section 4.3.2 is used. To summarize: once a directory discovers a widely shared

block, it continuously indicates this in its responses until it is directed to do otherwise. The

writers are responsible to verify (and correct if necessary) the directory’s claim that a data

block is widely shared, by counting the number of nodes they invalidate. The method is based

on sticky wide-sharing bits in the directory that are carried to the nodes with every directory

response. In the instruction-based prediction scheme, these bits—when set—are the confirma-

tion that an instruction accesses widely-shared data and increase the corresponding predictor

counter. When these bits are not set the predictor counter is decremented.

For the benchmarks that do have widely-shared data, I found no benefit in using the schemes

157

for adapting back. In fact the performance benefit diminishes slightly. These schemes are

intended as a safety device for situations where incorrect wide-sharing prediction can have

harmful effects on performance (see Section 4.4.4).

4.4.3 Implementation issues

Contrary to the uniprocessor/serial-program context where predictors are updated and probed

continuously, instruction-based prediction for wide sharing only updates the prediction history

and probes the predictor in the case of a miss. This makes the prediction mechanism much

less frequently accessed. Furthermore, its latency is not in the critical path since we only need

its prediction on misses, which are of significant latency anyway. Thus, it is not a potential

bottleneck nor does it add any cycles to the critical path.

The prediction mechanism needs input from both the processor core (the PC of the load that

missed) and the coherence mechanisms (signaling of coherence events, latency information or

feedback from the directory). There are two choices for the location of the prediction mecha-

nism: inside or outside the processor. Figure 4.25 shows the two cases. When the mechanism

Figure 4.25. Datapaths for the prediction mechanisms (according to its location).

PC

WSDaccess

Load

miss

PC

Load

miss

L1

L2
miss

WSDaccess

L2

L1

miss

Predict

Predict

Processor

To Network To Network

Processor

158

is inside the processor it is probed and possibly updated when a load misses in the L1 cache.

Care must be taken for the update since the information (i.e., latency information or directory

feedback) from the coherence mechanisms is only correct when a miss also occurs in the L2

cache and it is routed toward the home node. When the prediction cache returns a positive pre-

diction a special request for widely-shared data is issued outside the processor. Since the type

of the request only matters when we also have a miss in the L2 cache, the request may lag a

cycle behind the L2 access without degrading performance. The mechanism operates simi-

larly when it is implemented outside the processor with the assumption that the PC of the cor-

responding load instruction is available outside the processor on an L2 cache miss. The

resulting request could be delayed one cycle until a prediction is obtained. However, this cycle

can be hidden by cache coherence protocol or network access latencies. I do not distinguish

between the two implementations since I model a processor with a single cache and a predic-

tion cache that does not delay the corresponding requests.

Wherever this mechanism is implemented it necessitates a custom approach. If it is inside the

processor it requires a custom designed core, and if it is outside the processor it requires that

the PC of a load that misses be known outside the processor (I am not aware of any commer-

cial processor with this feature). Despite this drawback, two arguments support this method:

(i) it is highly successful in the context of wide sharing, and (ii) such prediction mechanisms

can be used to optimize not only wide sharing but also other access patterns (such as migra-

tory sharing discussed in Chapter 5 and producer-consumer sharing discussed in Chapter 6),

thus the cost of the prediction hardware will be amortized over multiple optimizations.

159

4.4.4 Results

To study the performance of instruction-based prediction for wide sharing I present results for

the two prediction schemes (latency-based and directory-feedback) and the DIRECTORY

DETECTION scheme described earlier (Section 4.3.2). Table 11 shows the speedups in 32- and

64-node systems for five benchmarks with wide sharing and for two control benchmarks that

do not exhibit wide sharing. The two instruction-based prediction schemes perform almost

identically, yielding speedups of up to 1.30 for BARNES in 32 nodes and up to 1.54 for TC in 64

nodes. They both outperform DIRECTORY DETECTION in all benchmarks (in the case of APSP

and TC by a significant margin). Only the performance of one of the control benchmarks

(CHOLESKY) suffers because of instruction-based prediction optimizations and in particular

from the directory-feedback scheme. However, when the mechanism to adapt back is enabled

the negative performance impact is reduced. The other control benchmark (OCEAN) is affected

negatively by the address-based scheme.

Table 12 contains predictor statistics for the directory-feedback scheme (results for the

latency-based scheme are similar). For these schemes—because they do not adapt back—the

number of predictor hits is approximately equal to the number of predictor probes and the

number of optimizations is approximately equal to the number of predictor hits. A striking

result is the amazingly small number of predictor entries allocated for each benchmark.

Figures 4.26, 4.27, and 4.28 compare SCI, static address-based GLOW and the two instruction-

based prediction schemes (latency and directory-feedback). The instruction-based schemes

perform comparably, but in some instances one is slightly faster than the other. They both fare

well against the static, address-based GLOW and in GAUSS and BARNES they actually out-per-

160

form the static scheme (in BARNES by a large margin).

4.4.5 Static instruction-based optimizations for widely-shared data

Although for many programs (e.g., GAUSS, SPARSE, BARNES) it is straightforward to point out

instructions that access widely-shared data, I have not studied this manual technique further.

Since such manual techniques are highly subjective, results may vary depending on factors

32 nodes 64 nodes

Instruction-based
prediction

Address-
based

prediction
Instruction-based

prediction

Address-
based

prediction

Latency

Directory-
feedback /
adapt-back

Adaptive
Directory-
detection Latency

Directory-
feedback /
adapt-back

Adaptive
Directory-
detection

Wide

Sharing

Bench-
marks

GAUSS 1.20 1.19 1.13 1.66 1.64 1.43

SPARSE 1.06 1.04 1.13 1.32 1.28 1.25

APSP 1.11 1.12 1.00 1.53 1.52 1.00

TC 1.14 1.14 1.01 1.53 1.54 1.02

BARNES 1.30 1.29 1.27 1.13 1.14 1.13

Control
Bench-
marks

OCEAN 1.00 1.00 0.91 1.00 1.00 0.95

CHOLESKY 1.00 0.91 / 0.99 0.96 1.00 0.92 / 0.99 1.02

Table 11. Results for wide sharing optimizations (speedup over SCI).

Nodes Statistics GAUSS SPARSE APSP TC BARNES CHOLESKY

32 Total loads allocated
in all predictors

249 643 94 91 1555 349

average per node 8 20 3 3 49 11

maximum 9 25 3 3 54 35

64 Total loads allocated
in all predictors

557 1238 180 185 3251 711

average per node 9 20 3 3 51 11

maximum 11 24 3 3 56 39

Table 12. Statistics for wide sharing prediction (directory-feedback scheme).

161

Figure 4.26. Comparison of SCI, static GLOW, and the two dynamic instruction-based
schemes for GAUSS and SPARSE. Base system is SCI on 16 nodes.

Figure 4.27. Comparison of SCI, static GLOW, and the two dynamic instruction-based
schemes for APSP and TC. Base system is SCI on 16 nodes.

Figure 4.28. Comparison of SCI, static GLOW, and the two dynamic instruction-based
schemes for BARNES. Base system is SCI on 16 nodes.

16 32 64 1280

1

2

3

16 32 64 1280

1

2

3

SCI

Static GLOW

Dir.-feedback

Latency

GAUSS SPARSE

Nodes Nodes

Norm. speedup Norm. speedup

16 32 64 1280

1

2

3

16 32 64 1280

1

2

3

SCI

Static GLOW

Dir.-feedback

Latency

APSP TC

Nodes Nodes

Norm. speedup Norm. speedup

16 32 640

0.5

1

1.5

2

SCI

Static GLOW

Dir.-feedback

Latency

BARNES

Nodes

Norm. speedup

162

such as readability of the source code, etc. Instead, I have used profiling to automatically

obtain a list of the loads that access widely-shared data. For profiling I have used the simula-

tions of the dynamic instruction-prediction schemes. At the end of each simulation run, the

contents of the prediction cache are dumped and used as the list of instructions that access

widely-shared data. This is possible since, for the small programs used, the contents of this

cache are few (there are no replacements in a 64-entry prediction cache—see Table 12) and

very stable, i.e., the behavior of the loads does not change. Not surprisingly, the performance

of the static instruction-based scheme is identical to the dynamic scheme used for the profil-

ing.

It is easy to do profiling in a simulator, but in a real system, lacking support for dynamic opti-

mizations (i.e., lacking the prediction cache, the directory-detection of widely-shared data,

etc.), it is impossible to do profiling as described above. Other techniques such as binary

rewriting could be used to profile a program for widely-shared data. Since both manual source

code annotations and the profiling in a real system may not be as successful as profiling in

simulations, the performance of the dynamic schemes can be considered to be an upper bound

for the performance of the static schemes.

163

4.5 Performance comparisons and read-run analysis

In this section I present comparisons for the six programs that exhibit wide sharing and for the

various system configurations (2- and 3-dimensional networks with 16 to 128 nodes). In con-

trast to the previous sections, here the speedup results for each system are not normalized to

the speedup of the 16-node SCI system, but to the SCI system with the same number of nodes.

This gives the relative speedup of the various glow schemes over SCI, but does not provide any

indication of scalability (which was explored previously). Recall that most of the programs

with relatively small inputs do not scale beyond 64 nodes, so the very good GLOW speedups

for the large systems correspond to cases where SCI is doing badly.

I compare SCI, static address-based GLOW, congestion-based read-combining (COMBINING)

and three versions of dynamic GLOW. The first version, AGENT DETECTION, employs a 128-

entry recent-addresses queue to discover repetition in data addresses. I assume that the switch

latency is not affected by the additional combining or agent detection hardware present in the

switches. However, this may not be the case in a realistic implementation. Results for slower

switches are presented in Section 4.3.1.3 and the performance of COMBINING and AGENT

DETECTION can be adjusted accordingly. In the second version, DIRECTORY DETECTION with a

threshold of 4, the directory discovers the widely-shared data. In the third version, INSTRUC-

TION-PREDICTION, instruction-based prediction is used with the latency criterion. A miss

latency threshold of 1000 cycles determines which misses correspond to widely-shared data.

As a reference, in most benchmarks the average latency of all accesses is around 600 cycles.

To explain the behavior of the various GLOW schemes, I examine how they appear to change

164

the read-runs7 of the program from the directories’ point of view. Specifically, for each

scheme I plot the number of reads that correspond to read-runs of different sizes. The GLOW

schemes compress these accesses toward the small read-run sizes. Each scheme’s compres-

sion relates to its performance improvement. Since the directory can observe large read-runs,

because either write-faults are not communicated or because a single node requests the same

data multiple times because of replacements, sometimes the large write runs appear to be

more that what they are in reality.

GAUSS—Figure 4.29 shows the normalized speedups for the GAUSS program. Static GLOW is

up to 2.22 times faster than SCI in 2 dimensions and up to 2.44 times faster in 3 dimensions.

COMBINING achieves about half the performance improvement of static GLOW, while AGENT

DETECTION remains within 5% of the performance of static GLOW. The DIRECTORY DETECTION

scheme also works well, staying within 10% of static GLOW. Using INSTRUCTION-PREDICTION

results in the largest speedups over SCI (up to 2.27 times in 2 and 2.82 times in 3 dimensions).

7 Defined in Section 3.1.

Figure 4.29. Normalized speedup (over SCI) for GAUSS in 2 and 3 dimensions (16 to 128
nodes).

GAUSS

16 32 64 128 16 32 64 128

Combining

Static GLOW

AGENT DETECTION

N
or

m
al

iz
ed

 S
pe

ed
up

Dir. Detection

2-D 3-D

0.0

1.0

2.0

3.0

0.0

1.0

2.0

3.0

Instruction-pred.

Nodes Nodes

165

Figure 4.30 plots the number of reads that correspond to read-runs ranging in size from 1 to

128. The horizontal axis is the size of the read-run and the vertical axis is the number of

accesses (reads/invalidates). The data are for GAUSS on 128 nodes on a 2 dimensional network.

These data represent what the SCI directories observe and the correspondence of the read-run

size and the degree of sharing is not exact. Because these graphs contain very large and very

small numbers, I use a logarithmic scale in the vertical axis. This tends to emphasize the small

numbers that would otherwise be invisible as in Figure 3.1.

The SCI graph shows a large number of accesses corresponding to large read-runs. COMBIN-

ING, AGENT DETECTION, static GLOW, DIRECTORY DETECTION and INSTRUCTION-PREDICTION

all absorb a large number of requests in the network and, as a result, the directories see fewer

Figure 4.30. Read-run compression for GAUSS (128 nodes 2-dimensions). Accesses
corresponding to large read-runs are shifted toward smaller read-runs using GLOW
extensions.

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140

’DIR_DETECTION’

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140

’AGENT_DETECTION’

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140

’SCI’

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140

’COMBINING’

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140

’STATIC’

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140

’PC_PREDICTION’

166

requests between writes. Static GLOW compresses many accesses to read-runs of size 9

(pointed out in the graph). This number corresponds to 8 GLOW agents plus an extra node: for

any widely-shared data block in the 2-dimensional 128-node system (8x16 nodes) there are 8

agents covering all nodes except the data block’s home node. In contrast, COMBINING, which

does not perform as well, compresses the read-runs from a size of 128 down to a size of about

38. AGENT DETECTION compresses most of the large read-runs to a size of 24. This means that

before all 8 GLOW agents are invoked for a widely shared block, 16 requests slip by and reach

the directory. DIRECTORY DETECTION eliminates the largest read-runs, converting them to

read-runs of size 9 (similarly to the static GLOW). INSTRUCTION-PREDICTION gives the cleanli-

est spectrum of read-runs pushing most of the large ones down to a size of 9.

SPARSE—For this program (Figure 4.31) AGENT DETECTION outperforms static GLOW (in the

64- and 128-node systems in 2 dimensions and in the 128-node system in 3 dimensions).

AGENT DETECTION performs up to 1.29 times faster than SCI in 2 dimensions and up to 1.33

times faster in 3 dimensions. COMBINING fails to provide any significant performance

improvement and DIRECTORY DETECTION performs on par with static GLOW. INSTRUCTION-

PREDICTION is again the most successful (speedups of up to 1.33 and 1.50 for 2 and 3 dimen-

sions respectively).

Figure 4.32 shows the compression of read-runs for SPARSE (again on 128 nodes with a 2

dimensional network). COMBINING does not perform well for SPARSE. This is also evident in

its failure to affect large read-runs. AGENT DETECTION spreads the largest read-runs over the

read-run spectrum, with a center around 60. This means that the number of requests that slip

through the agents before they detect widely-shared data has significant variance. Static GLOW

167

and INSTRUCTION-PREDICTION perform very well, most of the time allowing the directories to

see only 9 requests (8 GLOW agents and the local node).

APSP and TC—For both programs, COMBINING and DIRECTORY DETECTION fail to show any

Figure 4.31. Normalized speedup (over SCI) for SPARSE in 2 and 3 dimensions (16 to 128
nodes).

Figure 4.32. Compression of read-runs for SPARSE (128 nodes, 2 dimensions). Accesses
corresponding to large read-runs are shifted toward smaller read-runs using GLOW
extensions.

SPARSE

16 32 64 128 16 32 64 128

Combining

Static GLOW

AGENT DETECTION

N
or

m
al

iz
ed

 S
pe

ed
up

Dir. Detection

2-D 3-D

Instruction-pred.

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

Nodes Nodes

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140

’AGENT_DETECTION’

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140

’SCI’

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140

’COMBINING’

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140

’STATIC’

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140

’PC_PREDICTION’

168

performance improvement, while AGENT DETECTION performs close to static GLOW (Figure

4.33 and Figure 4.34). INSTRUCTION-PREDICTION performs almost as well as static GLOW.

Since APSP and TC exhibit similar behavior, I only demonstrate read-run compression for APSP

(Figure 4.35). A significant percentage of the reads in the program correspond to large read-

runs. As expected, COMBINING is not successful in hiding accesses from the directories.

Although it shifts accesses to smaller read-runs, it does not shift them far enough to make a

difference in performance. AGENT DETECTION is more successful, compressing the read-runs

Figure 4.33. Normalized speedup (over SCI) for APSP for 2 and 3 dimensions (16 to 128
nodes).

Figure 4.34. Normalized speedup (over SCI) for TC in 2 and 3 dimensions (16 to 128
nodes).

APSP

16 32 64 128 16 32 64 128

Combining

Static GLOW

AGENT DETECTION

N
or

m
al

iz
ed

 S
pe

ed
up

Dir. Detection

3-D

0.0

1.0

2.0

3.0

2-D

0.0

1.0

2.0

3.0

Instruction-pred

 NodesNodes

TC

16 32 64 128 16 32 64 128

Combining

Static GLOW

AGENT DETECTION

N
or

m
al

iz
ed

 S
pe

ed
up

Dir. Detection

2-D 3-D

0.0

1.0

2.0

3.0

0.0

1.0

2.0

3.0

Instruction-pred.

 NodesNodes

169

to a size of around 30 (this translates to about 22 requests slipping trough 8 GLOW agents

while the rest are intercepted). Static GLOW works very well, leaving only read-runs of size 9

(similarly to the previous two programs). A common characteristic of the APSP and TC pro-

grams is that their data blocks are widely shared only once. Not surprisingly, DIRECTORY

DETECTION fails to compress the read-runs of the program. The read-run histogram for

INSTRUCTION-PREDICTION is almost exactly the same as static GLOW’S. This explains their

almost identical performance.

CG—The behavior of the CG program is somewhat peculiar, because of the very small dataset

(64x64) used here (Figure 4.36). GLOW extensions exhibit the largest speedups over SCI in 16

nodes (1.9 and 2 times faster than SCI in 2 and 3 dimensions). DIRECTORY DETECTION per-

forms very well and actually takes the performance lead from the static GLOW in 32 and 64

Figure 4.35. Read-run compression for APSP (128 nodes, 2 dimensions). Accesses
corresponding to large read-runs are shifted toward smaller read-runs using GLOW
extensions.

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140

’AGENT_DETECTION’

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140

’SCI’

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140

’COMBINING’

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140

’STATIC’

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140

’PC_PREDICTION’

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140

’DIR_DETECTION’

170

nodes in 2 dimensions. COMBINING does not provide any performance improvement while

AGENT DETECTION is competitive (within 25% of the performance of the static GLOW).

INSTRUCTION-PREDICTION performs similarly to static GLOW, surpassing it in some cases and

lagging behind in others.

Figure 4.36. Normalized speedup (over SCI) for CG in 2 and 3 dimensions (16 to 64
nodes).

Figure 4.37. Read-run compression for CG (64 nodes, 2 dimensions). Accesses
corresponding to large read-runs are shifted toward smaller read-runs using GLOW
extensions.

CG

16 32 64 16 32 64

Combining

Static GLOW

AGENT DETECTION

N
or

m
al

iz
ed

 S
pe

ed
up

Dir. Detection

2-D 3-D

0.0

1.0

2.0

3.0

Instruction-pred.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nodes Nodes

100

1000

10000

100000

1e+06

0 10 20 30 40 50 60 70

’DIR_DETECTION’

100

1000

10000

100000

1e+06

0 10 20 30 40 50 60 70

’COMBINING’

100

1000

10000

100000

1e+06

0 10 20 30 40 50 60 70

’AGENT_DETECTION’

100

1000

10000

100000

1e+06

0 10 20 30 40 50 60 70

’SCI’

100

1000

10000

100000

1e+06

0 10 20 30 40 50 60 70

’STATIC’

100

1000

10000

100000

1e+06

0 10 20 30 40 50 60 70

’PC_PREDICTION’

171

Figure 4.37 shows the read-run compression results for CG: COMBINING does not affect

accesses corresponding to the largest read-runs; AGENT DETECTION shifts many accesses to

read-runs of size 23; static GLOW again eliminates large read-runs leaving only those of size 9;

and DIRECTORY DETECTION is also very successful, shifting many accesses to read-runs of size

9. The read-run compression of INSTRUCTION-PREDICTION is second to only static GLOW’s.

The largest read-runs are mostly gone but there still is some “noise” in the middle of the spec-

trum.

BARNES—BARNES is not affected much by the dimensionality of the network and does not

speedup considerably with larger number of processors (Table 6). This is due to the very small

dataset I was able to simulate with the WWT (4K particles). With larger datasets BARNES

should exhibit better scaling. Nevertheless, the schemes I propose show speedups over SCI

(Figure 4.38)—as much as 1.3 for 32 nodes. COMBINING and AGENT DETECTION, as well as

static GLOW, do not show significant speedups over SCI. However, DIRECTORY DETECTION and

PC-PREDICTION work very well, the former recognizing the top of the tree as widely shared

and the latter identifying the instructions that access the top of the tree. The best speedups are

Figure 4.38. Normalized speedup (over SCI) for BARNES for 2 and 3 dimensions (16 to 128
nodes).

0

0.5

1

1.5

2

0

0.5

1

1.5

2

Combining

Static GLOW

AGENT DETECTION

Dir. Detection

Instruction-pred.

16 32 64 16 32 64
Nodes Nodes

172

1.27 for DIRECTORY DETECTION and 1.3 for INSTRUCTION-PREDICTION, both for 32 nodes.

Read-run analysis shows that all schemes exhibit different behavior for BARNES than for the

other benchmarks (Figure 4.39). All schemes redistribute both large and small read-runs

among the smaller read-runs, but without any particular peaks and in various degrees of suc-

cess. DIRECTORY DETECTION and INSTRUCTION-PREDICTION do best at reducing large read-

runs.

To summarize the results: AGENT DETECTION consistently tracks the performance of static

GLOW, while COMBINING only performs well for one program (GAUSS). The results show that

COMBINING is indeed sensitive to the congestion characteristics of the application. The behav-

ior of COMBINING also changes depending on the network characteristics (e.g., link and switch

latency, bandwidth), while the behavior of AGENT DETECTION remains largely unaffected by

Figure 4.39. Read-run compression for BARNES (64 nodes, 2 dimensions). Y-axis (no. of
accesses) not in logarithmic scale.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 10 20 30 40 50 60 70

’SCI’

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 10 20 30 40 50 60 70

’COMBINING’

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 10 20 30 40 50 60 70

’AGENT_DETECTION’

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 10 20 30 40 50 60 70

’STATIC’

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 10 20 30 40 50 60 70

’DIR_DETECTION’

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 10 20 30 40 50 60 70

’PC_PREDICTION’

SCI COMBINING

AGENT DETECTION STATIC GLOW

DIR. DETECTION INSTRUCTION-PREDICTION

173

the number of intercepted requests. DIRECTORY DETECTION gives mixed results, performing

well only for three of the five programs. INSTRUCTION-PREDICTION proved to be not only the

most successful dynamic scheme but also better than the static scheme in many cases.

174

4.6 Summary

I opened this chapter by discussing static (compile-time) approaches to define widely-shared

data or instructions that access widely-shared data. These approaches require an interface to

pass information from the program to the hardware and they make sense only in situations

where such an interface can be provided. Because these approaches are reasonably good for

most programs I consider them to be the base case for GLOW and use them to study various

aspects of the behavior of the GLOW extensions. I studied: data caching in GLOW agents,

effects on performance for 2- and 3-dimensional networks, effects of the input size on the

scalability of programs (showing that, with larger datasets, program scalability with GLOW

improves considerably faster than with SCI), read and write performance, effects of relaxing

the memory model, and performance of an update protocol.

In this chapter I also proposed three schemes that can detect widely-shared data at run-time.

The advantage of these schemes is that they apply the GLOW extensions transparently without

need to change the software/hardware interface. I compare them against SCI, static GLOW and

NYU Ultracomputer-style combining.

The first scheme, AGENT DETECTION, discovers widely-shared data more reliably than combin-

ing, by expanding the window of the observable requests. Switch nodes remember recent

requests even if these have long before left the switch. Requests whose addresses have been

seen in the window are intercepted (as requests for widely-shared data) and passed to the

GLOW extensions for further processing. The interesting characteristic of this scheme is that in

large systems even a small window performs very well. This scheme achieves a significant

175

percentage of the performance improvement of static GLOW and has the potential to outper-

form the static version in programs where it is difficult for the user to define the widely-shared

data. Since AGENT DETECTION requires modification only in the switch nodes, I believe it is

the least intrusive of all the schemes. Finally, congestion-based combining (COMBINING),

which is slightly simpler than AGENT DETECTION, is highly dependent on the congestion char-

acteristics of the applications and the network.

In the second scheme, DIRECTORY DETECTION, the directories are modified to discover the

widely-shared data by counting reads between writes. When a directory finds a data block to

be widely shared it notifies the nodes in the system to subsequently request this data block as

widely-shared. The applicability of this scheme is limited: it works well only when data

blocks are widely accessed more than once.

The third scheme, INSTRUCTION-PREDICTION, is the most successful and is based on predicting

which load instructions are going to access widely-shared data. Although its implementation

is intrusive to the processor, it offers the best performance. The potential for further optimiza-

tions based on INSTRUCTION-PREDICTION increases its value.

Finally, in this chapter I used read-run analysis to gain insight on how these schemes affect

accesses to widely-shared data. This tool enables visualization of these effects and allows us

to reason about the behavior of the various schemes.

176

177

5 Migratory Sharing

In this chapter I address optimizations for migratory sharing. First, I present motivation for

optimizing migratory sharing. Subsequently, I discuss previously proposed static and dynamic

address-based methods to apply a migratory sharing optimization. Finally, I propose instruc-

tion-based methods to apply this optimization.

Migratory data, as defined by Weber and Gupta [100], are accessed by one processor at a time.

Typically, these data are protected by locks and are accessed inside critical sections. In invali-

dation-based cache-coherence protocols the optimization is to “migrate” the data whenever a

new processor accesses them by giving the processor both read and write permissions even if

it first accesses the data with a read. To give the new processor exclusive access to the data the

previous copy (in the processor that last accessed them) is invalidated. The optimization

works well because it collapses two coherent transactions into one.

Figure 5.1 shows the optimization applied to a typical directory-based coherence protocol

(similar to DirnNB) with a 4-message read protocol. On the left side, in the un-optimized case,

a new writer wishes to modify the migratory data. The new writer experiences a load-miss and

communicates with the directory to read the data. The directory then fetches the data from the

last writer and gives it back to the new writer. In the mean time the last writer is left with a

read-only (RO) copy of the data. Subsequently, the new writer experiences a store-write-fault

when it first tries to write the data. A new set of transactions involving the directory is needed

to invalidate the RO copy owned by the last writer and upgrade the RO copy owned by the

178

new writer to a read-write (RW) copy. In contrast, when we collapse the two transactions into

one in the optimized case (at the right of Figure 5.1), the latency of the store-write-fault is

completely eliminated and the transaction traffic is reduced by half (in DASH-like protocols

which have 3-message read protocols the traffic is reduced by 60%). The collapse of the two

transactions can be initiated either by the home node directory when it decides to return a RW

cache block in response to a read request [28,93], or by the processor when, upon a read, it

asks for a RW block knowing that it accesses migratory data (as in Munin [22]).

However, indiscriminate application of this optimization is harmful to performance (as I will

show in Section 5.2.6). Thus, the problem is to detect migratory sharing or to distinguish the

migratory data from other data and apply the optimization selectively.

Figure 5.1. Migratory sharing optimization.

(1)read (2)fetch

(3)data

(4)data
RW->RO

(1)write (2)invalidate

(3)ack

(4)ack
RO->InvalidRO->RW

Invalid->RO
Load-miss

Store-write-fault

New Writer

Directory

Last Writer

(1)read

RW->InvalidInvalid->RW
Load-miss

Store (NO write-fault)

New Writer Last Writer

RW

(2)fetch+invalidate

(3)data+ack

(4)data+ack

Directory

Directory

Normal Operation Migratory Optimization

179

As with the wide sharing optimization, the migratory optimization can be applied statically

(i.e., decided at compile time) or dynamically (i.e., decided at run time). Additionally, migra-

tory sharing can be optimized either by detecting the migratory data themselves (address-

based) or by detecting instructions that access migratory data (instruction-based). Both static

and dynamic address-based optimizations have been previously proposed [22,28,93]. In this

thesis I introduce instruction-based optimizations. Table 13 shows the four combinations. Pre-

viously proposed optimizations are shown in the shaded cells.

The static instruction-based scheme I propose is comparable to the static address-based

scheme. In both, the user must determine either the addresses of the migratory data or the

instructions that access migratory data. Implementation issues are similar: in both address-

based and instruction-based schemes the information supplied by the program must be com-

municated to the hardware so the appropriate cache-coherence optimizations can be applied.

The techniques that can be used in a hardware-based shared-memory environment are dis-

cussed previously for static address-based and static instruction-based wide sharing optimiza-

tions (Section 4.1.1 and Section 4.1.2, respectively). The new dynamic instruction-based

scheme I propose does not involve the user and, although it requires additional hardware, it

uses fewer resources that the dynamic address-based optimization previously proposed.

MIGRATORY SHARING Static Dynamic

Address-based MUNIN [22] ADAPTIVE-MIGRATORY [28][93]

Instruction-based CRITICAL SECTION
GUIDED

INSTRUCTION-BASED PREDICTION

(CRITICAL SECTION DETECTION,

Appendix 3)

Table 13. Techniques to apply the migratory sharing optimization.

180

In the rest of this chapter I review the static and dynamic address-based optimizations and pro-

pose new instruction-based optimizations. Results show that the dynamic instruction-based

techniques work comparably to their address-based counterparts, while using very few hard-

ware resources.

181

5.1 Address-based optimizations for migratory sharing

Weber and Gupta’s paper on sharing patterns [100] prompted the design of address-based

optimizations. Carter, Bennet and Zwaenepoel took into consideration migratory data in the

design of the Munin Distributed (Virtual) Shared Memory system [22]. Munin introduced in

the same system multiple coherence protocols, tailor-made for specific types of data. For

example Munin supported different coherence protocols for read-only, migratory, write-

shared, producer-consumer, reduction, result and conventional data objects [22]. However, the

user (programmer) had to define statically the sharing pattern for every data object in the sys-

tem, using source-code annotations. For the migratory data, they applied the standard optimi-

zation of returning—on first read—the data object to a new processor with read and write

permissions, invalidating the copy of the previous processor. They do not report performance

numbers for the migratory optimization.

Subsequently, two groups, Cox and Fowler [28], and Stenström, Brorsson, and Sandberg [93],

independently proposed a dynamic address-based approach to discover migratory data at run-

time and apply the aforementioned optimization. Although, the proposed techniques were for

hardware based cc-NUMA, they can be applied equally well to software distributed shared

memory [58]. In the adaptive protocols the directory discovers migratory data and returns RW

cache blocks (instead of RO) whenever a new processor reads the data. The directory itself,

upon detecting migratory sharing, collapses two coherent transactions (read and write) into

one. The cost associated with these adaptive protocols is additional storage per directory entry

to maintain the identity of the last writer [28,93]. Furthermore, the directory protocol requires

182

more states to detect migratory sharing [28,93].

183

5.2 Instruction-based optimizations for migratory sharing

Previously proposed address-based optimizations were based on observing what happens to

the data. In this thesis, I propose optimizations derived from observing instructions, i.e., the

behavior of the program itself. I will briefly discuss static and—in greater length—dynamic

instruction-based optimizations for migratory sharing.

5.2.1 QOLB

Using the QOLB synchronization primitive [35] can be considered a static instruction-based

scheme for migratory sharing. QOLB provides both synchronization for the critical section that

protects the migratory data and automatic transfer of the data—i.e., QOLB is a migratory opti-

mization on its own. However, data must be collocated with the lock that protects them [48],

for QOLB to provide the desired functionality in this context.

5.2.2 Static instruction-based optimizations

The goal in static instruction-based migratory-sharing optimization is to discover read-mod-

ify-write operations inside critical sections (protected by locks) and to annotate the loads so

that the coherence protocol will treat them as writes. For many codes, this is straightforward.

Consider the critical sections shown in Figure 5.2. These are typical critical sections found in

the MP3D and OCEAN programs. The read-modify-write operation is denoted by the ++ opera-

tor on a shared variable. A simple annotation on this operation could generate a special first

load that the coherence protocols translates to a coherent write. The static instruction-based

method can be very successful because of its simplicity. Although compiler optimizations are

beyond the scope of this thesis, I believe that this optimization for migratory data is easy to

184

implement in a compiler.

This static instruction-based optimization suffers from the same implementation problems as

the corresponding optimization for wide sharing (discussed in Section 4.1.2), namely how to

pass information about requests from the program to the cache-coherence hardware. As with

the static instruction-based wide-sharing optimization, I did not directly study manual annota-

tion of the source program. Instead, in Appendix 3, I describe the dynamic counterpart of this

method, which can also provide profiling information for the static instruction-based

approach.

5.2.3 Dynamic instruction-based optimizations

As an alternative to the address-based or the static instruction-based optimizations I propose a

dynamic instruction-based optimization that can handle migratory sharing patterns. The idea

is to detect when a load-miss is followed by a store-write-fault on the same cache block. If

such a load/store pair is recurring often we can predict, upon seeing the load-miss, that a

write-fault is soon to follow. This mechanism can be classified as cache block anti-depen-

Figure 5.2. Typical critical sections in MP3D and OCEAN.

LOCK(Global->num_mol_lock);
 local_num_mol = Global->num_mol++;
UNLOCK(Global->num_mol_lock);

LOCK(Global->next_res_lock);
 local_next = Global->next_res++ % num_res;
UNLOCK(Global->next_res_lock);

LOCK(locks->psibilock);
 global->psiai = global->psiai + psiaipriv;
UNLOCK(locks->psibilock)

185

dence prediction since it detects write-after-read on the same cache block. This work is influ-

enced by similar uniprocessor predictions [72]. Alternatively, we can detect entry to and exit

from critical sections and apply optimizations only within those critical sections. This method

is not researched further in this thesis and is sketched in Appendix 3.

Let us examine why this optimization is related to migratory sharing patterns. Migratory data

are continuously read-modified-written, but each time by a different processor [100]. Each

processor brings them into its cache as a RO cache block, tries to modify them, generates a

write fault, converts them to a RW cache block, writes them, and subsequently loses them to

another processor that will go through the same cycle. The connection to the instruction-based

prediction is straightforward: migratory data are likely to generate load-misses closely fol-

lowed by store-write-faults.

The optimization is to convert the coherent read to a coherent write ending up with a RW

cache block and thus avoiding the write fault. The inspiration for the optimization comes from

Carter et al. (Munin)[22] and the adaptive CC-protocols proposed independently by Cox and

Fowler [28], and by Stenström, Brorsson, and Sandberg [93].

In the following section I discuss in more detail a prediction scheme that successfully detects

anti-dependences on cache blocks. Subsequently, I evaluate this scheme and present the

results for seven benchmarks.

5.2.4 Cache-block anti-dependence prediction

The idea of this scheme is simple: if we observe a load-miss/store-write-fault pattern a few

times, then every time we encounter the load-miss we will request a RW cache block to pre-

186

vent the write-fault. The predictor is a small fully-associative table indexed using the load PC.

Each predictor entry contains the PC of the load, the address of the last cache block on which

the load missed, a small n-bit saturating counter used to make predictions, and a prediction bit

(P-bit) that indicates unconfirmed predictions and provides the means for adapting back. The

size of each entry is as small as 9 bytes assuming 32-bit addressing and that we store the full

addresses.

However, storing the full addresses is not necessary. A predictor of a certain size, for example,

can be directly indexed with just a small number of PC bits. A field to store additional PC bits

(similar to a tag in caches) is optional. The address of the cache block can also be truncated to

a small number of bits. Although truncating or eliminating address fields allows the possibility

for mistakes, i.e., updating the wrong entry, using the wrong entry to make a prediction, and

mistaking the address block for another, the trade-off is that we can implement a predictor

with many more entries with the same transitor budget. Many more entries tend to decrease

the rate of mistakes, while at the same time, considerably more information can be stored. In

large programs, such as database codes, having many entries may be more important than

accuracy for each individual entry. For convenience, in the rest of this thesis I use the fully-

expanded version of the predictor entries with full address fields.

Only the load PC is used in the predictor entries and not the store PC. This means that unique

load/store pairs are not tracked, but all pairs that have a common load PC are lumped together.

A predictor entry, therefore, refers to a single load, but can be affected by multiple distinct

stores. I examined alternative implementations where the predictor entry contains both the

load PC and the store PC but I did not find enough evidence for their usefulness.

187

A working example—Figure 5.3 shows how the predictor is updated by load-misses, stores

and store-write-faults, and by external events. On a load-miss the predictor is probed and at

first it is empty. A new entry is allocated, and includes the load PC and the address of the cache

block (Figure 5.3a). The counter is initialized to zero and the prediction bit (P-bit) is reset

since no positive prediction has been made yet (Figure 5.3a). When a store generates a write-

fault the predictor is searched (associatively) using the address of the cache block, to find the

corresponding load (Figure 5.3b). Note that the store PC is not needed. A store-write-fault

increments the counter of the corresponding entry (Figure 5.3b). This load-miss/store-write-

Figure 5.3. Cache block anti-dependence prediction mechanism.

load PC address counter

load-miss
Probe Predictor lookup PC

update addr

P

(1)

...
100 addr 0 0

...

...

load PC address counter P

...
100 addr 1 0

...

...

store-write-fault lookup addr

reset P-bit

update counter

PC Instr.

100 load
104 ...
108 ...
10C store

Program

load PC address counter

load-miss
Probe Predictor lookup PC

update addr

P

...
100 addr 2 1

...

...

PC Instr.

100 load
104 ...
108 ...
10C store

Program set P-bit

Positive prediction

PC Instr.

100 load
104 ...
108 ...
10C store

Program

The first load-miss allocates a
predictor enrty and initializes it

A subsequent store-write-fault on
the same cache block (addr)
increments the counter.

load PC address counter

load-miss
Probe Predictor lookup PC

update

P

...
100 addr 1 1

...

...

PC Instr.

100 load
104 ...
108 ...
10C store

Program If P-bit is not reset by an intervening

(a)

(b)

(e)

(c)

(d)

(f)
store-write-fault the counter is
decremented

decrement counter

The P-bit is reset.

When the counter exceeds the
prediction threshold a positive
prediction is returned, engaging
the migratory optimization.
Because of the positive prediction
the P-bit is set.

188

fault scenario repeats until the counter exceeds a prediction threshold (Figures 5.3c and 5.3d).

The next time a load-miss occurs (Figure 5.3e) a positive prediction is made and the coherent

read is converted to a coherent write.

Adapting back—The prediction bit (P-bit) provides the method for adapting back. Its purpose

is to confirm the prediction that the cache block will be written by an ensuing store. When a

positive prediction has been made the P-bit is set. To confirm the prediction, the P-bit must be

reset when a store writes the block. The next time the same load probes the predictor it will

find the P-bit either set or reset. If it is set the cache block was not written. In this case (shown

in Figure 5.3f), the prediction counter is decremented and the P-bit is reset (if, however, the

counter did not fall below the threshold a new positive prediction will set the P-bit again). On

the other hand, if a load finds the P-bit reset a previous positive prediction has been confirmed.

Special care is needed to enable a store to reset the P-bit. Because of the positive prediction,

no write-fault will occur to trigger a predictor update. Various solutions exist:

• We can update the predictor with any dynamic store instance (regardless of whether it gen-

erates a write-fault or not). The disadvantage of this method is increased pressure on the

predictor.

• We can trap stores that write cache blocks brought in with positive predictions. This can be

accomplished by bringing in the cache block to an intermediate state which enjoys write

privileges but denotes unmodified data. Such a state exists in many protocols and com-

monly referred to as “Exclusive.” Thus, the transition from “Exclusive” to “Modified”

(which can be considered as a soft write-fault) triggers a predictor update and resets the P-

bit. This is the scheme we implemented for the evaluation.

189

External events—A simple-minded implementation of this instruction-based prediction

scheme can be fooled by non-migratory-sharing patterns (e.g., when more than one node read

the data block before it is written). To avoid such complications, I only consider read-modify-

write operations on cache blocks that are the only copies in the system (i.e., exclusive) and are

not affected in other way throughout the operation. If the cache block is read by another node

between the time of the load-miss and the time of the store-write-fault we disable the update

of the predictor. This is accomplished by deleting the cache block address field of the corre-

sponding predictor entry. Thus, the correspondence of a load-miss and a store-write-fault can-

not be established through the address of a cache block that was externally read. Cache block

replacements and invalidations also have a similar effect because they lead to subsequent (load

or store) misses—not store-write-faults.

Prediction threshold—The prediction threshold provides hysteresis in adapting to migratory

sharing and back. A low threshold allows the optimization to be applied soon after the load-

miss store-write-fault behavior is detected, but it delays adapting back in the face of uncon-

firmed predictions when the saturating counter has reached its highest value. The opposite

behavior is obtained by using a high threshold. In this work we used a prediction threshold of

1 with a 2-bit saturating counter.

Implementation details—In the above description each predictor entry has a cache-block

address field (the meeting point between a load-miss and a subsequent store-write-faults).

Depending on where we put this meeting point, we can change the way the predictor operates,

specifically the way new entries are allocated. I have identified three options for the meeting

point that perform comparably but differ in implementation cost:

190

1. The predictor entry contains the address of the last block loaded (Figure 5.4). On a store-

write-fault an associative search is performed on the block addresses to find the corre-

sponding load. The problem with this method is that more than one load may have missed

(at different times) on the same cache block whose address then exists in multiple predictor

entries. The solution is to allow only one instance of an address in the predictor and specif-

ically only for the load that missed last.

2. Alternatively, a small detection structure (e.g., fully-associative cache) can be used to keep

Figure 5.4. Alternative implementation for the prediction mechanism: Correspondence
of a load and a store is established via an external structure.

Figure 5.5. Alternative implementation for the prediction mechanism: Correspondence
of a load and a store is established via the cache block.

load PC counter

load-miss
Probe Predictor

lookup
update

store-write-fault

P

update

Prediction

cache read
cache invalidate

lookup / delete

(update)

reset

address load PC

lookup

lookup

post address/Load PC

or store

load PC counter

load-miss
Probe Predictor

lookup
update

store-write-fault

P

update

Prediction

cache read
cache invalidate (update)

reset

address tag load PC

lookup

set load PC

Cache Block

or store

lookup / delete

191

track of the correspondence of addresses to load PCs (or addresses to predictor entries)—

shown in Figure 5.4. This structure is updated on a load-miss with the cache-block address

and the load PC and is probed on a store-write-fault. When a probe hits, the corresponding

entry is deleted. This structure need not be large since the information needs to be kept for

short periods of time (from the time of the load-miss to the time of the store-write-fault). If

this information is prematurely lost, the store-write-fault will be unable to update the pre-

dictor, but this is not fatal.

3. Finally, the correspondence of loads and stores (detection) can be established via the cache

block itself (Figure 5.5). When a load misses it tags the newly brought-in cache block with

its PC (or, alternatively, with a pointer to the predictor entry). When a store write-faults on a

cache block it uses the PC tag of the cache block to find the corresponding load in the pre-

dictor. External events on the cache block delete the PC tag. Although this is an elegant

method, it requires storage for the PC tag for every cache block and it is not as cost-effec-

tive as the previous methods.

With modern ILP processors, multiple instances of the same instruction can be simultaneously

in the processor’s instruction window. Thus, there is the possibility that a predictor can be

accessed multiple times by different instances of the same load before the corresponding

stores come into play. In such cases, a split detection-predictor mechanism (cases 2 and 3

above) is required so that a single predictor entry represents the unique static load instruction,

but multiple detection entries deal with multiple instances of the instruction. Split detection-

prediction mechanisms were introduced for dependence prediction by Moshovos et al. [72].

In addition, because in ILP processors multiple instances of the same load can access the

192

detection-prediction structure before any of the corresponding stores appear, care must be

taken for the update of the P-bit. When corresponding stores are delayed with respect to mul-

tiple instances of the same load, it can appear as if wrong predictions are made. Thus, we must

always update the P-bit in program order. This means that P-bit updates take place when load

instructions are retired. However, this introduces a delay in adapting back: because updating

the P-bit trails behind accessing the predictor, additional false predictions can be issued before

the saturating counter is decremented below the threshold.

5.2.5 Migratory sharing optimization on SCI

The ideas in this chapter are independent of the cache-coherence protocol used. Throughout

this thesis I use SCI as the platform to examine various optimizations to sharing patterns.

Although, in the introduction of this chapter I have illustrated the migratory sharing optimiza-

tion on full map directory protocols (such as DirnNB or DASH), here I describe how this opti-

mization applies to SCI.

In SCI, upon a miss a node communicates with the home-node directory and attaches itself in

front of the sharing list as the new head node. In this position, the node is the only one that can

write the cache block. Thus, it can initiate an invalidation of the sharing list without communi-

cating with the home-node directory. In the case of migratory data, there is only one other

node in the sharing list—the previous writer. Because of the unique position of the head node,

SCI requires only two messages for the invalidation, in contrast to other protocols which

require four messages.

In the migratory sharing optimization we collapse the two transactions into one. Although

193

converting the coherent read to a coherent write eliminates the write latency, in SCI it actually

increases the read latency and does not reduce traffic. The problem is that in SCI a coherent

write requires six messages in three non-overlapping transactions (Figure 5.6): (i) the node

communicates with the directory, (ii) attaches itself to the sharing lists, and (iii) invalidates the

previous writer. I examined instruction-based prediction for migratory sharing using SCI

unmodified, and I found that even in this case there is performance improvement for programs

that have migratory sharing [54]. In this thesis, I modified SCI to support a combined attach

and invalidate operation (Figure 5.6). Although, with this modification the read latencies

remain unchanged, the SCI migratory optimization achieves at most a 30% reduction in traffic

while in other protocols the traffic reduction is 50% or 60%.

Figure 5.6. Migratory sharing optimization on SCI.

(1)read
(2)attach to previous head

(3)attach

(4)data RW->RO

(1)invalidate

(2)ack RO->InvalidRO->RW

Invalid->RO
Load-miss

Store-write-fault

New Writer

Directory

Last Writer

(1)read

RW->InvalidInvalid->RW
Load-miss

Store (NO write-fault)

New Writer Last Writer

RW

(2)attach to previous head

(3)attach+invalidate

(4)data+ack

Head node

Directory

Directory

Normal Operation Migratory Optimization

194

5.2.6 Results

I studied the instruction-based prediction optimizations on CHOLESKY, MP3D and PTHOR,

which exhibit migratory sharing, and on four control benchmarks (GAUSS, APSP, BARNES and

OCEAN). Table 14 shows the speedups obtained over SCI with the instruction-based and

address-based schemes. In addition, I show results applying the migratory optimization for all

data (denoted by “Always” in Table 14). Using the migratory optimization indiscriminately

(instead of selectively as the other schemes do) ranges from positive (CHOLESKY), to harmless

(MP3D), to disastrous (all other programs).

Results show that instruction-based prediction works better than the address-based scheme for

CHOLESKY (speedup of 1.13 vs. 1.12). For MP3D, the instruction-based method lags behind the

address-based method (speedup of 1.16 vs. 1.21) but I discovered that disabling the adapt-

back mechanism increases the speedup to 1.30. In MP3D some migratory accesses (to the par-

ticle array) are not protected by locks. Thus, although they are migratory “in spirit” in reality,

the adapt-back mechanism rules out quite a few. For the rest of the programs which do not

Benchmark

SC Relaxed model r1[47]

SCI

MIG Instruction-
based

MIG. Addres-
based Always SCI

MIG-
Instruction

CHOLESKY

1.00

1.13 1.12 1.08 1.01 1.14

MP3D 1.16

(1.30 with no adapt-
back)

1.21 1.02 1.22 1.29

PTHOR 1.02 1.00 0.69 1.07 1.10

GAUSS 1.00 1.00 0.42 1.01 1.01

APSP 1.03 1.00 0.45 1.03 1.04

BARNES 0.99 1.00 0.73 1.06 1.05

OCEAN 1.02 1.00 0.83 1.05 1.06

Table 14. Simulation results for migratory sharing optimizations (32 nodes, speedup
over SCI).

195

have migratory sharing (PTHOR, GAUSS, APSP, BARNES, and OCEAN), instruction-based predic-

tion provides small performance improvements.

Under a relaxed memory model that hides write latency, instruction-based prediction still

offers performance improvements, albeit smaller than the sequentially-consistent memory

model case. I have used the relaxed memory model for SCI, called r1, described by Kägi et al.

[47]. These results are consistent to the results reported by Stenström, Brorsson and Sandberg.

With a relaxed memory model the argument for the migratory optimization (regardless of how

it is applied) becomes primarily an argument of traffic: the migratory optimization reduces

coherent traffic in proportion to the amount of migratory sharing in the program [93].

The results are comparable to those reported previously for address-based prediction [28,93],

given the differences in the simulated systems and in particular the cache-coherence protocols,

the number of nodes and the larger block size. Cox and Fowler reported that the block size has

significant effects on the performance of their adaptive protocol for migratory data: increasing

block size leads to smaller performance improvements. They reported speedups of 1.23 for

CHOLESKY and 1.11 for MP3D in 16 nodes and with a block size of 16 bytes. Similarly, Sten-

ström, Brorsson and Sandberg report good speedups (1.54 for MP3D and 1.25 for CHOLESKY),

again in 16 nodes and for a small block size (16 bytes). WWT does not allow a block size

smaller than 32 bytes, but I briefly examined larger blocks (64 bytes) and observed similar

effects for the instruction-based prediction scheme: large block sizes (64 bytes) reduce the

performance benefit. The effects of the block size on prediction mechanisms merit further

investigation (beyond the capacity of this paper). The instruction-based prediction mechanism

could be protected from the adverse effects of large block sizes by using the exact word

196

addresses of the load and store instructions rather than the coarse-grain cache block address.

The most striking results, however, are presented in Table 15 (for the migratory sharing

benchmarks). The number of predictor entries allocated is very low. On average, 19 predictor

entries are needed for CHOLESKY, 24 for MP3D and 53 for PTHOR. Note however, that these are

very small scientific programs and other workloads such as databases may have considerably

higher requirements. In general, the number of predictor entries depends on the number of

critical sections or the number or read-modify-write code instances rather than the actual size

of the code. In comparison, the adaptive protocols for migratory data (i.e., address-based pre-

diction) require storage in proportion to the size of the directories. The maximum number of

predictor entries was allocated in node 0 (which also executes initialization code) for all three

benchmarks. Table 15 also contains statistics about the behavior of the predictors. Even

though the predictors are not tuned individually for each benchmark, they do provide perfor-

mance improvements, even for small rates of positive predictions.

Statistics CHOLESKY MP3D PTHOR

Static loads con-
sidered

all 32 nodes 1844 2264 6309
average per node 58 71 197

Active predictor
entries (loads fol-
lowed by store-
write-faults)

all 32 nodes 597 751 1687
average per node 19 24 53
maximum 46 34 71

Total predictor probes 283473 569012 984330
Hits in the predictor 159018 553510 598100
Hits as % of total probes 56% 97% 61%
Positive Predic-
tions

Number 143337 339866 221548
% of predictor hits 90% 61% 37%
% of predictor
probes

50% 60% 23%

Table 15. Statistics for instruction-based prediction.

197

5.3 Summary

In this section I discussed optimizations for migratory sharing. I presented previous work on

static and dynamic, address-based schemes to distinguish migratory data. A contribution of

this thesis is a novel instruction-based prediction to optimize migratory sharing. The idea is to

predict whether a load-miss will be followed by a store-write-fault. This prediction/optimiza-

tion works well for three benchmarks (CHOLESKY, MP3D, and PTHOR) that exhibit migratory

sharing and is competitive with previously proposed address-based adaptive protocols. When

equipped with safeguards to avoid applying the optimization to non-migratory sharing it

shows no negative performance impact on four control benchmarks (gauss, apsp, barnes,

ocean). For the programs used (admittedly small programs) less than 100 predictor entries

were used in any node’s prediction table.

198

199

6 Producer-Consumer Sharing

In this chapter I discuss optimizations for producer-consumer sharing and techniques to selec-

tively apply these optimizations. I propose a novel dynamic approach to apply producer-con-

sumer optimizations using instruction-based prediction and a novel optimization for producer-

consumer sharing that uses speculative execution. Because of the limitations of the simulation

environment, I present only a preliminary investigation of these schemes. Further research is

needed to assess their performance.

Conceptually, most sharing in a program is producer-consumer sharing: a node creates a value

that is used by another node. Such a wide definition of producer-consumer sharing makes it

difficult to reason about it and design effective optimizations. Therefore, of interest are stable

producer-consumer relationships where the producer and consumer(s) remain the same over

time. In such cases, the common thread of the optimizations is to try to get newly created val-

ues to the consumer(s) as soon as possible so that the consumer(s) are saved from communi-

cating requests for the new value.

PRODUCER-
CONSUMER SHARING Static Dynamic

Address MUNIN [22]

UPDATE PROTOCOLS

COMPETITIVE UPDATE

Instruction DATA FORWARDING [59]

FINE-GRAIN PRODUCER-INI-
TIATED COMMUNICATION[3]

IINSTRUCTION-BASED PRE-
DICTION SPECULATIVE PRE-
SEND [54]

Table 16. Producer-consumer sharing optimizations

200

Analogous to wide-sharing and migratory-sharing optimizations, the producer-consumer opti-

mization should be applied selectively and not indiscriminately, otherwise performance loss is

likely. The methods to apply a potential optimization are divided into static and dynamic, and

address-based and instruction-based. Table 16 shows the four possible combinations. Three

out of the four cases (shaded cells in Table 16) have been explored in previous work. The con-

tribution of this thesis is to propose a transparent dynamic instruction-based technique to

apply producer-consumer optimizations, as well as a new optimization based on speculative

execution.

201

6.1 Related work

In this section I present previous work on optimizing producer-consumer sharing.

6.1.1 Address-based optimizations

The static address-based optimization was proposed for the Munin software DSM system

[22]. Data objects involved in stable producer-consumer relationships were defined in the

source code and a specialized protocol (producer-consumer optimizations) was used for such

data. Again, the disadvantages of this approach lie in its need for an interface to transfer infor-

mation from the program to the hardware and the need to involve the user to identify pro-

ducer-consumer data.

Competitive update protocols can be considered dynamic address-based optimizations for

producer-consumer sharing.

6.1.2 Instruction-based optimizations

A different approach to optimize producer-consumer sharing is called data forwarding and it

appears in DASH in the form of the deliver instruction [65], and has been studied by Koufaty,

Chen, Poulsen and Torellas [59] and in different form by Abel-Shafi, Hall, S.V. Adve, and V.S.

Adve [3]. In data forwarding, store instructions which generate values needed in other con-

sumer nodes are identified in the source program. If the set of consumer nodes can be accu-

rately identified either by the programmer and/or the compiler, then a special form of the store

instruction is used both to update the producer’s cache and to send the data to the consumer(s).

The consumer(s) can use the data sent in this way because they are by definition valid —

202

because the program says so. Thus, the burden of correctness lies with the programmer or

compiler.

Data forwarding or producer-initiated communication requires explicit identification of pro-

ducer-consumer relationships. This, however, is also a characteristic of the message-passing

programming paradigm, which makes it much less appealing than shared-memory. The

shared-memory programming paradigm abstracts and hides producer-consumer relationships

by using a shared name space. In effect, the use of global addresses is a way to hide explicit

communication. In this respect, user involvement in data forwarding reduces the appeal of

shared memory. On the other hand, since compiler identification of producer-consumer rela-

tions ships is not trivial (because conservative assumptions must be made for correctness), this

may restrict both the application and the potential benefit of an otherwise transparent scheme

[59].

QOLB can also be considered as an static instruction-based optimization for producer-con-

sumer sharing, if it is used to provide both the synchronization among producer and con-

sumer(s) and the data transfer. Here also, the optimization works when data are collocated

with the lock that protects them [48].

203

6.2 Dynamic instruction-based optimizations

As an alternative to previous methods to apply producer-consumer optimizations, I propose

dynamic instruction-based prediction to optimize producer-consumer sharing. The advantage

of instruction-based prediction compared to static instruction-based methods is that it is com-

pletely transparent (it does not require an interface or involvement of the user/compiler).

In instruction-based prediction, a store instruction that generates misses or write-faults is a

(potential) producer. Its consumer(s) are tracked using information from the CC-protocol. The

prediction can take one of the following two forms: i) a binary prediction for the existence of

stable producer-consumer sharing and, ii) prediction of the identity of potential consumers.

Using the first form, we can invoke a pairwise sharing optimization or switch to an update pro-

tocol. Using the second form we can switch to an update protocol or pre-send data specula-

tively to consumers.

An update protocol would not constitute a transparent optimization in the case of a sequen-

tially-consistent memory system because such protocols can violate sequential consistency

and therefore need support from the programmer/compiler to guarantee correctness. Because

of this reason and because SCI does not yet support an update protocol, I did not study this

optimization. However, I believe that it is an interesting future direction for instruction-based

prediction.

6.2.1 Pairwise-sharing prediction

This scheme predicts whether there is a stable producer-consumer relationship with a unique

204

consumer. A simple predictor tracks for each store its last known consumer (see also “In

search of the consumers” in the next section). The predictor is similar to those proposed in the

previous chapter for migratory sharing but with the addition of an extra field per predictor

entry, to store the identity of the last consumer (a total of about 13 bytes per entry). A 2-bit

saturating counter is used to indicate whether the last consumer remains the same. When the

predictor entry is updated with a different consumer the counter is decremented; otherwise it

is incremented. The identity of the consumer can be changed while the counter remains below

the threshold.

If a store (producer) always has the same consumer we can optimize their communication. SCI

provides such an optimization called pairwise sharing [41,47]. Pairwise sharing allows the

head and the tail nodes of a two-node sharing list to communicate without going to the home-

node directory. I applied this prediction/optimization scheme on OCEAN and achieved a

speedup of 1.07 (1.10 with 256KB caches) using on average 77 predictor entries per node.

The pairwise-sharing optimization is very well implemented in SCI and even if it is heavily

misused it does not affect performance much. Thus, turning this optimization on for all data

leads to comparable results (1 or 2 percentage points lower than the instruction-based predic-

tion optimization).

6.2.2 Producer-consumer prediction with speculative-execution
optimization

The most advanced prediction/optimization scheme I propose predicts the identity of the con-

sumer(s) and uses speculative execution to optimize producer-consumer sharing. This scheme

is prompted by previous work, including: Moshovos and Sohi’s [73] and Tyson and Austin’s

205

[97] work on optimizing producer-consumer communication in uniprocessors, Koufaty, Chen,

Poulsen and Torellas’ work on data forwarding [59], Abel-Shafi, Hall, S.V. Adve, and V.S.

Adve’s evaluation of producer-initiated communication [3], and was influenced by Hill’s

views on speculative execution in shared-memory [38]. Evaluation of this scheme presents

considerable difficulties because WWT does not support speculative execution. Thus, I am

unable to provide execution-time measurements. Instead—analogous to studying branch pre-

diction—I study this scheme by presenting prediction accuracies and hit rates for the specula-

tive pre-sends. Finally, I discuss possible implementations of this scheme, including how to

read speculative data external to the processor.

6.2.3 In search of the consumers

Before I describe the prediction scheme, I will explain how to identify possible consumers.

The following discussion is dependent on the idiosyncrasies of SCI—in other directory-based

CC-protocols the directory itself is an excellent source of information about consumers. In

SCI, a node that wishes to write a cache block is responsible for invalidating the sharing list.

Thus any nodes that are invalidated by the producer are considered consumer nodes. Addition-

ally, any node that at a later point attaches in front of the producer (i.e., reads the producer’s

cache block) is considered to be a consumer. Since the attach operation is unrelated to any par-

ticular store instruction the correlation of external events and instructions is established

through an address filed in the prediction mechanisms (similar to that discussed for the migra-

tory sharing prediction mechanisms).

206

6.2.4 Prediction

I use a predictor structure similar to the pairwise predictor, but in each prediction entry,

instead of the field that holds the identity of a single consumer, I use a bit-map to track multi-

ple consumers (a total of about 13 bytes per entry). Again as with the migratory sharing pre-

dictors (Section 5.2.4), it is not necessary to have all the address fields or the full address fields

in an implementation. Address fields can be truncated or eliminated. For example, the predic-

tor can be directly indexed with a few PC bits. Storing additional PC bits in the predictor entry

is optional. For a fixed transistor budget, this would give many more predictor entries but also

introduce the possibility of mistakenly accessing them or updating them. A large number of

predictor entries may be preferable for realistic—large—workloads. For the small programs

used in this thesis, I studied the fully expanded—and accurate—version of the predictor

entries.

I examine two simple predictor schemes and propose a third: (i) LAST-PREDICTION that pre-

dicts the last set of consumers to be the new set, (ii) INTERSECTION-PREDICTION that predicts

the intersection of the last two sets of consumers to be the new set, and (iii) two-level adaptive

prediction inspired by the analogous scheme in branch prediction [105] and by Mukherjee and

Hill’s work on protocol prediction [75]. The three schemes work as follows:

1. LAST-PREDICTION: The predictor is both updated and probed on a store-miss or a store

write fault. The predictor is updated when the producer node invalidates a sharing list. The

update collects the identities of the invalidated nodes on a temporary bit-map and compares

it to the bit-map stored in the predictor entry. If there is significant overlap between the bit-

maps the entry’s 2-bit saturating prediction counter is incremented; otherwise it is decre-

207

mented. The temporary—new—bit-map is then installed in the predictor entry. The predic-

tor is then probed and if the counter exceeds a threshold, the bit-map containing the

possible consumers is returned. This predictor has two tuning parameters: the counter

threshold and a parameter that defines what is “significant overlap” between bit-maps. In

this work the threshold is 1 and the overlap parameter requires at least 2 common consum-

ers (in bit-maps that have 2 or more consumers).

2. INTERSECTION-PREDICTION: The predictor is updated when the producer invalidates a

sharing list and the identities of the consumers are collected on a temporary bit-map. The

logical AND of the temporary bit-map and the predictor entry bit-map (that contains the

consumers of the previous store-miss or store-write-fault) constitutes the prediction bit-

map. After the prediction bit-map is calculated, the temporary bit-map is installed over the

predictor entry’s bit-map.

3. Two-level adaptive prediction: This scheme is based on the two-level adaptive prediction

techniques proposed by Yeh and Patt [105]. The predictor is updated when the producer

invalidates a sharing list. The bit-map (or a hash thereof) of the invalidated nodes is used as

a symbol for a History Register (HR) [105]. The HR is an index to a Pattern History Table

(PTH) [105]. Each PTH entry contains a prediction bit-map and a saturating counter to

control updates to the prediction bit-map. The prediction bit-map can use the LAST-PREDIC-

TION scheme as described above, or the INTERSECTION-PREDICTION scheme, or any other

suitable scheme. I have not examined the two-level adaptive scheme further. I believe that

because of its cost the two-level adaptive scheme warrants further investigation only when

the performance benefit of the Instruction-based prediction for producer-consumer sharing

has been established. However, the simulation tool used in this thesis (WWT) does not pro-

208

vide the necessary capabilities for such a determination.

6.2.5 A novel optimization: speculative pre-send

After predicting the identity of the consumers we can send them the data on the condition that

they use them speculatively, until they verify the data’s correctness through the coherence pro-

tocol. I call this speculative pre-send8. The hope is that the data will arrive at the consumer(s)

before they even ask for them. Speculative pre-send is not an update because: (i) it is outside

the coherence domain, (ii) the set of the predicted consumers is not cumulative (as in the

update) but it changes dynamically, and (iii) it allows feed-back through the coherence proto-

col. Since everything has to be verified through the CC-protocol, speculative pre-sends affect

only performance but not correctness.

There are two questions concerning pre-sends: what to send and when to send.7 Regarding the

first question we must decide whether to send just the new value written by the store or the

whole cache block, while for the second question we must decide whether to send it immedi-

ately (at the end of the write fault) or wait until a later time. In this work pre-sends are accu-

mulated in a special buffer (similar in functionality to a write cache used to enhance update

protocols) which is flushed on synchronization operations (i.e., barriers and unlocks) and the

whole cache block (if it is available at the time of the actual send)9 is forwarded to the con-

sumer(s). In contrast to a write cache for an update protocol, the pre-send buffer does affect

the choice of a memory model because of the speculative nature of the technique. On the con-

8 Inspired by “pre-fetch.”
9 Since this is the initial exploratory work in this area, the full design space needs to be stud-

ied in future work.

209

sumer side, pre-sends are accumulated in the cache by taking advantage of invalid cache

blocks. A speculative pre-send is only accepted if an invalid cache block with the same

address exists in the consumer’s cache. The reasoning for this restriction is that a correct pre-

send is likely to encounter a corresponding invalid cache block since the producer previously

invalidated all the consumers. No additional storage in the consumer nodes is needed for the

pre-sends.

In reality this optimization trades bandwidth for latency. Speculative pre-sends consume addi-

tional bandwidth in hope that they will reduce the apparent read latency. I have not been able

to investigate this trade-off with WWT since speculative execution is not supported. Results

(Section 6.2.7) indicate that the number of speculative pre-sends is low (and therefore their

bandwidth requirements are low). If the reduction of the critical path for the parallel computa-

tion is significant then this technique could provide considerable performance improvements.

6.2.6 How can a processor read external speculative data?

To make a convincing argument for the feasibility of the speculative schemes I propose, I

sketch a method for a processor to read speculative data from outside. This proposal is com-

patible (at a high level) with existing memory speculation mechanisms in advanced processor

designs.

In modern microprocessors that support speculative execution, loads can speculatively bypass

stores that issued earlier and whose target address is unknown. If at a later time the address of

the store is resolved and there is no dependence to the speculative load then the latter is com-

mitted; otherwise, if there is a dependence, the speculative load is “squashed” along with all

210

speculative instructions that followed (or in the case of selective invalidation along with all

speculative instructions dependent on the speculative load).

To read speculative data from the outside world, the processor creates a hypothetical shadow

store whose address is unknown. The purpose of this shadow store (which never really exe-

cutes) is to control the fate of the load that reads the external data. This load is executed spec-

ulatively, pending confirmation of absence of dependence on the shadow store. After the load

reads the external speculative data, the address of the shadow store remains to be resolved.

The outside mechanisms control the speculative execution by supplying the appropriate

address for the shadow store. Eventually, the validity of the speculative data will be verified by

the CC-protocol. If the data were correct the outside mechanisms supply to the shadow store

an irrelevant address (e.g. 0x0000). If, however, the data were found to be wrong, their address

is supplied to the shadow store, thereby squashing all incorrect execution. Note that there is

some sort of random value speculation involved in these schemes: even if there never was a

producer-consumer relationship but the data just happened to be correct, the speculative exe-

cution is committed. Unless the dynamic instruction window overflows with speculative

instructions the processor will race ahead while coherence enforcement will follow behind

(otherwise it will stall, waiting for coherence enforcement). The extent that this is possible

remains to be investigated with more powerful simulators that implement speculative execu-

tion.

Other approaches include the recently introduced speculative loads of the Intel’s EPICTM

architecture (and its implementation IA64TM). In such architectures a speculative load can be

issued to read speculative data. A subsequent check instruction will test for the validity of the

211

load. The check instruction can receive information from the coherence mechanisms about the

validity of the data. If the check instruction receives a confirmation from outside that the data

are correct, execution continues. Otherwise, the check instruction branches to routines that

undo (in software) the effects of the speculative execution and restart the faulting load and

subsequent instructions.

6.2.7 Results

In this section I present preliminary results for the producer-consumer prediction using the

pre-send optimization. I implemented all mechanisms described in the preceding sections in

the WWT, except speculative execution. Thus, the producers use the predictors to send cache

blocks to the consumers; the pre-send messages are accepted in the consumer nodes only if

there is available space in their cache in the form of invalid cache blocks; the consumers, upon

a miss, access their caches to read speculative data. However, they cannot execute specula-

tively so they wait until they obtain a coherent cache block through the CC-protocol. When

the coherent cache block is brought into the cache the consumers compare the speculative data

to the coherent data to determine mis-speculations. Table 17 and Table 18 show statistics gath-

ered using this setup for four benchmarks (OCEAN, BARNES, GAUSS, and SPARSE).

Table 17 shows the results using the LAST-PREDICTION scheme and Table 18 using the INTER-

SECTION-PREDICTION scheme. Both tables list the number of static stores that generated

misses or write-faults and the number of entries in the prediction tables. These two numbers

are the same since all stores encountered are tracked. Similar to the other two instruction-

based predictions described in previous sections, the number of predictor entries required is

very low for all programs. The total number of predictor probes gives an indication of the

212

usage of the predictors (equivalent to the number of coherence events generated by stores).

The percentage of the probes that return a prediction is a metric that depends on the prediction

scheme employed. For the first scheme, LAST-PREDICTION, a saturating counter is used to indi-

cate whether the successive store instances have common consumers. When the predictor is

probed and the counter is below the threshold a null prediction is returned. The percentage of

non-null predictions ranges from 3% for SPARSE to 63% for BARNES. This percentage can be

changed by tuning the threshold of the saturating counter and the parameter that defines the

overlap in the consumer bit-maps. For the second scheme, INTERSECTION-PREDICTION, we do

Statistics LAST PREDICTION

Benchmark OCEAN BARNES GAUSS SPARSE

Static Stores considered (all nodes)

average per node

2499 1636 471 310

79 51 15 10

Predictor entries allocated (all nodes)

average per node

2499 1636 471 310

79 51 15 10

Total number of predictor probes (all nodes)

% of probes that return a prediction

1378698 106535 175564 813815

56% 63% 54% 3%

Total pre-send messages sent

% of non-null predictions

402404 100696 87930 81756

52% 150% 93% 335%

Pre-sends as % of data-carrying messages 10% 3% 12% 1%

pre-sends rejected at consumers

% of total pre-sends

168463 60106 2466 24085

42% 60% 3% 29%

pre-send accessed in consumers

% of total sent

158103 24984 85183 56421

39% 25% 97% 70%

Accessed pre-sends verified as correct

% of total accessed

% of total sent

135866 19439 85123 55032

86% 78% 100% 98%

34% 19% 97% 67%

Accessed pre-sends failed to verify

% of accessed

% of total sent

22237 5545 60 1390

14% 22% 0% 2%

5% 6% 0% 3%

Table 17. Statistics for producer-consumer LAST-PREDICTION with speculative pre-send
(32 nodes).

213

not employ a saturating counter. A null prediction is returned the first two times a store is

encountered. The non-null predictions can generate from zero to 32 pre-send messages

(depending on the number of consumers predicted). However, a prediction may be nullified if

the cache block is not available at the time of the pre-send. Because the pre-send can be

delayed until a synchronization point, cache blocks are often lost before they can be sent.

Under these conditions the total number of pre-sends is shown in the corresponding rows of

the two tables. The total number of pre-sends is also expressed as a percentage of the non-null

predictions in the same row.

Statistics INTERSECTION PREDICTION

Benchmark OCEAN BARNES GAUSS SPARSE

Static Stores considered (all nodes)

average per node

2500 1644 471 310

78 51 15 10

Predictor entries allocated (all nodes)

average per node

2500 1644 471 310

78 51 15 10

Total number of predictor probes (all nodes)

% of probes that return a prediction

1378658 106263 175564 813960

100% 97% 100% 100%

Total pre-send messages sent

% of non-null predictions

247428 36530 87809 39480

18% 34% 50% 5%

Pre-sends as % of data-carrying messages 7% 1% 12% 1%

pre-sends rejected at consumers

% of total pre-sends

57268 15636 2032 10480

23% 43% 2% 26%

pre-send accessed in consumers

% of total sent

129465 14142 85612 28025

52% 39% 97% 71%

Accessed pre-sends verified as correct

% of total accessed

% of total sent

109501 11227 85567 26745

85% 79% 100% 95%

44% 31% 97% 68%

Accessed pre-sends failed to verify

% of accessed

% of total sent

19964 2915 45 1280

15% 21% 0% 5%

8% 8% 0% 3%

Table 18. Statistics for producer-consumer INTERSECTION-PREDICTION with speculative
pre-send (32 nodes).

214

Some of these pre-sends are rejected in the consumer nodes because there is no free space in

their caches in the form of invalid cache-blocks. This number is high (e.g., 60% for BARNES).

A possible solution is to implement a speculative pre-send cache that holds the pre-sends that

do not fit in the main cache. To read speculative data, the processor would access this cache in

parallel with its main cache. Such a cache is additional hardware but would increase the num-

ber of pre-sends accessed and verified as correct.

Finally, the numbers of interest are the number of pre-sends accessed in the consumer nodes

and the percentage of them verified as correct. For OCEAN, and GAUSS these two numbers are

comparable for the two prediction schemes. For BARNES and SPARSE the second prediction

scheme (INTERSECTION-PREDICTION) performs better. The percentage of pre-sends accessed

ranges from 25% (BARNES) to 97% (GAUSS) for the first scheme and from 39% (BARNES) to

97% (GAUSS) for the second scheme. The percentage of the accessed pre-sends that are veri-

fied through the CC-protocol as correct (a direct measure of mis-speculations) is high: for

LAST-PREDICTION it ranges from 78% for BARNES (22% mis-speculations) to 100% for GAUSS

(0% mis-speculations); for INTERSECTION-PREDICTION it ranges from 79% for BARNES to

100% for GAUSS. For all programs the percentage of correct pre-sends is comparable for the

two schemes, with values ranging from 19% to 97% for LAST-PREDICTION and 31% to 97% for

INTERSECTION-PREDICTION. More advanced prediction schemes such as two-level adaptive

prediction have potential to increase this percentage.

The optimization based on speculative execution is a tradeoff between bandwidth and latency.

In hope of reducing the apparent latency of reads, we send more data that, nevertheless, will

be re-sent for verification. The results show that: (i) a significant number of pre-sends will

215

allow the processors to go ahead and execute useful work and (ii) the pre-send traffic is low

ranging from 1% to 12% of the total data traffic (see Table 17 and Table 18, “pre-sends as %

of data-carrying messages”). If these pre-sends are in the critical path of the program execu-

tion, then we could considerably reduce latency, consuming a small amount of bandwidth.

216

6.3 Predictor interactions

In this thesis, I have not examined the combined effects of the three prediction mechanisms

(for migratory sharing, wide sharing, and producer-consumer sharing). The predictors for

each sharing pattern can be integrated into a generalized structure (since predictor entries of

one scheme can be embedded in the predictor entries of another). Integrating predictor struc-

tures, however, is not trivial and may lead to instability, if different sharing patterns conflict in

predictor entries.

The predictor entries for the producer-consumer sharing refer to store instructions and thus

they are easily distinguished from wide-sharing entries or migratory-sharing entries that refer

to load instructions. However, the wide-sharing entries and migratory-sharing entries both

refer to load instructions. One approach to resolve conflicts would be to tag predictor entries

with the type of sharing involved at allocation time and use them as such until they are

replaced. For example, we can allocate an entry as a wide-sharing entry, if at the time of the

load-miss we detect wide sharing, otherwise we can allocate it as a migratory-sharing entry.

Once an entry is allocated, we can only update it with the update mechanisms of the corre-

sponding sharing pattern. Inactive entries (with a prediction counter set to zero) could be

replaced to compensate for possible errors in the sharing type at allocation time. Additionally,

we can apply similar rules for the store instructions. For example, store instructions that corre-

spond to producer-consumer entries cannot be used to update migratory entries and vice-

versa.

Further research is required to understand the interaction of sharing patterns in a common pre-

217

diction structure and, in general, the combined effects of the three prediction schemes. How-

ever this is beyond the capacity of this thesis.

218

6.4 Summary

In this chapter I proposed instruction-based prediction to optimize producer-consumer shar-

ing. The idea is to predict which node is going to consume a value generated by a store (simi-

larly to uniprocessor dependence prediction and synchronization [72]). I examine store

instructions that generate write-faults and keep track of the potential readers of the newly writ-

ten cache-blocks using very few resources.

Using simple predictors we can predict, upon seeing a store-write-fault, whether there is a sta-

ble producer-consumer relation and apply a pairwise sharing optimization with direct cache-

to-cache transfers without involving the home-node directory. Using more advanced predictor

structures, we can predict the identity of the consumer(s). In this case we can speculatively

pre-send the newly created values to the predicted consumers, who can use these values spec-

ulatively at miss time, but they have to verify them through the normal cache coherence proto-

col.

For the pairwise sharing prediction/optimization, I found that it does not offer significant

advantages over SCI’s default pairwise sharing optimization. For the producer-consumer opti-

mization based on speculation, I found that for four programs more than 78% of the specula-

tive pre-sends can be successful. For this prediction, no more than 105 9-byte predictor entries

were ever needed in any node.

219

7 Summary and Future Directions

The contributions of this thesis are twofold:

1. I propose two novel optimizations to optimize wide sharing and producer-consumer shar-

ing. The first optimization is called GLOW and it is the major thrust of this thesis. To a lesser

extent, I examine the novel producer-consumer-sharing optimization and a migratory-shar-

ing optimization previously proposed.

2. I classified the techniques to identify sharing patterns and selectively apply the appropriate

optimizations. I proposed various such techniques for GLOW. Furthermore, I introduced a

novel dynamic instruction-based technique which is based on prediction. I have demon-

strated how this instruction-based prediction technique can be applied for wide sharing,

migratory sharing, and producer-consumer sharing.

In the rest of this chapter, I summarize GLOW (Section 7.1), instruction-based prediction (Sec-

tion 7.2), and conclude with notes for future directions (Section 7.3).

220

7.1 The GLOW optimization for wide sharing

In this thesis I have shown that the number of accesses to widely-shared data can be large,

even if the amount of widely-shared data is small. The time spent in accessing such data can

be considerable, hence there is considerable benefit in providing transparent hardware support

for widely-shared data. This benefit increases with system size, since large systems suffer the

most from widely-shared data.

For economic reasons, hardware support for specific sharing patterns must be transparent and

non-intrusive to the commodity parts of the system. I propose the GLOW extensions to cache

coherence protocols which are designed with transparency in mind: they are implemented in

the network domain, outside commodity workstation boxes and are transparent to the underly-

ing coherence protocol. The GLOW extensions work on top of another cache-coherence proto-

col, by building sharing trees mapped well on top of the network topology, thus providing

scalable reads and scalable writes. However, in their static form they require the user to define

the widely-shared data and issue special requests that can be serviced by GLOW. This is unde-

sirable for various reasons, including implementation difficulties that inhibit transparency. In

this thesis I propose and study three schemes that can detect widely-shared data at run-time

and I compare them against SCI, static GLOW and combining. Each scheme exhibits different

performance and cost characteristics, hence it is valuable to explain why they perform as they

do. To this end, I examined each scheme’s effects on the read-runs of six programs.

The first scheme, AGENT DETECTION, discovers widely-shared data more reliably than read-

combining, by expanding the window of the observable requests. Switch nodes remember

221

recent requests even if these have long left the switch. Requests whose addresses have been

seen in the window are intercepted (as requests for widely-shared data) and passed to the

GLOW extensions for further processing. The interesting characteristic of this scheme is that, in

large systems, even a small window performs very well. This scheme achieves a significant

percentage of the performance improvement of the static GLOW and has the potential to out-

perform the static version in programs where it is difficult for the user to define the widely-

shared data. Since it requires modification only in the switch nodes, I believe it is the least

intrusive of all the schemes. As for congestion-based combining (COMBINING,) which is

slightly simpler, I found that it is highly dependent on the congestion characteristics of the

applications.

In the second scheme, DIRECTORY DETECTION, the directories are modified to discover the

widely-shared data by counting reads between writes. When a directory finds a widely-shared

data block, it notifies the nodes in the system to subsequently request this data block using

GLOW. The applicability of this scheme is limited. It works well when data blocks are widely

accessed more than once.

The third scheme, INSTRUCTION PREDICTION, is the most successful and is based on predicting

which load instructions are going to access widely-shared data. Although its implementation

is intrusive to the processor itself, it offers the best performance. Finally, in this thesis, I used

read-run analysis to gain insight on how these schemes affect accesses to widely-shared data.

This tool enables us to visualize these effects and to reason about the behavior of the various

schemes.

222

7.2 Instruction-based prediction

In this thesis I also explore instruction-based prediction, to transparently optimize hardware

shared-memory. Instruction-based prediction is well established in the uniprocessor world, but

novel in the world of parallel shared-memory architectures. The compelling advantage of

instruction-based prediction, compared to address-based prediction, is that it requires very few

prediction resources (for the programs examined).

I propose and study instruction-based prediction that logically stands halfway between the

processor and the cache-coherence protocol mechanisms. It requires two streams of informa-

tion to converge to the prediction structures: from the processor it requires the PC of the load

and store instructions that generate coherence events; from the cache-coherence mechanisms

it requires coherence information. Thus, we can track the history of loads and stores in rela-

tion to coherence, events such as cache misses or write-faults. Subsequently, each time a

known load or store generates a new coherence event we can take action to optimize it. In con-

trast, uniprocessor instruction-based prediction is deeply embedded in the processor and is

invoked with every dynamic instruction instance.

To make the case that instruction-based prediction is a serious competitor—not only in terms

of resource usage but also in terms of performance—to previously proposed address-based

prediction mechanisms, I proposed optimizations for three different sharing patterns:

• Wide sharing (also discussed in the previous section). This prediction/optimization works

very well and consistency outperforms DIRECTORY DETECTION (address-based scheme) on

six benchmarks which exhibit wide sharing (GAUSS, SPARSE, APSP, TC, CG, and BARNES).

223

With appropriate mechanisms for adapting back to non-wide sharing, there is no negative

performance impact on two control benchmarks (CHOLESKY and OCEAN). No more that 56

(5-byte) predictor entries were ever needed in any node’s prediction table for the small sci-

entific programs used.

• Migratory sharing. This prediction/optimization works well for three benchmarks

(CHOLESKY, MP3D, and PTHOR) that exhibit migratory sharing and is competitive to previ-

ously proposed address-based adaptive protocols. Equipped with safeguards to avoid

applying the optimization to non-migratory sharing, it shows no negative performance

impact on four control benchmarks (GAUSS, APSP, BARNES, OCEAN). No more than 71 (9-

byte) predictor entries were ever needed in any node’s prediction table for the small scien-

tific programs used.

• Pairwise sharing and producer-consumer sharing. For the pairwise sharing prediction/opti-

mization, I found that it does not offer significant advantages over the default pairwise

optimization of SCI. For the producer-consumer optimization that is based on speculation,

I found a significant number of speculative pre-sends can be successful. For this predic-

tion, no more than 51 predictor entries were ever needed in any node for the small scien-

tific programs used.

224

7.3 Future directions

I believe that this work will be a starting point for novel and better instruction-based predic-

tion optimizations. Similarly to work that examined the coherence behavior of data [100], we

need to examine the behavior of the instructions in relation to the cache-coherence protocol

events, taking into account hardware parameters such as cache size and block size. Also,

research is needed to examine how instruction-based prediction can be applied to bus-based

shared-memory systems and even software-based shared-memory. Yet another direction is to

examine hybrid prediction schemes that use both instruction-based and address-based predic-

tion. This is especially interesting with the advent of generalized address-based prediction

[75].

I consider the instruction-based sharing-pattern identification techniques of this thesis, a start-

ing point. There are many possible applications of instruction-based prediction. For example,

Dynamic Self-Invalidation (DSI) which was proposed as an address-based technique by Leb-

eck and Wood [64] may be achieved with instruction-based prediction (suggested by Sohi). I

have identified yet another technique: consumer-producer instruction-based prediction, which

is—in some sense—the opposite of the producer-consumer instruction-based prediction tech-

nique described in Chapter 6. In the consumer-producer scheme, upon encountering a load

instruction—i.e., a consumer—we can make a prediction about the identity of the producer of

the data being accessed. Potentially, we could prefetch the value directly from the predicted

producer—again using speculative execution as in the producer-consumer scheme (Chapter

6)—or we can coherently access the desired data directly from the predicted producer without

225

going to the directory, if this is supported by a specialized cache coherence protocol such as

GLOW. Other interesting applications of instruction-based prediction may emerge with future

research.

Finally, I subscribe to Hill’s opinion that speculation will play an increasingly important role

in transparently optimizing shared-memory. In this work I propose such an optimization and I

have performed a preliminary evaluation constrained by the limits of the WWT. Future work is

needed to research in depth speculation in shared-memory.

226

227

8 References

[1] Gheith A. Abandah and Edward S. Davidson, “Effects of Architectural and Techno-
logical Advances on the HP/Convex Exemplar’s Memory and Communication Perfor-
mance.” In Proceedings of the 25th ISCA, June 1998.

[2] Gheith Abandah, “Characterizing Shared-Memory Applications: A Case Study of the
NAS Parallel Benchmarks.” Hewllet-Packard Labs Technical Report HPL-97-24, Jan-
uary 1997.

[3] Hazim Abdel-Shafi, Jonathan Hall, Sarita V. Adve, and Vikram S. Adve, “An Evalua-
tion of Fine-Grain Producer-Initiated Communication in Cache-Coherent Multiproces-
sors.” In Proceedings of the 3rd International Symposium on High-Performance
Computer Architecture, February 1997.

[4] Santosh G. Abraham, Rabin A. Sugumar, Daniel Windheiser, B. R. Rau and Rajiv
Gupta. “Predictability of Load/Store Instruction Latencies.” In Proceedings of the 26th
Annual International Symposium on Microarchitecture, November 1993.

[5] Sarita V. Adve, Mark D. Hill, “Implementing Sequential Consistency In Cache-Based
Systems.” International Conference on Parallel Processing, August 1990.

[6] Sarita V. Adve, Mark D. Hill, “Weak Ordering - A New Definition.” In Proceedings of
the 17th International Symposium on Computer Architecture (ISCA), June 1990.

[7] A. Agarwal et al., “The MIT Alewife Machine: A Large-Scale Distributed-Memory
Multiprocessor.” In Dybous and Thakkar (eds.), Scalable Shared Memory Multipro-
cessors, Kluwer Academic Publishers, Boston, MA, 1992.

[8] A. Agarwal, M. Horowitz and J. Hennessy, “An evaluation of Directory schemes for
Cache Coherence.” In Proceedings of the 15th International Symposium on Computer
Architecture, pp. 280-289, June 1988.

[9] George S. Almasi, Alan Gottlieb, “Highly Parallel Computing.” Benjamin/Cummings
Publishing Company Inc., Redwood City, California, 1994.

[10] C. Amza et al., “TreadMarks: Shared Memory Computing on Networks of Worksta-
tions.” Computer, Vol. 29, No. 2, pp. 18-28, Feb. 1996.

[11] Tom Anderson, David Culler, David Patterson, “A Case for Networks of Workstations:
{NOW}.” Technical Report, University of California Berkeley, Jul. 1994.

228

[12] J. L. Baer and W. H. Wang, “Architectural Choices for Multi-Level Cache Hierar-
chies.” In Proceedings 16th International Conference on Parallel Processing, pp. 258-
261, 1987.

[13] Jean-Loup Baer and Wen-Hann Wang, “On the Inclusion Properties for Multi-Level
Cache Hierarchies.” In Proceedings of the 15th Annual Symposium on Computer
Architecture, May 1988.

[14] David H. Bailey et al., “The NAS Parallel Benchmarks: Summary and Preliminary
Results.” IEEE Supercomputing ‘91, pp 158-165. November 1991.

[15] Andrew J. Bennett, Paul H. J. Kelly, Jacob G. Refstrup and Sarah A. M. Talbot, “Using
Proxies to Reduce Controller Contention in Large Shared-Memory Multiprocessors.”
In Luc Bouge et al, editors, EURO-PAR 96, Aug. 1996, pp. 445-452, Vol. 1124 Lecture
Notes in Computer Science, Springer-Verlag.

[16] R. Bianchini and T.J. LeBlanc, “Software Caching on Cache-Coherent Multiproces-
sors.” In Proc. of the 4th Symposium on Parallel and DIstributed Processing, Dec.
1992.

[17] R. Bianchini and T. J. LeBlanc, “Eager Combining: A Coherency Protocol for Increas-
ing Effective Network and Memory Bandwidth in Shared-Memory Multiprocessors.”
In Proceedings of the 6th Symposium on Parallel and Distributed Processing, October
1994.

[18] R. Bianchini, T.J. LeBlanc, and J.E. Veenstra, “Categorizing Network Traffic in
Update-Based Protocols on Scalable Multiprocessors.” In Proceedings of the 10th
International Parallel Processing Symposium, April 15, 1996.

[19] D.C. Burger and D.A. Wood, “Accuracy vs. Performance in Parallel Simulation of
Interconnection Networks,” In Proceedings of the 9th International Parallel Process-
ing Symposium (IPPS), April, 1995.

[20] D.C. Burger and J.R. Goodman, “Simulation of the SCI Transport Layer on the Wis-
consin Wind Tunnel,” 2nd International Workshop on SCI-based High-Performance
Low-Cost Computing, pp. 57-66, March, 1995.

[21] CRAY Research Inc., CRAY T3D System Architecture Overview, 1993.

[22] John Carter, John Bennett and Willy Zwaenepoel, “Munin: Distributed Shared Mem-
ory Based on Type-Specific Memory Coherence.” In Proceedings of the Conference on
the Principles and Practices of Parallel Programming, 1990.

229

[23] Lucien M. Censier and Paul Feautrier, “A New Solution to Coherence Problems in
Multicache Systems.” IEEE Trans. Computers, Vol. 27, No. 12, pp. 1112-1118, Dec.
1978.

[24] David Chaiken, John Kubiatowicz, Anant Agarwal. “LimitLESS Directories: A Scal-
able Cache Coherence Scheme.” In Proc. of the 4th Int. Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-IV), pp. 224-234, April
1991.

[25] Satish Chandra, James R. Larus, Anne Rogers, “Where is Time Spent in Message-
Passing and Shared-Memory Programs?” In Proceedings of the 6th International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
pp. 61-73, October 1994.

[26] Convex Computer Corporation, “The Exemplar System,” 1994.

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, “Introduction to Algorithms.” MIT Press,
Cambridge, MA, 1990.

[28] Alan L. Cox Robert J. Fowler, “Adaptive Cache Coherency for Detecting Migratory
Shared Data.” In Proceedings of the 20th Annual International Symposium on Com-
puter Architecture, 1993.

[29] Susan J. Eggers and Randy H. Katz, “A Characterization of Sharing in Parallel Pro-
grams and its Application to Coherency Protocol Evaluation.” In Proceedings of the
15th Annual International Symposium on Computer Architecture, pp. 373-382, Jun.
1988.

[30] Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, Ioannis Schoinas, Mark D. Hill
James R. Larus, Anne Rogers, David A. Wood, “Application-Specific Protocols for
User-Level Shared Memory.” Supercomputing ‘94, Nov. 1994.

[31] Kourosh Gharachorloo, Sarita V. Adve, Anoop Gupta, John L. Hennessy, and Mark D.
Hill, “Programming for Different Memory Consistency Models.” Journal of Parallel
and Distributed Computing, 15(4), 1992.

[32] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop
Gupta, and John Hennessy, “Memory Consistency and Event Ordering in Scalable
Shared-Memory Multiprocessors.” In Proceedings of the 17th International Sympo-
sium on ComputerArchitecture, pages 15-26, May 1990.

[33] A. Gonzalez, C. Aliagas, M Valero. “A Data Cache with Multiple Caching Strategies
Tunned to Different Types of Locality.” In Proceedings of the International Confer-
ence on Suprecomputing, 1997.

230

[34] J. R. Goodman, P. J. Woest, “The Wisconsin Multicube: A New Large-Scale Cache-
Coherent Multiprocessor.” In Proceedings of the 15th Annual International Sympo-
sium on Computer Architecture, May 1988.

[35] J. R. Goodman, M. K. Vernon, P. J. Woest, “A Set of Efficient Synchronization Primi-
tives for a Large-Scale Shared-Memory Multiprocessor.” In Proceedings of the Third
International Conference on Architectural Support for Programming Languages and
Operating Systems (APLOS III), April 1989.

[36] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, M. Snir, “The
NYU Ultracomputer Designing a MIMD Shared-Memory Parallel Computer.” IEEE
Transactions on Computers, Vol. C-32, no 2, pp. 175-189, February 1983.

[37] Eric Hagersten, Anders Landin, and Seif Haridi, “DDM — A Cache-Only Memory
Architecture.” IEEE Computer, Vol 25. No 9, September 1992.

[38] Mark D. Hill, “Multiprocessors Should Support Simple Memory Consistency Mod-
els.” IEEE Computer, Vol. 31, No 8, pp 28-34, Aug. 1998.

[39] Mark D. Hill, James R. Larus, David A. Wood, “Tempest: A Substrate for Portable
Parallel Programs.” COMPCON Spring 95, 1995.

[40] W. D. Hillis and Lewis W. Tucker. “The CM-5 Connection Machine: A Scalable
Supercomputer.” Communications of the ACM, Nov. 1993.

[41] IEEE Standard for Scalable Coherent Interface (SCI) 1596-1992, IEEE 1993.

[42] Intel Corporation, “Paragon Technical Summary.” Intel Supercomputer Systems Divi-
sion, 1993.

[43] David V. James and Stefanos Kaxiras, “IEEE Standard for Cache Optimization for
Large Numbers of Processors using the Scalable Coherent Interface (SCI) Draft 0.35/
0.36,” 1995.

[44] Ross E. Johnson, “Extending the Scalable Coherent Interface for Large-Scale Shard-
Memory Multiprocessors.” Ph.D. Thesis, University of Wisconsin-Madison, 1993.

[45] Ross E. Johnson, James R.Goodman, “Interconnect Topologies with Point-to-Point
Rings.” In Proceedings of the International Conference on Parallel Processing,
August 1992.

[46] N. P. Jouppi, “Cache Write Policies and Performance.” In Proceedings of the 20th
Annual International Symposium on Computer Architecture. May 1993.

231

[47] Alain Kägi, Nagi Aboulenein, Douglas C. Burger, James R. Goodman, “Techniques
for Reducing Overheads of Shared-Memory Multiprocessing.” In Proceedings of the
International Conference on SuperComputing, July 1995.

[48] Alain Kägi, Doug Burger, and James R. Goodman, “Efficient Synchronization: Let
Them Eat QOLB.” In Proceedings of the 24th Annual International Symposium on
Computer Architecture, June 1997.

[49] Stefanos Kaxiras, “Kiloprocessor Extensions to SCI.” In Proceedings of the 10th Inter-
national Parallel Processing Symposium, April 1996.

[50] Stefanos Kaxiras and J. R. Goodman, “The GLOW Cache Coherence Protocol Exten-
sions for Widely-shared Data.” In Proceedings of the International Conference on
Supercomputing, May 1996.

[51] Stefanos Kaxiras and J. R. Goodman, “The GLOW Cache Coherence Extensions for
Widely-shared Data.” University of Wisconsin-Madison, C.S. Dept., Technical Report
1305, March 1996.

[52] Stefanos Kaxiras and James R. Goodman, “Improving Request-Combining for
Widely-shared Data in Shared-Memory Multiprocessors.” In Proceedings of the Third
International Conference on Massively Parallel Computing Systems (MPCS), April
1998.

[53] Stefanos Kaxiras, Stein Gjessing, and James R. Goodman, “A Study of Three
Dynamic Approaches to Handle Widely-shared Data in Shared-Memory Multiproces-
sors.” In Proceedings of the International Conference on Supercomputing, July 1998.

[54] Stefanos Kaxiras. “The Use of Instruction-Based Prediction in Hardware Shared-
Memory.” University of Wisconsin-Madison Computer Sciences Dept. TR-1368, April
1998.

[55] Stefanos Kaxiras, Rabin Sugumar, James Schwarzmeier. “Distributed Vector Architec-
tures: Beyond a Single Vector-IRAM.” 24th ISCA Workshop on Processor-Memory
Integration: Chips that Compute and Remember, June 1997.

[56] Stefanos Kaxiras and Rabin Sugumar. “Distributed Vector Architectures: Fine Grain
Parallelism with Efficient Communication.” University of Wisconsin-Madison CS
Dept. TR-1339, February 1997. Also available from CRAY Research.

[57] Kendall Square Research. “Kendall Square research technical Summary,” Waltham,
MA, 1992.

232

[58] Jai-Hoon Kim and Nitin H. Vaidya, “Adaptive Migratory Scheme for Distributed
Shared Memory.” 11th ACM International Conference on Supercomputing (ICS),
Vienna, Austria, July 1997.

[59] D. A. Koufaty, X. Chen, D. K. Poulsen, and J. Torrellas, “Data Forwarding in Scalable
Shared-MemoryMultiprocessors.” In Proceedings of the International Conference on
Supercomputing, July 1995.

[60] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni, Kourosh
Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark Horowitz, Anoop
Gupta, Mendel Rosenblum, and John Hennessy, “The Stanford FLASH Multiproces-
sor.” In Proceedings of the 21st Annual International Symposium on Computer Archi-
tecture, pages 302-313, April 1994.

[61] Leslie Lamport, “How to Make a Multiprocessor Computer that Correctly Executes
Multiprocess Programs.” IEEE Transactions on Computers, C-28(9):690–691, Sep-
tember 1979.

[62] James Laudon and Daniel Lenoski, “The SGI Origin: A cc-NUMA Highly Scalable
Server.” In Proceedings of the 24th Annual International Symposium on Computer
Architecture, 1997.

[63] Alvin R. Lebeck and G. S. Sohi, “Request Combining in Multiprocessors with Arbi-
trary Interconnection Networks.” In IEEE Transactions on Parallel and Distributed
Systems, November 1994.

[64] Alvin R. Lebeck and David A. Wood, “Dynamic Self-Invalidation: Reducing Coher-
ence Overhead in Shared-Memory Multiprocessors.” In Proceedings of the 22nd
Annual International Symposium on Computer Architecture (ISCA), June 1995.

[65] Daniel Lenoski et al., “The Stanford DASH Multiprocessor.” IEEE Computer, Vol. 25
No. 3, pp. 63-79, March 1992.

[66] Kai Li, Paul Hudak, “Memory Coherence in Shared Virtual Memory Systems.” ACM
Transactions on Computer Systems, Vol. 7, No. 4, pp. 321-359, November 1989.

[67] Li, K. and Hudak, P., “Memory Coherence in Shared Virtual Memory Systems.” In
Proc. of the 5th Annual ACM Symp. on Principles of Distributed Computing
(PODC’86), pp. 229-239, August 1986.

[68] Tom Lovett, and Russell Clapp, “STiNG: A CC-NUMA Computer System for the
Commercial Marketplace.” In Proceedings of the 23rd Annual International Sympo-
sium on Computer Architecture, May 1996.

233

[69] Yeong-Chang Maa, Dhiraj K. Pradhan, Dominique Thiebaut, “Two Economical Direc-
tory Schemes for Large-Scale Cache-Coherent Multiprocessors.” Computer Architec-
ture News, Vol 19, No. 5, pp. 10-18, September 1991.

[70] John M. Mellor-Crummey, Michael L. Scott, “Synchronization Without Contention.”
In Proceedings of the Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS IV). April 8, 1991.

[71] Haim E. Mizrahi, Jean-Loup Baer, Edward D. Lazowska, John Zahorjan, “Introducing
Memory into Switch Elements of Multiprocessor Interconnection Networks.” In Pro-
ceedings of the 16th Annual Symposium on Computer Architecture, May 1989.

[72] A. Moshovos, S. E. Breach, T. N. Vijaykumar, G. S. Sohi, “Dynamic Speculation and
Synchronization of Data Depenences.” In Proceedings of the 24th Annual Interna-
tional Symposium on Computer Architecture, 1997.

[73] A. Moshovos and G. S. Sohi, “Streamlining Inter-operation Memory Communication
via Data Dependence Prediction.” In Proceeding of the 30th Annual Symposium on
Microarchitecure, Dec. 1997.

[74] Shubhendu S. Mukherjee, Mark D. Hill, “An Evaluation of Directory Protocols for
Medium-Scale Shared-Memory Multiprocessors.” International Conference on Super-
computing, 1994.

[75] Shubhendu S. Mukherjee and Mark D. Hill “Using Prediction to Accelerate Coher-
ence Protocols.” In Proceedings of the 25th International Symposium on Computer
Architecture (ISCA), July 1998.

[76] Håkan Nilsson, Per Stenström, “The Scalable Tree Protocol—a Cache Coherence
Approach for Large-Scale Multiprocessors.” 4th IEEE Symposium on Parallel and
Distributed Processing, pp. 498-506, 1992.

[77] David Patterson et al., “The case for Intelligent RAM.” IEEE Micro, Vol 17, No. 2,
March/April 1997.

[78] Gregory F. Pfister and V. Alan Norton, “‘Hot Spot’ Contention and Combining in Mul-
tistage Interconnection Networks.” In Proceedings of the 1985 International Confer-
ence on Parallel Processing, pp. 790-797, August 20-23, 1985.

[79] Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin R. Lebeck, James C. Lewis,
and David A. Wood, “The Wisconsin Wind Tunnel: Virtual Prototyping of Parallel
Computers.” In Proceedings of the 1993 ACM SIGMETRICS Conference on Measure-
ments and Modeling of Computer Systems, pp. 48–60, May 1993.

234

[80] Steven K. Reinhardt, James R. Larus, David A. Wood, “Tempest and Typhoon: User-
Level Shared Memory.” In Proceedings of the 21st Annual International Symposium
on Computer Architecture, pp. 325-336, April 1994.

[81] Ashley Saulsbury, Fong Pong, and Andreas Nowatzyk, “Missing the Memory Wall:
The Case for Processor/Memory Integration.” In Proceedings of the 23rd Annual
International Symposium on Computer Architecture (ISCA), May 1996.

[82] A. Saulsbury, T. Wilkinson, J. Carter, and A. Landin, “An Argument for Simple
COMA.” In Proceedings of the 1st International Symposium on High-Performance
Computer Architecture, January 1995, pp. 276--285

[83] Ioannis Schoinas et al., “Fine-grain Access Control for Distributed Shared Memory.”
In Proceedings of the Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS VI), pp. 297-307, Oct.
1994.

[84] Ioannis Schoinas et al., “Implementing Fine-Grain Distributed Shared Memory on
Commodity SMP Workstations.” Technical Report TR-1307, University of Wisconsin-
Madison, March 1996

[85] Ioannis Schoinas and Mark D. Hill, “Address Translation Mechanisms in Network
Interfaces.” In Proceedings of the Fourth International Symposium on High-Perfor-
mance Computer Architecture, February 1998.

[86] Steven L. Scott, “Toward the Design of Large-Scale, Shared-Memory Multiproces-
sors.” Ph.D. Thesis, University of Wisconsin-Madison, August 1992.

[87] Steven L. Scott, “Synchronization and Communication in the T3E Multiprocessor.” In
Proceedings of the Seventh International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-VII), October 1996.

[88] Steve L. Scott and James R. Goodman, “Performance of Pruning-Cache Directories
for Large-Scale Multiprocessors,” IEEE Transactions on Parallel and Distributed Sys-
tems, Vol. 4, no. 5, May 1993.

[89] Steven L. Scott, James R. Goodman, Mary K. Vernon, “Performance of the SCI Ring.”
In Proceedings of the 19th Annual International Symposium on Computer Architec-
ture, pp. 403-414, May 1992.

[90] R. Simoni and M. Horowitz, “Dynamic Pointer Allocation for Scalable Cache Coher-
ence Directories.” In Proceedings of the International Symposium on Shared Memory
Multiprocessing, April 1991.

235

[91] J.P. Singh, W. -D. Weber, A. Gupta, “SPLASH: Stanford Parallel Applications for
Shared Memory.” Computer Architecture News, March 1992.

[92] James E. Smith, “A Study of Branch Prediction Strategies.” In Proceedings of the 8th
Annual International Computer Archtecture Symposium, 1981.

[93] Per Stenström, Mats Brorsson, Lars Sandberg, “An Adaptive Cache Coherence Proto-
col Optimized for Migratory Sharing.” In Proceedings of the 20th Annnual Interna-
tional Symposium on Computer Architecture, 1993.

[94] P. Stenström, T. Joe, and A. Gupta, “Comparative Performance Evaluation of Cache-
Coherent NUMA and COMA Architectures.” In Proceedings of the 19th Annual Inter-
national Symposium on Computer Architecture, May 1992, pp. 80--91.

[95] H. Sullivan and L. Cohn, “Shared Memory Computer Method and Apparatus,” U.S.
Patent 4,707,781 , November 1987.

[96] Sarah A. M. Talbot and Paul H. J. Kelly, “Stable Performance for cc-NUMA Using
First Touch Page Placement and Reactive Proxies.” In High Performance Computing
Systems and Applications, Kluwer Academic Publishers.

[97] Gary S. Tyson and Todd M. Austin, “Improving the Accuracy and Performance of
Memory Communication Through Renaming.” In Proceedings of the 30th Annual
Symposium on Microarchitecure, December 1997.

[98] G. Tyson et al., “A New Approach to Cache Management." In Proceedings of the 28th
Annual Symposium on Microarchitecure, Nov. 28 - Dec. 1, 1995.

[99] Anujan Varma and C.S. Raghavendra, “Interconnection Networks for Multiprocessors
and Multicomputers, Theory and Practice.” IEEE Computer Society Press, 1994.

[100] Wolf-Dietrich Weber and Anoop Gupta, “Analysis of Cache Invalidation Patterns in
Multiprocessors.” In Proceedings of the 3rd International Conference on Architectural
support for Programming Languages and Operating Systems, pp. 243-256, April
1989.

[101] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta, “The SPLASH-2 Programs: Characterization and Methodological Con-
siderations.” In Proceedings of the 22nd International Symposium on Computer Archi-
tecture, June 1995.

[102] David A. Wood et al., “Mechanisms for Cooperative Shared Memory.” In Proceedings
of the 20th Annual International Symposium on Computer Architecture, May 1993.

236

[103] David A. Wood and Mark D. Hill, “Cost-Effective Parallel Computing.” IEEE Com-
puter, 28(2):69–72, February 1995.

[104] Chuan-lin Wu, Tse-yun Feng, “Tutorial: Interconnection Networks for Parallel and
Distributed Processing.” IEEE Computer Society Press, 1984.

[105] T-Y Yeh and Yale Patt, “Alternative Implementations of Two-Level Adaptive Branch
Prediction.” In Proceedings of the 19th Annual International Symposium on Computer
Archtecture, 1992.

[106] P.-C. Yew, N. -F. Tzeng, D. H. Lawrie, “Distributing Hot-Spot Addressing in Large-
Scale Multiprocessors.” IEEE Transactions on Computers, Vol C-36, No. 4, April
1987.

[107] P.-C. Yew and P. Tang, “Software Combining Algorithms for Distributed Hot-Spot
Addressing,” Journal of Parallel and Distributed Computing, October 1990.

237

Appendix 1: SCI Cache Coherence

The ANSI/IEEE Standard 1596 Scalable Coherent Interface represents a thorough and robust

hardware solution to the challenge of building cache-coherent shared-memory multiprocessor

systems. It defines both a network interface and a cache-coherence protocol. The network

interface section of SCI defines a 1Gbyte/s ring interconnect, and the transactions that can be

generated over it. A performance analysis by Scott, Vernon, and Goodman [89] showed that

an SCI ring can accommodate small numbers of high-performance nodes, in the range of four

to eight. To build larger systems, networks constructed out of smaller rings must be used (e.g.,

k-ary n-cubes [45], multistage topology networks etc.). In such complex topology networks

GLOW can take advantage of network locality to improve the performance of the network.

Larger systems can also be built using centralized switches, each connecting many rings.

However, in systems with large centralized switches, GLOW may be of little benefit and other

schemes such as STEM [44] are more appropriate.

SCI also defines a distributed directory-based cache-coherence protocol. In contrast to most

other directory-based protocols (e.g., DASH [65]), that keep all directory information in mem-

ory, SCI distributes the directory information among the sharing nodes in a doubly-linked shar-

ing list. The sharing list is stored with the cache blocks throughout the system. The memory

directory has a pointer to the last node that requested the data. In a stable list —where data

distribution has ceased— this node is called head. As the head of the sharing list, a node has

both read and write permissions to the cache block; all other nodes in the sharing list only

have read permission (except in pairwise-sharing mode where the write permission is trans-

238

ferred back-and-forth between the two nodes of the pairwise-sharing list). However, when

many nodes are trying to join the list concurrently, a singly-linked prepend queue is formed in

front of the head. The head may be asked to link itself to its prepending successor at any time,

but it may briefly postpone its response until it is ready to give up its write permission. In Fig-

ure 8.1, an SCI sharing list is depicted. Caches, represented by small rectangles, are connected

in linked lists with their forward and backward pointers. There are two directions defined for

the SCI lists:

• upstream: toward the home-node directory, in the direction of the backward pointers

• downstream: toward the tail of the list, in the direction of the forward pointers

In the following sections I will describe the three basic operations of SCI: construction of shar-

ing lists, node removal from a sharing list or rollout, and invalidation of sharing lists. In gen-

eral, latency of the sharing-list construction may be affected by the number of sharing nodes

(due to contention, data propagation delays, etc.). Addition of a single node to a stable SCI list,

as well as, node removal from a sharing list (rollout), does not depend on the number of nodes

in the list. However, when N nodes join a prepend list at approximately the same time, the

propagation delay of the data through the list is O(N). The latency of the invalidation of an N-

Figure 8.1. SCI sharing list.

Forward

Backward

Head Mid Mid Tail

SCI cache pointers
Memory
Directory

Upstream

Downstream

239

node sharing list is also O(N).

SCI sharing list construction—An SCI sharing list is comprised of nodes that accessed the

same data block. The first node that requests data from memory triggers the creation of the

sharing list (Figure 8.2). This node becomes the head and only node of the list. The memory

directory points to this node and the node points back to the memory directory by means of

the memory address.

Subsequently, a node can join the sharing list by asking the memory directory for data, thus

joining a prepend queue (Transaction A, subactions 1 and 2 in Figure 8.3). The node attaches

to their previous head (Transaction B, subactions 3 and 4 in Figure 8.3). It might get the data

from the memory itself or from the previous head of the list, depending on whether memory

has a valid copy of the cache block (denoted by the memory state FRESH) or the memory

copy is potentially stale (denoted by the memory state GONE). In the second case, data distri-

bution in the prepend queue proceeds in the upstream direction, from the oldest head node

toward the memory directory (Transaction C, subactions 5 and 6 in Figure 8.3).

Rollout—A node can also leave the sharing list by communicating with its neighbors. This

operation is called rollout in the SCI terminology, and it takes place in two situations: (i) when

Figure 8.2. Creation of a sharing list.

Memory
Directory

1

2
Transaction A

Head

Memory
Directory

240

there is a conflict in a cache and the cache block has to be replaced, the node rolls out of the

sharing list, and (ii) a node that is not currently the head of the sharing list has to roll out and

become the new head in order to obtain write permission and write the cache block. In Figure

8.4, node a leaves the sharing list. With subaction 1 of Transaction A it notifies its downstream

neighbor node b to point to node c; subaction 2 is the positive acknowledgment. Similarly, it

notifies node c to point to node b. The resulting sharing list is shown in the right of Figure 8.4.

Notice that the order of Transactions A and B is critical, to allow concurrent rollouts in the

sharing list. In case of conflicts the downstream node (the one closer to the tail) has priority.

SCI sharing list invalidation—As the head of a sharing list, a node has to invalidate, or purge,

the rest of the sharing list upon writing the cache block. This will force the rest of the proces-

sors that share the data to re-read them to get the new value. The head sends invalidation mes-

sages serially to the other nodes in the sharing list. Each of these nodes acknowledges the

Figure 8.3. Additions to a SCI sharing list.

Head Mid Tail

Memory
Directory

Prev. Mid Tail

Memory
Directory

1

2
Head Mid Tail

Memory
Directory

3

4

6

5

New
Head

Head

3. Request to become head
4. Response from memory; data are also returned if mem-

ory was in state FRESH
5. Request to attach; if data were not returned in 2 (mem-

ory was in state GONE) this is also a request for data
6. Response to attach; data are returned if requested in 3

and are available immediately. If data are not available
the process continues with 5 and 6

7. Polling request for data is repeated periodically
8. Response returns data to the new head if available

Transaction A Transaction B

Transaction C

241

invalidation by returning its forward pointer. In Figure 8.5, the head of the list invalidates the

other nodes. For Transaction A, subaction 1 invalidates node a and subaction 2 returns the

pointer to b to the head; similarly for the rest of the transactions.

Figure 8.4. SCI cache rollout.

Figure 8.5. SCI sharing list invalidation.

Mid Tail

Memory

Directory

Head Mid

Node bNode aNode c

1

2

3

4

Transaction ATransaction B

Tail

Memory

Directory

Head Mid

Node bNode c

Node a

Original list Resulting list

1. Rollout; change backward pointer to c
2. Response
3. Rollout; change forward pointer to b
4. Response

Mid Tail

Memory

Directory

Head Mid

Node cNode bNode a

Transaction A

Transaction B

Transaction C

1
2

3
4 5

6

1. Invalidation
2. Response with pointer to b
3. Invalidation
4. Response with pointer to c
5. Invalidation
6. Response with NULL pointer

242

243

Appendix 2: Enhancements for the Construction of GLOW
Trees

In Section 3.5.2 I have described the creation of the GLOW trees in a manner that is fully com-

patible with the current SCI cache-coherence protocol. However, by changing the way data are

distributed in the tree we can further optimize the creation of the GLOW trees. There are three

options for the distribution of data in the tree:

• Tail-to-head: As is currently defined in SCI and described previously. The agent instructs

the node to prepend itself to the child list and request the data from the old head (exactly

as the SCI memory would do). The first node to request the data attaches to the virtual tail

of the child list. It will eventually get the data from the agent disguised as the virtual tail.

This scheme requires the agent to maintain two pointers per child list: (i) the forward

pointer of its memory personality and the backward pointer of its virtual tail personality.

• Head-to-tail: This is the reverse of the SCI data distribution. If a requesting node prepends

to a child list, where the old head is waiting for the data, then it assumes responsibility to

forward the data to the old head. When the agent gets the data it will pass it to the waiting

heads of its child lists. The head nodes then forward the data toward the waiting tail nodes.

This scheme does not require the agent to appear as a virtual tail at the end of its child

lists. However, this scheme increases the variance of the latency experienced by the

requesting nodes.

• Broadcast on the ring: This is a broadcast confined within a single ring. All nodes that

are waiting will receive the broadcast and consequently the data. This scheme results in

better performance than the base case, but is hard to implement on top of the current SCI

244

protocol. The reason is that the SCI protocol is based on request-response transactions and

it uses polling in situations where nodes have to wait. For example, nodes in the prepend

queue poll their predecessor until the data arrive from the directory and are distributed

through the sharing list.

245

Appendix 3: Critical Section Detection

Another instruction-based optimization for migratory sharing is based on the observation that

migratory data are typically accessed inside critical sections. Thus, all that is needed is to

detect entry to and exit from critical sections. The standard optimization (i.e., modifying the

first load of migratory data into a coherent write) can be applied indiscriminately or in a con-

trolled fashion inside critical sections. The appeal of this method lies in its simplicity: very

small hardware structures are needed to support it.

To detect entry to and exit from critical sections we must recognize LOCK and UNLOCK

operations. Since some sort of synchronization or atomic primitive is always used to imple-

ment the LOCK operation we only need to detect when such primitive is executed success-

fully. Figure 8.6 shows an MP3D critical section written by Alain Kägi. A number of

synchronization primitives can be used to implement the entry in this critical section: Swap,

Test&Swap (analogous to Test&Set), and QOLB [35]. Writes implementing memory fences

(required for relaxed memory models) or the QOLB release primitive are used to exit the criti-

cal section. Detection of the entry in a critical section is to detect a successful execution of the

atomic primitives of the QOLB primitive. Detection of the exit from the critical section requires

remembering the address of the lock and detecting a write on this address. Thus a single

address buffer is all that is needed to support detection of critical sections. On a successful

execution of an atomic/synchronization primitive the address buffer is loaded with the address

of the lock (used in the primitive). Subsequent writes are checked against the address in this

buffer to detect the exit of the critical section. In the case of nested critical sections, the single

246

address buffer must be upgraded to a small stack (supporting a fixed nesting depth).

When a critical section is detected, there are two methods to apply the migratory optimization:

1. Indiscriminately, treating all load-misses as coherent writes. This method requires no addi-

tional hardware (e.g., a predictor) beyond what is necessary for critical section detection.

2. Controlled by instruction-based prediction, treating load-misses followed by store-write-

fault as coherent writes. This method requires all the mechanisms described for instruction-

based prediction of migratory sharing.

Figure 8.6. Example of an MP3D critical section with migratory data. Entry is through a
number of different synchronization algorithms based on different atomic/
synchronization primitives: Swap, Test&Swap, and QOLB. The MCS algorithm is
implemented using Test&Swap. The USE_WITH algorithm is based on QOLB. Special
writes (implementing memory fences) or the QOLB release primitive are used to exit the
critical section.

#if defined(USE_MCS)
 LOCK(glob->DeadLock);
#elif defined(USE_TSWAP)
 while (glob->DeadLock || wwt_swap_acq(&dead->DeadLock, 1));
#elif defined(USE_SWAP)
 while (wwt_swap_acq(&glob->DeadLock, 1));
#elif defined(USE_QOLB)
 _qolb_acquire_acq(&glob->DeadLock);
#elif defined(USE_WITH)
 with_annot(&glob->DeadLock) {
#endif USE_WITH

 glob->util[glob->DeadCount] += glob->clktemp-glob->lastclock;
 glob->lastclock=glob->clktemp;
 glob->DeadCount++;

#if defined(USE_MCS)
 UNLOCK(glob->DeadLock);
#elif defined(USE_TSWAP)
 _signal_write(&glob->DeadLock, 0);
#elif defined(USE_SWAP)
 _signal_write(&glob->DeadLock, 0);
#elif defined(USE_QOLB)
 _qolb_release_rel(&glob->DeadLock);
#elif defined(USE_WITH)
 }
#endif USE_WITH

