
Cache Decay: Exploiting Generational Behavior
to Reduce Cache Leakage Power

Stefanos Kaxiras
Circuits and Systems Research Lab

Agere Systems
kaxiras@agere.com

Zhigang Hu, Margaret Martonosi
Department of Electrical Engineering

Princeton University
hzg,mrm@ee.princeton.edu

Abstract

Power dissipation is increasingly important in CPUs rang-
ing from those intended for mobile use, all the way up to high-
performance processors for high-end servers. While the bulk of
the power dissipated is dynamic switching power, leakage power
is also beginning to be a concern. Chipmakers expect that in future
chip generations, leakage’s proportion of total chip power will in-
crease significantly.

This paper examines methods for reducing leakage power
within the cache memories of the CPU. Because caches comprise
much of a CPU chip’s area and transistor counts, they are rea-
sonable targets for attacking leakage. We discuss policies and
implementations for reducing cache leakage by invalidating and
“turning off” cache lines when they hold data not likely to be
reused. In particular, our approach is targeted at the generational
nature of cache line usage. That is, cache lines typically have a
flurry of frequent use when first brought into the cache, and then
have a period of “dead time” before they are evicted. By devis-
ing effective, low-power ways of deducing dead time, our results
show that in many cases we can reduce L1 cache leakage energy
by 4x in SPEC2000 applications without impacting performance.
Because ourdecay-basedtechniques have notions of competitive
on-line algorithms at their roots, their energy usage can be theo-
retically bounded at within a factor of two of the optimal oracle-
based policy. We also examineadaptivedecay-based policies that
make energy-minimizing policy choices on a per-application ba-
sis by choosing appropriate decay intervals individually for each
cache line. Our proposed adaptive policies effectively reduce L1
cache leakage energy by 5x for the SPEC2000 with only negligible
degradations in performance.

1 Introduction

Power dissipation is an increasingly pressing problem in high-
performance CPUs. Although power used to mainly be a concern
in battery-operated devices, thermal, reliability and environmental
concerns are all driving an increased awareness of power issues in
desktops and servers. Most power dissipation in CMOS CPUs
is dynamic power dissipation, which arises due to signal tran-
sitions. In upcoming chip generations, however, leakage power
(also known as static power) will become increasingly significant.
Because leakage current flows from every transistor that is pow-
ered on, leakage power characteristics are different from dynamic
power, which only arises when signals transition. As such, leakage
power warrants new approaches for managing it.

This paper explores options for reducing leakage power by

proactively discarding items from the cache, marking the lines in-
valid, and then putting the cache lines “to sleep” in a way that
dramatically reduces their leakage current. Our policies for turn-
ing lines off are based on generational aspects of cache line usage
[33]. Namely, cache lines typically see a flurry of use when first
brought in, and then a period of dead time between their last ac-
cess and the point where a new data item is brought into that cache
location. Turning off the cache line during this dead period can
reduce leakage, without introducing any additional cache misses
and without hurting performance.

Contributions: We propose several policies for determining
when to turn a cache line off. We begin with a time-based strat-
egy, which we callcache decay, that turns a cache line off if a
pre-set number of cycles have elapsed since its last access. This
time-based strategy has the nice property that its worst-case en-
ergy behavior can be bounded using theories from competitive al-
gorithms [17, 25]. It results in roughly 70% reduction in L1 data
cache leakage energy. We also study adaptive variants of this ap-
proach, which seek to improve average case performance by adap-
tively varying the decay interval as the program runs. These adap-
tive approaches use an adaptation policy that approximates chip
energy tradeoffs; as such, they automatically approach the best-
case operating points in terms of leakage energy. While the time-
based strategies have boundable worst-case behavior and quite
good average-case behavior, they still miss out on further oppor-
tunities for turning off leakage power during idle times that are
shorter than their decay interval. We present preliminary evalua-
tions of profiling-based techniques for addressing some of these
cases. In addition, the paper also explores cache decay techniques
for multi-level or multiprogrammed hierarchies, and discusses the
interactions of these techniques with other aspects of hierarchy de-
sign such as cache consistency.

Overall this paper examines leakage power in data caches with
an eye towards managing it based on boundable techniques and
self-tuning adaptive mechanisms. With the increasing importance
of leakage power in upcoming generations of CPUs, and the in-
creasing size of on-chip caches, we feel that these techniques will
grow in significance over the next decade.

The structure of the paper is as follows. Section 2 gives an
overview of our approach, with idealized data indicating cache
decay’s promise. Section 3 discusses our experimental method-
ology, simulator, benchmarks, and the energy estimations we use
to evaluate our ideas. Section 4 discusses cache decay policies and
implementations, including adaptive variants of our basic scheme.
Section 5 looks into multi-level cache hierarchies and multipro-
gramming issues which can alter the basic generational character-
istics of the programs. In Section 6, we examine profiling-based

policies for further reducing leakage energy. Finally, Section 7
touches on a number of issues that arise when considering imple-
menting cache decay, and Section 8 offers our conclusions.

2 Problem Overview

2.1 Power Background

As CPU chips are more densely packed with transistors, and
as clock frequencies increase, power density on modern CPUs has
increased exponentially in recent years. Although power has tradi-
tionally mainly been a worry for mobile and portable devices, it is
now becoming a concern in even the desktop and server domains.
In CMOS circuits, the dominant form of power dissipation is “dy-
namic” or “switching” power. Dynamic power is proportional to
the square of the supply voltage; for that reason, it has been com-
mon to reduce supply voltage to improve both performance and
power. While effective, this optimization often has the side ef-
fect of increasing the amount of “static” or “leakage” power that
a CMOS circuit dissipates. Static power is so-named because it is
dissipated constantly, not simply on wire transitions. Static power
is a function of the circuit area, the fabrication technology, and the
circuit design style. In current chips, static power represents about
2-5% of power dissipation (or even higher [14]), but it is expected
to grow exponentially in upcoming generations [2, 12, 27].

2.2 Leakage Power and Cache Generations

Because caches comprise much of the area in current and fu-
ture microprocessors, it makes sense to target them when develop-
ing leakage-reducing strategies. Recent work by Powell et al. has
shown that transistor structures can be devised which limit static
leakage power by banking the cache and providing “sleep” tran-
sistors which dramatically reduce leakage current by gating off
theVdd current [24, 34].

Our work exploits these sleep transistors at a finer granularity:
individual cache lines. In particular, a basic premise of our work is
that, surprisingly often, cache lines are storing items that will not
be used again. Therefore, any static power dissipated on behalf of
these cache items is wasted. We aim to reduce the power wasted
on dead items in the cache, without significantly worsening either
program performance or dynamic power dissipation.

Figure 1 depicts a stream of references to a particular cache
line. One can break this reference stream into generations. Each
generation is comprised of a series of references to the cache line.
Using the terminology from [33], the i-th generation begins imme-
diately after the i-th miss to that cache line, when a new memory
line is brought into the cache frame. This generation ends when
this line is replaced and a new one is brought into the cache frame.
Generations begin with zero or more cache hits. Following the
last reference before eviction, the generation is said to have en-
tered its dead time. At this point, this generation has no further
successful uses of the items in the cache line, so the line is said
to be dead. There is considerable prior evidence that dead cache
lines comprise a significant part of the cache. For example, Wood,
Hill, and Kessler showed that for their benchmark suite dead time
was typically at least 30% on average [33]. Similarly, Burger et
al. showed that most of the data in a cache will not be used in the
future [6]. They found cache “efficiencies” (their term for fraction
of data that will be a read hit in the future before any evictions or
writes) to be around 20% on average for their benchmarks. Most
interestingly, they noted that fraction of dead time getsworsewith
higher miss rates, since lines spend more of their time about to be
evicted.

HHH H H

H : HitM : Miss

Live time

Access Interval

M

Last
Access

Dead time TIME

Generation
NEW

Generation
NEW

M

Figure 1. Cache generations in a reference stream.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

si
xt

ra
ck

ap
si

de
ad

_t
im

e/
(d

ea
d_

tim
e+

liv
e_

tim
e)

Figure 2. Fraction of time cached data are “dead.”

Our goal is to exploit dead periods, particularly long ones, and
to be able to turn off the cache lines during them. This approach
reduces leakage power dissipated by the cache storing data items
that are no longer useful.

2.3 Potential Benefits

To motivate the potential of our approach, we start by present-
ing an idealized study of its advantages. Here, we have run simula-
tions using an “oracle” predictor of when dead time starts in each
cache line. That is, we note when a cache item has had its last suc-
cessful hit, before the cache miss that begins the next generation.
We imagine, in this section only, that we can identify these dead
periods with 100% accuracy and eliminate cache leakage during
the dead periods.

Figure 2 illustrates the fraction of dead time we measured for
a 32KB level-one data cache on our benchmark collection. This is
the total fraction of time cache lines spend in their dead period.1

We only count complete generations that end with a miss in the
cache frame. The average across the benchmark suite is quite high:
around 65% for integer benchmarks and even higher (80%) for
FP benchmarks. Consider next an oracle predictor which knows
precisely when a cache line becomes dead. With it, we could turn
the cache line off with zero impact on cache miss rate or program
performance. Such an oracle predictor would allow us to save
power directly proportional to the shutoff ratio. If on average, 65%
of the cache is shut off, and if we can implement this shutoff with
negligible overhead power, then we can cut cache leakage power
by one half or more.

Note that this oracle prediction is not necessarily an upper
bound on the leakage power improvements to be offered by putting
cache lines to sleep. Rather, the oracle predictor offers the best
possible leakage power improvementssubject to the constraint
that cache misses do not increase. There may be cases where even
though a line is live (i.e., it will be referenced again) the reuse will
be far into the future. In such cases, it may be power-optimal to
shut off the cache line early, mark it as invalid, and accept a mod-
erate increase in the number of cache misses. Later sections will
offer more realistic policies for managing these tradeoffs. On the
other hand, real world attempts to put cache lines to sleep will also

1We sum the dead periods and the live periods of all the generations
we encounter and we compute the ratiodead=(dead + live). We do not
compute individual dead ratios per generation and then average them, as
this would skew the results towards short generations.

Processor Core
Instruction Window 80-RUU, 40-LSQ
Issue width 4 instructions per cycle
Functional Units 4 IntALU,1 IntMult/Div,

4 FPALU,1 FPMult/Div,
2 MemPorts

Memory Hierarchy
L1 Dcache Size 32KB, 1-way, 32B blocks, WB
L1 Icache Size 32KB, 1-way, 32B blocks, WB
L2 Unified, 1MB, 8-way LRU,

64B blocks,6-cycle latency, WB
Memory 100 cycles
TLB Size 128-entry, 30-cycle miss penalty

Table 1. Configuration of Simulated Pro cessor

incur some small amounts of overhead power as we also discuss
in the following sections.

3 Methodology and Modeling

3.1 Simulator

Simulations in this paper are based on the SimpleScalar frame-
work [5]. Our model processor has sizing parameters that closely
resemble Alpha 21264 [9], but without a clustered organization.
The main processor and memory hierarchy parameters are shown
in Table 1.

3.2 Benchmarks

We evaluate our results using benchmarks from the SPEC
CPU2000 [29] and MediaBench suites [22]. The MediaBench ap-
plications help us demonstrate the utility of cache decay for ap-
plications with significant streaming data. The benchmarks are
compiled for the Alpha instruction set using the Compaq Alpha
compiler with SPECpeaksettings. For each program, we follow
the recommendation in [26], but skip a minimum of 1 billion in-
structions. We then simulate 500M instructions using the reference
input set.

3.3 Evaluating Power Tradeoffs

A basic premise of our evaluations is to measure the static
power saved by turning off portions of the cache, and then com-
pare it to the extra dynamic power dissipated in our method. Our
method dissipates extra dynamic power in two main ways. First,
we introduce counter hardware to support our decay policy deci-
sions, so we need to account for the dynamic power of these coun-
ters in our evaluations. Second, our method can dissipate extra
dynamic power in cases where our decay policy introduces addi-
tional L1 cache misses not present in the original reference stream.
These L1 misses translate to extra L2 reads and sometimes also ex-
tra writebacks. Turning off a dirty line results in an early writeback
which is extraneous only if paired with an extra miss. For the rest
of this paper, when we discuss extra misses we implicitly include
associated extra writebacks.

Since both leakage and dynamic power values vary heavily
with different designs and fabrication processes, it is difficult to
nail down specific values for evaluation purposes. Rather, in this
paper we focus on ratios of values. In this section, we describe our
rationale for the range of ratio values we focus on. Later sections
present our results for different ratios within this range.

A key energy metric in our study is “normalized cache leakage
energy”. This refers to a ratio of the energy of the L1 with cache
decay policies, versus the original L1 cache leakage energy. The

numerator in this relationship sums three terms. The first term is
the improved leakage energy resulting from our policies. The sec-
ond term is energy from counter maintenance or other overhead
hardware for cache decay policies. The third term is extra dy-
namic energy incurred if cache decay introduces extra L1 misses
that result in extra L2 cache accesses (reads and writebacks).

Dividing through by original cache leakage energy, we can use
weighting factors that relate the dynamic energy of extra L2 ac-
cesses and extra counters, to the original cache leakage energy
per cycle. Thus, the normalized cache leakage energy after ver-
sus before our improvements can be represented as the sum of
three terms:ActiveRatio + (Ovhd : leak)(OvhdActivity) +
(L2Access : leak)(extraL2Accesses). ActiveRatio is the av-
erage fraction of the cache bits, tag or data, that are powered on.
Ovhd:leakis the ratio of the cost of counter accesses in our cache
decay method relative to the leakage energy. This multiplied by
overhead activity (OvhdActivity) gives a relative sense of overhead
energy in the system. TheL2Access:leakratio relates dynamic en-
ergy due to an additional miss (or writeback) to a single clock
cycle of static leakage energy in the L1 cache. Multiplying this
by the number of extra L2 accesses induced by cache delay gives
the dynamic cost induced. By exploring different plausible val-
ues for the two key ratios, we present the benefits of cache decay
somewhat independently of fabrication details.

3.4 Relating Dynamic and Static Energy Costs

Considering appropriate ratios is fundamental in evaluating our
policies. We focus here on theL2Access:leakratio. We defer pol-
icy counter overheads to Section 4 where implementations are cov-
ered.

We wish to turn off cache lines as often as possible in order
to save leakage power. We balance this, however, against a desire
to avoid increasing the miss rate of the L1 cache. Increasing the
miss rate of the L1 cache has several power implications. First
and most directly, it causes dynamic power dissipation due to an
access to the L2 cache, and possible additional accesses down the
memory hierarchy. Second, a L1 cache miss may force dependent
instructions to stall, interfering with smooth pipeline operation and
dissipating extra power. Third and finally, the additional L1 cache
miss may cause the program to run for extra cycles, and these extra
cycles will also lead to extra power being dissipated.

We encapsulate the energy dissipated due to an extra miss into
a single ratio calledL2Access:leak. The predominant effect to
model is the amount of dynamic power dissipated in the level-two
cache and beyond, due to the level-one cache miss. Additional
power due to stalls and extra program cycles is minimal. Bench-
marks see very few cycles of increased runtime (< 0:7%) due to
the increased misses for the decay policies we consider. In fact, in
some situations, some benchmarks actually run slightly faster with
cache decay techniques. This is because writebacks occur eagerly
on cache decays, and so are less likely to stall the processor later
on [10].

To model the ratio of dynamic L2 access energy compared to
static L1 leakage per cycle, we first refer to recent work which
estimates dynamic energy per L2 cache access in the range of 3-
5nJ per access for L2 caches of the size we consider (1MB) [16].
We then compared this data to industry data by back-calculating
energy per cache access for Alpha 21164’s 96KB S-cache; it is
roughly 10nJ per access for a 300MHz fabricated in a 0.5� process
[3]. Although the S-cache is about one-tenth the capacity of the L2
caches we consider, our back-calculation led to a higher energy es-
timate. First, we note that banking strategies typically employed in
large caches lessen the degree by which energy-per-access scales

with size. Second, the higher 0.5� feature size used in this older
design would lead to larger capacitance and higher energy per ac-
cess. Our main validation goal was to check that data given by the
analytic models are plausible; our results in later sections are plot-
ted for ratios varying widely enough to absorb significant error in
these calculations.

The denominator of theL2Access:leakrelates to the leakage
energy dissipated by the L1 data cache. Again, we collected this
data from several methods and compared. From the low-Vt data
given in Table 2 of [34], one can calculate that the leakage en-
ergy per cycle for a 32KB cache will be roughly 0.45nJ. A sim-
ple aggregate calculation from industry data helps us validate this.
Namely, using leakage power of roughly 2-5% of current CPU
power dissipation, L1 cache is roughly 10-20% of that leakage [2],
and CPU power dissipations are around 75W. This places L1 leak-
age energy at roughly 0.3nJ per cycle. Again, both methods of cal-
culating this data give results within the same order-of-magnitude.

Dividing the 4nJ dynamic energy per access estimate by the
.45nJ static leakage per cycle estimate, we get a ratio of 8.9 re-
lating extra miss power to static leakage per cycle. Clearly, these
estimates will vary widely with design style and fabrication tech-
nology though. In the future, leakage energy is expected to in-
crease dramatically, which will also impact this relationship. To
account for all these factors, our energy results are plotted for sev-
eral L2Access:leakratios varying over a wide range (5 to 100).
Our results are conservative in the sense that high leakage in fu-
ture technologies will tend to decrease this ratio. If that happens,
it will only improve on the results we present in this paper.

4 Time-based Leakage Control: Cache Decay

We now examine possible policies for guiding how to use a
mechanism that can reduce cache leakage by turning off individ-
ual cache lines. A key aspect of these policies is the desire to
balance the potential for saving leakage energy (by turning lines
off) against the potential for incurring extra level-two cache ac-
cesses (if we introduce extra misses by turning lines off prema-
turely). We wish to either deduce immediately at a reference point
that the cache line is now worth turning off, or else infer this fact
by watching its behavior over time, deducing when no further ac-
cesses are likely to arise, and therefore turning the line off. This
section focuses on the latter case, which we refer to as time-based
cache decay.

With oracle knowledge of reference patterns, Figure 2 demon-
strated that the leakage energy to be saved would be significant.
The question is: can we develop policies that come acceptably
close to this oracle? In fact, this question can be approached by
relating it to the theoretical area of competitive algorithms [19].
Competitive algorithms make cost/benefit decisions online (i.e.,
without oracle knowledge of the future) that offer benefits within
a constant factor of an optimal offline (i.e., oracle-based) algo-
rithm. A body of computer systems work has previously success-
fully applied such strategies to problems including superpage pro-
motion for TLB performance, prefetching and multiprocessor syn-
chronization [17], [25].

A generic policy for competitive algorithms is to take action
at a point in time where the extra cost we have incurred so far by
waiting is precisely equal to the extra cost we might incur if we
act but guess wrong. Such a policy, it has been shown, leads to
worst case cost that is within a factor of two of the offline optimal
algorithm.2

2[25] includes a helpful example: the ski rent-vs.-buy problem. For
example, if ski rental charges are $40 per day, and skis cost $400 to buy,

0

20

40

60

80

100

120

1 13 25 37 49 61 73 85

>
=

10
0

cycles(x100)

cu
m

ul
at

vi
e

%

access_inter_gzip dead_time_gzip access_inter_applu dead_time_applu

access_interval

dead_time

Figure 3. Cumulative distribution of Access Interval and Dead
Time for gzip and applu.

For example, in the case of our cache decay policy we are try-
ing to determine when to turn a cache line off. The longer we
wait, the higher the leakage energy dissipated. On the other hand,
if we prematurely turn off a line that may still have hits, then we
inject extra misses which incur dynamic power for L2 cache ac-
cesses. Competitive algorithms point us towards a solution: we
could leave each cache line turned on until the static energy it has
dissipated since its last access is precisely equal to the dynamic
energy that would be dissipated if turning the line off induces an
extra miss. With such a policy, we could guarantee that the energy
used would be within a factor of two of that used by the optimal
offline policy shown in Figure 2.

As calculated in Section 3 the dynamic energy required for a
single L2 access is roughly 9 times as large as the static leakage
energy dissipated by whole L1 data cache. If we consider just one
line from the L1 cache, then that ratio gets multiplied by 1024,
since the cache we are studying has 1024 lines. This analysis
suggests that to come within a factor of two of the oracle-policy
(worst-case) we should leave cache lines turned on until they have
gone roughly 10,000 cycles without an access. At that point, we
should turn them off. Since theL2Access:leakratio varies so heav-
ily with design and fabrication factors, we consider a wider range
of decay intervals, from 1K to 512K cycles, to explore the design
space thoroughly.

The optimality of this oracle-based policy applies to the case
where no additional cache misses are allowed to be added. In cases
of very glacial reuse, however, it may be energy-beneficial to turn
off a cache line, mark its contents invalid, and incur an L2 cache
miss later, rather than to hold contents in L1 and incur leakage
power for a long time period.

For the online approach (and its bound) to be of practical in-
terest, the wait times before turning a cache line off must be short
enough to be seen in real-life. That is the average dead times (Fig-
ure 1) seen in real programs must be long enough to allow the lines
to be turned off a useful amount of the time. Therefore, we wish to
characterize the cache dead times typically seen in applications, in
order to gauge what sorts of decay intervals may be practical. Fig-
ure 3 shows cumulative distributions of access intervals and dead
times for gzip (dotted lines) and applu (solid lines). The last point
on the horizontal axis graph represents the tail of the distributions
beyond that point. We use the termaccess intervalto refer to the
time between any two accesses during the live-time of a cache gen-
eration (see Figure 1). Dead time refers to the time between the
last hit to an item in cache, and when it is actually evicted. Our
experiments show that across the benchmark suite, there are a siz-
able fraction of dead times greater than 10,000 cycles. Thus, the

then online approaches suggest that a beginning skier (who doesn’t know
whether they will enjoy skiing or not) would be wise to rent skis 10 times
before buying. This equalizes the rental cost to the purchase cost, bounding
total cost at two times the optimal offline approach.

time range suggested by the online policy turns out to be one of
significant practical promise.

Figure 3 also highlights the fact that there is a huge difference
between average access interval and average dead time. For gzip,
the average access interval during live time is 458 cycles while the
average dead time is nearly 38,243 cycles. For applu, the results
are similar: 181 cycles per access interval and 14,984 cycles per
dead time. This suggests to us that dead times are not only long,
but that they may also be moderately easy to identify, since we will
be able to notice when the flurry of short access interval references
is over.

Based on these observations, this section focuses on time-based
techniques in which cache decay intervals are set between 1K and
512K cycles for the level-one cache. These intervals span broadly
over the range suggested by both competitive algorithms and the
dead time distributions. The following subsection details a partic-
ular way of implementing a time-based policy with a single fixed
decay interval. Section 4.3 refines this approach to consider an
adaptive policy whose decay interval automatically adjusts to ap-
plication behavior.

4.1 Hardware Implementations of Cache Decay

To switch off a cache line we use thegatedVdd technique de-
veloped by Yang et al. [24]. The idea in this technique is to insert a
“sleep” transistor between the ground (or supply) and the SRAM
cells of the cache line. The stacking effect [7] of this transistor
when it is off reduces by orders of magnitude the leakage current
of the SRAM cell transistors to the point that leakage power of
the cache line can be considered negligible. According to [24] a
specific implementation of the gatedVdd transistor (NMOS gated
Vdd, dualVt, wide, with charge pump) results in minimal impact
in access latency but with a 5% area penalty. We assume this im-
plementation of the gatedVdd technique throughout this paper.

One way to represent recency of a cache line’s access is via a
binary counter associated with the cache line. Each time the cache
line is accessed the counter is reset to its initial value. The counter
is incremented periodically at fixed time intervals. If no accesses
to the cache line occur and the counter saturates to its maximum
count (signifying that the decay interval has elapsed) it switches
off power to the corresponding cache line.

Our competitive algorithm bound and the dead time distribu-
tions both indicate that decay intervals should be in the range of
tens of thousands of cycles. Such large decay intervals make it
impractical for the counters to count cycles—too many bits would
be required. Instead, it is necessary for the counters to tick at a
much coarser level. Our solution is to utilize a hierarchical counter
mechanism where a single global cycle counter is set up to provide
the ticks for smaller cache-line counters (as shown in Figure 4).

Our simulations show that an infrequently-ticking two-bit
counter per cache line provides sufficient resolution and produces
the same results as a larger counter with the same effective decay
interval. If it takes four ticks of the 2-bit counter to decay a cache
line (figure 4), the resulting decay interval is—on average—3.5
times the period of the global counter.

In our power evaluations, we assume that the global counter
will come for free, since many processors already contain various
cycle counters for the operating system or for performance count-
ing [8, 13, 36]. If such counters are not available, a simple N-bit
binary ripple counter could be built with 40N + 20 transistors, of
which few would transition each cycle.

To minimize state transitions in the local 2-bit cache-line coun-
ters and thus minimize dynamic power consumption we use Gray
coding so only one bit changes state at any time. Furthermore,

BV

M
V Vg

B

CACHE-LINE (DATA + TAG)

Counter
2-bit
FSM M

B B

Power-Off

CACHE-LINE (DATA + TAG)

00

S1 S0
WRD

WRD

T/0 PowerOff01

State Diagram for 2-bit (S1,S0), saturating, Gray-code counter with two inputs (WRD, T)

1 1 1

RESET

T

LOCAL 2-BIT COUNTERS

WRD

WRD

WRD
ROW

DECODERS

ALWAYS POWERED SWITCHED POWER

GLOBAL COUNTER

TT

WRD

T

VALID BIT

CASCADED
TICK
PULSE

V

V

V

Figure 4. Hierarchical counters

to simplify the counters and minimize transistor count we chose
to implement them asynchronously. Each cache line contains cir-
cuitry to implement the state machine depicted in Figure 4. The
two inputs to the local counters, the global tick signal T generated
by the global counter and the cache-line access signal WRD, are
well behaved so there are no meta-stability problems. The output
signal Power-Off, controls thegatedVdd transistor and turns off
power when asserted. To avoid the possibility of a burst of write-
backs with every global tick signal (if multiple dirty lines decay
simultaneously) the tick signal iscascadedfrom one local counter
to the next with a one-cycle latency. This does not affect results
but it spreads writeacks in time.

All local counters change value with every T pulse. However,
this happens at very coarse intervals (equal to the period of the
global counter). Resetting a local counter with an access to a cache
line is not a cause of concern either. If the cache line is heavily ac-
cessed the counter has no opportunity to change from its initial
value so resetting it does not expend any dynamic power (none of
the counter’s transistors switch). The cases where power is con-
sumed are accesses to cache lines that have been idle for at least
one period of the global counter. Our simulation results indicate
that over all 1024 2-bit counters used in our scheme, there are 0.2
bit transitions per cycle on average. Modeling each counter as a
2-bit register in Wattch [4], we estimate roughly .1pJ per access.
Therefore, at an average of 0.02pJ per cycle, the power expended
by all 1024 of these infrequently-ticking counters is roughly 4 or-
ders of magnitude lower than the cache leakage energy which we
estimate at 0.45nJ per cycle. For this reason, our power analysis
will consider this counter overhead to be negligible from this point
forward.

Switching off power to a cache line has important implications
for the rest of the cache circuitry. In particular, the first access to
a powered-off cache line should: (i) result in a miss (since data
and tag might be corrupted without power) (ii) reset the counter
and restore power to the cache line and (iii) delay an appropriate
amount of time until the cache-line circuits stabilize after power
is restored. To satisfy these requirements we use the Valid bit of
the cache line as part of the decay mechanism (Figure 4). First,
the valid bit is always powered. Second, we add a reset capability
to the valid bit so the Power-Off signal can clear it. Thus, the first
access to a power-off cache line always results in a miss regardless

0.00

0.03

0.06

0.09

0.12

0.15

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

m
is

s
ra

te

orig 512K cycle decay interval 64Kc 8Kc 1Kc

0

20

40

60

80

100

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

ac
tiv

e
ra

tio

Figure 5. Miss rate and active ratio of a 32KB decay cache for
SPECint 2000.

of the contents of the tag. Since satisfying this miss from the lower
memory hierarchy is the only way to restore the valid bit, a newly-
powered cache line will have enough time to stabilize. In addition,
no other access (to this cache line) can read the possibly corrupted
data in the interim.

Analog implementation: Another way to represent the re-
cency of a cache line’s access is via charge stored on a capacitor.
Each time the cache line is accessed, the capacitor is grounded. In
the common case of a frequently-accessed cache line, the capaci-
tor will be discharged. Over time, the capacitor is charged through
a resistor connected to the supply voltage (Vdd). Once the charge
reaches a sufficiently high level, a voltage comparator detects it,
asserts the Power-Off signal and switches off power to the corre-
sponding cache line. Although the RC time constant cannot be
changed (it is determined by the fabricated size of the capacitor
and resistor) the bias of the voltage comparator can be adjusted
to different temporal access patterns. An analog implementation
is inherently noise sensitive and can change state asynchronously
with the remainder of the digital circuitry. Some method of syn-
chronously sampling the voltage comparator must be used to avoid
meta-stability. Since an analog implementation can be fabricated
to mimic the digital implementation, the rest of this paper focuses
on the latter.

4.2 Results

We now present experimental results for the time-based decay
policy based on binary counters described in Section 4.1. First
Figures 5 and 6 plot the active ratio and miss rate as a function of
cache decay interval for a collection of integer and floating point
programs. In each graph, each application has five bars. In the
active ratio graph, the first bar is the active ratio for a traditional
32KB L1 data cache. Since all the cache is turned on all the time,
the active ratio is 100%. Furthermore, we have determined that
our benchmark programs touch the entirety of the standard caches
for the duration of execution (active ratio over 99%). The other
bars show the active ratio (average number of cache bits turned on)
for decay intervals ranging from 512K cycles down to 1K cycles.
Clearly, shorter decay intervals dramatically reduce the active ra-
tio, and thus reduce leakage energy in the L1 data cache, but that is
only part of the story. The miss rate graphs show how increasingly
aggressive decay intervals affect the programs’ miss rates.

0.00

0.10

0.20

0.30

0.40

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

m
is

s
ra

te

orig 512K cycle decay interval 64Kc 8Kc 1Kc

0

20

40

60

80

100

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

ac
tiv

e
ra

tio

Figure 6. Miss rate and active ratio of a 32KB decay cache for
SPECfp 2000.

4KB standard

8KB standard

16KB standard
32KB standard

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 8 16 24 32
active size(KB)

m
is

s
ra

te

32KB decay cache standard caches

Figure 7. Comparison of standard 8KB, 16KB, and 32KB caches
to a fixed-size 32KB decay cache with varying cache decay inter-
vals. The different points in the decay curve represent different
decay intervals. From left to right, they are: 1Kcycles, 8Kcy-
cles, 64Kcycles, and 512Kcycles. Active size and miss rate are
geometric means over all SPEC 2000 benchmarks.

Figure 7 plots similar data averaged over all the benchmarks.
The upper curve corresponds to a traditional cache in which we
vary the cache size and see the miss rate change. In a traditional
cache, active size is just the cache size. The lower curve in this
graph corresponds to a decay cache whose full size is fixed at
32KB. Although the decay cache’s full size is fixed, we can vary
the decay interval and see how this influences the active size. (This
is the apparent size based on the number of cache lines turned on.)
Starting at the 16KB traditional cache and dropping downwards,
one sees that the decay cache with the same active size has much
better miss rate characteristics.

Figure 8 shows the normalized cache leakage energy metric
for the integer and floating point benchmarks. In this graph, we
assume thatL2Access:leakratio is equal to 10 as discussed in Sec-
tion 3. We normalize to the leakage energy dissipated by the orig-
inal 32KB L1 data cache with no decay scheme in use. Although
the behaviors of each benchmark are unique, the general trend is
that a decay interval of 8K cycles shows the best energy improve-
ments. This is quite close to the roughly 10Kcycle interval sug-
gested for worst-case bounding by the theoretical analysis. For the
integer benchmarks, all of the decay intervals — including even
1Kcycle for some —result in net improvements. For the floating
point benchmarks, 8Kcycle is also the best decay interval. All but
one of the floating point benchmarks are improved by cache decay
techniques for the full decay-interval range.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

orig 512K 64K 8K 1K

decay interval(cycles)

no
rm

al
iz

ed
le

ak
ag

e
en

er
gy

gzip vpr gcc mcf crafty parser
eon perlbmk gap vortex bzip2 twolf

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

orig 512K 64K 8K 1K

decay interval(cycles)

no
rm

al
iz

ed
le

ak
ag

e
en

er
gy

wupwise swim mgrid applu mesa
galgel art equake facerec ammp
lucas fma3d sixtrack apsi

Figure 8. Normalized cache leakage energy for an L2Access:leak
ratio of 10. This metric takes into acc ount both static en-
ergy savings and dynamic energy overhead. Top graph shows
SPECint2000; bottom graph shows SPECfp2000.

We also wanted to explore the sensitivity of our results to
different ratios of dynamic L2 energy versus static L1 leakage.
Figure 9 plots three curves of normalized cache leakage energy.
Each curve represents the average of all the SPEC benchmarks.
The curves correspond toL2Access:leakratios of 5, 10, 20, and
100. All of the ratios show significant leakage improvements, with
smaller ratios being especially favorable. When theL2Access:leak
ratio equals 100, then small decay intervals (less than 8K cycles)
are detrimental to both performance and power. This is because
short decay intervals may induce extra cache misses by turning
off cache lines prematurely; this effect is particularly bad when
L2Access:leakis 100 because high ratios mean that the added en-
ergy cost of additional L2 misses is quite high.

To assess these results one needs to take into consideration the
impact on performance. If cache decay slows down execution

0.0

0.2

0.4

0.6

0.8

1.0

orig 512K 64K 8K 1K

decay interval(cycles)

no
rm

al
iz

ed
le

ak
ag

e
en

er
gy

ratio=100 ratio=20 ratio=10 ratio=5

1.8

Figure 9. Normalized L1 data cache leakage energy averaged
across SPEC suite for various L2Access:leakratios.

because of the increased miss rate then its power advantage di-
minishes. For the decay scenarios we consider, not only we do
not observe any slow-down but in fact we observe a very slight
speed up in some cases, which we attribute to eager writebacks
[10]. Beyond this point, however, cache decay is bound to slow
down execution. For our simulated configuration, performance
impact is negligible except for very small decay intervals: the
8Kcycle interval—which yields very low normalized leakage en-
ergy (Figures 8 and 9)—decreases IPC by 0.1% while the 1Kcycle
interval—which we do not expect to be used widely—decreases
IPC by 0.7%. Less aggressive processors might suffer compara-
bly more from increased miss rates, which would make very small
decay intervals undesirable.

In addition to the SPEC applications graphed here, we have
also done some initial studies with MediaBench applications [22].
The results are even more successful than those presented here
partly due to the generally poor reuse seen in streaming applica-
tions; MediaBench applications can make use of very aggressive
decay policies. Since the working set of MediaBench can, how-
ever, be quite small (for gsm, only about 50% of the L1 data cache
lines areevertouched) we do not present the results here. We have
also performed preliminary sensitivity analysis on cache size and
block size. Cache decay works well with a range of cache sizes but
with smaller caches, smaller decay intervals are required. Smaller
block sizes offer finer control, thus better behavior, but the effect
is not very pronounced. Finally, we have also experimented with
similar techniques on 32KB instruction caches. Across the SPEC
suite, the data indicate that cache decay works at least as well in
instruction caches as in data caches. An additional small benefit
in this case is that instruction caches do not have any write-back
traffic. These observations validate the results presented in [34].

4.3 Adaptive Variants of Time-based Decay

So far we have investigated cache decay using a single decay
interval for all of the cache. We have argued that such a decay
interval can be chosen considering the relative cost of a miss to
leakage power in order to bound worst-case performance. How-
ever, Figure 8 shows that in order to achieve best average-case
results this choice should be application-specific. Even within an
application, a single decay interval is not a match for every gener-
ation: generations with shorter dead times than the decay interval
are ignored, while others are penalized by the obligatory wait for
the decay interval to elapse. In this section we present an adaptive
decay approach that chooses decay intervals at run-time to match
the behavior of individual cache lines.

Motivation for an adaptive approach: Figure 10 shows de-
tails about why a single decay interval cannot capture all the poten-
tial benefit of an oracle scheme. In this figure two bars are shown
for each program: a decay bar on the left and an oracle bar on
the right. Within the bar for the oracle-based approach, there are
three regions. The lower region of the oracle bar corresponds to
the lower region of the decay bar which is the benefit (the shut-off
ratio) that comes from decaying truly dead cache lines. The two
upper regions of the oracle bar represent benefit that the single-
interval decay schemes of Section 4.2 cannot capture. The middle
region of the oracle bar is the benefit lost while waiting for the
decay interval to elapse. The upper region is lost benefit corre-
sponding to dead periods that are shorter than the decay interval.
On the other hand, the decay scheme can also mistakenly turn off
live cache lines. Although this results in extraneous misses (de-
cay misses) it also represents benefit in terms of leakage power.
This effect is shown as the top region of the decay bars. For some

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

gz
ip

de
ca

y

or
ac

le

vp
r

de
ca

y

or
ac

le

m
cf

de
ca

y

or
ac

le

cr
af

ty
de

ca
y

or
ac

le

pa
rs

er
de

ca
y

or
ac

le

pe
rlb

m
k

de
ca

y

or
ac

le

ga
p

de
ca

y

or
ac

le

vo
rt

ex
de

ca
y

or
ac

leB
en

ef
it

(s
hu

t-
of

fr
at

io
)

Decayed dead Decayed live Oracle dead Wait time Short dead

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

w
up

w
is

e
de

ca
y

or
ac

le

sw
im

de
ca

y

or
ac

le

m
gr

id
de

ca
y

or
ac

le

m
es

a
de

ca
y

or
ac

le

ar
td

ec
ay

or
ac

le

eq
ua

ke
de

ca
y

or
ac

le

fa
ce

re
c

de
ca

y

or
ac

le

ap
si

de
ca

y

or
ac

le

B
en

ef
it

(s
hu

t-
of

fr
at

io
)

Figure 10. Lost opportunities for time-b ased decay (64Kcycle de-
cay interval). SPECint2000 and SPECfp2000.

SPECfp2000 programs the benefit from short dead periods is quite
large in the oracle bars.

Implementation: An ideal decay scheme would choose auto-
matically the best decay interval for each generation. Since this is
not possible without prior knowledge of a generation’s last access,
we present here an adaptive approach to chose decay intervals per
cache-line. In Section 6 we explore the possibility of deducing
a generation’s last access by other means (such as compiler tech-
niques, prediction, and profiling).

Our adaptive scheme attempts to choose the smallest possible
decay interval (out of a predefined set of intervals) individually
for each cache-line. The idea is to start with a short decay inter-
val, detect whether this was a mistake, and adjust the decay inter-
val accordingly. A mistake in our case is to prematurely decay a
cache-line and incur a decay miss. We can detect such mistakes if
we leave the tags always powered-on but this is a significant price
to pay (about 10% of the cache’s leakage for a 32KB cache). In-
stead we opted for a scheme that infers possible mistakes accord-
ing to how fast a miss appears after decay. We determined that this
scheme works equally well orbetterthan an exact scheme which
dissipates tag leakage power.

The idea is to reset a line’s 2-bit counter upon decay and then
reuse it to gauge dead time (Figure 11). If dead time turns out to
be very short (the local counter did not advance a single step) then
chances are that we have made a mistake and incurred a decay-
miss. But if the local counter reaches its maximum value while we
are still in the dead period then chances are that this was a success-
ful decay. Upon mistakes—misses with the counter at minimum
value (00 in Figure 11)—we adjust the decay interval upwards;
upon successes—misses with counter at maximum value (10)—
we adjust it downwards. Misses with the counter at intermediate
values (01 or 11) do not affect the decay interval.

We use exponentially increasing decay intervals similarly to
Ethernet’s exponential back-off collision algorithm but the set of
decay intervals can be tailored to the situation. As we incur mis-
takes, for a cache line, we exponentially increase its decay inter-
val. By backing-off a single step in the decay-interval progression
rather than jumping to the smallest interval we introducehysteresis
in our algorithm.

Implementation of the adaptive decay scheme requires simple
changes in the decay implementation discussed previously. We in-
troduce a small field per cache line, calleddecay speed field, to

10 00 11011100 01 10

Decay

Interval

increases the decay interval

A miss in here (perceived mistake)

Decay

Accesses

A miss from this point forward

decreses the decay interval (success)

Miss

TIME

Dead time

Last

Generation

Live time

NEW

Access

Figure 11. Adaptive decay.

320.00

0.01

0.02

0.03

0.04

0.05

0 8 16 24 32
active size(KB)

#
ex

tr
a

L2
ac

ce
ss

decay

adaptive

standard

Figure 12. Effect of adaptive decay. Iso-power lines show con-
stant power (L2Access : leak = 10). Results averaged over
all SPEC2000.

select a decay interval. AnN-bit field can select up to2N decay
intervals. The decay-speed field selects different tick pulses com-
ing from the same or different global cycle counters. This allows
great flexibility in selecting the relative magnitude of the decay in-
tervals. The value of this field is incremented whenever we incur a
perceiveddecay miss and decremented on aperceivedsuccessful
decay. We assume that higher value means longer decay interval.

Results:Figure 12 presents results of an adaptive scheme with
10 decay intervals (4-bit decay-speed field). The decay inter-
vals range from 1K cycles to 512K cycles (the full range used
in our previous experiments) and are successive powers-of-two.
In the same figure we repeat results for the single-interval de-
cay and for various standard caches. We also plotiso-power
lines, lines on which total power dissipation remains constant (for
L2Access : leak = 10). The adaptive decay scheme automat-
ically converges to a point below the single-interval decay curve.
This corresponds to a total power lower than the iso-power line
tangent tothe decay curve. This point has very good character-
istics: significant reduction in active area and modest increase
in miss ratio. Intuitively, we would expect this from the adap-
tive scheme since it tries to maximize benefit but also is aware
of cost. This behavior is application-independent: the adaptive
scheme tends to converge to points that are close or lower than the
highest iso-power line tangent to the single-decay curve.

5 Changes in the Generational Behavior and Decay

In this section we examine how cache decay can be applied
when multi-level cache hierarchies or multi-programming change
the apparent generational behavior of cache lines. The upper level
cache filters the stream that reaches lower levels, significantly
changing their generational characteristics. With multiprogram-
ming, cache conflicts introduced with context-switching tend to
interrupt long generations and create more shorter generations.

5.1 Multiple Levels of Cache Hierarchy

Cache decay is likely to be useful at multiple levels of the hi-
erarchy since it can be usefully employed in any cache in which

0.0

0.2

0.4

0.6

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

L2
m

is
s

ra
te

orig 8192Kcycles decay interval 1024Kc 128Kc 16Kc

0

20

40

60

80

100

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

w
up

w
is

e

L2
ac

tiv
e

ra
tio

Figure 13. Miss rate and active ratio of a 1MB L2 decay cache for
SPECint 2000. eon does not fully utilize the L2 cache.

the active ratio is low enough to warrant line shut-offs. For sev-
eral reasons, the payoff is likely to increase as one moves outward
in the hierarchy. First, a level-two or level-three cache is likely
to be larger than the level-one cache, and therefore will dissipate
more leakage power. Second, outer levels of the cache hierarchy
are likely to have longer generations with larger dead time inter-
vals. This means they are more amenable to our time-based decay
strategies. On the other hand, the energy consumed by any extra
L2 misses we induce could be quite large, especially if servicing
them requires going off chip.

The major difference between L1 and L2 is the filtering of the
reference stream that takes place in L1 which changes the distri-
bution of the access intervals and dead periods in L2. Our data
shows that the average access interval and dead time for L2 cache
are 79,490 and 2,714,980 cycles respectively. Though access in-
tervals and dead periods become significantly larger, their relative
difference remains large and this allows decay to work.

The increased access intervals and dead times suggest we
should consider much larger decay intervals for the L2 compared
to those in the L1. This meshes well with the competitive analysis
which also points to an increase in decay interval because the cost
of an induced L2 cache miss is so much higher than the cost of
an induced L1 cache miss. As a simple heuristic to choose a de-
cay interval, we note that since there is a 100-fold increase in the
dead periods in L2, we will also multiply our L1 decay interval by
100. Therefore a 64Kcycle decay interval in L1 translates to decay
intervals on the order of 6400K cycles in the L2.

Here, we assume that multilevel inclusion is preserved in the
cache hierarchy [1]. Multilevel inclusion allows snooping on the
lowest level tags only and simplifies writebacks and coherence
protocols. Inclusion bitsare used to indicate presence of a cache
line in higher levels. For L2 cache lines that also reside in the L1
we can turn off only the data but not the tag. Figures 13 and 14
show miss rate and active ratio results for the 1MB L2 cache. As
before, cache decay is quite effective at reducing the active ratio
in the cache. Miss rates tend to be tolerable as long as one avoids
very short decay intervals. (In this case, 128Kcycle is too short.)

It is natural to want to convert these miss rates and active ratios
into energy estimates. This would require, however, coming up
with estimates on the ratio of L2 leakage to the extra dynamic
power of an induced L2 miss. This dynamic power is particularly
hard to characterize since it would often require estimating power

0.0

0.2

0.4

0.6

0.8

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

L2
m

is
s

ra
te

orig 8192Kcycles decay interval 1024Kc 128Kc 16Kc

0

20

40

60

80

100

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

L2
ac

tiv
e

ra
tio

Figure 14. Miss rate and active ratio of a 1MB L2 decay cache for
SPECfp 2000. fma3d does not fully utilize the L2 cache.

0.0

0.2

0.4

0.6

0.8

1.0

orig 512K 64K 8K 1K

decay interval(cycles)

no
rm

al
iz

ed
le

ak
ag

e
en

er
gy

ratio=100 ratio=20 ratio=10 ratio=5

2.2 1.7

Figure 15. Normalized L1 data cache leakage energy for cache
decay methods on a multiprogrammed workload.

for an off-chip access to the next level of the hierarchy. We are
not that daring! Instead, we report the “breakeven” ratio. This is
essentially the value ofL2Access:leakat which this scheme would
break even for the L2 cache.

In these benchmarks, breakevenL2Access:leakratios for an
1Mcycle decay interval range from 71 to 155,773 with an average
of 2400. For a 128Kcycle decay interval, breakevenL2Access:leak
ratios range from 16 to 58,906 with an average of 586. The art
benchmark tends to have one of the lowest breakeven ratios; this
is because its average L2 access interval is very close to its aver-
age L2 dead time so cache decay is very prone to inducing extra
misses.

5.2 Multiprogramming

Our prior results all focus on a single application process us-
ing all of the cache. In many situations, however, the CPU will
be time-shared and thus several applications will be sharing the
cache. Multiprogramming can have several different effects on the
data and policies we have presented. The key questions concern
the impact of multiprogramming on the cache’s dead times, live
times, and active ratios.

To evaluate multiprogramming’s impact on L1 cache decay
effectiveness, we have done some preliminary studies of cache
live/dead statistics for a multiprogramming workload. The work-
load was constructed as follows. We collected reference traces
from six benchmarks individually: gcc, gzip, mgrid, swim, vpr
and wupwise. In each trace, we recorded the address referenced
and the time at which each reference occurred. We then “sew” to-

gether pieces of the traces, with each benchmark getting 40ms time
quanta in a round-robin rotation to approximate cache conflicts in
a real system.

Multiprogramming retains the good behavior of the single-
program runs. Average dead time remains roughly equal to the
average dead times of the component applications. This is be-
cause the context switch interval is sufficiently coarse-grained that
it does not impact many cache generations. In a workload where
cache dead times are 13,860 cycles long on average, the context
switch interval is many orders of magnitude larger. Thus, decay
techniques remain effective for this workload. Multiprogramming
also allows opportunities for more agressive decay policies such
as decaying items at the end of a process time quantum.

6 Instruction-based leakage control

Time-based decay methods offer solid power improvements,
but still experience leakage current during dead periods until the
prescribed policy delay has elapsed. Other policy approaches
could make quicker decisions about whether we are in a dead pe-
riod or not. The potential additional benefit of turning off cache
lines immediately after their last access (as opposed to waiting for
the decay interval to elapse) is shown in Figure 10. In this figure
the top two regions of the oracle bars represent the potential ben-
efit from short dead periods and decay interval wait. Cache decay
completely misses dead periods shorter than the decay interval and
is penalized waiting for the decay interval. The potential benefit
from short dead periods is especially pronounced in some of the
floating point programs (Figure 10).

Knowing the last access to a cache line before replacement is
a more difficult problem than the problem of predicting whether
an instruction will miss in its next instantiation which other work
has pursued for prefetching purposes [15]. Deducing whether an
access is the last access to a cache line— consequently, the next ac-
cess to the same cache frame would be a miss—can be approached
by three methods: (i)Compiler: If the compiler could identify
last-use for cache lines then the last access to the cache-line could
also turn it off. For example, recent work has developed compiler
algorithms to improve the performance of low associativity caches
by marking cache lines as “evict-me-next” [31]. (ii)Prediction:
A hardware structure could predict last hit before eviction on an
access. The predictor, however, must be fairly accurate to be use-
ful, and fairly small to avoid burning more power than it saves.
These needs are likely to be contradictory. (iii)Profiling: If we
can identify potential instructions whose access is consistently the
last access before eviction then we can feed this information back
to the compiler to generate annotated binaries.

To assess the feasibility of such methods we performed the fol-
lowing experiment to understand the “last-access before eviction”
behavior of programs. For each load/store instruction we note
the cache frame accessed by the instruction. We then track out-
come of the next reference that accesses the same cache frame.
Depending on the outcome of that next reference, we increment
the last-hit (before eviction) orother-hit counter for the
original noted load or store. The overall goal is to see if there are
instructions which act as clear signals for last accesses. To visual-
ize the data, Figure 16 shows the results as scatter plots for applu.
Each point in the plots represents a single load or store instruc-
tion whose (x,y) coordinates are thelast-hit and other-
hit values (both axes in logarithmic scale.) An instruction on
the horizontal axis is always a last hit (i.e., the next reference to
the same cache frame is a miss). An instruction on the vertical
axis is likewise always an ordinary hit and is followed by another

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000

last_hit

ot
he

r_
hi

t

selected
instructions

Figure 16. applu. Scatter plot of last-hit , other-hit per
instruction.

3% 3% 4% 7%

8% 8%

16%

33% 37%

54%

0

20

40

60

80

100

eo
n

cr
af

ty

pa
rs

er

vo
rt

ex

ap
si

w
up

w
is

e

lu
ca

s

m
cf

m
gr

id

tw
ol

f

gc
c

fa
ce

re
c

am
m

p

ap
pl

u

ac
tiv

e
ra

tio

prof 8Kc decay 8Kc decay + prof

0% 1%1% 1%

Figure 17. Active ratio for profiling, decay (8Kcycle) and profiling
with decay.

hit. Instructions on or near the diagonal (dotted line) have about
equal chances of being last hits or ordinary hits. In our case, the
interesting instructions are located in the bottom right corner of
the plots where the bulk of the numerous subsequent references
turn out to be cache misses, so the instruction could be a good
last-access predictor. Such instructions can be used to turn off the
cache lines they access without unduly increasing miss rate, since
the next access to these cache lines is probably a miss. Most inte-
ger programs (except twolf and gcc) do not have many instructions
that can be used to turn off cache lines. On the other hand, some
floating point codes exhibit some interesting behavior, with some
instructions clearly biased towards last-access.

Based on this data, we looked into profiling-based approaches
for exploiting the observed behavior. We profiled the programs
using the training input and collected statistics (last-hit ,
other-hit) for the load/store instructions. Our profiling tool
automatically selects the best candidates according to the follow-
ing criteria: last-hit > 10 � other-hit (shown as a solid
line in Figure 16). We then annotate the codes and re-execute
them with thereference input. Cache decay (8Kcycle) works on
the remainder so cache lines that are not turned off by the profiled
instructions are caught by the decay mechanisms. Figure 17 shows
the active ratios that can be achieved by profiling alone, by 8Kcy-
cle decay, and by profiling combined with decay. We only include
programs for which profiling turns off more than 1% of the cache.
The programs are sorted according to improvements over 8Kcycle
decay. The improvement (decrease in active ratio) is shown as a
percentage between the decay and profiling-with-decay bars. Pro-
filing alone benefits significantly only some of the programs but in
these cases its benefit is synergistic to decay.

These improvements come nearly “for free” in terms of power,
since the profiling can occur only once and be amortized over

0.04

0.06

0.08

0.10

0.12

0 8 16 24 32

active size(KB)

m
is

s
ra

te

decay standard global LRU

Figure 18. Global LRU decay vs. Working Set decay. Miss rates
and active sizes as geometric means over all SPEC2000 pro-
grams.

many runs of the program. Furthermore, profilingdoes not in-
crease miss rateby any perceptible level. A limitation of our sim-
ple annotation-based approach is that we classify events by pro-
gram counter only and not by using any information about the
address accessed. Additional addressing information might im-
prove prediction accuracy [18] but would also be more compli-
cated. Likewise, we considered a simple last-access predictor in
hardware, but concluded that the energy expended in the predictor
hardware outweighed any potential savings in many situations. On
the software side, we expect that more elaborate compiler support
may be useful in improving our approach [31].

7 Discussion

This section explores alternative policies to control decay,
some of the interactions of the cache decay methods with other
hardware structures and application of decay in other situations.

LRU Decay: Time-based decay is in essense a Working Set
algorithm. Working Set and global LRU perform comparably in
virtual memory paging [28] and this is also holds for cache decay.
Global LRU mechanisms that have been proposed previously for
cache management involve a separate structure to maintain LRU
order of the cache blocks (e.g., Set-reference History Table [23],
Indirect-Index Cache [11]). Such structures are likely to be expen-
sive both in terms of transistor count and power consumption. The
global LRU structure needs to be updated with every cache access
thus expending dynamic power. In contrast, the local counters in
the Working-Set implementation rarely switch when a cache line
is accessed. To implement an LRU algorithm for cache decay we
use a structure, similar to those proposed by [23] and [11], to main-
tain the LRU order of cache lines. Instead of controlling a decay
interval, in the LRU implementation we directly control the ac-
tive size of the cache, i.e., we can request half of the lines—the
least recently used—to be turned off. In Figure 18 we compare
the behavior of an idealized global LRU scheme with the Working
Set decay and standard caches of various sizes (as in Figure 7).
We control the LRU decay scheme by requesting 0% to 90% (in
increments of 10%) of the cache lines to be turned off. Working
Set decay shows a small advantage at the knee of the curve while
LRU decay at the far left. The two schemes are very close in be-
havior and the decision on which one to use should be based on
implementation costs.

Multiprocessor Cache Consistency:Another key issue in the
realization of our cache decay mechanism is that also be usable
in cache-consistent multiprocessor systems. Although we do not
have quantitative results here, we feel that cache decay and multi-
processor cache consistency work well together. The key correct-
ness issue to implement is that putting a cache line to sleep should
be treated as any other cache eviction. If the line is dirty/exclusive,

it should be written back to caches lower in the hierarchy or to
memory. If the line is clean, then turning it off simply requires
marking it as invalid. In directory-based protocols, one would also
typically notify the directory that the evicting node is no longer a
sharer of this line. Interestingly, cache decay may improve con-
sistency protocol performance by purging stale info from cache
(eager writebacks). Particularly in directory-based protocols, this
can allow the system to save on stale invalidate traffic. From this
aspect cache decay can be considered a poor man’s predictor for
dynamic-self invalidation [21, 20]. Invalidations arriving from
other processors can also be exploited by cache decay methods. In
particular, these invalidations can be used as an additional hint on
when to turn off cache lines.

Victim Caches, Line Buffers and Stream Buffers: We also
note that our cache decay schemes are orthogonal and synergistic
with other “helper” caches such as victim caches or stream buffers.
These other caching structures can be helpful as ways of mitigat-
ing the cache miss increases from cache decay, without as much
leakage power as larger structures.

DRAM Caches: Some recent work has discussed the possi-
bility of DRAM-based caches [32]. In such structures, there is
a natural analog to the SRAM cache decay scheme we propose
here. Namely, one could consider approaches in which lines tar-
geted for shutoff do not receive refresh, and eventually the values
decay away. A key point to note is that typically DRAM refresh
is done on granularities larger than individual cache lines, so this
strategy would need to be modified somewhat. At the extreme,
one can have a DRAM cache withno refresh. In a decay DRAM
cache, a mechanism to distinguish among decayed lines and valid
lines is necessary. A simple solution is to guarantee that the valid
bit, by fabrication, decays faster than the tag and data bits. Also,
care must be taken not to lose any dirty data in a write-back cache.
In this case, dirty lines, distinguished by the dirty bit, can be se-
lectively refreshed, or “cleansed” with a writeback prior to decay.
Savings in a decay DRAM cache include reduction in both static
and refresh (dynamic) power. The refresh interval in DRAM mem-
ories is fairly large, and would correspond to decay intervals of
millions of cycles in our simulations. Even for L2 caches such
decay intervals do not increase miss rate significantly.

Branch Predictors: Cache decay can also be applied to other
memory structures in a processor such as large branch prediction
structures [35]. Decay in branch predictors has interesting impli-
cations in terms of cost. While we can expect savings for leak-
age power as in caches, the cost of a premature decay in a branch
predictor is the possibility of a bad prediction rather than a miss.
Thus, dynamic power expended in the processor must be consid-
ered in this case.

8 Conclusions

This paper has described methods to reduce cache leakage
power by exploiting generational characteristics of cache-line us-
age. We introduce the concept of cache decay, where individual
cache lines are turned off (eliminating their leakage power) when
they enter a dead period—the time between the last successful ac-
cess and a line’s eviction. We propose several energy-efficient
techniques that deduce entrance to the dead period with small er-
ror. Error in our techniques translates into extraneous cache misses
and writebacks which dissipate dynamic power and harm perfor-
mance. Thus, our techniques must strike a balance between leak-
age power saved and dynamic power induced. Our evaluations
span a range of assumed ratios between dynamic and static power,
in order to give both current and forward-looking predictions of

cache decay’s utility.
Our basic method for cache decay is a time-based Working Set

algorithm over all cache lines. A cache line is kept on as long
as it is re-accessed within a time window called “decay interval.”
This approach is roughly equivalent to a global LRU algorithm but
our proposed implementation is more efficient (in terms of transis-
tor budget and power) than global LRU implementations proposed
previously. In our implementation, a global counter provides a
coarse time signal for small per-cache-line counters. Cache lines
are “decayed” when a cache-line counter reaches its maximum
value. This simple scheme works well for a wide range of applica-
tions, L1 and L2 cache sizes, and cache types (instruction, data).
It also survives multiprogramming environments despite the in-
creased occupancy of the cache. Compared to standard caches of
various sizes, a decay cache offers better active size (for the same
miss rate) or better miss rate (for the same active size) for all the
cases we have examined.

Regulating a decay cache to achieve a desired balance between
benefit and overhead is accomplished by adjusting the decay in-
terval. Competitive on-line algorithm theory allows one to reason
about appropriate decay intervals given a dynamic to static energy
ratio. Specifically, competitive on-line algorithms teach us how
to select a decay interval that bounds worst case behavior within
a constant factor of an oracle scheme. To escape the burden of
selecting an appropriate decay interval to optimizeaverage case
behaviorfor different situations (involving different applications,
different cache architectures, and different power ratios) we pro-
pose adaptive decay algorithms that automatically converge to the
desired behavior. The adaptive schemes involve selecting among a
multitude of decay intervals per cache line and monitoring success
(no extraneous misses) or failure (extraneous misses) for feedback.

Finally, this paper briefly explores a profile-based, rather than
time-based, method to detect dead periods. By using a profile run
to classify load/store instructions according to subsequent hit or
miss events on the cache lines they access, one can further im-
prove on time-based cache decay, mainly in floating point codes.
Profiling captures benefit that time-based schemes miss because of
their long decay intervals.

With the increasing importance of leakage power in upcoming
generations of CPUs, and the increasing size of on-chip memory,
cache decay can be a useful architectural tool to save power or to
rearrange the power budget within a chip.

9 Acknowledgments

We would like to thank Girija Narlikar and Rae McLellan for their
contributions in the initial stages of this work. Our thanks to Jim Goodman
who turned our attention to adaptive decay techniques and to Alan J. Smith
for pointing out LRU decay and multiprogramming. Our thanks to Nevin
Heintze, Babak Falsafi, Mark Hill, Guri Sohi, Adam Butts, Erik Hallnor,
and the anonymous referees for providing helpful comments.

References

[1] J. Baer and W. Wang. On the inclusion property in multi-level cache
hierarchies. InProc. ISCA-15, 1988.

[2] S. Borkar. Design challenges of technology scaling.IEEE Micro,
19(4), 1999.

[3] W. J. Bowhill et al. Circuit Implementation of a 300-MHz 64-bit
Second-generation CMOS Alpha CPU.Digital Technical Journal,
7(1):100–118, 1995.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework
for Architecture-Level Power Analysis and Optimizations. InProc.
ISCA-27, ISCA 2000.

[5] D. Burger, T. M. Austin, and S. Bennett. Evaluating future micro-
processors: the SimpleScalar tool set. Tech. Report TR-1308, Univ.
of Wisconsin-Madison Computer Sciences Dept., July 1996.

[6] D. Burger, J. Goodman, and A. Kagi. The declining effectiveness of
dynamic caching for general-purpose microprocessors. Tech. Report
TR-1216, Univ. of Wisconsin-Madison Computer Sciences Dept.

[7] Z. Chen et al. Estimation of standby leakage power in CMOS cir-
cuits considering accurate modeling of transistor stacks. InISLPED,
1998.

[8] J. Dean, J. Hicks, et al. Profileme: Hardware support for instruction-
level profiling on out-of-order processors. InProc. Micro-30, 1997.

[9] L. Gwennap. Digital 21264 sets new standard.Microprocessor Re-
port, pages 11–16, Oct. 28, 1996.

[10] H.-H. Lee, G. S. Tyson, M. Farrens. Eager Writeback - a Technique
for Improving Bandwidth Utilization. InProc. Micro-33, Dec. 2000.

[11] E. G. Hallnor and S. K. Reinhardt. A fully associative software-
managed cache design. InProc. ISCA-27, June 2000.

[12] IBM Corp. Personal communication. November, 2000.
[13] Intel Corp. Intel architecture optimization manual.
[14] J. A. Butts and G. Sohi. A Static Power Model for Architects. In

Proc. Micro-33, Dec. 2000.
[15] T. Johnson et al. Run-time Cache Bypassing.IEEE Transactions on

Computers, 48(12), 1999.
[16] M. B. Kamble and K. Ghose. Analytical Energy Dissipation Models

for Low Power Caches. InISLPED, 1997.
[17] A. Karlin et al. Empirical studies of competitive spinning for a

shared-memory multiprocessor. InProc. SOSP, 1991.
[18] S. Kaxiras and C. Young. Coherence communication prediction in

shared-memory multiprocessors. InProc. HPCA-6, Jan. 2000.
[19] T. Kimbrel and A. Karlin. Near-optimal parallel prefetching and

caching.SIAM Journal on computing, 2000.
[20] A.-C. Lai and B. Falsafi. Selective, Accurate, and Timely Self-

Invalidation Using Last-Touch Prediction. InProc. ISCA-27, May
2000.

[21] A. R. Lebeck and D. A. Wood. Dynamic Self-Invalidation: Reducing
Coherence Overhead in Shared-Memory Multiprocessors. InProc.
ISCA-22, June 1995.

[22] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and Communica-
tion Systems. InProc. Micro-30, Dec. 1997.

[23] J. Peir, Y. Lee, and W. Hsu. Capturing Dynamic Memory Reference
Behavior with Adaptive Cache Topology. InProc. ASPLOS-VIII,
Nov. 1998.

[24] M. D. Powell et al. Gated-Vdd: A Circuit Technique to Reduce
Leakage in Deep-Submicron Cache Memories. InISLPED, 2000.

[25] T. Romer, W. Ohlrich, A. Karlin, and B. Bershad. Reducing TLB
and memory overhead using online superpage promotion. InProc.
ISCA-22, 1995.

[26] S. Sair and M. Charney. Memory behavior of the SPEC2000 bench-
mark suite. Technical report, IBM, 2000.

[27] Semiconductor Industry Association. The International Technology
Roadmap for Semiconductors, 1999. http://www.semichips.org.

[28] W. Stallings.Operating Systems. Prentice Hall, 2001.
[29] The Standard Performance Evaluation Corporation. WWW Site.

http://www.spec.org, Dec. 2000.
[30] U.S. Environmental Protection Agency. Energy Star Program web

page. http://www.epa.gov/energystar/.
[31] Z. Wang, K. S. McKinley, and A. L. Rosenberg. Improving re-

placement decisions in set-associative caches. Technical Report TR-
01-02, University of Massachusetts, Mar. 2001. http://ali-www.cs.-
umass.edu/.

[32] K. M. Wilson and K. Olukotun. Designing high bandwidth on-chip
caches. InProc. ISCA-24, pages 121–32, June 1997.

[33] D. A. Wood, M. D. Hill, and R. E. Kessler. A Model for Estimating
Trace-Sample Miss Ratios. InACM SIGMETRICS, pages 79–89,
June 1991.

[34] S.-H. Yang et al. An Integrated Circuit/Architecture Approach to
Reducing Leakage in Deep-Submicron High-Performance I-Caches.
In Proc. HPCA-7, 2001.

[35] T. N. Yeh and Y. Patt. A Comparison of Dynamic Branch Predictors
that Use Two Levels of Branch History. InProc. ISCA-20, May
1993.

[36] M. Zagha, B. Larson, et al. Performance analysis using the MIPS
R10000 performance counters. InProc. Supercomputing, 1996.

