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Message from the Organizers

Welcome to the Second Workshop on Programmability Issues for Multi-Core Computers.

We are delighted to present a very strong program composed of 7 high-quality papers, an
informative Keynote talk on SARC by Georgi N. Gaydadjiev from Delft and a
stimulating panel discussion moderated by Per Stenstrom from Chalmers.

As computer manufacturers are embarking on the multi-core roadmap, which promises a
doubling of the number of processors on a chip every other year, the programming
community is faced with a severe dilemma. Until now, software has been developed with
a single processor in mind and it needs to be parallelized to take advantage of the new
breed of multi-core computers. As a result, progress in how to easily harness the
computing power of multi-core architectures is in great demand.

This workshop brings together researchers interested in programming models and their
implementation and in computer architecture; who share a common interest in advancing
our knowledge on how to simplify the task of parallelization of software for multi-core
platforms. A wide spectrum of issues are central themes for this workshop; such as what
the future programming models should look like to accelerate software productivity and
how it should be implemented at the runtime, the compiler, and the architecture level. A
special issue that contains selected papers is planned for the second issue of Transactions
on HIPEAC in 20009.

We would like to thank the Program Committee and the additional reviewers for their
effort; their hard work culminated in each submission having at least three reviews.
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Power-Efficient Scaling of CMP

Directory Coherence

Stefanos Kaxiras, Georgios Keramidas, loannis Economou
University of Patras, Greece

Abstract. Scalability of a parallel application in the era of multicores must
account for both performance and power. A parallel application is power-ef-
ficient scalable if it maintains or improves its power efficiency (i.e., its EDP,
or Energy per Instruction) as the core count allocated to run the application
is increased. For an application to be EDP scalable to high core counts, both
its core power (which increases roughly linearly with core count) and its net-
work power consumption (which is a function of coherence traffic) must be
commensurable to the attained performance. The goal of our work is to im-
prove EDP scalability of shared-memory applications in CMPs by making
directory coherence much more efficient in both power and performance.
Our main idea is to have writer-only coherence and tear-off blocks to elimi-
nate the bulk of the invalidation traffic, combined with writer prediction to
eliminate much of the directory indirection (i.e., avoid going to the directory
as much as possible for coherence operations). Instead, we make the writers
responsible for maintaining coherence. This way, we achieve, at the same
time, both power (network traffic reduction) and performance (read/write la-
tency reduction) benefits. With writer prediction our protocols require an ac-
curacy of 50% or greater to start yielding benefits. We optimize accuracy at
run time by detecting the underlying sharing patterns and applying our pro-
tocols selectively. Our study show significant improvements in EDP for the
SPLASH benchmarks for a wide range of core counts.

1 Introduction

To scale application performance in the era of multicores we must rely on explicit
parallelism, beyond just ILP. An important issue for advances in this direction, is ease
of parallel programming and to this end, the shared-memory programming model offers
a good starting point. However, at the same time, we cannot ignore the issue of power
efficiency. Poor power-efficiency —overblown power budgets for diminishing per-
formance gains— killed the development of ever wider ILP architectures.

The danger of exploding power budgets for diminishing performance gains is also
visible in multicores: when, for example, a parallel application experiences sub-linear
speed-up and/or consumes power that increases faster than the number of cores allocat-
ed to the application. Hill describes the various notions of the term scalability [22], and,
in the era of multicores, it is useful to think of the scalability of a parallel program in
terms of power-performance. An existing metric, the Energy-Delay Product (EDP) [21]
fits this purpose very well and in this work, we study the EDP scalability of parallel pro-
grams. The power efficiency (EDP) of a parallel application is shaped by three forces:

« the performance scalability (speedup) of the application: a sub-linear speedup
means that as we increase the number of cores allocated to the application, its
power efficiency, considering core power alone, is likely to worsen.
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« the application’s communication-to-computation growth rate: typically true shar-
ing communication increases with the number of cores. This is inherent in the par-
allel applications; a good analysis appears in [1] and in [6]. Increasing true shar-
ing communication, causes an increase in network power which worsens power-
efficiency.

« the working set size and how it fits in the core caches —also analyzed in [1] and
[6]. This is an opposing force to the two above that tends to improve power-effi-
ciency with increasing core count until the working set fits in the caches.

EDP scalability, therefore, depends on the behavior of core and network power.
Core power, at first approximation increases about linearly and leads to poor power ef-
ficiency if we employ more cores for relatively less speed-up. More interestingly, net-
work power is an interplay between the capacity-miss traffic at low core counts and the
increased coherence-communication traffic at higher core counts. Furthermore, net-
work power is affected by the distances travelled by the messages. As we use larger net-
works (at higher core counts), the energy spent per message increases.

This paper focuses on the problem of improving power-efficiency for parallel appli-
cations in a shared-memory CMP. We assume a sufficient number of cores to warrant
a network on chip (NoC), such as a mesh, rather than shared busses which do not scale
well in terms of bandwidth. With point-to-point messaging, we assume that some form
of a directory-based coherence protocol [9][10][11] is employed to keep distributed pri-
vate L1 caches coherent. We assume that the directory is co-located with the shared on-
chip L2 cache, i.e., the directory tracks only the on-chip cache blocks. In this setting,
the central question we ask is: Is directory coherence scalable in terms of power-effi-
ciency? If not, how can we make it so?

What we show is that: i) Directory coherence, due to the large number of messages
it generates and sends via a power-hungry component of the CMP, the NoC, eventually
does not scale well in terms of power/performance (EDP). ii) A significant source of
inefficiency is the directory itself —specifically, the central role of the directory in all
coherence operations necessitates indirections through it. We can significantly improve
EDP by avoiding going to the directory as much as possible. We default to going to the
directory only when we do not know what else to do. Our proposal combines, in a novel
way, three approaches:

Our evaluation is based on execution-driven simulation using Simics/GEMS[29].
We model a CMP with a NoC and a Dir;NB directory protocol [13], using power mod-
els for both the network [28] and the cores [27]. For SPLASH-2 benchmarks [1] our
evaluation shows that we can significantly improve EDP across a wide range of core
counts.

2 Transparent Reads and Tear-Off copies: Taking the
Readers Out of the Directory

Main idea: Transparent reads are reads that do not register in the directory. A
transparent read promises that the cache block copy it fetches will be thrown away
(self-invalidate) at the first synchronization event experienced by the processor which
issued the transparent read.

With transparent reads, coherence in the “normal” sense, i.e., sending invalidations
upon a write, is maintained only among writers. We call this writer coherence. Writers
are still required to register in the directory so the latest value of the cache block can be
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Figure 1. Basic operations. The node on the left reads with transparent reads and does not
register in the directory (does not get invalidated by writers, but throws away its cache
copy at synchronization events). The two nodes on the right, write and invalidate the
previous writers (writer coherence).

safely tracked. A new write simply invalidates the previous writer of the block —there
are no readers since they are transparent.

Figure 1 shows some of the basic operations of the Transparent Read protocol. The
node on the left transparently reads a block (1) by going to the corresponding directory
entry. The transparent read leaves no trace in the directory and gets a clean cache block
in Read-Only mode (RO). The state of the cache block becomes Tear-off RO or TRO.
Soon after the transparent read, a writer (on the right) goes to the directory (2) and ob-
tains the block with Read/Write permissions (R/W). The writer does not invalidate the
transparent reader, since the former cannot see the latter. However, the (transparent)
reader promised to throw away the TRO block at the first synchronization point and
does exactly that (3). The writer, who is registered in the directory does not have to
throw away its copy (since it is registered in the directory) and the copy survives the
synchronization point (4). In the mean time, the reader, who lost its copy in the last syn-
chronization, is sending a new transparent read (5), which, after reaching the directory,
proceeds to fetch the latest value from the writer (6). The writer does not downgrade
with a transparent read. A second writer (7), however, invalidates the previous one (8)
and registers its ID in the directory. Normal reads downgrade a writer from R/W per-
missions to RO. The downgraded copy however, can still survive a synchronization
point (in contrast to the TRO copies brought in by Transparent Reads). The reason is
that a writer’s downgraded (RO) cache block copy is still registered in the directory and
will be invalidated by the next writer. Lastly, note that the invalidation protocol is al-
ways active underneath the transparent read and tear-off mechanisms. This means that
we can freely mix invalidation and tear-off copies, simultaneously, in the same directory
entry. Minimal changes are required in the cores, protocol engines, and caches to im-
plement transparent reads [2].

Tear-off cache copies were shown in [2] to be compatible with weak-ordered mem-
ory systems which requires correctly synchronized programs (all synchronization is
clearly identified and exposed, unlike the example above) [7][8]. Weak ordering is the
only relaxed memory consistency model that allows the re-arrangement of the program
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Figure 2. Writer prediction. Our protocol (on the right) aims to avoid the indirection via the
directory (when possible) and go directly to the writer. In the first case the reader cannot
predict and uses a standard 3-hop protocol. The second case is correct prediction (2-hop)
and the third case is a misprediction where we have an additional indirection via a wrong
node (4-hop). Note that the writer is downgraded when its copy is read in the invalidation
protocols (left); this is not so with the transparent reads in our proposal.

order as long as this happens in-between synchronizations [6]. This allows, for exam-
ple, compilers to optimize programs by re-arranging memory instructions [6]. Replac-
ing flag synchronization with semaphore synchronization, (e.g., SIGNAL and WAIT
which cannot use TRO copies) solves the problem. Thus, the only requirement for using
transparent reads and tear-off copies is to have correctly synchronized programs.
Benefits: There are both performance and power implications from transparent reads
and tear-off copies. First, in terms of performance writes become faster because reader
invalidation (and its acknowledgement) is no longer required. However, since transpar-
ent reads and tear-off copies practically require a weakly-ordered consistency model,
the improvement of write performance does not contribute significantly to the overall
performance. In large part, weak consistency models are needed to hide the write laten-
cy, and its reduction is, therefore, unimportant. Secondary performance benefits come
from removing the invalidation traffic from the network, reducing its congestion and
average latency. On the other hand, significant power benefits come from the removal
of the invalidation traffic.

However, there is also the danger of a negative impact on performance and power
due to the discarding of all tear-off copies at synchronization events. This can increase
a node’s miss rate for items that should have survived the synchronization. We guard
against this by detecting the type of sharing and switching to the invalidation protocol
when necessary. This adaptation is discussed in Section 4.



3 Writer Prediction: Avoiding Directory Indirection

While transparent reads and tear-off copies reduce the invalidation traffic, a more
significant source of inefficiency still remains in directory protocols: the indirection
through the directory. The directory (whether centralized or distributed) is a fixed point
of reference to locate and obtain the latest version of the data (i.e., the writer) or inval-
idate its sharers. It seems difficult not to have an indirection via the directory, which
leads to the classic 3-hop, or 4-hop (invalidation) protocols.

Our main contribution is in exploiting the properties of transparent reads and tear-
off copies to go directly to the writers (by predicting their identity), skipping the direc-
tory when possible. In essence, we allow the writers to assume the role of the directory
—the central role of coherence— but revert back to directory indirection when we are
unable to locate the writers.

3.1 Reads

In typical directory protocols, a read goes to the directory to find where the latest
version of the data is. The correct data are then forwarded from the last writer with a 3-
hop protocol (Figure 2, lower left) or back via the directory with a 4-hop protocol (Fig-
ure 2, upper left). Transparent reads, however, do not register in the directory. We ex-
ploit this property —to the best of our knowledge for the first time— to avoid going to
the directory altogether, i.e. avoid directory-indirection for reads. Reads try to obtain
the data directly from the writer, if they can locate it.

To locate the current writer (without peeking the directory) we use prediction.
Based on history, a reader sends a direct request to a suspected writer (Figure 2, middle
right). If this node happens to have write permissions (R/W) for the requested cache
block then the prediction is correct: the node is the (one and only) writer of the block
and has the latest copy of the data. If the node is in any other state (including knowing
nothing about the block) it bumps the request to the directory (Figure 2, lower right,
misprediction case). From there the request will be routed to the correct writer and back
to the reader (i.e., the normal 3-hop protocol). The penalty for a misprediction is one
extra message (indirection via the wrong node).

Prediction. While we can imagine arbitrary complex predictions to locate a writer, in
this work we strive for simplicity. The prediction is carried by the cache blocks them-
selves (there are no separate prediction or history structures). Thus, in order for a read
to make a writer prediction, it needs to have an invalidated —self- or externally-inval-
idated— cache block; otherwise the writer cannot be predicted and the request must be
sent to the directory (Figure 2, upper right: no-prediction case). An invalid cache block
carries with it the 1D of the last known writer: either the node from where it got the cor-
rect data the last time around (if it self-invalidated), or the 1D of the node that externally
invalidated the cache block. The overhead for a reasonably sized 64-core CMP is just 6
bits per cache line, which is negligible. This simplistic prediction is surprisingly effec-
tive if it is restricted to the appropriate subset of producer-consumer sharing and avoid-
ed in the case of migratory sharing. We discuss this in Section 4.

Benefits. Avoiding directory indirection for reads is important in two ways. First,
reads —in contrast to writes— are performance-critical, in the sense that a reduction of
their latency directly reflects on the overall performance. Second, directory-indirection
accounts for a significant part of the read traffic. Eliminating this (directory-indirection)
traffic has an immediate impact on network power (and indirectly on network perform-
ance because it relieves congestion and improves network latency).
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Figure 3. Writer (upgrade) optimization. Our protocol (on the right) relying on having a
single registered node (writer) in the directory avoids data indirection via the directory with
a 3-hop protocol. Furthermore, writer prediction can overlap going to the directory and
getting the data from the last writer (middle and lower right).

Compared to the optimized 3-hop protocol, writer prediction yields a 2-hop trans-
action when correct, or a 4-hop transaction on a misprediction. A simple calculation re-
veals that any prediction accuracy over 50% yields both performance and power bene-
fits.

3.2  Writes/Upgrades

Similarly to reads we also optimize the protocols for the writes and upgrades. Under

an invalidation protocol, a (new) writer sends its request to the directory which is re-
sponsible to invalidate all other sharers. This is shown in Figure 3 on the left side; the
top diagram shows the invalidation of a single “old” writer (4-hop), while the bottom
the invalidation of multiple readers (4-hop critical latency, plus several overlapping
transactions).
Data forwarding optimization. A straightforward optimization is to recognize
that, with transparent reads and tear-off copies, there is always exactly one other node
registered in the directory: the last writer. This makes it easy to directly transfer the data
from the old writer to the new writer. In Figure 3, upper right, the request of the new
writer (message 1) is routed via the directory to the last writer (message 2) which gets
invalidated and forwards its latest value, along with R/W permissions, directly to the
new writer (3a). Simultaneously, the old writer returns its acknowledgement to the di-
rectory (3b) exactly as it would in the normal 4-hop protocol (Figure 3, upper left). Be-
cause this is a 3-hop-latency protocol with an additional overlapping hop (3a and 3b
overlap) we describe it as a (3+1)-hop protocol.

In both the normal 4-hop and the (3+1)-hop protocol, the directory points to the new
writer only after it receives the acknowledgement from the old writer (message 3 in Fig-
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ure 3 upper left, or message 3b in upper right). In the window between the initial request
and the old-writer acknowledgment, other potential writers are NACKed, exactly as in
the DASH [10] or the SGI Origin protocols [11]. While with NACKSs there is always a
potential starvation problem see Lenoski and Weber, p. 288, for solutions to such prob-
lems [11].

Writer prediction. Our contribution in this case is a more aggressive approach
where the new writer predicts the old writer and sends a direct request to it. This is
shown in Figure 3, middle and lower right. The main idea here is that, the old writer
assumes the role of the directory, passing out its R/W privileges. This is possible be-
cause it is the only node in the position to do this, other than the directory.

The direct request from the new writer arrives at the predicted node (Figure 3, mid-
dle right). If the predicted node has R/W privileges then it is the (one and only) writer
of the block holding the latest copy of the data. It returns the data to the requester, pass-
ing along its R/W privileges. At the same time, the old writer is responsible to inform
the directory that it has relinquished its rights to the new writer and self-invalidated.
This is a (2+1)-hop protocol because it overlaps the last two messages. Note that the
only difference from the no-prediction case is that we have replaced the indirection via
the directory (messages 1 and 2, upper right) with a single message (message 1, middle
right) directly to the old writer. The acknowledgment of the old writer to the directory,
message 2b, carries the identity of the new writer and plays the exact same role as mes-
sage 3b in the no-prediction case.

In case of a misprediction (Figure 3, lower right), the incorrectly routed request

bumps-off the wrong node —which is not the writer of the block— and is re-router to
the directory. The penalty in this case is an extra request message indirection via the
wrong node, resulting in a (4+1)-hop protocol. Besides the indirection via the wrong
node the rest of the protocol is exactly the same as in the no-prediction case (Figure 3,
upper right).
Benefits. Optimizing the write and upgrade protocols in (3+1)-hops does not reduce
the message count. However, compared to the normal 4-hop protocol, where the latest
value of the data must indirect via the directory to reach the new writer, the (3+1)-hop
protocol saves one data transfer with an obvious power benefit. In addition, the critical
latency drops from 4-hops to 3-hops offering a performance benefit for the writes.

Writer prediction, when correct, reduces the message count from 4 messages to 3
messages since it coalesces the two directory-indirection messages into one direct mes-
sage to the writer. Besides the power benefit of eliminating a message, there is also a
performance benefit because the critical latency further drops from 3 hops to 2 hops —
hence called a (2+1)-hop protocol. However, a misprediction results in a 4-hop 5-mes-
sage protocol with negative impact on both power and performance. A simple calcula-
tion again reveals that a prediction accuracy of over 50% starts to yield benefits. To
keep the accuracy high we only allow writer-prediction on stable sharing patterns with
predictable writers. This is discussed in the next section.

4 Sharing Pattern Classification

While, in our proposal, there are potential power and performance benefits there is
also a downside under certain conditions, for example when needlessly discarding trea-
off copies that are not written by other nodes, or when unsuccessfully trying to predict
the writers in migratory sharing or unstructured sharing (where the writers change in
unpredictable ways).
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To guard against these two undesirable situations, we only allow tear-off copies or
writer prediction when the underlying cache line exhibits an acceptable sharing pattern.
This approach is not new. Lebeck and Wood proposed the adaptation for tear-off copies
[2], and Stenstrom et al. [17] and Cox et al. proposed adaptation for migratory sharing
patterns [18]. We combine their mechanisms in the directory as follows:

» We first detect whether a cache block is read-mostly or frequently-written. If the
block is requested as TRO repeatedly from the same nodes without any interven-
ing writes the invalidation protocol is preferred for this block. This decision is
taken at the directory (which can turn Transparent Reads into normal reads) and
carried by all the writers.

« Further, writer prediction is allowed only for frequently written blocks (i.e., in
conjunction with transparent reads). However, it is difficult to achieve good ac-
curacy (using only the last-writer information in invalid cache copies) if the writ-
ers of a block change very frequently. In such a case, the directory (which sees all
writers) disallows writer prediction. The directory’s decision is also carried with
the writers, so that transparent reads using writer-prediction —skipping the direc-
tory— are informed of what to do the next time.

Figure 4 summarizes the sharing pattern classification that takes place in our pro-
posal, the detection mechanisms, and the decisions taken in each case. Finally, we note
that false sharing can potentially mess up both steps of this classification. False sharing
can give the impression of frequently-written to data that aren’t, in which case, we make
the wrong choice and use TRO where we should not. On the other hand, false sharing
is likely to disable writer-prediction (e.g., when we have alternating false-sharing writ-
ers) which limits the damage. Fortunately, false sharing can be very effectively handled
at higher levels as it was shown by Jeremiassen and Eggers [19].

Migratory or Unstructured Sharingy
writers constantIP/ change
(new writer != old writer)

Frequently-written:
version numbers
change between reads

USE TRO protocols

Do NOT USE Writer Prediction

saturating confidence counters

All blocks {cache block versions Stable Producer-Consumer:

writer remains the same
(new writer == old writer)

_Read-mostly:
version numbers do not
change between reads

USE INVAL protocols

USE Writer Prediction

Directory sees the change in
writers and decides on writer
prediction; the decision is
carried by writers.

Version numbers are distributed
via the writers to the readers who
make distributed decisions.

Figure 4. Sharing pattern adaptation
5 Related Work

Dynamic Self Invalidation. The closest work to our proposal is the work of Lebeck
and Wood, Dynamic Self-Invalidation, that inspired our transparent read and TRO pro-
tocols [3]. However, Lebeck and Wood stopped short of optimizing the protocols with
writer prediction to eliminate directory indirection. Because of writer prediction, the de-
cision of whether to use TRO copies or not is distributed to both the directory and to the
nodes. This means that our protocols must support mixed operations since we can have
TRO and invalidation copies simultaneously for the same block. Further, at the time of
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the Lebeck and Wood work, power was not an issue (especially for parallel architec-
tures) and their study concerns only performance. Power-efficiency is the main driver
in our study. Related to DSI is Lai and Falsafi’s last-touch prediction which, however,
carries additional H/W overhead (power) in the form of prediction structures.
Prediction and Coherence. The use of prediction is also not new in coherence pro-
tocols. Muckherjee and Hill first published on using prediction to optimize coherence
[14]. Kaxiras and Goodman introduced Instruction-based prediction that relates predic-
tion and optimizations to code, not data [15]; Kaxiras and Young studied reader predic-
tion [16]. The writer prediction we use is very simple and works only because it is re-
stricted to stable (producer-consumer) sharing patterns. We note that more sophisticat-
ed predictors that have been proposed previously can expand the coverage for writer
prediction and make it less reliant on directory guidance.

Sharing Pattern Detection and Optimization. Weber and Gupta identified sev-
eral sharing patterns in parallel applications [18]. Soon after, many papers discussed tar-
geted optimizations relying on the directory or prediction (addressed-based or instruc-
tion-based) to detect sharing patterns [17][18][15][16]. While our reference list is too
small to include all relevant work, we note here our approach is based on the work or
Stenstrom et al. for detecting migratory sharing but is part of a more complex classifi-
cation scheme which identifies several patterns.

Optimizations to Coherence Protocols. Significant work also concerns the opti-
mization of coherence. We note here two prominent approaches: Token Coherence [23]
and In-Network Coherence [24], sharing tree structures [25][26] and others. However,
all such work requires considerable message traffic making it difficult to approach the
minimalistic messaging of our protocols.

6 Evaluation

In this section, we present our initial study for our proposal. We implemented our
protocols in Gems [29] (which includes Wattch [27] and Orion [28] to model the power
of the cores and the network respectively). Gems is configured to model a CMP with a
mesh interconnect. The simulator parameters and the SPLASH-2 benchmarks with their
inputs are shown in Table 1.

Table 1: Simulator configuration

Benchmark Input Chip configuration
barnes 8K bodies, 4 # of Processors |16
timesteps
fft 64K complex doubles Processor Simics in-order blocking model
radix 2M keys D & I L1 Caches |64KB, 4-way, 64-Byte Block size,
3-cycle latency, Pseudo-LRU
ocean-contig., ocean- |66 x 66 grid Shared L2 Cache |8 MB, 8 way, 64-Byte Block size,
non-contig. 30 cycle latency, Pseudo-LRU
water (N-Squared) |64 molecules, 3 Interconnection  |2D Mesh topology, 1-cycle link
timesteps Network latency
water (Spatial) 512 molecules, 3 Directory Full bit vector sharers list, 6 cycles
timesteps latency

In our configuration, most benchmarks show good speedups up to 16 cores, except
ocean-ncont, and fft. We run the benchmarks with our protocols and we present results
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for both the TRO protocol and the TRO with writer prediction (TRO-WP). Results with
writer prediction are better than TRO alone, although the improvement is proportional
to the coverage of writer prediction. The accuracy and coverage of writer prediction are
shown in Figure 5. In general, coverage is not very high (except in ocean-ncont) which
indicates that there is considerable room for improvement with different prediction
schemes. As expected, coverage increases with the number of cores: as cache capacity
is increased with core count, more invalid TRO copies (which provide the predictions)
survive in the caches. Accuracy, on the other hand, is more specific to the benchmark
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and —in general— drops with higher core counts (where predicting the right core out
of many more becomes harder). However, it does not drop below 80% even in 16 cores.

Figure 6 shows the effects of the TRO and TRO-WP protocols on execution time.
The results are normalized to the base MESI protocol in each case. TRO provides im-
provements because of the elimination of invalidation but may also result in a slow-
down because of increased L1 miss rates. The slowdown is especially pronounced when
we also have significant capacity miss rates, for example in 2 or 4 cores for ocean-cont
(and to a lesser extent in barnes and ocean-ncont). However, slowdown is restricted in
low counts and as we use more cores the speedup obtained increases. More significant
is the improvement in execution time which comes from writer prediction. The effect is
more pronounced in ocean-ncont which has increased prediction coverage. But even
with low prediction coverage the effects of writer prediction yield a noticeable improve-
ment in execution time over TRO.

TRO and especially TRO-WP yield significant reductions in network energy (Fig-
ure 7) by eliminating a significant portion of the overall traffic. The reduction in net-
work energy combined with the execution time from Figure 6 gives a reduction in EDP
shown in the lower two graphs of Figure 7. Overall the reduction in EDP is 8%, 15%,
24% and 32% for 2,4,8 and 16 cores respectively. As our protocols reduce EDP more
with higher core counts, they achieve better EDP scaling.

7 Conclusions

We present a novel and minimalistic approach to scalable directory coherence. Our
view of scalability in the context of multicores is scalability in power-efficiency, mean-
ing that as we increase the core count allocated to an application, the application scales
both in performance and power in a manner that compromises EDP as little as possible.

Our proposal strives to avoid directory indirection (the main source of inefficiency
in directory coherence) by using transparent reads and tear-off copies to eliminate in-
validation traffic and using writer-prediction to eliminate directory indirection. Overall,
this approach is easy to implement and minimalistic in philosophy compared to other
advanced coherence schemes. Our initial study shows a good prediction accuracy for
writer-prediction albeit low coverage. Writer prediction enhances the TRO protocol of-
fering a significant reduction in message traffic resulting in a reduction of network en-
ergy/power. Coupled with the performance improvements stemming from the elimina-
tion of directory indirection, our proposal provides significant benefits for EDP across
a wide range of core counts.
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Abstract. Despite the speed up of PC technology over the years, raalger-
formance of video processing in medical X-ray proceduresgicoes to be an is-
sue as the size and number of concurrent data streams iasimgesteadily. Since
the computing evolves quicker than memory technology,etlie@an increasing
pressure on an efficient use of the off-chip memory bandwifltditionally, as
a multitude of video functions is carried out in parallele tnemory-bandwidth
problem is further stressed. In this paper, we present dntecture study for
performance prediction and optimization of medical X-régeo-processing on
multiple cores. By carefully modeling the critical stagéshe architecture, bot-
tlenecks are known in detail. Model descriptions for theeaigbrocessing algo-
rithms are inserted into the architecture model, makindieixpvhere data and
functions needs to be partitioned to obtain higher throughpor the applica-
tion under study, we propose a combined 2-level data partitg with functional
partitioning scheme that result in a bandwidth and lateechction of 40-70%
compared to straightforward implementations.

Key words: performance modeling, video processing, multi-core, eamhare,
data partitioning, memory bandwidth.

1 Introduction

In Cardiovascular minimal invasive interventions, phigis require low-latency X-ray
imaging applications, as their actions must be directlipléson the screen. The video-
processing system should enable the simultaneous exeaiftoplurality of functions,
based on stream-oriented processing and data-depenggniér processing. Because
dedicated hardware platforms suffer from high investmestsand lack flexibility and
reuse, there is an increasing interest in using off-thdfsloenputer technology as a
platform for real-time video processing. Simultaneoualgprithms show a continuous
increase in complexity and the resolution of images is gngwiThese trends lead to
a considerable increase of the required computation pomgtcammunication band-
width between computation and memory in the signal proogssi

The past years have shown that the discrepancy betweenspovcand memory
performance is rapidly increasing, making memory accedscammunication band-
width the main bottleneck for many applications that acdasge amounts of data.

* a.h.r.albers@tue.nl; http://vca.ele.tue.nl



An X-ray image data stream can, for example, already havemiions up to 2k 2K
(16 bits/pixel) and frame speeds up to 60 Hz. Full storage<of 2K X-ray images is
not possible inside the cache memory of the processor fitheetying on a background
off-chip memory. Since the computation technology evotygisker than memory tech-
nology, there is an increasing pressure on an efficient useeaiff-chip memory band-
width [1]. Additionally, in many X-ray procedures, a multite of imaging functions is
carried out in parallel, which further stresses the menimgewidth problem. In this
paper, we present an architecture study and focus on peafa@optimization methods
for video-processing applications deployed on off-theksbhip-level multiprocessor
systems.

A chip-level multiprocessor (CMP) has multiple cores ongame chip in a shared-
memory configuration. Extracting performance from suchmfigaration requires the
effective use of memory and cache performance. Beyls [Ajritee=d] several optimiza-
tion methods for better cache behavior and Jaspers [3] siscua specific caching
technique for increase of the performance of streamingoviita. The performance
optimization method, described in this paper, is based erd#ta-dependent storage
organization of [3], but more generic in the sense that datet reorganized to facili-
tate a detailed mapping. Instead, we optimize the datdipaitig and distribution over
the cache size without the need for specific data storagestsrm

Our approach is to carefully model the critical stages ofdbmmunication and
memory architecture, so that bottlenecks are known in dégaplication-specific knowl-
edge is covered by developing performance-estimatiortiume of the applied signal-
processing functions. In an earlier paper [4], we have mitesithe modeling and design
of an 1Kx 1K X-ray image-processing chain. Here, we extend this watk wsolution
for 2Kx 2K images and we validate the memory-communication model commer-
cially available multi-core PC platform.

This paper is organized as follows. Section 2 presentsegthabrk. Subsequently,
Section 3 introduces the architecture and applicationoperdince design. Section 4
presents the execution architecture including mappingpamtitioning. In Section 5,
experimental results are shown, combined with the validedif the prediction models.
The last section gives conclusions.

2 Redated Work

In the literature, several architecture-based approath6s/,8] aim at parallelizing
chains of real-time video-processing functions on muttq@ssor systems. Several pro-
posals [5,6] describe a parallel function-level partit@nof tasks, whereas other ap-
proaches [7,8] deal with parallel data-level partitioni#g the techniques rely on
generic approaches for improving the processing architecthey do not consider de-
tailed knowledge of the application for improved perforoan

An extensive list of papers deal with the optimization anthpielization of image
and video-processing applications in software, aiming idad-time performance. To
name a few, in [9], parallelization strategies are desdrioe H.264 decoding. Similar
approaches can be found for the Hough Transform [10], AdaBd], and motion-
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Fig. 1. Block diagram of the video-processing application.

compensated filtering [12]. As these papers describe meteoaptimize performance
by modeling the application in isolation, full system opitzation remains a challenge.

Within performance computing, several techniques arertedan the literature for
performance prediction of parallel applications [13][14]. Most of them are based on
block-parallel or dataflow-like approaches. However, thangly provide insights into
how to improve the application performance.

In this paper, we study a mixture of the previous featuresraw aspects. Our
approach is to carefully model the critical stages of the mamication and memory
architecture, so that bottlenecks are know in detail. Theehallows us to compute
the performance of the platform under the conditions of@anemory and bus-access
parameters. By combining this with application-dependizté and functional parti-
tioning, a more advanced approach for efficient mapping®gftplication is achieved.

3 Architecture and Application Performance Design

We describe a performance-design method, used in this pap@h is based on ex-
ecution architecture development [16] and the Y-chart wdhogy [17]. The Y-chart
methodology recognizes a clear separation between thieafiph model, the platform
architecture and an explicit mapping step, covering theeten architecture. The de-
coupling of application, architecture and execution me@dbw designers to exercise
HW/SW mappings for different kind of optimization strategi

3.1 Application model

One of the main devices in a Cardiovascular catheterizédios is the X-ray imaging
system. Image quality is a critical system performanceofa@ecause X-ray radiation
is not without harm for the human body, the system tries tivdethe best image qual-
ity at the lowest possible radiation dose. Therefore, adedme-noising and contrast-
enhancement techniques are employed to maintain an abteepignal-to-noise ratio.



Because physicians must see their actions directly on tleesqeye-hand coordina-
tion), a low latency is a key requirement for the imaging aation.

We have formed an advanced X-ray video-processing chaisjsting of two pipe-
lines of processing algorithms. Fig. 1 provides an ovenadéthe algorithm chain. We
assume a double-pipeline processing approach, consigtingombination of real-time
imaging (fluoroscopy) and subtracted angiography. Sgatigporal noise-reduction fil-
tering takes advantage of a multi-resolution frameworkevdry scale, in local regions,
a directional filter kernel is generated to preserve thel ledges while removing noise.
For temporal filtering, a recursive filter is used. Digitab&action Angiography (DSA)
is an imaging technique that can show the contrast-filledelssn the absence of an
interfering anatomic background (e.g. bones and softd)ssd contrast-enhancement
function is applied before the images are sent to the disgiaynetwork output. For ap-
plication modeling, all processing functions are analyzét respect to their memory,
computation and communication primitives. Table 1 give®agrview of the require-
ments for each of the processing algorithms. The amount wipadation is derived
from micro-benchmarking the application software in isiola, with a data set size
small enough to fit the level one (L1) cache memory of the psoe to avoid bi-
ased results. Memory neighborhood and communication bigitlewequirements are
derived from the algorithm specifications. For the experitagwe employ a resolution
of 2048x 2048 pixels at 15 Hz. For a detailed application analysesréader is referred
to [18].

3.2 Platform Architecture model

This section describes the creation of a model for platforohigectures, based on
general-purpose building blocks. The architecture usetthénexperiments is an off-

the-shelf chip-level multiprocessor systeériVe collect the critical performance and
timing parameters by micro-benchmarking the five primargtaf the architecture

(See Fig 2(a)). In order to describe the behavior of the mgrand cache in more de-
tail, Hristea [19] defined the memory performance metrigsRéstart latency' and (2)

'Back-to-back latency*, which will be used later.

2 The system is commercially available as Xeon E5345, 2.33,@KEB RAM.

Function Operations Computations Memory Communication Bandwidth
Network Source Packet processing 5 cycles / pixel Packet Size 2x Read + 2x Write
Gauss/Laplacian Pyramid  Filtering, up/downsample 10 cycles / pixel 40x40 up to 320x320 pixels (3x Read + 3x Write) * 1.33
Spatial Filter Structure-adaptive filtering 100 cycles / pixel 5x5 pixels (3x Read + 3x Write) * 1.33
Temporal Filter Recursive filtering 10 cycles / pixel 3x3 pixels, previous image (2x Read + 1x Write) * 1.33
Contrast Enhancement LUT processing 10 cycles / pixel 2 x 27bits LUT (2x Read + 1x Write) * 1.33
Automatic Pixel-shift Parametric motion estimation 25 cycles / pixel 128x128 pixels, mask image 2x Read + 0x Write
Image Subtraction Warping, Subtraction 5 cycles / pixel 2 x 2Mits LUT 4x Read + 3x Write
Network Sink Packet processing 5 cycles / pixel Packet Size 2x Read + 2x Write
Display Sink Display texture processing 1 cycle / pixel Image Size 1x Read + 1x Write

Table 1. Requirements for the set of processing functions undeystud
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Fig. 2. Generic architecture model (a), instantiated architecith parameters (b).

When multiple processors are allowed to maintain local espif shared-memory
locations, a cache-coherence protocol is required to enthait the processors have
consistent views of the memory contents. Every time a psmdsas a cache miss, a
coherency protocol broadcasts requests and receiveg a#shonses prior to obtaining
the necessary data. A snoop filter is included to avoid mosh®fexpensive cache-
coherence traffic on the system buses. The latency penattsabfe-coherence traffic
is defined agcacheconerence @aNd snoop filtering asgyoopritter- The parameters are
derived from hardware specifications. Large-scale pdrafiplications inevitably in-
duce contention when executed on shared-memory multipsoce. Contention occurs
if several processes simultaneously try to access a sharddvare resource. Stochas-
tic models of interference among processors in multipremesystems can be found
in [20]. In our model, we include the time fraction for bus andmory contention and
classify this into three levels (A = low, B = medium, C = high).

We will now construct the equations in the form of timing farlas to involve the
above-mentioned factors. Let us begin with the definitiotnefaverage memory access
time, which is an important performance parameter in ourehdebr a two-level cache,
taken from literature [21], this can be given by

AverageMemoryAccessTime = tricacherit + MissRater1 X tricacheMiss- 1)
Similarly, an L1 cache miss is defined by:

tr1CacheMiss = tCPUBus + tL2CacheHst + MissRaters X tLacacheMiss- )

The latency penalty for an L2 Cache Miss to external memomyheastated more pre-
cisely as:

tLQCache]\/Iiss = max(tCacheCoherence7 tSnoopFilter) + tEztMemRestart + tSystemBus~ (3)



Component Parameter Value Unity (Component Parameter Value Unity
Central Processing Unit  Clock Speed 2327 MHz System Bus Clock Speed 333 MHz
Bus Width 32 Bytes Address Bus Width 4 Bytes
Bandwidth 72 GByte/sec Data Bus Width 8 Bytes
t CPUBUS 2 clock tick(s) Pipelined Bandwidth ~ 3.83 (A)/3.24 (B)/0.94 (C) GByte/sec
Level 1 Cache Clock Speed 2327 MHz t AddressBus 05 clock tick(s)
Capacity 32 KBytes t DataBus 2 clock tick(s)
Bandwidth 48 GByte/sec t SnoopReply 1 clock tick(s)
tL1CacheHit 1 clock tick(s) t Cache2CacheL.2 80 (A)/110(B) /200 (C) clock tick(s)
Level 2 Cache Clock Speed 2327 MHz Contention low (A) / med. (B) / high (C)
Capacity 4096 KBytes Memory Hub Clock Speed 667 MHz
Bandwidth 29 GBytelsec Max. Read Bandwidth  20.8 GBytelsec
tL2CacheHit 2 clock tick(s) Max. Write Bandwidth ~ 10.4 GByte/sec
tL2CacheMiss 40 (A)/70 (B) /160 (C) _ clock tick(s) t MemBufter 32(A)/128(B)/511(C) ns
Level 3 Cache Clock Speed 667 MHz t DRAMRestart 3 ns
(Snoop Filter) Capacity 8192 KBytes t DRAMBackToBack 12 ns
t SnoopFilter 418 clock tick(s, Contention low (A) / med. (B) / high (C)

Table 2. Parameters extracted from specifications and micro-beadhexperiments.

Cache-miss latency due to cache lines resident in otheepsoc caches is defined as
the Cache-to-Cache latency (Cache2Cache) [22]. For LZ2echoh transfers, this leads
to the following equation

tCacheQCache‘LQ = tLQCacheHit + max(tCacheCoherencev tSnoopFilter) (4)

b
+1.5° x tSystemBus + tLQCacheMissc-

Formula parameters (See Table 2) are derived from the sget@ifas and micro bench-
marking at several levels in the architecture following #pproaches from literature
[23,19,24,22,25]. The above equations form the platforomitecture model. For the
experiments, we used a dual-socket, quad-core, proces$iteature with a two-level
cache, denoted as Level-1 (L1) and Level-2 (L2). In Fig. 2t processor architecture
is shown. In total, the system consists of 8 processors & @Qycles/s, 8 L1 caches
of 32 KB and 4 L2 caches of 4 MB. The architecture contains agriitter (8 MB) to
avoid most of the expensive cache-coherence traffic on thtersybuses. The system
is equipped with 4 GB of FB-DIMM memory. For more details abthe instantiated
architecture, we refer to literature [26]. As our model ig restricted to architectures
based on general-purpose CPU cores, in principle, grajpinaxessor units (GPUs) can
be described in the same way. However, the careful modefitigecritical parts of the
architecture and micro-benchmarking has to be redone.

4 Execution Architecture

In the previous section, we have carefully modeled the vigdemessing application
on a DSP native level. Furthermore, the performance chaatits and possible bot-
tlenecks in the platform architecture are described inikldétp modeling the critical

stages of the communication and memory architecture. Oufelimg is based on a
double pipeline X-ray application. We use an optimizatitvategy to match the size of

® Half of the cache-line transfer is send in parallel on the system buses.
¢ If the requested data is modified, it has to be written backtereal memory first, adding an
tLacacheniss delay to the overall latency.



the data partitions and the required computing to minima@amunication bandwidth
to external memory. This approach should maximize througwhile preserving a low
latency. Performance and resource budgets are used totgeidptimization.

4.1 Budgeting

Next, the computation, memory and bandwidth budgets algzadhfor the application
under study for each individual processing step. Our majmirement is low latency,
so the communication has to be always fluent without sevéeeruptions. Let us start
with the calculation of required budgets for computatioepmory and bandwidth, fol-
lowing the application as described in detail in Section B.&onsists of 10 functions.
Three functions are build around a multi-resolution imageamid. The computation
budget for the application on a per pixel basis (following ttataflow from Fig. 1 and
the requirements from Table 1) is defined by:

5+1.33x (10+100+10)+(25+5)+ 2(1.33x (10+10)+5+1) = 260 (cyclgpixel) .

For our experiments (2048048 pixels; 15Hz), the required computing budgetis 16.36
GCyclegs. The required memory budget per pixel when counting oniyevactions
(Table 1) can be computed from:

2+1.33¢ (3+3+2)+(2+3)+% (1.33x (3+1)+2+1) = 34.3N,,1pc1s - bytes/pizel (bytes).

Without data partitioning, the required memory budget pege becomes 274.4 MB
in our experiments. In the same way, the communication balttvaudget per pixel
counting all input-output transfers (Table 1) is specifigd b

4+1.33x15+9+2¢ (1.33x 9+4+2) = 68.9Ny;0c15 - bytes/pixel (bytes).
Without data partitioning, a communication bandwidth beidg required of 8.27 GBs.

4.2 Mapping and partitioning for low latency

In general, there are two ways to partition the applicatiaer @ multiprocessor or multi-
core environment, namefynctional partitioning anddata partitioning [27]. With func-
tional partitioning, a function is decomposed into a sena&ipendent tasks, which can
be executed in parallel on the architecture. Data partitpimplies the division of an
image into sub-images (stripes, blocks or lines) and theogss each partition on a sin-
gle processor. Our approach starts with inspecting theinegjgomputation, memory
and bandwidth budgets for the application and apply datatipaing on the available
resources of the platform architecture. In our experimentainimum of 7 processor
cores is required for execution.

With the above approach, the memory requirements for sontheoprocessing
functions will exceed the available cache resources ofditéopm, causing the function
to communicate internally via the slower external memotye performance of the
application will be hampered by the latency penalty of estng data from external
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memory due to the limited cache capatitps a possible solution, we will look for
combinations of functional partitioning and data partititg in the following way.

1. Intra-function partitioning. We partition the image block into smaller slices for
each function locally. We have to take care that the minimuemory requirement
of each function remains available at the input. The input antput data-block
granularity remain unchanged so no additional commurunasi introduced.

2. Inter-function partitioning. We further divide the globally partitioned image blocks
into smaller slices. In order to decide what the optimal glon is of the image
blocks into slices, we investigate the communication timerbead versus the data-
block size to argue about the optimal data granularity. ®silis are shown in
Figure 3.

3. \erifylocality of data against cache size. The memory consumption, resulting from
the previous step is accumulated from different tasks antpawed to the available
cache size. If there is an overflow, the previous step is tepaatil the accumu-
lated task-memory consumption fits in the cache, or the sfiaehed the minimum
required size for correct operation.

As can be noticed from Figure 3(a), choosing a very smaledize is not preferred,
since the communication (cache coherence) overhead pageewill start to increase
exponentially. This is further explained in [22]. From Figi8(b), one can see that the
total memory consumption of the video-processing funatidecreases only marginally
for slice sizes smaller than 128 KB. This can be explainedhigynhinimum required
amount of input and intermediate data that is required fohdanction. We therefore
conclude that with the additional decomposition of the im#&dpcks into slices, the
optimal slice size should be chosen such that the cache nyamsage is maximized
with respect to capacity without task partitioning (cacwveare partitioning). As a con-

d Apart from the cache capacity, cache conflict misses [21]atsa contribute to the overall
performance. For our case, they contribute only on a verylstale to the overall number of
cache misses.
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Fig.4. Memory communication for straightforward data partitingi(a) and cache-aware algo-
rithmic data partitioning (b) (humbers apply for contrashancement).

sequence, when observing the cache contents at a given timem, the amount of
tasks contained is minimized, leading to lower bandwidtjunrements.

5 Experimental Results

In this paper, we explore a case, with 2RK images mapped onto a multi-core plat-
form using 8 cores in parallel. The data is processed by @freduction function and in
two branches contrast enhancement is applied using pyahpridcessing, and further
quality improvement measures. This solution has been coedpa a straightforward
data-parallel mapping, where image stripe8,@f48 x 256 pixels are used at all stages
of the processing. In Fig. 4, the memory communication issshtor the two map-
pings. As a first step, the image is partitioned into stripeaap the computation budget
onto the available processor cores. Storage of extra rdfiiter neighborhood is only
needed for image parts that are not resident in the same ltizdaache-aware parti-
tioning). Subsequently, intra-function partitioning igpdied for each function locally,

Memory consumption / L2 Cache (of 4,096 KB) . '
Approach Min. [KB] Average [KE] Max. [KB] Slice Size [kB] Slices / Image
Straightforward data partitioning 11,668 19,136 24,164 1,024 8
Cache-aware partitioning (iter. 1) 1,160 3,538 4,683 1,024 8
Cache-aware partitioning (iter. 2) 1,138 2,622 4,091 512 16

Table 3. Memory requirements for the analyzed partitioning strigteg



Processor Function Computation Latency [ms] I/O Latency [ms] Bandwidth [GB/s] Stall Latency [ms] Extra Bandwidth [GB/s]

-1- -2- -3- -4a- -4b- -4c- -5-

4 Network Source 1.1 0.8 0.59
0-7 Noise Reduction 355 1.1 0.20 116 193 437 2.30
0-7 DSA 6.8 1.3 0.23 44 73 165 0.87
0-7 Contrast Enhancement 6.0 13 0.23 10.1 168 16.8 2.00

4 Network Sink 1.1 1.1 0.59

4 Display Sink 0.9 33 0.12
0-7 Contrast Enhancement 6.0 1.3 0.23 10.1 168 16.8 2.00

4 Network Sink 11 11 0.59

4 Display Sink 09 33 0.12

Latency (1+2) + (4aor4bordc) 574 10.2 36.1 60.1 93.7

Bandwidth (3+5) 2.89 7.16

Table 4. Simulated latency and bandwidth figures for the video-pssice under study
(measured values differ within 10-20%).

implemented as a sliding window buffer, to avoid the stitoring cache overflow. An
overview of the memory requirements can be found in Tablefterahe first iteration

of the proposed cache-aware memory-communication modele f the functions
still overflow the L2 cache. By applying a second inter-fumetpartitioning for those
functions, the cache overflow is almost negligibleompared to a straightforward data-
partitioning approach, the memory requirements of the nggra@ach are an order of
an magnitude smaller. In Table 4, the results are shown &vitteo-processing appli-
cation under study (2K2K images; 15Hz). The difference between the performance
prediction and measured performance is within 10-20% inasdks.

The following rules have been adopted to find the presentadtse

Computation latency = (Comp. BudgetBlock Size ) / Resource Budget

1/0 latency = (Input+Output Block Sizey16x (tracacheiss OF tCachezCacheL2)
Stall latency = (Input+Inter+OQutput Bl Size L2-Cache Cap. X 16X trocacheniss
Bandwidth =2x Z (Block Sizex Frame rate)

VDatablocks

Extra bandwidth =X Z ((Input+Inter+Output Bl Size- L2-Cache Cap.x Fr rate)
VDatablocks

Results show a memory bandwidth for cache-aware algoritittaia partitioning
of 2.89 GBY/s, as nearly all intermediate communication iarzged locally via the lo-
cal cache memory. For straightforward data partitionihgs ts not the case and the
bandwidth requirements increase with 7.16 GB/s, to a tagaldvidth of 10 GBJ/s,
effectively. The total latency of the video-processinglaggion for cache-aware algo-
rithmic data partitioning is 57.4 + 10.2 = 67.6 ms. For sthdfigrward data partitioning,
our modeling states that between 36.1 and 93.7 ms are adaei dtalled CPU cy-
cles where the processor is waiting for memory. In practice instantiated platform
architecture is unable to cope with this high bandwidth negoents, and the system
completely stalls.

¢ A small amount of cache memory is occupied by instructionksaralar variables.



6 Conclusions

We have presented an application model at a DSP native lewval feal-time medical
video processing application involving multi-resoluti@composition, noise reduction
and image enhancement. Similarly, we have developed a fimgfiation model for
the memory communication and bandwidth usage of a generabpe multi-core pro-
cessor architecture. This model allows us to compute thi®meance of the platform
under the conditions of actual memory and bus-access p&esne

In a performance design where we employed the above modelbawe focussed
on bandwidth reduction and latency optimization. Becausth@® memory-rich pro-
cessing algorithms, straightforward data partitioningngble to exploit a full locality
of data. This leads to substantial inefficiencies in peréomoe and waste of memory
bandwidth. Therefore, we have proposed a combination @f plattitioning and func-
tional partitioning. As a result, a substantial perform@amprovement is realized by
a memory-communication model that incorporates the merandycompute require-
ments of the video processing in two ways.

1. An inter-function partitioning is chosen to satisfy tleguired compute resources
across the processor cores and optimized for communidagithmeen functions.

2. Anintra-function partitioning is chosen for each functseparately, so that caching
will be exploited for low latency.

We have validated the memory communication model on a mahé processor plat-
form processing 2Kk 2K images in real time at 15 Hz. Results show a considerable
memory-bandwidth reduction of 70% and a latency reductfotDe70%, compared to
straightforward data-parallel implementations. Theati#hce between the performance
prediction and measured performance is within 10-20% ioaees. The proposed tech-
nigues have proven to be valuable for regular signal praeg$snctions, such as fil-
tering and noise reduction. However, if processing becam&® irregular, such as in
analysis, the proposed partitioning algorithm has to bexorare adaptive and flexible
to preserve the efficiency gain.
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Abstract. The era of a billion and more transistors on a single silicon
chip has already begun and this has changed the direction of future com-
puting towards building chip multiprocessors (CMP) systems. Neverthe-
less the challenges of maintaining cache coherency as well as providing
scalability on CMPs is still in its initial stages of development. Previous
studies have shown that single bus based cache coherent CMPs do not
scale. Directory based CMP systems provide better scalability compared
to snoop based protocols, but have overhead in terms of the space for a
full map directory as well as high latency during broadcasting of writes
to widely shared data. In this paper we explore the scalability of a cache
coherent Tiled CMP with dual mesh networks, using a combination of
snoop and limited directory based cache coherency protocol. A limited
directory based scheme with low area overhead is used over one mesh net-
work for handling all requests and non-broadcast based cache coherency
responses. The second mesh network acts like a broadcast tree and is
specifically used for supporting broadcast based invalidations to widely
shared data. The cache coherency protocol is optimized by removing the
need to generate acknowledge messages during writes to widely shared
data. Scalability of the architecture is presented in terms of the speed
up obtained by running multithreaded JavaGrande benchmarks on the
system for up to 64 processors. The system is compared against a per-
fect memory model which quantifies the inherent parallelism within the
benchmark. The worst case speed up for a 64 processor Tiled CMP, with
inherently scalable benchmarks, is 62% of the ideal speed up of 64, and
78% of the speed up w.r.t the perfect memory model.

Key words: Tiled CMP, cache coherency

1 Introduction

The transition from uniprocessor to chip multiprocessor (CMP) systems has al-
ready been made for both high end server as well as desktop machines, as seen
in Sun’s Niagara, and Intel and AMD’s quad and dual core systems. A major
difference between uniprocessor and multiprocessor systems is that uniproces-
sors do not need to address the issue of cache coherency. However, CMP systems
are in essence, architecturally, a smaller version of cache coherent multiprocessor
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systems. Since CMPs are targeted towards applications that will most likely use
the shared memory programming paradigm there is a need for a cache coherency
protocol to be implemented over such systems. Apart from handling cache co-
herency, CMP systems should be scalable (in terms of number of processor cores
on a single chip) in order to achieve faster execution speeds in parallel appli-
cations. It is a known fact that bus based CMP systems do not scale beyond
a small number of processors [1]. Therefore, alternative switch based intercon-
nects topologies are becoming popular with many CMP systems. One of the
most popular switched interconnect is the mesh topology that is being used to
integrate multiple processor cores (tiles) on a single chip [2][3]. Nowadays, the
abundant on-chip wire and transistor resources [2] have resulted in CMP sys-
tems that implement processing logic in a tile fashion and interconnect them
using some symmetric network for simplification of the layout on chip. These
CMP systems are known as Tiled CMPs. However, the bigger challenge is to
maintain cache coherency on such unordered networks and at the same time
achieve application scalability. Therefore in this paper we explore the scalability
of cache coherent tile based CMP system using multiple networks. The cache
coherency uses a combination of both snoop and limited directory based pro-
tocols. The main idea is to use a limited directory based protocol without the
overhead of storage space for tracking the list of sharers as well as reducing the
latency during broadcasts to widely shared data.

2 A Dual Mesh Tiled CMP

We present a Tiled CMP architecture, with two mesh networks as shown in
Figure 1. Tiles within the dual mesh CMP can be either processor or memory
(L2) tiles. One of the mesh networks serves as an broadcast tree with the L2 tile
as the root node. A mesh based invalidation network provides higher bandwidth
and supports more processors as compared to a single bus based network [4].
Also, it does not suffer from the wire delay problems that are associated with a
single bus [5]. The other mesh network implements a limited directory protocol.
Processor tiles consist of the multithreaded JAMAICA processor core [6], which
is a b-stage in order pipeline with private L1 Instruction and Data caches. The
memory tile is part of a Non-Uniform Cache Access (NUCA) L2 cache.

2.1 Tile-Network Interface

The tile interfaces to the mesh network using four ports - North, East, West and
South (NEWS) [1]. Each port consists of a master and slave handler, referred
to as port master and port slave, respectively. Port slaves receive and process
packets while masters transmit packets. Processor tiles contain a single port
master and slave pair at each port, while L2 tiles contain 8 port masters and
slaves per port. The routing unit within a tile uses the dimension order routing
protocol for determining the next tile that receives the packet enroute to its
destination [4]. The packet switching scheme at each port is store and forward,
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Fig. 1. Dual Mesh CMP

i.e. the complete message is buffered before it is sent out of the port master [4].
The buffer width at each of the masters and slaves is equal to one cache line width
(256 bits) plus the header packet size (64 bits). The link width connecting two
adjacent tiles is 160 bits. Request messages need a single cycle, whilst response
messages take two cycles for transmission of messages between adjacent nodes on
the mesh network. Each port slave is equipped with its own finite state machine
(FSM) based control logic to fetch, decode and forward the packet. The FSM at
the port master is used for buffering and transmitting the packet.

2.2 Cache Line States

The L1 cache line can be in the following states: Modified (M), Owned (O),
Shared (S) and Invalid (I). The O state implies that the line is shared between
the instruction and data caches on the same tile. Lines in L2 can be Exclusive
(E), S, M, Pending (P) and I states. The P state implies that the L2 does not
service any other request for that cache line address until it receives a data
or acknowledge message for the same line. The S state in L2 can be further
categorized as either Shared Single Owner S(SO) or Shared Multiple Owner
S(MO). The S(SO) state implies that the line exists in the S state within a
single L1 cache. On the contrary, the S(MO) state implies that the line is shared
by multiple L1 caches. M state in L2 implies that the data at L2 is stale. Apart
from state, the L2 cache line also contains the following fields: ownerid - field
that stores the processor identifier (id) that requests the cache line first or has
the line in M state; L bit to detect if a lock has been taken on that cache line;
and F bit to indicate that the line is shared by two or more processors, i.e. this
flag is used to decide if a broadcast needs to occur on a write to this line.

The L1 cache uses the Least Recently Used (LRU) cache eviction policy,
while the L2 evicts a line based on the cache line state, L bit status and the
LRU count. Lines with the L bits set are not preferred for eviction. Among the
different cache states, lines with states such as E (first choice) or S are preferred
for eviction compared to M lines. The LRU policy is used when there are multiple
lines with E or S states. The reason for choosing E or S lines over M lines for
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eviction is because the L2 need not initiate a writeback transfer from the L1
cache for a modified line.

2.3 Deadlock Avoidance

In order to avoid deadlock because of buffer space constraints at the memory and
processor tiles, virtual channels are provided (sink channels) at each port master
and slave [7][1]. The sink channels service cache coherent requests or responses
that are deemed as critical by the cache coherency protocol. The sink channel is a
non-blocking buffer that accepts critical responses and guarantees consumption
of these messages. Both sink and non-sink channels share the physical link that is
attached to the port. In this system, responses that cause the L2 to transit from
the P state to any other state are considered critical. This is because, the L2
waits on such responses, stalling requests for the same address until the response
arrives. Apart from these critical messages, responses generated by L2 are also
considered critical. Again, this is because, requests (for the same address) that
are forwarded by the L2 (e.g. read to a M line) after the response messages for
the previous request (write caused the L2 cache to transit to M state) was sent
out, will cause the L2 to transit to P state.

2.4 Cache Coherency Protocol

The cache coherency protocol uses a limited directory protocol (with buffer space
provided to store the id of a single processor) at the L2 for read and write requests
to non-widely shared data, while the snoop protocol is used solely for broadcast
purposes. All L1 requests are sent to the appropriate L2 cache bank based on
a static address mapping policy. The various requests that are generated by
the L1/L2 caches can be classified in general as Read Misses, Write Misses,
Writebacks and Evictions. The cache state transition diagrams for L1 and L2
caches is shown in Figures 2 & 3, respectively.

Read Miss. L1 read misses or requests (RD_SH) generate read responses
(RD_SH_RESP), if the line is in E or S(SO) or S(MO) state in the L2. On
read to E state, the processor id of the requestor is stored in the ownerid field
of the L2 and the state transits to S(SO). On a read to S(SO) line, the L2 sets
the F bit, indicating that the line is in S(MO) state. Lines accessed from main
memory by the L2, for the first time, are always set to the E state. If the line is
in the M state at the L2, the request is forwarded to the processor dictated by
the ownerid field within the L2 cache line. The L2 transits to P state on such a
request and waits for an acknowledgement (ACK) message from the requestor.
L2 does not service any request for the same cache line address until the ACK
is received. On receiving the ACK, the L2 transits to S(MO) state. L1 requestor
always transits to the S state on receiving a read response.
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Write Miss. Write requests from the L1 are of two types, write misses (RD_EX)
and upgrades (UP). Write misses occur on a L1 cache miss, while upgrades occur
when a write hits on a S line in L1. On a write miss to E lines in L2, a write
miss response (RD_EX_RESP) is generated. If the line is in S(SO) or M state at
the L2, the write miss is forwarded to the owner and the L2 enters the P state.
The owner responds with a RD_EX_RESP to the requestor and invalidates its
own cache line. Until the requestor sends an ACK to the L2, the 1.2 remains in P
state. On a write miss to S(MO) lines, a broadcast invalidation (B_INV) message
is sent over the invalidation mesh network (a tree based broadcast with the L2
as the root node) and the L2 generates a RD_EX_RESP to the requestor. On an
UP, the L2 generates either an upgrade response (UP_RESP), if the line is in
S(SO) or a B_INV message if the line is in S(MO) state. Note, on a broadcast
invalidation, no ACK messages are generated by the receivers. On all writes the
L2 transits to the M state and sets the ownerid field equal to the processor id of
the requestor. L1 requestor always transits to the M state.

Writeback and Eviction. If the L1 evicts an M line, a writeback (WB) mes-
sage is generated to the L2. On receiving a WB message the L2 transits to E
state, clears the F' flag and the ownerid field. L1 does not generate any traffic
on discarding a S line. If the L2 evicts a S(SO) line, an invalidate message is
generated to the processor id corresponding to the ownerid field. If the line is in
S(MO) state, a BINV message is generated on the invalidation network. If the
L2 needs to evict a M line, it generates a WB_PENDING message to the L1 and
waits in the P state until the L1 generates a WB message. The evicted M line
from the L2 is written back to main memory.

2.5 Read Invalidations

It becomes necessary to track stale reads in the case of a write after read (WAR)
and at the same time refrain from invalidating cache lines in case of a read after
write (RAW). Figure 4 shows the difference between these cases. In the case of
the RAW, P1 might see the B_LINV because of the UP, even before its RD_SH
reaches the L2. Therefore, P1 sets an invalidation flag indicating that it has
detected an invalidation for the same cache address as the RD_SH request. If P1
receives a RD_.SH_RESP_RAW from P2, it discards the invalidating flag and sets
its L1 cache state to S. Also, P1 has to generate an ACK back to L2 to indicate
the read has completed and prevent any other intervening write from invalidating
the cache line in P1. In the WAR case, the RD_SH_RESP from the L2 is discarded
by P1 because the invalidation flag was set when P1 sees the B_.INV because
of P2’s UP. It must be noted that in the case of a Write-Read-Read scenario,
the L2 generates a RD_SH_RESP response packet for the second READ request.
But, this RD_.SH_RESP causes the cache line to be invalidated because of the
invalidate flag that was set by the second READ on seeing the original write.
Therefore, in the case wherein the RD_SH_RESP packet finds the invalidate flag
set, unnecessary invalidations might occur. Note, that a full directory protocol
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that supports ACK messages to be generated during invalidations prevents this
scenario, because the processor generating the read never receives an invalidation
message.

2.6 Stale UP

Consider the following scenario shown in Figure 5. Processors P1 and P2 send
UP messages and P3 sends a RD_SH message to the L2. Suppose that L2 services
P2’s UP before P1; it sends a B.INV message and transits to M state. P1 on
seeing the B_INV, sets a flag within its request table indicating that the request
has changed from an UP to a RD_EX. L2 then services P3’s request and transits
to S(MO) state. L2 now services P1’s UP request, and sends a BAINV packet on
the invalidation network. This is a stale UP case and the L2 never detected P1’s
request change from an UP to a RD_EX. In such a situation, P1 detects that the
L2 has serviced a stale UP packet and sends an UP_INV packet to the L2 on the
sink channel. On receipt of this UP_INV packet, L2 transits to E state, clears the
owner id field and sends a RD_EX_FAIL packet back to P1 acknowledging that
it has detected the stale UP. P1 now sends a RD_EX packet to the L2, instead
of an UP.

3 Results

This section describes the evaluation of the system using some of the kernel
Java Grande benchmarks [8] . Five multithreaded kernel benchmarks, namely
LUFact, SOR, Crypt, Series and Sparse were run on the simulator.

3.1 Simulator Configuration

A cycle accurate version (models pipeline stalls, L1 cache contention and queu-
ing at the memory controller) of the JAMSIM simulator [9] was used to im-
plement the dual mesh architecture. The JAMSIM simulator (models perfect
memory, single bus, hierarchical buses and crossbar based CMP architectures),
written in Java models hardware components as software objects [9]. It uses a
JAMAICA ported version [10] of the JIKES RVM for compiling and optimizing
Java byte codes to JAMAICA machine instructions, and providing bootup and
thread scheduling functionality. The simulator was modified to include dual mesh
networks. Other changes involved creating communication ports and their asso-
ciated logic, router logic in each tile and incorporating the new cache coherency
protocol. All ports within a tile are clocked every cycle. State machine based port
slaves and masters simulate the delays in accessing, processing and forwarding
a packet at all tiles. In order to simulate network contention, both request and
response packets are transmitted over the mesh network. Intra port delays are
modelled by blocking one of the many simultaneous requests that arrive for a
single master port. Inter port delays are modelled by having separate request
and grant control signals between adjacent tiles. All port slaves within a tile
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contend for a lock in order to access the cache (L1 or L2) or any resource within
the processor and memory tiles at any point in time. This simulates contention
for shared resources within a tile. The lock also implements the functionality
of a single ported cache. All results gathered from the simulator are within the
parallel execution phase of the benchmarks. Simulations were performed using
dual context JAMAICA processor cores, i.e. each processor core supports two
threads.

Five configurations of the architecture, each with varying processor and L2
tile count were simulated. Table 1 shows the various processor and L2 tile com-
binations.

Table 1. Processor and L2 Combinations

Number of Processors|Number of L2 Tiles
1 1
2,4, 8 2
16 4
32 8
64 16

Table 2 shows the access times (in processor clock cycles) for different cache
sizes and the main memory delay assumed [11].

Table 2. Multi Threaded Processor Configuration

Component Size and Access Time
L1 Data Cache 64KB, 1 cycle
L1 Instruction Cache 64KB, 1 cycle
1 L2 tile 4MB, 26 cycles
2 L2 tiles 2MB, 17 cycles
4/8/16 L2 tiles 1MB, 9 cycles
Main Memory 200 cycles

3.2 Speed Up
The speed up of a benchmark is calculated using the formula:

EzxecutionTime(1Processor)

SpeedUp = (1)

ExecutionTime(Nprocessors)
The speed up is measured w.r.t the performance of the benchmark using a single
processor for the same architecture. Figure 6 shows the speed up of all bench-
marks up to 64 processors assuming a Parallel Random Access Memory (PRAM)
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model [12] with a special unit to handle locks [9], therefore presenting a true pic-
ture of the inherent parallelism within the benchmark. Speed up graphs on the
dual mesh scheme for all benchmarks run up to 32 processors and for three of the
five benchmarks, run up to 64 processors is presented in Figure 7. As seen from
the perfect memory speed up graph, SOR and LUFact (for the data set chosen)
are inherently not scalable. Therefore, they were not run on the 64 processor
configuration.

All benchmarks, except for Crypt at 64 processors, show similar behaviour to
that of the perfect memory speed up graphs. For the 64 processor configuration,
the speed up for Crypt with the dual mesh scheme is 40 (Figure 7), while that
with the perfect memory simulator is 51 (Figure 6). Therefore, the speed up
for Crypt with the dual mesh scheme is 62% of the ideal linear speed up of
64, and 78% of the speed up obtained from the perfect memory simulator. The
drop in speed up is primarily attributed to the delays in the dual mesh network.
Figure 8 shows the average read and write latencies (average delay to satisfy a
read miss and a write miss, respectively) for the crypt benchmark from 16 up
to 64 processors, with the 64 processor configuration run for different data sets
(50000 and 500000). It can be seen that as the number of processors increase
the average read and write latencies also increase. Increasing the data set size
(thereby increasing the number of requests to L2) has no effect on the read and
write latencies. This proves that the read and write latencies are dependent on
the network architecture rather than the contention induced by the benchmark.

Figure 9 measures the effect of stale UP, and unnecessary invalidations of
cache lines on receiving a read response packet, both mentioned in Sections 2.5
and 2.6 that might occur in the dual mesh scheme because of not having an
ACK message during writes to widely shared data. We see that the effect of
unnecessary invalidations and stale UPs is minimal, with the maximum being

1.5% for LUFact.

4 Related Work

Snoop and directory based cache coherency are extensively researched in several
papers. Combination of snoop and directory based protocol was explored in
Multicast snooping [13]. In order to avoid acknowledgements during a broadcast
invalidation, it uses an ordered address network. It requires a full directory to
ensure that the prediction made to multicast the request contains the correct set
of cache line owners. In constrast, the dual mesh scheme uses a limited directory,
supporting non-ack tree based broadcast on a separate mesh network.

Tiled based CMPs are a popular subject of research and development in
both academia as well as in industry. They can be broadly classified based on
the programming paradigm adopted within the system - control flow and data
flow model. Most tiled CMPs use the mesh topology with wormhole based packet
switching, credit based flow control and dimension order static routing protocol.
Some of the popular tiled based CMP in the industry are as follows: The Tilera
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system that uses five mesh networks on chip, each for a specific purpose to handle
shared memory (control flow) as well as dataflow based computing. It does not
support caching of shared data. However, in the dual mesh scheme we support
cache coherency using multiple networks. Intel’s Tera Scale [14] architecture
uses 80 tiles interconnected using a mesh network. Tiles can be general purpose
processor cores or special-purpose computing engines. It uses a MESI based full
directory protocol to support shared memory communication. We use a limited
directory based cache coherency protocol that does not have the space overhead
of a full directory and optimizes on the write latency to widely shared data.

Academic based Tiled CMPs include, the TRIPs architecture [15] which sup-
ports a dataflow model of computation and also uses a two mesh networks, one
for connecting memory tiles and the other for providing communication between
processing elements; Priority NoC [16] that uses a mesh connected NUCA based
L2 cache interconnecting 8 processor tiles. It relies on multiple optimizations
to the network router architecture, packet switching technique to reduce the
delays (queuing and network traversal) for request and responses messages by
giving priority to short request or control based messages, such as ACKs. It
uses a MESI based full directory protocol. The dual mesh scheme described uses
a limited directory in comparison to the full directory scheme described. Simi-
lar to the Priority NoC scheme, it uses the network features to send read and
write messages on different virtual channels, but does not provide for any prior-
ity. The distinguishing feature between the dual mesh network and the Priority
NoC scheme is the use of two separate networks which serves the purpose of split-
ting the cache coherency traffic. Balfour et. al. present a dual mesh architecture
in [17], exploring the delay, power and area constraints within the architecture
rather than evaluating the performance of a cache coherent system.

5 Conclusion

It is well known that CMPs have already appeared, and will continue to dominate
the design of future computing systems. The best possible use of CMP systems
comes from extracting high degrees of parallelism from existing applications.
Given the results obtained, we conclude that the dual mesh scheme is a promising
approach for small and medium sized (up to 64 or even 128 cores) CMP systems.
However, very large scale CMP systems (256 or more cores) would require a shift
from the shared memory programming model and hence independence from
cache coherency protocols to achieve high scalability.
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reading this paper and providing constructive comments.
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Abstract. The number of paradigms offering approaches to exploit par-
allelism is increasing, but programmers still consider Shared-Memory
parallel programming to be a hard task. In this work we compare such
paradigms - namely OpenMP and Threading Building Blocks - for their
suitability to parallelize an object-oriented sparse linear algebra library.
We evaluate the programmability and scalability of different paralleliza-
tion concepts and different implementation strategies.

1 Introduction

Multicore processors provide more compute power for less energy and produce
less heat, which has become the delimiting factor for building processors with
higher clock rates. While the hardware industry is clearly pushing multicore
architectures for the years to come, the software industry has not yet found
an all-convincing paradigm for efficient parallel programming. But in order to
profit from current and future microprocessor developments, programmers have
to parallelize existing applications and take parallelism into account when writ-
ing codes from scratch [SLO5].

Over the last few years, OpenMP [ARBO08] has evolved as the de-facto stan-
dard for Shared-Memory parallel programming in the field of high performance
technical computing, but so far it is not commonly used for general application
development. OpenMP consists of a collection of compiler directives, library
functions and environment variables to support directive-based fork-join paral-
lelism. While it is comparably easy to learn and use and allows for incremental
parallelization of existing applications, it has been found that some features
are missing to achieve full performance on recent multicore architectures, most
prominently thread binding [TaMS07] and better control for memory placement
[TaMS*08]. In addition, the support for the C++ programming language is
limited [TaMO6].

In order to improve parallel programming support for C++ programmers,
Intel has released the Intel Threading Building Blocks (TBB) [Rei07] template
library. It builds upon the concept of generic programming and provides ab-
stractions for parallel algorithms, containers and the like, also providing fork-
join parallelism. While TBB allows for incremental parallelization as well, using



TBB may require significant program restructuring measures if the algorithms
and data structures were not designed in a STL-like fashion, i.e. making use of
the iterator concept. Thus, TBB have not yet achieved significant reputation in
the traditional HPC world.

POSIX-Threads and WIN32-Threads are the native interfaces of Unix and
Windows for multi-threaded programming and can be used for algorithmic par-
allelization as well, although with significantly less comfort than OpenMP or
TBB.

In order to compare the programmability and scalability of these three par-
allelization paradigms with C+4, we examined the design and parallelization
process of a template-based sparse linear equation solver library, which is an
excerpt of the DROPS Navier-Stokes solver [GPRR02]. We evaluated and opti-
mized several design concepts of embedding the parallelization into an object-
oriented programming style and examined how the multithreading paradigms fit
into that. The library has been used in several parallelization projects already
[TSaM*05], [JTST07] and we use the abbreviation laperf for further reference.

The rest of this paper is organized as follows. In chapter 2 we describe the
computational task we want to solve and give a brief overview of the paral-
lelization paradigms. We present our implementation strategies and our findings
concerning programmability in chapter 3. In chapter 4 we take a look at the
performance and in chapter 5 we present a brief summary and an outlook on
future work.

2 Computational Task and Parallelization Paradigms

The C++ programming language is gaining interest in the field of High Per-
formance Computing, especially to implement numerical algorithms. The solver
kernels of the two applications considered for benchmarking are examples of
using object-oriented modeling and programming without performance degra-
dation. Using an object-oriented approach and generic programming, numerical
algorithm implementations can even look pretty similar to mathematical equa-
tions. Figure 1 shows an excerpt of a CG-type solver, such a kernel is heavily
used in the compute intense part of many PDE solvers. From a researcher’s point
of view, this programming style significantly eases algorithmic modifications and
code maintainability.

Our target is to create an efficient parallelization of such a code while main-
taining the object-oriented and generic programming style. In order to parallelize
the presented task, we created a library providing a data type for a dense vector
and a sparse matrix in compressed row storage (CRS) format. As we also imple-
mented all numerical functions defined on those types, we were able to evaluate
different parallelization paradigms and implementation strategies. Our goal was
to provide all building blocks for parallel sparse numerical algorithms, while
hiding the parallelization details from the user. If possible, the parallelization
should not hinder any algorithmic modification.



© 0 O Uk W N

_ = e
N = O

Code 1 Iteration loop of a CG-type solver in C++.
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2.1 OpenMP

OpenMP supports Fortran, C and C++. A so-called parallel region in OpenMP
consists of a pragma followed by a structured block. At the entrance of a parallel
region, additional worker threads are created. The number of threads to be used
can be specified by an environment variable or API calls.

Several work-sharing constructs are available to distribute work between mul-
tiple threads. If, for example, a loop inside a parallel region is preceded by an
OpenMP work-sharing loop directive, the loop iterations are distributed across
the threads of the current team. The way in which the loop iterations are dis-
tributed can be controlled elegantly via clauses of this directive. As worksharing
is not well-suited e.g. for recursive algorithms, OpenMP 3.0 introduced the con-
cept of Tasking in May 2008 to denote independent program parts to be executed
by the threads of the current team.

2.2 Intel Threading Building Blocks

Threading Building Blocks are provided as a C++ template library. Applying
them does not include using any language extension. In order to use the library,
a scheduler object has to be initialized once, where the number of threads to be
used can be specified explicitly or determined automatically.

TBB provides several skeletons and parallel replacements for STL-type algo-
rithms to express parallelism. Either work is divided into smaller tasks for in-
dependent execution implicitly, or tasks are specified explicitly. It also provides
STL-type containers (e.g. a vector) together with parallel operations. While the
programmer can influence the work distribution, the default is to let the run-
time schedule chunks of work to the threads. Execution of unfinished tasks is
independent of creating additional tasks.
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2.3 Native Threads

POSIX-Threads on Unix and WIN32-Threads on Windows offer an API to create
and manage threads. Implemented as a library, they can be used from virtually
any programming language. While offering full functionality for thread manage-
ment and several synchronization capabilities, the user is solely responsible for
implementing work distribution.

3 Programmability

To parallelize the code discussed in the previous chapter without breaking the
object-oriented approach, we evaluated several concepts that are described in
3.1. Based on that, we developed several implementation strategies how to fit
in the parallelization paradigms in 3.2. Finally we discuss how to take care of
memory placement on cc-NUMA architectures in 3.3.

3.1 Parallelization Concepts

Taking the given requirements into account, the design of our sparse matrix type
matrix_crs implementing a compressed row storage format looks as shown in
figure 2. We are using two template parameters:

— T: data type of matrix elements, usually double.
— Alloc (optional): STL-type allocator for memory management on cc-NUMA
machines.

The constructor takes the matrix dimensions as arguments as well as an
optional argument for specification of the parallel loop schedule. The latter is
only applicable if OpenMP parallelization is selected.

Code 2 Type signature of our sparse matrix data type.

template <class T = double,
template <typename> class Alloc = std::allocator>
class matrix_crs {
public:
matrix_crs(size_t rows, size_t cols, size_t nonzeros,
const enum OpenMPScheduleType _eScheduleType)

0]

As will be described below, our approach is efficient. It is also very easy to
use in the considered application codes, as the existing matrix and vector classes
can be hidden by our types using an appropriate typedef declaration.



In order to evaluate our approach of parallelization under the hood of the
object data types, we started off with a rather simple concept. We designed
the template class type as described above and used plain operator overloading
to provide all necessary functions. We used preprocessor macros and (large)
switch constructs to differentiate between different parallelization paradigms and
implementation strategies.

Given the six implementation strategies presented in the next chapter, this
made maintaining and extending the library code very hard. This approach
also introduced expensive temporary copies in complex expressions. As a con-
sequence, it did not deliver good performance, although all operations could be
parallelized. We concluded that this approach is not well-suited for productive
code development.

The second approach relied on inheritance: We defined an abstract base class
for the vector and sparse matrix data types and provided a specialization for each
implementation strategy. This solved most code manageability issues, but had
some performance impacts as well. Complex expressions like r = b — A X x
had to be transformed by the compiler by introducing additional temporaries
(here: t1 = A x ;12 = b — t1;r = t2). In addition to that, we found that the
compilers were not able to eliminate the expensive virtual function calls during
optimization.

The third and so far most successful approach was to use template expres-
sions [Vel95], in order to avoid the generation of temporaries. Thus, we only
have one class for each data type, but added a compile time constant template
parameter to indicate the implementation strategy. Specialized implementations
are differentiated by this parameter and a switch construct.

Using a self-implemented expression template mechanism, our library can
profit from complex expressions, as they are ”unrolled” into a single for-loop
which can easily be parallelized. Thus we increased the amount of work per
parallel region and decreased the total number of parallel regions invoked, which
results in a higher efficiency. The only downside is that in the debugging process
the complicated template mechanism becomes visible to the user.

3.2 Implementation strategies

We examined several implementation strategies for our library design. In the
following description we differentiate between the view from a user of our library,
and the view from the actual library implementation.

1. OpenMP with Internal Parallelization (OMPIN): In this version, each oper-
ator or class member function contains a distinct parallel region. The par-
allelization is completely invisible to the user of the class library, and using
the data types is safe both from serial and parallel code. Thus, this approach
is well-suited to be offered by a library. The downside is that entering and
exiting a parallel region for each operator call involves some overhead, which
can become significant depending on the amount of work to be parallelized.



Also, it is not possible to avoid the barriers between several function calls,
e.g. between lines 6 and 7 in figure 1.

. OpenMP with External Parallelization (OMPEX): In this version we exploit
OpenMP’s orphaning capability. The operator or class member functions
only contain work-sharing constructs. The parallelization becomes visible to
the user, as he has to insert the parallel region directive into the code. Thus
we employ OpenMP’s orphaning concept to combine multiple worksharing
regions into one parallel region to save the fork-join overhead. But the par-
allelization is not completely safe any more, because if any function with
orphaned work-sharing constructs would be called from within another work-
sharing construct, the result would be undefined according to the OpenMP
specification. Such a situation cannot reliably be detected by the compiler
nor the library.

. OpenMP with External Parallelization and nowait (OMPEX_NW): This ver-
sion is based on the previous approach, but in addition we eliminated the
implicit barrier at the end of each worksharing construct by adding nowait
clauses to the worksharing directives. Obviously the user now has to man-
ually insert barriers at all points where they are required to prevent data
races, e.g. between lines 8 and 9 in figure 1. Such an implementation is vir-
tually unusable for general purpose and should not be offered to the user,
but can be quite efficient in library implementations. Our library provides
several solvers using exactly this implementation strategy, which have been
used successfully in [TSaM*05], [JTST07].

. OpenMP with Tasks (OMPTASK): In this version we employed the brand-
new tasking model of OpenMP 3.0. The parallelization is invisible to the
user, but the library routines have to be called from within a parallel region
in order to make use of the thread team. Thus, this approach is safe to
use. By the time of this writing we were unable to evaluate this approach
for performance, as the Intel 11.0 compilers providing an implementation of
OpenMP 3.0 were not able to translate this code correctly.

. TBB with Algorithms (TBB_ALG): In this version we used TBB’s algorith-
mic skeletons to create implicit tasks. The parallelization is completely invis-
ible to the user and this approach is always safe to use. The only requirement
is to initialize the TBB library once during the program’s runtime. From an
implementation’s point of view, this version is very similar to the OMPIN
version, only using TBB as the parallelization paradigm.

. TBB with Tasks (TBB): In this version we used TBB’s explicit tasks. The
parallelization is completely invisible to the user. The only requirement is
to initialize the TBB library once during the program’s runtime. The goal
is to avoid implicit synchronization introduced by OpenMP’s worksharing
constructs or TBB’s algorithmic skeletons (e.g. between lines 6 and 7.). In
contrast to the OMPEX version this approach is always safe to use, but
requires a lot of care from the implementer as all parallelization patterns
have to be implemented manually.



Only the OMPIN, OMPTASK and both TBB versions can be recommended
without reservation. With the other strategies the parallelization either becomes
visible to the user or the user would have to take additional measures to ensure
correctness, which is error-prone. But the safety costs additional synchronization
overhead, which is not necessary from an algorithmic point of view.

If performance is important enough to make some concessions in the usability
of a class library, the OMPEX version could be recommended as well. We assume
that the user can be burdened with the requirement to provide a parallel region
to make use of worksharing inside the library. This strategy works well as long
as the user exactly knows about the libraries expectations on the environment
and no other code like output operations has to be called. Nevertheless, already
for the GMRES solver this strategy turned out to be hard to use correctly.

The performance impact of the different implementation strategies is dis-
cussed in chapter 4.

3.3 Memory Allocation on cc-NUMA Architectures

In order to overcome the memory bandwidth limitations of bus-based SMP sys-
tems, shared memory computers frequently are cc-NUMA (cache-coherent non-
uniform memory architectures) machines. Neither native threads nor OpenMP
nor TBB have any notion of the hardware a program is running on, thus they
do not explicitly support distributed memory allocation on cc-NUMA nodes.
The user is forced to use operating system-specific calls or compiler-specific en-
vironment variables to pin threads to processors and to control page allocation.
Disrespecting a cc-NUMA architecture can lead to severe performance impacts
and might even inhibit achieving any speedup at all, as shown in table 1.

One additional goal of our library was to make the cc-NUMA support trans-
parent to the user in the same extent as the parallelization. Modern operating
systems typically use the first-touch allocation strategy, that is putting a page
close to the processor accessing it first.

We decided that the cc-NUMA support strategy would be a good template
parameter argument of our data type. The C++ STL library already provides
allocators as an abstraction of the memory management. An allocator provides
an interface between the application’s view of the memory system and operating
system calls. While there are several specialized allocators available for various
different needs, to the best of our knowledge there is no allocator available taking
care of memory placement optimization on cc-NUMA systems, thus we designed
some. By specifying one of our specialized allocators the user can provide hints
on how to lay out data structures on cc-NUMA architectures.

So far we only provide support for distributed page allocation during initial-
ization, because features like page migration are not yet provided by all oper-
ating systems nor are they available as a standard, but could be encapsulated
in our design as well. Here we describe two different distribution strategies that
have proved to be applicable to a range of application scenarios, both making
use of appropriate thread binding to prevent any influence of operating system
scheduling effects:



— dist_allocator: This allocator expects two arguments, namely an OpenMP
loop schedule type and optionally a chunksize specification. Internally it
calls std::malloc() to allocate a block of uninitialized memory and em-
ploys an OpenMP-parallelized loop to initialize that block with zeros using
the specified scheduling and chunksize. This allocator should be used when
during the computation the data is accessed in the same pattern, for example
when the same OpenMP schedule is used.

— chunked_allocator: This allocator expects an argument of type std: :vector.
Internally it calls std: :malloc() to allocate a block of uninitialized mem-
ory and initializes that block with zeros. The initialization loop is paral-
lelized as well, the vector elements are interpreted as indications of where
the chunks for individual threads start and end. Using this allocator, the user
can provide knowledge of how the data should be laid out on a cc-NUMA
architecture.

We successfully applied this allocator in the application scenarios where
the sparse matrix had a known structure. By precomputing the optimal
distribution of matrix rows onto threads we achieved a perfect load balance.

For many use cases a cc-NUMA-aware allocator allows for comfortable hand-
ling of memory placement. The performance impact of using our allocators on a
cc-NUMA architecture is discussed in chapter 4.

4 Performance and Scalability

We compared the performance of all implementation strategies on two recent
multicore architectures, which exhibit quite different properties:

1. FSC RX200: A 2-socket quad-core Intel Xeon 5450 (3.0 GHz) machine. On
this architecture, 4 pairs consisting of two cores share a 6 MB L2 cache each.
It offers a flat bus-based UMA memory architecture with severe memory
bandwidth limitations.

2. SUN Fire V40z: A 4-socket dual-core AMD Opteron 875 (2.2 GHz) machine.
On this architecture, each core has 2 MB L2 cache. It offers a cc-NUMA
memory architecture.

For all performance experiments, we used the Intel C++ compiler version
10.1.015 and Scientific Linux 5.1 64-bit. In chapter 4.1 we evaluate the scalability
of a sparse Matrix-Vector-Multiplication (SMXV) kernel as it is invoked in line
9 of figure 1, in chapter 4.2 we discuss the performance of an GMRES solver
which is part of our library.

4.1 SMXYV kernel

A sparse Matrix-Vector-Multiplication operation is typically the most compute-
intensive part in CG-type iterative linear solvers. For this comparably simple rou-
tine, neither the selected parallelization paradigm nor the applied worksharing-
based implementation strategy has any significant effect on the performance, as



long as the load is equally distributed on the threads and the threads are bound
to separate cores. Table 1 shows the performance of our library using three dif-
ferent allocators on both the UMA and cc-NUMA architecture. We compare
these results to the implementation provided by the Intel MKL 10.1.

Each entry displays the runtime performance in seconds and we always used
two threads. The medium dataset has a memory footprint of some 60 MB, the
large dataset has a memory footprint of some 300 MB and about 19,600,000
nonzero values. As both datasets are larger than the caches, we used a scattered
thread binding in order to maximize the memory bandwidth on the cc-NUMA
machine and the cache capacity on the UMA machine [OKWTO07].

Machine Dataset|laperf (OMPIN) MKL
std|dist| chunked

FSC RX200 (UMA) medium [406| — — 397

FSC RX200 (UMA) large (398 — — 383

SUN Fire V40z (cc-NUMA)| medium | — [310| 389 177

SUN Fire V40z (cc-NUMA)| large |— (329 428 182

Table 1. Sparse Matrix-Vector-Multiplication performance [MFLOP/s] with
two threads.

On the UMA machine, where the allocator strategy has no influence on the
performance, our implementation slightly outperforms the MKL. This proves
the efficiency of our library implementation.

On the cc-NUMA machine our implementation is up to 2.4 times faster than
the MKL, which does not provide any means of specifying a data distribution
scheme. Using the chunked allocator with knowledge of the matrix and data
layout clearly increases the performance over the static distribution of the dist
allocator. This highlights the importance of respecting the cc-NUMA architec-
ture and will also be discussed in the following chapter.

4.2 GMRES: Implementation strategies

Table 2 compares the performance of the TBB and OMPIN versions of our
GMRES solver on the cc-NUMA architecture.

Both OpenMP and TBB have only little support for thread affinity, and
no explicit support for data placement. While the techniques to pin OpenMP
threads to processor cores are well-exploited, these solutions are not yet ap-
plicable to tasks. Thus, the Tasking paradigm has a major disadvantage over
OpenMP’s worksharing: Data affinity is lost, hurting the scalability badly. In-
creasing the number of threads from two to four delivers an improvement of only
1.12, using more than four threads is not profitable at all.

While the OMPIN version with just one thread is slower than the TBB
version, it allows for the specification of cc-NUMA aware allocators and respects
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the data distribution in its parallelization. Given our data types, the user simply
has to use a specialized allocator to significantly increase the performance of
the whole solver. Considering the OMPIN version, our allocators introduce a
small performance overhead over the standard allocator, but the speedup can be
increased from 3.03 to 5.77 using the dist allocator and to 6.45 using the chunked
allocator with eight threads.

Parallelization|Allocator |#Threads|Runtime
TBB std 1 389.1
211.8
188.3
183.9
421.6
231.4
197.6
139.3
432.4
229.9
143.5
74.9
446.3
229.5
121.3

8 69.2
Table 2. Performance comparison of TBB and OMPIN version and different
allocator strategies for a GMRES solver on the cc-NUMA machine.

OMPIN std

OMPIN distributed

OMPIN chunked

= DN |00 = N |00 &= N 00 = 1D

Table 3 shows the performance of selected implementation strategies of a
GMRES solver on the UMA architecture, leaving out any cc-NUMA effects. Each
entry displays the runtime performance in seconds. As the allocator strategy has
no effect on the flat memory architecture, we always used the std allocator. Using
only one thread, the TBB and OMPIN versions perform about the same speed,
but the OMPEX version is clearly faster because of less internal overhead.

Using more than two threads with the TBB version is not profitable. We
are still investigating this, but we suspect that as tasks are not bound to a
specific thread, there is not data affinity and the cache content is lost whenever a
task switches, which might significantly decrease performance. Using the affinity-
based scheduling introduced in the recent version of TBB did neither improve the
performance, nor had it significant influence on the thread scheduling according
to the experiments we did so far. This needs further investigation.

On the one hand the OMPEX version outperforms the OMPIN version in all
cases. But on the other hand the OMPEX version is very dangerous to use for
an incautious programmer. Given our goal to enable flexible algorithm design by
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Parallelization|Allocator|#Threads|/Runtime
TBB std 1 220.7
116.2
112.3
104.9
218.3
117.2
86.4
62.1
203.5
108.9
82.9

8 60.5
Table 3. Comparison of different implementation strategies for a GMRES solver
on the UMA machine.

OMPIN std

OMPEX std

= DN |00 N |00 N

providing efficient and easy to use parallel data types, the current choice is to use
the OMPIN parallelization strategy. According to our findings, the performance
improvements of the OMPEX version are not in balance with the disadvantages
in terms of use. Nevertheless it can be used within a library internally.

We did not present results for the native threading APIs. As all API calls
are inside operator or class member functions, the parallelization is completely
invisible and using the data types is safe both from serial and parallel code.
But thread creation and termination for each operator call involves significant
overhead and it is not possible to span a thread’s lifetime over multiple con-
secutive function calls (e.g. line 6 and 7 in figure 1), unless non-standardized
extensions offering thread pooling functionality are used. Because of that and
the lack of sophisticated load balancing facilities, the performance is worse than
the OMPIN version and using native threading is associated with a significantly
higher programming effort.

5 Conclusion and Future Work

Combining the object-oriented and generic capabilities of C++, we designed a
library which enables the user to write efficient and highly abstract parallel code.
The only differences between the serial and the corresponding parallel version
are additional template parameters in the type definitions. Achieving a high
efficiency while hiding the parallelization has been made possible by employing
a self-implemented template expression mechanism.

We discussed several implementation strategies for such a library and perfor-
mance measurements show that avoiding fork-join overhead (OMPEX version)
can improve performance, but this approach should not be recommended for
data type implementations. We found using C++ classes with internal OpenMP
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parallelization (OMPIN version) to be the best compromise between programma-
bility and performance today and recommend this strategy for any similar soft-
ware project. The version OMPEX and OMPEX_NW offer a path to increased
scalability, but hand the responsibility for defining the parallel region and the
synchronization over to the knowledgeable programmer. Both OpenMP and TBB
tasking models offer promising properties in terms of programmability as well,
but using them it currently is not possible to respect the cc-NUMA characteris-
tics of an architecture, which is crucial for performance and scalability.

Future work will include investigation on how compilers and language con-
structs (especially of C++40X) can further optimize the performance and scal-
ability by saving synchronization overhead. We are also investigating on how
tasking models could provide support for data affinity.
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Abstract. Despite the availability of ample parallelism in multimedia
applications parallelizing compilers are largely unable to extract this
application parallelism and map it onto existing embedded multi-core
platforms. This is mainly due to the limitations of traditional auto-
parallelization on static analysis and loop-level parallelism. In this paper
we propose a dynamic, profile-driven approach to auto-parallelization
targeting coarse-grain parallelism. We present our methodology and tools
for the extraction of task graphs from sequential codes and demonstrate
the various stages involved in this process based on the JPEG-2000 still
image compression application. In addition, we show how the joint detec-
tion of multiple levels of parallelism and exploitation of application sce-
narios can lead to performance levels close to those obtained by manual
parallelization. Finally, we demonstrate the applicability of our method-
ology to a broader set of embedded multimedia codes.

1 Introduction

In recent years multi-core computing systems have become widely available and
their efficiency in multimedia, signal processing, wireless or graphic applications
has been already proved [1, 2]. However, automatic mapping of applications onto
these platforms is still a major research challenge. The predominant manual
approach to application parallelization is clearly not scalable enough to cope
with the growing complexity of embedded codes and is bound to fail without
strong programming tools support.

While auto-parallelization has a long research history, success in the embed-
ded systems domain is limited. This is especially true for embedded multimedia
applications which exhibit properties and constraints significantly different from
the traditional scientific high-performance computing domain targeted by auto-
parallelizers such as e.g. SUIF [3], Polaris [4]. In order to guarantee correctness
parallelizing compilers heavily depend on static analysis for data dependence
testing.

In this paper we propose to incorporate additional dynamic profiling infor-
mation in the extraction of coarse-grain task graphs. We address the large body



of legacy codes written in sequential programming languages like C and present
a pragmatic approach to parallelization combining static and profile-driven anal-
ysis as well as multiple levels of parallelism. Based on the JPEG-2000 still image
compression application we demonstrate how to automatically derive a parallel
OpenMP implementation and compare its performance with both a manually
parallelized implementation and one generated by a static state-of-the-art auto-
parallelizing compiler.

Contributions The recent advent of multi-core architectures has sparked interest
in automatic extraction of coarse-grain parallelism from sequential programs,
e.g. [2,5,6]. We extend it in numerous ways and among the specific contributions
of our paper are:

— the introduction of an “executable IR” that simplifies the back-annotation
of high-level code and data structures in the compiler with information col-
lected during profiling,

— the joint extraction of task graphs and the detection of application sce-
narios [7] in order to efficiently exploit the semi-dynamic nature of many
multimedia applications,

— the automatic detection of scalar and array reduction statements, using a
hybrid statical and profile-driven analysis.

Overview This paper is structured as follows. In section 2 we present our paral-
lelization methodology and tools. This is followed by a case study based on the
JPEG-2000 application in section 3 before we evaluate our parallelization ap-
proach on a wider range of embedded multimedia applications in 4. We discuss
related work in section 5 and summarize and conclude in section 6.

2 Profiling toolchain

At the heart of the proposed parallelization methodology is our profile-driven
dependence analyzer. In the following paragraphs we give a brief technical de-
scription of the main components of our current prototype. An overview of the
compilation, profiling and analysis process is depicted in Figure 1.

2.1 Source Code Instrumentation

Our primary objective is to enhance and disambiguate the static structure of
a given program using precise, dynamic information. The main obstacle to this
process is correlating the binary program execution back to the source code. Un-
fortunately, traditional compiler flows discard most of the high-level information
and source-level constructs during the code generation process. Thus, binary in-
strumentation approaches require the use of debugging information which are
imprecise since only symbol table information and the corresponding line-of-code
of an instruction is maintained.
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Fig. 1. Overview of the compilation, profiling and parallelization flow.

In contrast, our instrumentation framework (MemDump) operates on a medium-

level Intermediate Representation (IR) of the CoSy compiler and can emit a plain
C representation of its IR, enabling fast, native execution. Effectively we create
an “executable IR” that allows for an efficient and precise back-annotation of
profiling information to the compiler internal data structures such as data de-
pendence graphs. This differs e.g. from [6] where an instrumented microarchi-
tectural simulator is used for profiling and difficulties arising from the particular
idiosyncrasies of the underlying instruction set architecture have to be addressed
explicitly.

2.2 Profile-Driven Dependence Analyzer

The profile analyzer operates on the previously generated traces and evaluates
memory and control-flow operations to dynamically construct data and control
flow representations of the program under inspection. While a large number
of executed IR nodes need to be processed this process is fast as no low-level
machine details need to be considered.

Trace parsing Each “trace item” is processed using the procedure described in
Algorithm 1. During this process, the control-flow handler reconstructs a global
Control Flow Graph (CFG) of the application and maintains context information
(e.g. call and loop stack, normalized loop-iteration vector). The corresponding
data-flow handler keeps a mapping from the memory address space of the ap-
plication to the nodes of the CFG. For each memory location it records the
node which modified (def) it last and the normalized iteration vector at that
time. In the current prototype the memory granularity is at a byte-level. Data-
dependence information is registered in the form of data-edges which are inserted
in an overlay of the CFG. Each data-edge is annotated with information about
the address regions that are communicated from the source to the target node,
creating a Control Data Flow Graph (CDFG) of the application. Finally, each
data edge contains a bit-vector which records on which levels of the loop-nest
this particular edge was carrying a loop-carried dependence.



Algorithm 1: The main algorithm executed by the Profile-Driven Depen-
dence Analyzer to extract the CDFG.

Data
- CDFG(V,Ec, Ep): graph with control (E¢) and data-flow (Ep) edges
- bite[]: bitfield in each e € Ep
- set.: address set in each e € Ep
- ity []: iteration vector of address a
- M[A, {V,it}]: hastable maps memory addresses — {V,itq} tuple
- ito[]: current normalized iteration vector
- u € V: current node
Procedure instruction_handler
I « next instruction from trace
if I is a memory instruction then
a « address accessed by instruction
if I is a DEF then
| update last writer in M

else if USE then
find matching def from M
if def—use edge e ¢ CDFG then
| add ein Ep

sete «— sete U {a}
foreach i : it,[i] # ito[i] do bite[i] «— true
ite «— itg

else if I is a control instruction then
v «— node referenced by instruction
if edge (u,v) ¢ Ec then

| add (u,v) in CDFG

L u<+«~—v

Privatization We maintain a complete list of true-, anti- and output-dependencies
as these are required for parallelization. Rather than recording all the readers of
each memory location we keep a map of the normalized iteration index of each
memory location that is read/written at each level of a loop-nest. This allows
us to efficiently track all memory locations that cause a loop-carried anti- or
output-dependence. A scalar z is privatizable within a loop if and only if every
path from the beginning to the loop body to a use of x passes from a defini-
tion of z before the use. Hence, we can determine the privatizable variables by
inspecting the incoming and outgoing data-dependence edges of the loop.

Parallelism detection After the trace processing has been completed, the an-
alyzer performs an additional post-analysis based on the augmented CFG to
determine parallelizable loops and control-independent basic-block regions. In
addition, for each loop the analyzer produces a detailed summary of variables
that have to be privatized to eliminate any false-dependencies. Finally, when-
ever a loop is not parallelizable we inform the user about the offending data-
dependencies, providing information about the (i) source/destination node, (ii)
the data which was communicated and (iii) the context it occurred.

Reduction detection In the presence of pointer or indirect array accesses (e.g.
sparse matrices) static analysis makes conservative assumptions and, thus, limits
the amount of exploitable parallelism. We enhance the existing static analysis
and propose a hybrid approach for these complex cases. As a first step we use a
simple static analysis pass in our compiler to select reduction statement candi-



dates. Then, we instrument our source code to explicitly tag these operations.
Finally, the dependence analyzer determines which candidates are valid reduc-
tions. The reduction detection step is based on the following necessary properties
of a reduction:

1. The reduction operator is both commutative and associative.

2. There is a true self-dependence which denotes the accumulation to the partial
result of the reduction.

3. Only the final result of the reduction is used later i.e there is no outgoing
dependency from the reduction.

4. No true dependency is fed into the reduction.

It is important to stress that this methodology not only tracks scalar and
array reductions but also coupled reductions, where more than one statements
of the loop “accumulate” on the same targets.

2.3 Parallelization Methodology
The main stages of our parallelization approach are:

1. Source code instrumentation using MemDump

2. Compilation of the instrumented source using a standard ANSI-C compiler.

3. Program execution and generation of multiple trace files for a set of repre-
sentative input datasets.

4. Processing of the trace files with the profile-driven dependence analyzer.

5. Identification of application hot spots.

6. Parallelization of the hotspots based on dynamic dependence information,
starting with the outer-most loops.

7. Parallel code generation for the selected regions using one of the following
OpenMP directives.

— Parallel for for well structured parallelizable for-loops.
— Parallel taskq for any uncountable or not well structured parallelizable
loops!.
— Parallel sections for independent coarse-grain functions or control-in-
dependent code-regions.
8. Guarding of loop-carried dependencies either using atomic, ordered or re-
duction OpenMP clauses.
9. Privatization of variables that according to the dependence analyzer are
causing a false-dependence.

! Task queues are an extension to the OpenMP standard already available in the Intel
compilers, but also part of the recently-released OpenMP 3.0 standard.



2.4 Scenarios and Predicate Extraction

Application scenarios [7] correspond to “modes of operation” of an application
and can be used to switch between individually optimized code versions, or
prefetch data from memory or optimize communication if a suitable predictor
can be constructed.

For sufficiently large sub-regions of the CFG we analyse the conditional state-
ments at their roots and trace the variables involved in the condition expressions
back to their original definitions. At this point we construct a new predicate ex-
pression that can be used as an early indicator about the application’s future
control flow. For many multimedia applications, for example, we have found that
the statically undecidable control flow can be determined as soon as the relevant
header information has been read from the input stream, i.e. long before the
actual branch to a particular code region (e.g. a specific mode of a multimedia
codec) is taken.

2.5 Complexity and applicability of the approach

As we process data dependence information at byte-level granularity we may
need to maintain data structures growing potentially as large as the entire ad-
dress space of the target platform. In practice, however, we have not observed
any cases where more than 1GB of heap memory was needed to maintain the
dynamic data dependence structures, even for applications taken from the SPEC
2000 integer and floating-point benchmark suites.

While the dynamic traces can reach several GB’s in total size, they can be
processed online. Our tools are designed to build their data structures incremen-
tally as the input trace is streamed into the analyser, thus eliminating the need
for large traces to be stored.

As our tools operate on the same level as the medium-level compiler IR we
do not need to consider detailed architecture state, hence our tools can operate
very efficiently. In fact, we only need to keep track of memory and control flow
operations and make incremental updates to hash tables and graph structures. In
practice, we have observed processing times ranging from a few seconds for small
kernel benchmarks up to about 60mins for large multimedia codecs operating on
long video streams.

2.6 Safety

Despite the fact that our method cannot guarantee correctness and still presumes
user verification, in all the benchmarks that we considered so far there was not a
single case of a loop/region falsely identified as parallel (false positive). In addi-
tion, the high potential of thread-level parallelism and the immense performance
gap between automatic and manual parallelization, urge for a more pragmatic
approach. We consider the tools and the synergistic techniques proposed in this
paper to be a step towards this direction rather than a replacement of static
dependence analysis.



3 Case Study: JPEG-2000 Still Image Compression

In this section we present a case study based on the state-of-the-art JPEG-2000
image coding standard. We explain our parallelization approach for an open-
source implementation of the standard, OpenJPEG, and report performance
figures for the resulting OpenMP implementation.

3.1 JPEG-2000 Still Image Compression

JPEG-2000 is the most recent standard produced by the JPEG committee for
still image compression and is widely used in digital photography, medical imag-
ing and the digital film industry. The main stages of the wavelet-based coding
process as defined in the JPEG-2000 standard are shown in the diagram in figure
2.
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Fig. 2. Overview of the JPEG-2000 coding process.

3.2 Detection of Parallelism

JPEG-2000 exhibits multiple levels of data-parallelism (e.g. tiles, components,
code-blocks). Even without tiling most of the coding stages can be performed
independently on each component. Furthermore, during entropy bit coding, an
additional level of parallelism can be exploited using a code-block decomposition.
In the following paragraphs we go over the individual steps involved in the
parallelization according to the methodology presented in section 2.2.

Static Analysis of DOALL Loops Initially, we evaluated the amount and type of
parallelism a production auto-parallelizing compiler (Intel icc v10.1) can ex-
tract from our application. Enabling all optimizations available in the Intel
compiler (e.g. multi-file interprocedural analysis, auto-parallelization and auto-
vectorization) had no impact on the overall performance of the application for
both compression and decompression. The compiler vectorized 17 and 11 loops,
respectively, but could not parallelize any loops. Setting the profitability thresh-
old to its minimum value resulted in 31 and 20 vectorized loops for compression
and decompression, respectively, and 54 and 27 parallelized loops. This more
aggressive parallelization scheme, however, resulted in a slow-down of 8 over the
default setting.



Profile-Driven Analysis Following hot spot detection we use our analysis tool
described in section 2 to extract parallelism at any level of the call hierarchy
under the detected hot spots dwt_encode and t1_encode_cblks of the JPEG-2000
application.

While the main loop of the discrete wavelet transform can be easily expressed
as a parallel DOALL loop, the situation for t1_encode_cblks is more complicated.
Two loop-carried dependencies at the outermost loop level prevent paralleliza-
tion at this level. Using the automatic reduction detection of the Trace Analyzer,
we can automatically detect that this update can be substituted with an appro-
priate parallel reduction operation. Indeed, manual code inspection revealed that
this is due to the update of an accumulation variable which is not used before
later stages of the encoding process.

Another issue arises from the particular dynamic memory allocation and
buffer management scheme which was used in the function t1_encode_cblks to
minimize the cost of repetitive calls to malloc(). The particular buffer allocation
function causes another loop-carried dependence detected by our tools. After
privatization of the temporary buffer each thread manages its own buffer, elimi-
nating the previously detected dependence. However, at this point our tool still
requires manual intervention as it cannot be inferred that calls to the library
function malloc() can be reordered. In an improved version of our tools we will
include this information for this and other system functions.

3.3 Deriving a Parallel Implementation

After we have identified the available parallelism, the next step is to actually
derive a parallel OpenMP implementation.

While OpenMP eliminates much the burden of explicit thread synchroniza-
tion, we still need to address data-sharing. Basically, there are two kinds of
memory access, shared and private. Based on the true data dependencies we
classify the variables accordingly and for each private variable a separate copy
is created for each thread.

Dynamic data structures need special attention to preserve correctness. In the
case of dwt_encode it is straightforward for our tool to privatize the dynamically
allocated data structure, since these are allocated within the dynamic context
of the function. On the other hand, for t1_encode_cblks the situation more com-
plicate since the allocation is just before the call to the function. Therefore, we
need to ensure that the allocation is performed independently for each thread. We
achieve this by propagating the parallel region out of the scope of t1_encode_cblks
up to the point where the allocation takes place. The work-sharing directive will
still result in the same parallel loop execution, but accesses to shared data before
the work-sharing construct are executed only by the original thread in a region
protected by an OpenMP master directive.



3.4 Performance Evaluation

We evaluated the achievable speedup of the parallelized benchmark on an SMP
workstation (2 x Intel Dual-Core Xeon 5160/3GHz), running Fedora Core 6
Linux. Both the sequential and OpenMP versions of the code were compiled using
Intel® Compiler (v10.1) and optimization level —03. The reported speedups are
over the unmodified sequential code.

Performance results of both encoding and decoding using either paralleliza-
tion at component or block-level of ¢1_encode_cblks are shown in figure 3. Given
that we targeted approximately 70% of the original, sequential execution time
in our parallelization and the theoretical limit given by Amdahl’s Law, obtained
speedups of = 2x are clearly promising. Comparing the performance of the
component-level and the block-level decomposition it is clear that the latter is
more scalable since the maximum number of components in an image is three.
This also explains why the performance on four cores in Figure 3 is almost
identical to the one on three cores.

W1T W27 W37 W4T

Speedup

JPEG-2000 compr. JPEG-2000 compr. JPEG-2000 decompr. JPEG-2000 decompr. JPEG-2000 decompr.
(component-level) (block-level) (component-level) (block-level) (tiling: 256x256)

Fig. 3. Speedups achieved for various functional modes of the JPEG-2000 codec.

Tiling Parallelizing JPEG-2000 decompression at a tile-level achieved far better
scalability than the one-tile parallelization schemes, reaching a speedup 3.6x on
four cores and 256 x 256 tiles. In fact, these results are in line with those obtained
by manual parallelization by expert programmers [9, 10]

Scenarios For the JPEG-2000 application we have extracted execution scenarios
and computed predicate expressions that can be used to determine later tasks
at the earliest possible point in the program execution. The main observation
is that this input-dependent behavior is in fact observable at the control-flow
level. Typically, the cause for variability in multimedia applications is restricted
to a small set of input parameters (e.g. file header information or command line
arguments). The parameters that we experiment with were the following (A)
turning lossy compression true/false, (i¢) using one or multiple tiles of various



sizes qnd (4i%) using source images of one or three components. In all cases the
predicates generated by our tools accurately describe the precise comparisons
that distinguish the four possible states. After finding these predicates, the next
step is to locate the earliest point of the program where these predicates can
be safely evaluated. As expected, this is the moment the relevant fields are read
from file header.

4 Broader Evaluation

In this section we present additional performance results for selected applica-
tions taken from the Mediabench, UTDSP and MiBench benchmark suites. We
have selected these applications based on their suitability for parallelization and
compatibility with our tools.

In Figure 4 we present the speedups for eleven parallelized benchmarks. The
average speedup using 4 threads is 2.66. Applications with ample coarse-grain
DOALL parallelism in outer loops like susan, stringsearch and compress achieve
relatively higher speedups and present good scalability. On the other hand appli-
cations, like histogram, and Ipc exhibit either large sequential parts, or are only
parallelizable in lower-levels of nested-loops. As a consequence, these applications
are not scaling so well, attaining relatively lower speedups. In addition, appli-
cation like FFT and epic manage to get significant performance gains despite
the considerable slowdowns (57% and 32% respectively) of the single-threaded
execution of the parallel code.

HIT M2T W37 W4T

epic compress  edge_detect  histogram Ipc sprectral FFT susan_s susan_c susan_e  stringsearch

Fig. 4. Speedups achieved using the parallelized implementations of the benchmarks
on a 4-core machine.

5 Related Work

Dynamic Dependence Analysis (DDA) [11] is a method to extract dependence
information using the actual data accesses recorded during the runtime of a



program execution and aims at improving loop-level parallelization of scientific
applications. Hybrid dependence analysis [12] unifies static and run-time analysis
and has been successfully applied to automatic parallelization, where it helped
extracting more loop-level parallelism in scientific codes.

Similarly, in [13] DDA is investigated as an aggressive, i.e. unsafe, depen-
dence checking method to uncover loop-level parallelism. They present a study
of the parallelization potential previously unexploited by the SUIF parallelizing
compiler for a set of Digital Signal Processing (DSP) kernels and multimedia
applications. The same authors show in [14] and [15] that dependence vectors
extracted by means of DDA can be exploited to combine loop parallelization
and functional pipelining. This work, however, is focused on the general feasi-
bility of using dynamic dependence information, but does not present a specific
methodology for deriving a parallel implementation.

The techniques presented in[6] are most relevant to our work. Load and stores
memory operations are instrumented in Dynamic SimpleScalar to extract infor-
mation about the data producer and consumer functions of the program. Based
on this profile information an interprocedural data flow graph is constructed.
This graph and additional profiling information summarizing the execution time
of each function are used to cluster functions to form a functional pipeline. Then,
this information is provided to the user who decides and implements the parallel
code using multithreading. In a case study this method is evaluated against the
bzip2 benchmark, but it lacks features like code generation, automatic detection
of higher-level parallelization constructs (e.g. reductions) and incorporation of
the statically available information of our approach.

The problem of pipeline-parallelism exploitation in C programs is addressed
in [16]. Based on user directed source code annotations a task pipeline is con-
structed and communication across task boundaries is tracked by means of dy-
namic analysis. While this approach is practical, it presumes programmer’s in-
sight to the underlying algorithm and it requires extensive user guidance and
manual intervention.

MAPS [5] uses profiling data to annotate CDFGs for the extraction of task
graphs from sequential codes. This technique is heavily dependent on a code par-
titioning framework (T'CT) which targets a specific distributed memory MPSoC
and assumes accurate static data dependence analysis. In addition, this approach
has only been evaluated against two applications, JPEG and ADPCM.

Dependence-profiling approaches are also used in the context of Thread-Level
Speculation (TLS) [17-19]. Unlike our proposal which uncovers always-true
parallelism, TLS approaches use profiling information to mitigate the cost due
to mispeculation on may-dependencies while preserving the sequential semantics.

6 Conclusions

We have demonstrated that profile-driven parallelization is a powerful method-
ology to uncover parallelism from complex applications such as JPEG-2000 and
other media processing codes. Our automated approach to parallelism extrac-



tion and OpenMP code generation is capable of delivering performance figures
competitive to those achieved by expert programmers during manual paralleliza-
tion. We have shown that we can derive alternative parallelization schemes corre-
sponding to different parallelization granularities, handle dynamically allocated
data structures and compute predicate expressions for observed application sce-
narios.
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Abstract. In Transactional Memory (TM), contention management is
the process of selecting which transaction should be aborted when a
data access conflict arises. In this paper, the performance of published
CMs (contention managers) is re-investigated using complex benchmarks
recently published in the literature.

Our results redefine the CM performance hierarchy. Greedy and Priority
are found to give the best performance overall. Polka is still competi-
tive, but by no means best performing as previously published, and in
some cases degrading performance by orders of magnitude. In the worst
example, execution of a benchmark completes in 6.5 seconds with Pri-
ority, yet fails to complete even after 20 minutes with Polka. Analysis
of the benchmark found it aborted only 22% of all transactions, spread
consistently over the duration of its execution.

More generally, all delay-based CMs, which pause a transaction for some
finite duration upon conflict, are found to be unsuitable for the evaluated
benchmarks with even moderate amounts of contention. This has signifi-
cant implications, given that TM is primarily aimed at easing concurrent
programming for mainstream software development, where applications
are unlikely to be highly optimised to reduce aborts.

1 Introduction

Transactional Memory (TM) [1,2] promises to ease concurrent programming
effort in comparison to fine-grain locking, yet still provide similar scalability
and performance. TM has seen a rise in research activity as it became clear
that scalable software would be essential to take advantage of future multi-core
technology.

In TM, code blocks that access shared data are defined as transactions, simi-
lar to how they are guarded by locks in traditional explicit concurrent program-
ming. However, in contrast to locks, a TM runtime manages conflicting data
accesses between the code blocks, and the developer is freed from the responsi-
bility of orchestrating lock acquisition and release. The TM runtime logs all read
and write accesses for each transaction, and compares them to detect conflicts.
A CM (CM) is invoked when two transactions have conflicting accesses, and
aborts one of the transactions. A transaction commits if it completes executing



its code block and does not aborted due to conflicts, making its writes to shared
data globally visible.

Several CMs (or contention management policies) have been published [3-6]
that offer a variety of algorithms for selecting the victim transaction to abort.
Since their publication in 2004-5, the CMs have not been re-evaluated in the light
of new, complex, TM benchmarks. In this paper, we investigate the performance
of eight well-known CMs using Lee’s routing algorithm [7] and a port of the
STAMP benchmark suite [8]. Our investigation reveals several interesting results.

The most important result is that Polka, the published best-performing CM,
suffers severe performance degradation when even a moderate (22%) proportion
of executed transactions abort. This trend extends to other delay-based CMs in-
vestigated. Overall, Greedy and Priority provide the best performance, although
Greedy offers stronger progress guarantees.

The paper is organised as follows: Section 2 describes the CMs, and Section
3 describes the complex benchmarks used in the evaluation. Section 4 presents
the evaluation, and Section 5 further investigates the effect of changing Polka’s
parameters on its performance. Section 7 summarises the paper.

2 CMs

A CM is invoked by a transaction (the calling transaction) when it finds itself in
conflict with another transaction (the opponent transaction). The CM decides
which transaction should be aborted, although delay-based CMs wait for a fi-
nite amount of time to give the opponent transaction a chance to commit. The
CMs investigated are: Aggressive, Polite (called Backoff in this paper), Eruption,
Karma, and Kindergarten from [3], Polka from [4], Greedy from [5], and Priority,
a new variant on Timestamp [3]. Of these, the following are delay-based CMs:
Backoff, Eruption, Karma, and Polka. Brief descriptions of each CM follow.
Backoff gives the opponent transaction exponentially increasing amounts of
time (delay) to commit, for a fixed number of iterations, before aborting it.
Default parameters [3]: minimum delay of 2*ns, maximum delay of 2%6ns, and
22 iterations.

Aggressive always aborts the opponent transaction immediately.

Karma assigns a transaction dynamic priority equal to the number of reads
performed by it. Karma gives the opponent transaction, for a dynamic number of
iterations, a fixed amount of time delay per iteration to commit. If the opponent
transaction has not completed after all the iterations of delay, it is aborted. The
delay given is 1000ns per iteration, and the number of iterations is equal to the
opponent’s priority minus the caller’s priority.

Eruption, like Karma, assigns dynamic priorities to transactions based on the
number of reads. Conflicting transactions with lower priorities add their priority
to their opponent, increasing the opponent’s priority, to allow the opponent to
‘erupt’ through any conflicts it has, or may have, to completion.



Kindergarten makes transactions abort themselves when they conflict with a
transaction the first time, but abort the opponent if it is encountered in a conflict
a second time, and so on.

Polka combines Karma and Backoff by extending Karma to give the opponent
transaction exponentially increasing amounts of time delay to commit, before
aborting the opponent transaction. The delay parameters used are identical to
Backoff’s. Additionally, if a conflicting object is being read by several transac-
tions, Polka will immediately abort all of them if the calling transaction wishes
to write to the conflicting object.

Greedy aborts an opponent transaction if it is younger or sleeping, else waits
for it indefinitely (i.e., if the opponent is older, and not sleeping). A waiting, or
suspended (e.g. during 1/0) transaction is marked as ‘sleeping’.

Priority aborts the younger of the conflicting transactions immediately. Priority
can lead to a transaction never completing if it conflicts with an older transaction
that has a fault that prevents it from completing. Greedy provides stronger
progress guarantees than Priority by not allowing such a situation if the faulty
transaction is suspended.

3 Platform & Benchmarks

Results are obtained on a 4x dual-core (8 core) Opteron 2.4GHz system with
16GB RAM, openSUSE 10.1, and Sun Java 1.6 64-bit with the parameters
-Xms1024m -Xmx14000m. DSTM2 [9], a software TM implementation, is used
to evaluate the CMs. Past research in contention management has also used
DSTM2, its variants, or predecessors. In this paper, DSTM2 is set to its default
configuration of eager validation, visible reads, and visible writes.

The benchmarks used are Lee’s routing algorithm [7], and KMeans and Va-
cation from the STAMP benchmark suite (version 0.9.5) [8]. All the benchmarks
have been ported to DSTM2. STAMP’s Genome benchmark has been investi-
gated, but is not presented as it generates very few conflicts on the hardware
used in the experiments, and its results give no greater insight than the results
from Vacation. As shown in Table 1, eight benchmark configurations are used!,
with a range of transactional conflict rates (contention) are used in this eval-
uation. The parameters used for each benchmark are those suggested by their
respective providers, except KMeansHS and KMeansLS, which we created for
quick experiments. Below, the benchmarks are briefly described, and in partic-
ular their concurrency characteristics are mentioned with respect to the inputs
detailed in Table 1.

Lee’s routing algorithm is a circuit routing algorithm that automatically con-
nects pairs of points in parallel, without overlapping any existing connections.

! Note to reviewers: all eight configurations are presented for completeness, but the
four high-contention configurations suffice, and only using them would allow for
larger graphs in Figures 1 and 3. We intend to present only those four configurations
in the final paper, unless requested otherwise.



Configuration Name Application Configuration
KMeansL KMeans low contention clusters:40, threshold:0.00001,
input_file:random50000_12
KMeansH KMeans high contention clusters:20, threshold:0.00001,
input_file:random50000_12
KMeansLS KMeans low contention clusters:40, threshold:0.0001,
with small data set input_file:random10000_12
KMeansHS KMeans high contention clusters:20, threshold:0.0001,
with small data set input_file:random10000_12
VacL, Vacation low contention relations:65536,

percent_of_relations_queried:90,
queries_per_transaction:4,
number_of_transactions:4194304
VacH Vacation high contention relations:65536,
percent_of_relations_queried: 10,
queries_per_transaction:8,
number_of_transactions:4194304
Lee-TM-ter Lee low contention early_release:true, file:mainboard
Lee-TM-t Lee high contention early_release:false, file:mainboard

Table 1. Parameters used for each benchmark configuration used in the evaluation.

The application loads pairs of points from an input file (measured execution
time excludes parsing of the input file). Threads attempt to find a route be-
tween a pair of points by performing a breadth-first search of the grid from
the first point, avoiding any grid cells occupied by previous connections. If a
route is found, ‘backtracking’ writes the route onto the grid. Transaction-based
routing requires backtracking to be performed transactionally. An early release
[10] variant (Lee-TM-ter) removes data from the transaction’s read set during
the breadth-first search, which reduces false-positive conflicts. Execution is com-
pletely parallel, and the amount of parallelism is controlled by the amount of
overlap in the connections attempted. The input file used has 1506 connections,
i.e. transactions to commit, many of which are quite long, which increases con-
tention and transaction execution time.

KMeans groups a large pool of objects into a specified number of clusters in two
alternating phases. A parallel phase transactionally assigns objects to their near-
est cluster, and a serial phase re-calculates cluster centres based on the mean of
the objects in each cluster (initial cluster centres are random). Execution contin-
ues until two consecutive iterations generate similar cluster assignments within
a specified threshold. The input files supply a large number of objects to cluster,
and thus transactions to execute, but parallelism is controlled by the distribution
of objects to the randomised cluster centres. Furthermore, randomised cluster
centres result in considerable execution time variance, as observed in Section 4,
Figure 1. Transactions are extremely short since they only read cluster centres
and assign objects to the closest one.



Vacation is a travel booking database simulation that has operations to book
or cancel cars, hotels, and flights on behalf of customers transactionally, and
must update the customer’s linked list of reservations as necessary. Threads can
also modify the availability of cars, hotels, and flights transactionally. The input
parameters lead to low contention for the hardware used, and transactions are
short since they update the simulated database and customers’ linked lists.

4 Initial Evaluation

FEach benchmark configuration is executed using each CM, and using 1, 2, 4,
and 8 threads. Each unique combination of benchmark configuration, CM, and
threads is called an experiment. Each experiment is automatically terminated
after 20 minutes, and when this occurs the associated CM is deemed ‘too poor’
for the given experiment, and we say the CM has failed the experiment. Results
are averaged over eight runs of each experiment, except the failed experiments,
which are run only three times to reduce doubt.

Figure 1 and Table 2 show the execution time results. Single thread results
are presented to give an idea of execution time variance for the benchmarks,
as obviously there is no contention or non-determinism when using a single
thread, and thus execution times should be almost identical. This is true for all
benchmarks except KMeans, where the randomised initial cluster centres have
a significant impact on execution time. For performance comparisons, only the
multi-threaded results are of interest, and less so with KMeans due to the large
variances observed in it, although KMeans is still important due to the failures
seen.

The results are mixed, with different CMs showing competitive performance
with different benchmarks, reflecting the varying contention and execution char-
acteristics of the benchmarks. For instance, Polka shows good performance in
VacH and VacL, but Kindergarten does not, and the opposite is true in Lee-TM-t
and Lee-TM-ter, especially as the number of threads increase. In general, a high
consistency of good performance is only seen with Greedy and Priority. Aver-
aged either over all threads, or only over 2-8 threads, the performance difference
between them is less than 0.6%.

Polka is the published best CM [4], in the past producing best or near-best
execution times for all benchmarks it has been executed with in comparison to
other CMs. For VacH and VacL this is certainly the case, but this benchmark re-
sults in low contention on the hardware used. Strikingly, Polka is one of the worst
in Lee-TM-t, and consistently joint worst in KMeansH and KMeansL.. KMeans
experiments, and Lee-TM-t exhibit large amounts of contention that increase
with the number of threads, as shown in Figure 2. Worryingly, KMeansL at 4
threads has at least a 78% commit rate (using Priority CM, not theoretical best
commit rate), but Polka fails to complete. Polka manages to complete execution
with Lee-TM-t as there are only 1506 routes to connect transactionally, and
thus the number of transactions executed is much fewer than KMeans, which
typically executes millions of transactions. In KMeansHS and KMeansLS, which
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typically take less than 20 seconds to complete with the well-performing CMs,
Polka fails to complete in 20 minutes.

Critically, wherever Polka fails, Karma also always fails, but Backoff does not
also always fail. As mentioned earlier, Polka combines Karma and Backoff. The
difference between the first two and the latter is the number of delay intervals:
Backoff has a fixed number of 22, whereas the other two calculate it dynamically.
By deduction, the average number of iterations in Polka and Karma must have
been larger than 22. We also note that Eruption similarly fails in KMeans exper-
iments, and performs poorly in Lee-TM-t. This suggests that delay-based CMs
in general are not suitable for applications that exhibit non-negligible amounts
of contention.

Finally, KMeans experiments with 2 threads deserve further attention be-
cause in these Polka completes execution with a competitive execution time,
and Karma does not. The difference between Polka and Karma are a) that
Polka aborts a set of reading transactions immediately if the calling transaction
wishes to write, and b) the amounts of time delay per iteration. Although the
first point may explain Polka’s higher performance, the second point calls into
question the choice of parameters used for Polka, and, more generally, whether
they were to blame for the poor performance observed in other experiments
above. We investigate this further in the next section.

5 Investigation of Polka’s Parameters

Polka has two tuning parameters: LOG_MIN_BACKOFF and LOG_MAX_BACKOFF, which
bound the exponential delay. Polka calculates delay for an iteration as 2™ nanosec-
onds where n starts at LOG_.MIN_BACKOFF, and increments by one every iteration
up to LOG_MAX_BACKOFF. A spin loop that calls Java’s System.nanoTime() is
used to determine if the required delay time has passed. In this section, we in-
vestigate the performance effect of altering Polka’s parameters. Scherer et al. [4]
do not suggest a method by which the parameters should be calculated so we
use the scheme explained below.

Through empirical evaluation we determined the minimum timing accuracy
of our system to be 3600£100 nanoseconds. This is significantly higher than the
published minimum value of 2*ns (by using a LOG_MIN_BACKOFF of 4), but testing
on other x86/Linux platforms similarly gave us minimum accuracies much higher
than 2*ns, and never less than 2500ns. Thus we set LOG_MIN_BACKOFF to 11, to
give a calculated minimum delay of 2'' nanoseconds = 2048 nanoseconds ~ 2
microseconds, but which of course rounds up to the minimum system accuracy.
Since the original values were based on SPARC/Solaris, Polka potentially needs
parameter re-tuning for every new hardware platform used.

For LOG_MAX _BACKOFF we select a range of values based on approximately
half the average committed transaction execution time for each benchmark.
The observed values are shown in Table 3 . We select LOG_MAX _BACKOFF values of
13 (~8 microseconds), 16 (=65 microseconds), 19 (~=528 microseconds), and 28
(~134 milliseconds). The results of the executions are shown in Figure 3, again



averaged over eight runs for all experiments, except failed experiments, which
are again only run three times.

KMeans* Lee-TM* Vac*

1 thread 12 264288 126
2 threads 19 330592 167
4 threads 210 380275 265
8 threads 422 524702 537

Table 3. Average committed transaction execution time for each benchmark, in mi-
croseconds. Both high and low contentions not shown as execution times in the same
order of magnitude for exponential delay calculation.

There is minimal effect of changing the parameters in VacL and VacH, as
these have low contention, which leads to the CM being invoked rarely. For the
remaining experiments, different parameters give the best performance improve-
ment over the default parameters. Although the improvements are slight, this
suggests per-application parameter tuning may be necessary. However, the im-
portant results have not changed, and Polka continues to give extremely poor
performance in all KMeans experiments with 4 or more threads, irrespective of
the wide range of tuning parameters used. This strengthens our original hypothe-
sis: delay-based contention management may be unsuitable for applications with
appreciable amounts of aborting transactions.

6 Related Work

Guerraoui et al. [5] developed the Greedy CM, which has provable progress
properties, and their evaluation showed Greedy performed on par with Polka.
Our results confirm their findings. Scherer and Scott [4] evaluated Polka using
six benchmarks in nine benchmark configurations. Three benchmarks added,
removed, and queried elements in a set, the fourth implemented a concurrent
stack, the fifth a ‘torture test’ that updated all values in an array per transac-
tion, and the sixth an LFU cache simulator. Clearly their benchmarks exhibited
contention to provide variation in execution time between CMs, and they found
Polka to be a consistent top performer, often by large margins over other CMs.
Their investigation differs from ours in one critical way. All the CMs they investi-
gated are delay-based, except Kindergarten, and they did not include Greedy or
Priority, as neither had been published. Our investigation found all delay-based
CMs and Kindergarten performed poorly compared to Greedy and Priority in
benchmarks with appreciable amounts of aborts.

Our previous work in adaptive concurrency control [11], which dynamically
changes the number of transactions executing simultaneously with respect to the
measured transaction commit rate, resulted in applications’ performance at any
number of initial threads being similar to best-case statically-assigned number
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of threads, for a given CM. Our adaptive mechanism would have had a dramatic
positive effect on the performance of Polka in its failed experiments. Additionally,
our work in reducing repeat conflicts [12] showed Polka’s performance could be
improved in applications that exhibit repeat conflicts.

7 Summary

This paper re-evaluates well-known CMs (CMs) in the light of newly published
complex benchmarks. A number of important findings result from this investiga-
tion. In general, we found Priority and Greedy to be joint best-performing CMs,
although Greedy provides stronger progress guarantees than Priority.

Although Polka still provides competitive performance in benchmarks with
very low contention, the most important finding of our investigation suggests
Polka, the established best-performing CM, and in general all delay-based CMs,
are unsuitable for the evaluated benchmarks that exhibit even moderate amounts
of aborting transactions. Although we do not quantify what is meant by ‘moder-
ate’, in one benchmark Priority executed in 6.5 seconds with an average of 78%
of transactions committing (i.e., 22% aborting), whilst Polka failed to complete
executing the benchmark in 20 minutes (after which time the execution was ter-
minated). This result has wider implications given that TM is strongly aimed
at easing concurrent programming for mainstream software development, where
execution is unlikely to be highly optimised to reduce aborts in the general case.

Polka has two tuning parameters, and investigating a range of values con-
cluded there was no benefit in tuning them to improve the extremely poor results
seen in KMeans experiments, although tuning led to a degree of performance
improvement in the remaining results. However, different parameters provided
better performance for different applications, suggesting the need for application-
specific tuning. Furthermore, the need to re-evaluate the parameters for every
hardware platform used was also highlighted. Conversely, Greedy and Priority
have no parameters.
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Abstract. In many recent works in Transactional Memory (TM), researchers
have profiled TM applications based on execution data using lumped per-
transaction averages. This approach both omits meaningful profiling
information that can be extracted from the transactional program and hides
potentially useful clues that can be used to discover the bottlenecks of the TM
system. In this study, we propose partitioning transactional programs into
executions of their atomic blocks (AB), observing both the individual properties
of these ABs, and their effects on the overall execution on a Software
Transactional Memory (STM) benchmark in Haskell. Profiling on the AB-level
and focusing on the intra-AB relationships helps to (i) characterize transactional
programs with per-AB statistics, (ii) examine the conflict relationships that are
caused between the ABs, and thus (iii) to identify and classify the shared data
that often cause conflicts. Through experimentation, we show that the AB
behavior in most of the Haskell STM benchmark applications is quite
heterogeneous, proving the need for such fine-grained, per-AB profiling
framework.

1 Introduction

Some 30 years ago, Lomet proposed an idea to support atomic operations in
programming languages, similar to what had already existed in database systems [17].
More than a decade has passed since the first description of a Transactional Memory
system in hardware (HTM) [13], and that of a software-only implementation [22].
Nowadays, TM is being seen as one of the most promising ways of the programming
revolution which is almost late: many- and multi-cores are already dominant in the
market. While the upcoming Rock processor [26] is proof that TM hardware is near,
one thing is for sure: “Multicore architectures are an inflection point in mainstream
software development because they force developers to write parallel programs” [1].

Software Transactional Memory (STM) promises to ease the difficulty of
programming using conventional mechanisms such as locks in a threaded, concurrent
environment. Locking has many problems: simple coarse-grained locking does not
scale well, while more sophisticated fine-grained locking risks introducing deadlocks
and data races. Many scalable libraries written using fine-grained locks cannot be
easily composed in a way that retains scalability and avoids deadlock and data races.
Although STM-based algorithms can be expected to run slower than ad-hoc non-
blocking algorithms or fine-grained lock based code, they are as easy as using coarse-
grained locks: one simply brackets the code that needs to be atomic.

Although the number of STM benchmarks in the literature keep increasing
[3,9,18,19,21], very little experience exists on the characterization of TM programs.



Some relevant transactional attributes discussed in these benchmarks as well as in
[5,6,29] include the total transactional time, the number of, and the time spent
committing/aborting transactions, readset/writeset sizes and their corresponding
reads/writes. However, while using lumped sum averages for characterization might
be acceptable for some arbitrary execution, this is not the most useful way to profile
TM programs. For instance, a rough estimate might be obtained by dividing the total
number of transactional reads made by the program by the total number of
transactions, to conclude that the program makes so many transactional reads per
transaction, but we argue that such a statistic is mostly useless. Firstly, a program can
be composed of various long-short (time), large-small (readset and writeset sizes)
transactions and different abort rates, and an average value will omit many useful
profiling data. Secondly, a typical program includes execution patterns, loops,
function calls; deserving and perhaps requiring a better, finer-grained characterization
framework. Furthermore, omitting such profiling information can result in ignoring
simple pathological problems of the TM system.

Although an STM program runs transactions, these are actually executions of a
specific atomic block, the piece of code inside the atomically{} , marked to run
atomically to the rest of the system in an all-or-nothing fashion. In runtime, atomic
blocks execute as transactions. To better reason about transactional attributes, we
propose partitioning all benchmarks by their atomic blocks (AB), their bare
transactional source code. In particular, the contributions of this paper are as follows:
e A Haskell benchmark suite is presented where each program is partitioned into its

atomic blocks, and all TM attributes such as: the number of times
committed/aborted, time spent doing work and time spent committing and
aborting transactions, the number of reads and writes in committing and aborting
transactions and readset and writeset sizes are grouped as executions of the
particular atomic blocks. The AB behavior in most of the Haskell STM
benchmark applications turns out to be quite heterogeneous, proving the need for
finer-grained, per-AB profiling framework.

e C(ritical sections can be seen as AB conflict matrices of conflicting shared
variables, which help to reason about the transactional aborts. This is achieved by
collecting during runtime, per each AB, (i) the set of the conflicting shared data
(in Haskell’s terms, transactional variables, or TVars) (ii) other ABs that these
TVars conflict on, and the number of times the exact scenario occurs.

¢ Due to the merits of profiling conflicting ABs, we show that some ABs tend to
get scheduled to run concurrently and abort one another often, while others do
not. Such findings point towards future per-AB runtime optimizations.

Up to date, to the best of our knowledge, a brief summary of per-AB statistics
that include the number of commits, abort and readset sizes, has been featured only by
the Intel STM Compiler [2]. The work in [27] can examine the AB conflicts in TM
applications; however it does not feature any intra-AB dependence relationships or
the identification of the shared data that cause transactions to conflict. One work that
utilizes conflicting variables to make runtime decisions does not identify ABs [28].
Furthermore, [4, 8] are two recent works that recognize and optimize on some of the
issues that can also be detected by our profiling mechanism.

On the next section, we give an introduction to the Haskell STM runtime
environment, followed by a description of our modifications described on Section 2.
Section 3 explains our scope in depth on a singly linked-list example. Section 4
presents the Haskell STM benchmark used and the corresponding results. Section 5
wraps up the conclusions.



TABLE I STM Operations in Haskell

STM operations TVar operations

atomically :: STM a -> IO a newTVar :: a —> STM (TVar a)
retry :: STM a readTVar :: TVar a -> STM a
orElse:: STM a -> STM a —-> STM a writeTVar :: TVar a -> a —-> STM()

2 Glasgow Haskell Compiler and Proposed Approach

2.1 The Glasgow Haskell Compiler and Runtime System

The Glasgow Haskell Compiler (GHC) [12] is a compilation and runtime
environment for Haskell 98 [7], a pure, lazy, functional programming language. Since
a few years now, the GHC has natively contained STM functions; abstractions for
communicating between explicitly-forked threads using transactional variables, built
into the Concurrent Haskell library [14]. STM can be expressed elegantly in such a
declarative language, where Haskell’s type system, particularly the monadic
mechanism allows threads to access shared variables only when they are inside a
transaction [10]. This restriction that guarantees strong atomicity can be violated
under other programming paradigms, for example, as a result of access to memory
locations through the use of pointers.

Haskell STM provides a safe way of accessing shared variables among concurrently
running threads through the use of monads, allowing only I/O actions to be performed
in the IO monad, and STM actions in the STM monad. This ensures that only STM
actions and pure computation can be performed within a memory transaction, which
also makes it possible to re-execute transactions.

Although the core of the language is very different from other languages such as C#
or C++, the actual STM operations are used in a simple imperative style and the
implementation uses the same techniques used in mainstream languages. Haskell has
a small runtime system written in C, making it easy to experiment modifications. The
STM support that has been present for some time led both researchers and functional
programmers to write various applications, some of which were profiled in this work.
Threads in Haskell STM communicate by reading and writing transactional variables,
or TVars, using a set of transactional operations, including allocating (newTVar),
reading (readTVar), and writing (writeTVar) transactional variables (Table 1).

2.2 The transactional execution in GHC

In concurrent applications written in Haskell STM, an atomic block is constructed
inside the atomically{} function. Atomically{} takes a memory transaction, of type
STM a, and delivers an I/O action that, when performed, runs the transaction
atomically with respect to all other memory transactions. This provides the sequence
of code to be executed in an all-or-none fashion to the transactional management
system. Following the transaction’s start with atomically{}, transactional variables are
created, read from and/or written to in program order, with the system maintaining a
per-thread transaction log for all tentative accesses, called the transactional record
(TRec). All the variables that are written to are called the “writeset” and all that are
read from are called the “readset” of the transaction. These two sets usually overlap.
This speculative execution, where the actual computational work takes place is called
the work phase (WP).

Later comes the commit phase (CP), where the transaction might commit its changes
into the memory. In this phase, where Haskell STM performs lazy conflict detection,
the runtime system validates that the transaction was executed on a consistent system
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Record (TRec) AB Table
Previous writer (AB) | # aborts *TVarb ¢ AB 1
AB 2 3 “TVarr g AB 2
AB 7 1 TTVarx / /B3
AB 1 4 * TVary / AB 4
" TVare
*TVarg
* TVark
— — —_ —~ *TVarh
— — *TVari [

Fig. 1. Each AB keeps information on each conflicting TVar, its previous writer that
caused the conflict, and the number of times each previously writing AB aborts the
transaction on the specific TVar.

state, and that no other finished transaction may have modified relevant parts of this
state in the meantime. First, a global lock is acquired (in the coarse-grained locking
scheme of GHC). Next, validation is performed on the first part of the two-phase
commit, going through the readset and the writeset, comparing each variable with its
local original value that was obtained at the time of access. If all TVars accessed by
the transaction turn out to be consistent, then all new values are actually committed
into the memory in the second part of the two-phase commit. On encountering an
inconsistent 7Var, which means that some concurrent transaction committed
conflicting updates, the system immediately aborts the transaction, discards the
tentative modifications, and restarts the transaction. At the end of the CP, the global
lock is released, which causes the course-grained locking technique to allow only one
transaction to be in commit phase at a time. GHC also features a per-7Var, fine-
grained locking version of the commit phase, however its behavior was not studied
for this work, although the proposed profiling infrastructure would work with
different locking implementations as well.

2.3 Conflicts and Aborts

A conflict occurs if two or more transactions access the same memory address and at
least one of the accesses is a write. Transactions in Haskell STM that discover a
conflict during validation immediately abort, discard all non-committed data, and
restart. It might be useful to see all transactions in two groups: transactions that do not
abort, and those that do. Inversely, transactions that make others abort and
transactions that do not make abort exist, however these two categorizations are
distinct. By grouping transactions as executions of ABs, it is possible to identify
aborts in terms of specific conflicting TVars (confTVar) and see between which
aborting and aborted (victim) ABs they occur. In the next section, we show how some
TVars can be more involved in aborts than others. Having this information at runtime
could make it possible to fashion optimization techniques that involve the aborting
TVars.

The biggest overheads in STM come from keeping track of transactional variables,
and causing wasted work by aborting the transactions in case of a conflict. Previous
work in [19] shows wasted work for up to 50% on the Haskell benchmark. Some of
those programs are also used on this work. Aborts can be costly depending on their
frequency, and the amount of work done inside the transaction. Repetitive aborts
degrade the performance of the program. One motivation for this work is to find out
more about how aborts happen and if similar or repetitive aborts exist.

2.4 GHC Hooks

Precisely what makes AB-based profiling possible is that each atomic block
execution, being a specific function call, is pointed to in GHC by a variable called the
atomically_frame_pointer. This provides a unique identifier in runtime to group



atomic blocks encountered in the code, pointing to the beginning of the code inside of
atomically{}. Although it would require modifications to the program code, another
way of uniquely identifying ABs is by passing an explicit additional parameter to the
atomically function, such as an integer constant, and then partitioning the profiling
information accordingly. Such an approach of finding the appropriate AB identifier
and accordingly grouping transactional profiling data should be feasible under many
other STM systems.

ABs are added to a global AB Table (Fig. 1) when atomically{} is invoked. During
CP, at the time of validation where the contents of the TVars are checked for
consistency with their prior-to-start transactional values, once a TVar fails, the AB
Table is updated with this new occurrence of a conflict along with (1) the AB that is
currently being aborted, (2) the specific conflicting TVar, (3) the AB that last wrote to
that TVar, causing the abort, and (4) the number of times this exact scenario occurred.

3 An Example: Profiling a Linked-List

To demonstrate the proposed approach, a transactional linked-list (LL) was
implemented in Haskell performing 10% deletes, 10% inserts and 80% lookups. The
links between the nodes (Fig. 2) are represented as TVars, therefore during list
traversal, 7Vars are accumulated into the transaction’s readset. Although this is not
the most suitable concurrent implementation of a linked structure [24], it’s a simple
example that should serve to demonstrate our approach. Throughout the program, the
atomic blocks are commented with “ABx” denotations.

The main function in line 36 in Fig. 3 takes the necessary arguments from the user
(the number of operations, the list capacity, and the number of threads to fork) and
calls mainl. Although Haskell is a language with lazy evaluation, the do{} “syntactic
sugar” enables to construct of a sequence of actions. Line 22 in mainl is the first
atomic block, AB1, where the initial half-list is created atomically, and following that,
AB2 outputs the number of elements that it contains. Later, the Haskell
synchronization variables (MVars) are created. Then, a desired number of threads are
forked, each performing a lookup/insertion/deletion of a random integer, executing
AB3, AB4 or ABS respectively; and (ideally) performing deletes a tenth of the time,
inserts another tenth, and on the rest doing lookups. When the total number of
operations complete running on the threads, the MVars are taken: this barrier will
make sure that all threads finish executing before the main thread ends. By invoking
ABG6 and AB7 on lines 29 and 30, the program will print the ultimate number of
elements that the list contains. Finally, before the end, ReadTStats, a function that
enables printing out the gathered statistics is invoked. In this program, AB1-AB2, and
AB6-AB7 pairs can serve to illustrate the similarities, and AB3-AB4-AB5 the
variation between atomic blocks. Due to space limitations, we cannot provide all the
used functions, however a similar insert function can be found in [24]. The insert and
delete functions (AB4 and ABS5 respectively) are similar, except that delete performs
one more readTVar because it needs to read two nodes ahead.

data LinkedList =

start {nextNode :: Tvar LinkedList} .
| Node {val :: Int, nextN :: Tvar LinkedList}
| Nil

Fig. 2. The data declaration of the transactional linked-list.



1 createThread :: Int -> TVar ListNode -»> Int -> MVar Int -> IO ThreadId
2 createThread numOps tList maxNumber mvar =
3 forkIO ( do { c£allNTimes numOps
4 (do
5 { rndl <- randomRIO (l::Int, 10)
[ 7 rnd2 <- randomRIC (1l::Int, maxNumber)
7 ;7 case rndl of
8 ; 1 -» do { atomically (deletelistNode tList rnd2) -- ABS
g ;i return ()}
10 ; 2 -» do { atomically (insertlistNode tList rnd2) -- AB4
11 i return ()}
12 ; otherwise -» do { atomically (lockupListNode tList rndZ) -- AB3
13 ;i return ()}
14 H)
15 ; putMvar mvar 1
1e o)
17 createThreads :: Int -> Int —-> TVar ListNode -> Int -> [MVar Int] -»> IO()
18 createThreads n numOps tList maxNumber mvars
19 = mapM_ (createThread numOps tList maxNumber) mvars

mainl :: Int -> Int -> Int -> IO ()

mainl numops listLength numThreads = do

curlList <- atomically (createSamplelist (reverse[x|z<-[1l..listLengthl, ({mcdx 2)==0)])) --AB1l
ourListAsString <- atomically (toString ourList) --ABZ

putstrln (show (length ourlListAsString))

ourTList <- newTVarIO curlList

mvars <- replicateM numThreads newEmptyMvar

threads <- createThreads numThreads numops ourTList listLength mvars
mapM_ takeMVar mvars

ourList? <- atomically(readTVar ourTList) --RABé&

listAsString <- atomically (toString ocurlist2) --ABR7

Lo b b B2 B2 B B R BB B
[ A N O N N

T

31 putstrin (show (length listAsString))
32 stats <- readTStats

33 putStrln (show stats)

34 return ()

35

36 main :: IO()

37 main = do { args <- getArgs

38 ; let numops = read (args!!0)

39 ; let listlength = read (args!!1)

40 7 let numthreads = read (args!!Z)

41 ; mainl numcps listlength numthreads}

Fig. 3. Major functions in the linked list code

3.1 Observed Statistics

All executions in this work, including the LL example were run on a 128-core SGI
Altix 4700 system with 64 dual-core Montecito (IA-64) CPUs running at 1,6 GHz.
The command “MainLL 16000 100 8 +RTS —-N§” was executed to run the program on
Fig. 3: 16000 is the total number of operations, 100, the maximum list size, and 8 the
number of Haskell threads to use. The RTS option —Nx lets the user choose the
number of OS threads to utilize, and since there are enough cores in the system, there
is one thread per core.

The seven atomic blocks of the linked-list program and their individual statistics can

TABLE II AB Properties of the Linked List program

. Read- Total Total Total Total Total

AB #A #C write only writes reads writes reads (G (G0 Val o ELEE Conf
s MY el reds weiles reS Wi @WF  ©F  ©F  ©f oo

ABI 0 11 1 0 0 50 100 0 0 4732 1029 967’02 0
AB2 0 10 51 0 0 0 51 0 0 4105 8393 168’6(6) 0
Ags 2 12 8 207, o 6706 Lil6 2585 1097, 1211, 5206, 54
735 745 072 283 54 122 % 159 440 129 2

18 16 80 452 137 88,79 10789 14631 15332 379,10 12

B g0 81 g9 307 g 0153 4 4 8 5 9
20 15 80 426 10 232 1209 15748 13222 13985 40121 14

E B o 8 7 R 50 67174 6 7 9 o
AB6 0 1 o0 1 0 0 0 1 0 0 3,135 8974 48316 0
AB7 0 10 58 0 0 0 58 0 0 429 8425 292’63 0
o} 16 16 436, 18 244, 165 8806 1244, 28239 1391, 1540, 7463, 56
135 004 08 101 8 308 7 08 830 76 968 709 138 0

$:in 1000s of cycles, A: Aborted transactions, C: Committed transactions, Val: Validation, CP: Commit Phase, WP: Work Phase



be seen on Table 2. There are three ABs that get aborted, and four that do not—
basically in this example, the heavyweight atomic blocks AB3, AB4 and ABS tend to
get scheduled concurrently and cause conflicts.

The total transactional execution distribution can be seen in Figure 4. The wasted
work caused by aborting transactions constitutes 14% of the overall transactional
runtime. 78% of this is due to aborts of the atomic block AB3, which in total takes up
82% of the transactional execution, either committing or aborting. AB3 (lookup)
commit counts are an expected eight times to those of the atomic blocks AB4 and
ABS. Its writeset, commit and abort writes are zero, since it only performs lookup.
Comparing AB1 and AB6, two atomic blocks with single element readsets, AB1
actually creates a list of 50 elements (writes:50), traversing all the possible nodes to
create all the even numbers from 1 to 100 (reads: 100). AB6 does less work, only
reading the ultimate set, which turns out to contain fifty-seven (plus one for the start
node) elements in the end. This can be seen as well on the transactional reads and the
readset statistics of AB7, which is very similar again to those of AB2.

For committed transactions, we profile executions in three parts: The work phase, the
validation inside the commit phase, and the rest of the CP, writeback, where the
writes are actually committed to memory. GHC will still check all TVars to see if any
need to be written back, this is the reason why the atomic block that corresponds to
the lookups, AB3, also spends time in the commit phase in aborted transactions.
Read-only atomic blocks like AB3 cannot be aborters of other ABs.

3.2 Conflicting TVars and Aborts

The final column on Table 2, confTVar, indicates on how many distinct TVars the
aborted transactions are due to. Our profiling mechanism collects information about
all aborts during runtime where these conflicting TVars as well as the corresponding
aborting/victim transactions can be observed. Theoretically, each run could have a
different set of TVars, depending for example, on the scheduling order of the atomic
blocks, the loops in the code, the randomized variables etc, so ABs do not have to
exhibit the same behavior on each execution. However, for our benchmark, we
generally see quite stable and meaningful behavior.

AB2 (€} TABLEIII
THEDISTRIBUTION OF CONFLICTING TVARS
Abotter)  \p3 ABS  ABS  womi
victim
AB3 0 0 0
AB4 362 82 77 52
ABS 336 69 87 51
total 718 151 164 103
confTVars 542 129 147 81
difference 176 22 17 21
Fig. 4. Distibution of the total transactional execution
(C: Committed transactions, A: Aborted transactions)
TABLEIV TABLEV
THE DISTRIBUTION OF ABORTS VS CONFLICTING TVARS THE DIFFERENCE: AB ABORT DUO
Aborer \p3 AB4 ABS foml  AB3 AB4 ABS Aborter  ip3  AB4 AR
victim victim
AB3 0% 0% 0% 0% 0 0 0 AB3 0 0
AB4 44% 3% 3% 50% 65% 15% 14% AB4 122 14 1
AB3 43% 3% 4% 50% 64% 12% 16% AB3 54 8
total 87% 6% 7% total 176 22 1




Table 3 shows the distribution of the confTVars that were collected during the
execution in terms of the aborter and the victim ABs. ConfTVars is the number of
distinct TVars inside the AB that caused an abort at least once. However, they can
appear in more than one AB, therefore the total number of conflicting 7Vars on Table
2 is not the sum of all confTVars in all ABs: this sum instead, is the total number of
unique 7Vars that conflicted. On the left side in Table 4, all 3,135 aborts that occurred
are classified into aborter and victim AB groups, and on the right side, the
corresponding shared conflicting TVars are depicted. For example, the case where
ABS5 caused an abort on AB3 constitutes 43% of the total aborts, but involves 64% of
the total critical section (the conflicting TVars). Inversely, the case of two concurrent
ABS executions aborting one another occurs in 4% of the total aborts but involves
16% of the conflicting TVars. Overall, AB3 was a victim (was aborted) in 87% of the
total aborts. Please note that the aborter/victim matrix can be highly asymmetric; this
heterogeneous behavior is one of the key reasons why we argue for profiling on an
AB granularity.

The shared confTVars (the row "difference” on Table 3) gives way to Table 5. For
example, the conflicting TVars that caused an execution of AB4 to abort another
concurrent AB4 execution, also caused aborts with ABS in 36% of the total aborts of
AB4 (8/(14+8)). Table 5 highlights those “hot” TVars that cause aborts in many ABs.

Such information might be useful for resolving conflicts: Firstly, it might be a good
idea to omit the scheduling of an AB concurrently with itself, if it is known to abort
with itself. Furthermore, ABs forming such “conflict duos™ (and triples, etc) could be
scheduled with more care. Such an approach could diminish aborts that harm
performance. The studies in [4,8,23,28], as well as work on contention management
[20] act upon similar observations.

With a simple program such as the LL, we can see how all statistics are partitioned in
different ABs. In the next section, we look at some other characteristics of ABs using
a Haskell STM benchmark.

3.3 The Overhead

The atomic blocks give us a possibility that didn’t exist before: to group, compare and
view the interactions of transactional executions. However, in this endeavor, our
approach needs to introduce new fields to the TVar structures such as the ones
depicted on Fig. 1, as well as others that are used to accumulate the necessary
information for transactional statistics, since GHC recycles the TRec structures that it
uses for each transaction. New fields for all statistics were added to the TRec to be
used for keeping related information on the number of aborted/committed
transactions, the readset/writesets, number of transactional reads/writes and
Validation/CP/WP runtimes in cycles.

These additions do add some overhead, but it is the most straight-forward way to
achieve our objective. The slowdown introduced by the profiling mechanism depends
on the number of ABs and the size of the TVar set that is saved for profiling.
Although looking into a range of 5 ABs and hundred confTVars works faster than 20
ABs with a thousand conflicting TVars each, it still causes on average 7% more aborts
on the system running the linked list application. Although the impact on aborts is
small, more work is being carried on to reduce this overhead.

4 The Extended Haskell STM Benchmark

The benchmark consists of several programs from the Haskell benchmark in [19],
alongside a Hash Table implementation [15] and a Parallel Sudoku Solver [25]. Some
of the programs in this benchmark spend as much time aborting transactions as
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Fig. 5. Overall distribution of transactional time of committed transactions per atomic block on all
benchmarks.

committing them. All of the reported results are based on the average of five
executions on the Altix 4700 system. Up to 32 cores were used for the clarity of
graphs. The outputs were sorted by the atomic block identifier, and then named AB1
through ABX, however they do not represent any initial order of execution. Please
note that the atomic blocks with the same numbers are consistent in different runs of
the same program but distinct among the benchmarks.

4.1 Transactional occupation per AB on committed transactions

Figure 5 shows the distribution of ABs on the whole benchmark based on the total
transactional time spent on committed transactions, which represents the total amount
of useful work that each AB had to do for each program to complete. Clearly, we can
see both heterogeneous (a variation among the atomic blocks of BT10000, Sudoku2,
GCD), and homogeneous behavior (the Hash Table and the Linked List are always
performing similarly in all core counts). The heterogeneity exists inside the programs
that make use of the CCHR compiler as well: GCD runs differently from the other
applications of the CCHR suite.

The predominant AB in BT/LL/HT benchmarks is always the lookup function,
however, the initial list creation that creates a tree of 5,000 elements takes up a
significant amount of time in the BT 10000 implementation, especially in 1-8 core
runs. ABS8 of the BT is the lookup function, which expectedly runs eight times as long
as AB6 and AB7, (which insert and delete) however, the atomic blocks that do list
creation and print also spend a significant amount of time in the WP, independent of
the number of cores.

4.2 Abort Analysis per AB

Figure 6 shows the ratio of aborts to committed transactions, only for the atomic
blocks that get aborted. Although the BT, HT and the LL are similar programs with
each having heavyweight ABs for insert, delete and lookup functions, they have
different abort rates. The HT and the LL are heavy aborters especially with high core
counts. However, the BT, being a much more concurrent application aborts very little,
especially with larger trees.

Most of the ABs demonstrated in CCHR applications that abort also abort more in
larger core counts with varying rates per program. However, AB5 (pictured
separately) aborts fourfold to commits. In reality, ABS is a small atomic block with a
readset that is equal to the number of forked threads, and a writeset of zero, that only
executes as a transaction once, but causes up to four aborts running on 32 cores, or
commits on the first try on lower core counts. Sudoku2 also has two aborting ABs
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that abort quite frequently with more available concurrency, where the rest of the
atomic blocks always succeed in committing.

Pushing concurrency on a not-so-parallel application, serialized commits (coarse-
grained locking) and the serial, stop-all-the-world garbage collection all hurt the
scalability of the program [19]. In other cases, the cache performance and other
variables can easily affect the overall system performance.

4.3 Per-AB commit phase and validation

Figure 7 (last page) shows how each AB spends time during executions that end up in
commits, in work phase and in commit phase (validation and writeback). Although
they all total a 100%, the graphs had to be pruned for clarity, and only selected
executions are depicted. The Sudoku2 application contains quite heterogeneous ABs
in terms of validation and overall commit phase behavior. Almost all ABs scale
poorly: although some writeback phases at first seem to scale better with more cores,
the time spent on validation is quite overwhelming.

The LL spends less time in CP using 1000 elements, since the WP is now larger,
operating on a bigger list. Although for the CP more work has to be done as well, the
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insert/delete/lookup operations themselves take up more execution time. The same is
also true for AB7 which is the lookup atomic block, where the CP seems to be less,
while it is the WP that is getting huge. On the HT, the lookup function is AB2, where
the CP again dominates an important part of the transactional execution.

The last subfigure in Figure 7 belongs to the programs that utilize the CCHR compiler
[16], where same ABs can function differently solving different programs. Regardless
of knowing the functionality of ABs inside such a compiler or a library, one can
profile the behavior and attempt to optimize it accordingly. For example, AB5 has a
CP that takes less percentage of time with more cores, which might be desirable, but a
WP that always increases. AB9 does the opposite and AB4 seems to have an almost
fixed distribution among all cores. To identify TM performance bottlenecks, besides
knowing the per-AB runtimes, it might be useful to see on which phase each AB is
the busiest inside the transactions.

4.4 Per-transaction Runtime Averages of Aborted and Committed Transactions
As mentioned on Section 2.B, a transaction in Haskell aborts as soon as an
inconsistent 7Var is encountered. Normally one might be tempted to think that
aborted transactions would spend less time than committed transactions: The same
amount of time in the work phase, and less time in validation (since abort’s validation
fails), meanwhile writeback is not performed for aborted transactions. However,
Figure 8 shows that this is not true at all, and since commits are serialized,
transactions wait on the coarse-grained lock. Those that manage to commit could also
wait on locks, but it can be seen here that aborted transactions take a longer time
waiting and those transactions that wait too long tend to abort in the end with a higher
probability.

4.5 Aborts per Conflicting TVars

Aborts per confTVars (Fig. 9) is a “congestion metric” that shows how many aborts
each conflicting TVar causes on average inside a specific AB. This is due to the
frequency of repetitive aborts, because conflicted 7Vars are shared with concurrently
scheduled instances of the some AB, or with other ABs. The larger the ratio of these
two values (notice that by definition it has to be larger than 1), the more congested the
AB is. For example, for a highly non-concurrent singlelnt benchmark [19], this ratio
would be huge, with one conflicting TVar but a very high number of aborts due to that
TVar.

The Hash Table has a small and a very congested critical region. The Linked List is
also similar, especially since the nodes close to the beginning of the list are very
frequently accessed. The BT is somewhat more concurrently accessible than the LL.




Sudoku? has two ABs out of eight that abort, but on average the lowest aborts per
conflicting TVar ratio in the benchmark. Although its abort ratio (Fig. 6) is one of the
highest, it can be concluded that its critical region is also large and it contains many
TVars that can cause conflicts. This metric is important since such conflicting TVars
can introduce many aborts, causing performance degradation and scalability problems
in the system, and it might be useful to treat them accordingly, as done in [23] and
[28].

5 Conclusions

Per-atomic block profiling can be a useful tool for many reasons. For simple micro
benchmarks, it helps to see under the hood. For others, when it is not possible or
doesn’t make sense to know the behavior of each AB, this approach helps to
recognize the transactional execution better and to identify certain AB behaviors such
as identifying read-only and write-only, or heavyweight ABs, and isolating AB-
related problems such as self-conflicting ABs or groups of ABs that abort each other
and to construct conflict matrices. Clustering aborting TVars inside atomic blocks
also provides an opportunity to identify conflicting shared data sets and to reason
about the aborts that take place. In the future it might also be interesting to identify
ABs that include nesting or 10O in order to try to make appropriate runtime decisions.
We argue for and show through profiling TM applications, why a finer-granularity
AB-based approach has to replace lumped averages. Our approach is general enough
to be used with different atomic block implementations, eager conflict
detection/resolution, or with other STMs.
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