766 Project Midpoint: Automata from Images

Keith Johnson <keith.johnson@wisc.edu> [kjjohnson32]
April 5, 2022

1 Project Summary

Finite state automata underlie many foundational areas of computer science,
including regular language definitions, state machines in programs, model
checking, and more. Their simple visual representation makes hand-drawing
an automaton on paper or a whiteboard the typical first step of implemen-
tation. However, the translation from a visual representation to a working
implementation is often tedious and error-prone. This project aims to create
a system that takes a hand-drawn automaton, derives logical constraints from
the image, and synthesizes an implementation of the desired automaton.

Solving this problem is important because it will reduce the time and
potential for bugs when implementing systems based on automata. This
reduction enables software developers to focus more on the program logic
and less on the minutia of implementation. I am personally interested in
this problem because my area of research is in program synthesis, and an
image-based program specification is novel in this area. Plus, I have at
many times had to do this automaton-image-to-implementation translation
manually, and it was time-consuming and error prone. Having a system as
proposed would have been beneficial to me.

1.1 Related Work

Recognizing hand-drawn finite automata diagrams have seen recent work.
Bresler, Prisa, and Hlava¢ (2016)' studied on-line recognition of flow charts

!Bresler, M., Priiga, D. & Hlavaé, V. Online recognition of sketched arrow-connected
diagrams. IJDAR 19, 253-267 (2016). https://doi.org/10.1007/s10032-016-0269-z

and finite automata, where the input is a set of line strokes from a drawing
program, and it produces a structural description of the diagram. This work
was extended to off-line recognition by deriving line strokes from images
and applying the existing techniques for solving on-line recognition. Other
approaches, such as that of Schifer, Keuper, and Stuckenschmidt (2021)? use
off-line recognition to directly derive diagram features from the images using
deep learning. I am less interested in this, as described in Section 2.

I was not able to find prior work for this exact problem, going from an
automata image all the way to a synthesized program. Similar approaches
either rely on drawing the automaton on the computer (so the system is di-
rectly told all constraints and is simply rendering the automaton), or direct
input of the automaton constraint. Using an image as a program specifica-
tion in this manner appears to be mostly® novel. Existing approaches either
are focused on UI design (e.g., Microsoft’s Sketch2Code) or synthesizing im-
age manipulations (e.g., using the actual image data as a specification), as
opposed to specifying an executable program through diagrams in an image
(e.g., extracting features and text that specify a program). For this particu-
lar case of automata, deriving a specification from an image is a natural step
forward for usability.

2 Overall Approach

While the overall application is a new approach, my implementation will
use existing “classical” computer vision techniques for recognition of the au-
tomaton pieces images, as well as standard program synthesis techniques
for automata synthesis. Specifically, my goal is to compile the synthesis
program into a semantics-guided synthesis (SEMGUS) problem, which is a
general synthesis framework and the focus of my main research. Once com-
piled to a SEMGUS problem, any SEMGUS solver can be used to synthesize
the automaton implementation.

[am particularly interested in “classical” computer vision techniques (e.g.,
engineering specific features instead of using deep learning) due to the end
result of creating a program specification, which must be exact and precise. I

2Schifer, B., Keuper, M. & Stuckenschmidt, H. Arrow R-CNN for handwritten diagram
recognition. IJDAR 24, 3-17 (2021). https://doi.org/10.1007/s10032-020-00361-1

3An honorable mention goes to the joke paper “93% of Paint Splatters are Valid Perl
Programs” by McMillen and Toady (https://www.mcmillen.dev/sigbovik/2019.pdf).

expect the format of a drawn diagram to be more restricted in my system as
opposed to a neural-network-based approach, but I believe the predictability
and observability of my approach will increase confidence that the correct
program specification is produced, as opposed to one that appears similar
but is incorrect.

2.1 Challenges for Computer Vision

Figure 1: An example simple automaton image.

There are several challenges that this problem poses for computer vision
techniques, in particular the following three:

1. The target medium, diagrams on whiteboards, is a visually noisy medium.
Consider Figure 1; note the uneven lighting with splotches and stains
from previous drawings. This noise necessitates robust image cleaning
techniques to separate the features from the background.

2. The diagrams are hand-drawn, meaning circles are only roughly circular
and lines are only approzimately straight (Figure 2). Additionally, the
marker strokes are uneven and include missing streaks. Together, this
makes using standard techniques like Hough transforms and corner

Figure 2: Circles are approximately circular and lines are approximately
straight, which proves to be a challenge.

detectors difficult at best. Much of the challenge comes from finding
methods that can robustly identify the various diagram pieces despite
their imperfections.

3. Diagram pieces have implied relationships between each other. For
example, transition arrows are associated with both a start and end
state, as well as a transition label above or below. These different pieces
must be grouped into their logical relations with each other after being
recognized.

In summary, while this problem may appear to be a straight-forward ex-
ercise in recognizing geometric shapes, the particular medium (dirty white-
board) and content (imperfectly drawn squiggles) makes this task a challenge.
The bulk of the work is handling the mess and imperfection of the real world,
and cleaning the incoming information into a usable state.

3 Evaluation

Evaluation of this system will be based on the following questions.
e Can it successfully turn automata images into implementations?

e What sorts of automata can it can handle?

e Under what conditions does it fail?

Evaluation will include creating “benchmark” images of varying difficulty. As
the focus of this project is on the computer vision side, the evaluation will
be oriented more toward the produced automata specifications rather than
the final synthesized programs. In particular, one caveat is the maturity of
SEMGUS tooling—it is still under active development and may not be stable
enough to solve these automata problems.

4 Current Progress

I have made decent progress on this project so far, although I am behind
in my timelines. In particular, the challenges mentioned in Section 2.1 have
been delaying my progress, though most are solved at this point. Currently,
I am successfully recognizing states (including accepting vs. regular states)
and positive /negative example boxes, as shown in Figure 3. T expect my
progress to accelerate now that the fundamental image cleaning and pro-
cessing challenges are solved. Specific notes about the current state of my
implementation are as follows.

Handling Whiteboard Noise [Complete]. T handle whiteboard noise
by using adaptive thresholding to separate the bulk of the content; however,
this leaves a lot of noise, specifically in the lower-right corner of Figure 1,
but generally present all over. To combat this, I used a sequence of applying
a Gaussian blur to the image, thresholding that blur to get a mask, and
applying the mask to eliminate noise outside of the strong content.

Handling Squiggly Circles and Lines [Complete]. I spent a large
chunk of time attempting to get Hough circle transforms working to detect
state circles. However, I was unable to get satisfactory performance. I needed
to drastically increase the transform sensitivity in order to recognize the
states as circles, but this resulted in a large number of erroneous “circles”
being detected across the image. I had similar problems with the rectangles,
and attempting to detect corners failed due to lack of well-defined corners.

Instead, T used geometric properties of regions. Circularity measurements
are good enough to detect even my egg-shaped circles, and I use a similar
technique for rectangles (comparing the area of the bounding box to the
actual area of the shape).

Handling Transition Arrows [In Progress]. Still working on a robust
way to find arrows. Bresler, Prasa, and Hlava¢ (2016) have some good notes
about detecting arrows, and I am also planning on trying feature detection
(e.g., SIFT) against “known” arrows.

Handling Labels [Not Going Well]. T have been having difficulty get-
ting my handwriting recognized. As it is just me doing this project, setting
up and training a custom OCR pipeline is probably out-of-scope. I will likely
either use feature detection to recognize only a subset of characters (e.g., ‘0’
and ‘1’) or switch to colored balls as the automata alphabet.

5 Revisions and Timeline

The following pieces of my original plan are likely to be revised:

e Sending automata specifications to SemGuS tooling seems dubious at
this point, based on said tooling not existing yet. Generating a SemGuS
problem file is likely good enough, since that completes the computer
vision portion of this project.

e OCRing hand-written labels is unlikely at this point, as mentioned
above. Switching to colored balls as the automata alphabet seems the
most feasible and retains the “spirit” of the project.

A revised timeline is as follows:

Date Tasks

Week of Feb. 28th: Initial project planning. Set up vision pipeline.
Week of Mar. 7th: ltem detection: Hough transforms and failures
Week of Mar. 14th: Image cleaning

Week of Mar. 21st: Item detection: states (and accepting states)
Week of Mar. 28th: Iiem detection: positive and negative examples.
Week of Apr. 4th: Item detection: transitions and labels

Week of Apr. 11th: Constraint compilation: transition relations.
Week of Apr. 18th: Create benchmark images and test.

Week of Apr. 25th: Final touches and presentation.

RS

EASRICICYA)

EAENISIEYA

Figure 3: Recognized states (regular in cyan, accepting in blue) and positive
(green) and negative (red) examples

6 Example

Figure 4: An example simple automaton image, implementing the regular
expression AB*A, as well as including a positive and negative example.

Figure 4 shows an image of an automaton defining the regular expression
AB*A, as well as a positive and a negative example. This image would be
compiled into the following constraints, written here as constrained Horn
clauses (CHCs). First, three states are defined:

T = State(1)
T = State(2)
T = State(3)

There are additional constraints distinguishing the accepting state (double
circle) and non-accepting states:

s=1 = Reject(s)

s =2 = Reject(s)
s =3 = Accept(s)

The transitions (arrows) between states become:

s=1Ni=“A"Ns"=2 = Transition(s,i,s')
s=2Ni=“B”As =2 = Transition(s,i,s')
s=2Ni=“A"Ns" =3 = Transition(s,i,s)

The examples become additional constraints:

Ezecute(sy, “ABBBA” s') = Accept(s)
Ezecute(so, “ABBB”, s') = Reject(s’)

where FExecute is a relation that holds when the automaton is run from
initial state sq on the given string and halts at state s’. The exact form the
examples will take on the image is not yet decided; the presented form of a
check or cross followed by the example seems reasonable for now.

Note that these specifications are not a complete description of the sys-
tem. In particular, no starting state was specified in the image, and there is
an implicit failure state for when no transitions apply. While these are nec-
essary for a real implementation, drawn automaton often omit these, and so
we use program synthesis to find the most reasonable implementation (aided
by the given positive and negative examples).

