
CS 766 Project: Automata from Images

Keith Johnson <keith.johnson@wisc.edu> [kjjohnson32]

February 24, 2022

Note: I am submitting this proposal by myself. See email I sent earlier
for more details.

1 Project Summary

Finite state automata underlie many foundational areas of computer science,
including regular language de�nitions, state machines in programs, model
checking, and more. Their simple visual representation makes hand-drawing
an automaton on paper or a whiteboard the typical �rst step of implemen-
tation. However, the translation from a visual representation to a working
implementation is often tedious and error-prone. This project aims to create
a system that takes a hand-drawn automaton, derives logical constraints from
the image, and synthesizes an implementation of the desired automaton.

Solving this problem is important because it will reduce the time and
potential for bugs when implementing systems based on automata. This
reduction enables software developers to focus more on the program logic
and less on the minutia of implementation. I am personally interested in
this problem because my area of research is in program synthesis, and an
image-based program speci�cation is novel in this area. Plus, I have at
many times had to do this automaton-image-to-implementation translation
manually, and it was time-consuming and error prone. Having a system as
proposed would have been bene�cial to me.

I was not able to �nd prior work for this exact problem. Similar ap-
proaches either rely on drawing the automaton on the computer (so the
system is directly told all constraints and is simply rendering the automa-
ton), or direct input of the automaton constraint. Using an image as a

1



program speci�cation in this manner appears to be mostly1 novel. Existing
approaches either are focused on UI design (e.g., Microsoft's Sketch2Code)
or synthesizing image manipulations (e.g., using the actual image data as a
speci�cation), as opposed to specifying an executable program through dia-
grams in an image (e.g., extracting features and text that specify a program).
For this particular case of automata, deriving a speci�cation from an image
is a natural step forward for usability.

While the overall application is a new approach, my implementation will
use existing computer vision techniques for recognition of the automaton
pieces images, as well as standard program synthesis techniques for automata
synthesis. Speci�cally, my goal is to compile the synthesis program into a
semantics-guided synthesis (SemGuS) problem, which is a general synthesis
framework and the focus of my main research. Once compiled to a Sem-

GuS problem, any SemGuS solver can be used to synthesize the automaton
implementation.

Evaluation of this system is relatively straight-forward, based on the fol-
lowing questions.

� Can it successfully turn automata images into implementations?

� What sorts of automata can it can handle?

� Under what conditions does it fail?

Evaluation will include creating �benchmark� images of varying di�culty. As
the focus of this project is on the computer vision side, the evaluation will
be oriented more toward the produced automata speci�cations rather than
the �nal synthesized programs. In particular, one caveat is the maturity of
SemGuS tooling�it is still under active development and may not be stable
enough to solve these automata problems.

1An honorable mention goes to the joke paper �93% of Paint Splatters are Valid Perl
Programs� by McMillen and Toady (https://www.mcmillen.dev/sigbovik/2019.pdf).

2



2 Timeline

A proposed timeline is as follows:

Date Tasks

Week of Feb. 28th: Initial project planning. Set up vision pipeline.
Week of Mar. 7th: Item detection: states and transitions.
Week of Mar. 14th: Constraint compilation: transition relations.
Week of Mar. 21st: Item detection: positive and negative examples.
Week of Mar. 28th: Constraint compilation: examples.
Week of Apr. 4th: Integration with SemGuS tooling.
Week of Apr. 11th: Create benchmark images and test.
Week of Apr. 18th: Continue testing and evaluation.
Week of Apr. 25th: Final touches and presentation.

3



3 Example

Figure 1: An example simple automaton image, implementing the regular
expression AB∗A, as well as including a positive and negative example.

Figure 1 shows an image of an automaton de�ning the regular expression
AB∗A, as well as a positive and a negative example. This image would be
compiled into the following constraints, written here as constrained Horn
clauses (CHCs). First, three states are de�ned:

⊤ =⇒ State(1)

⊤ =⇒ State(2)

⊤ =⇒ State(3)

There are additional constraints distinguishing the accepting state (double
circle) and non-accepting states:

s = 1 =⇒ Reject(s)

s = 2 =⇒ Reject(s)

s = 3 =⇒ Accept(s)

4



The transitions (arrows) between states become:

s = 1 ∧ i = �A� ∧ s′ = 2 =⇒ Transition(s, i, s′)

s = 2 ∧ i = �B� ∧ s′ = 2 =⇒ Transition(s, i, s′)

s = 2 ∧ i = �A� ∧ s′ = 3 =⇒ Transition(s, i, s′)

The examples become additional constraints:

Execute(s0, �ABBBA�, s
′) =⇒ Accept(s′)

Execute(s0, �ABBB�, s
′) =⇒ Reject(s′)

where Execute is a relation that holds when the automaton is run from
initial state s0 on the given string and halts at state s′. The exact form the
examples will take on the image is not yet decided; the presented form of a
check or cross followed by the example seems reasonable for now.

Note that these speci�cations are not a complete description of the sys-
tem. In particular, no starting state was speci�ed in the image, and there is
an implicit failure state for when no transitions apply. While these are nec-
essary for a real implementation, drawn automaton often omit these, and so
we use program synthesis to �nd the most reasonable implementation (aided
by the given positive and negative examples).

5


