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ABSTRACT

Timely interaction between an SDN controller and switches
is crucial to many SDN management applications such as
fast rerouting during link or switch failure and reactive path
setup for latency-sensitive flows. However, our measure-
ment study using two vendor platforms shows that the in-
teraction latencies such as rule installation time are signif-
icant. This is due to both software implementation ineffi-
ciencies and fundamental traits of underlying hardware. To
overcome the latencies and achieve responsive control, we
develop Mazu, a systematic framework leveraging both the
logically central view and global control in SDN, and the
dissection of latencies from our measurement study. Mazu
avoids the switch CPU processing tasks due to data plane
packet arrivals by redirecting the packets to a fast proxy that
is tasked with generating messages for the controller. Mazu
presents novel controller algorithms to spread the rule up-
dates across multiple switches, optimally ordering rules dur-
ing insertion. With reduced number of rules to update per
switch, and hardware-friendly ordering, rule update tasks
finish much faster. Controlled simulations and testbed ex-
periments show that our techniques can reduce the latency
to update network state by almost 5X. Thus, Mazu makes
SDN-based control suitably responsive for critical manage-
ment applications.

1. INTRODUCTION

Software defined networking (SDN) advocates separat-
ing control and data planes in network devices, and pro-
vides a logically centralized platform to program data plane
state [4, 15]. This has opened the door to rich network con-
trol applications that can adapt to changes in the underlying
network or its traffic patterns more flexibly and at smaller
time scales than legacy control planes [6, 7,10, 11, 18, 19].
Therefore, it is not surprising that SDN is being rapidly de-
ployed or under developed in many domains, including data
center (DC) [3,6,13], cloud [18], inter-DC WAN [7,10] and,
cellular [11] networks.

However, a number of important management applica-
tions in these domains, such as fast fail-over, reactive routing
of latency-sensitive flows, and fine-grained DC traffic engi-
neering [3], are stretching SDN’s capabilities. These appli-
cations require the ability to reprogram data plane state at
very fine time-scales to optimally meet their objectives. For

instance, fine-grained DC traffic engineering approaches re-
quire routes to be set up within a few hundred milliseconds
to leverage short-term traffic predictability [3]. Setting up
routes in cellular networks (when a device becomes active,
or a during handoff) must complete within ~30-40ms to en-
sure users can interact with Web services in a timely fash-
ion. It is important that SDN support such applications, oth-
erwise operators will be forced to adopt expensive custom
solutions alongside SDN (e.g., bandwidth reservation, cus-
tom hardware/protocols etc.), which can undermine SDN’s
“CapEx” and “OpEx” benefits.

For such applications, timely interaction between the log-
ically central SDN control plane and network switches is
crucial. Timeliness is determined by: (i) the speed of con-
trol programs, and latency to/from the logically central con-
troller, and (ii) the responsiveness of network switches in in-
teracting with the controller, specifically, in generating the
necessary input messages for control programs, and then
modifying forwarding state as dictated by them. Robust con-
trol software design and advances in distributed controllers [12]
have helped overcome the first issue. However, with most of
the focus today being on the flexibility benefits of SDN rel-
ative to legacy technology, the latter issue has not gained
much attention from vendors and researches alike.

Alarmingly, preliminary studies [9,20] and anecdotal evi-
dence suggest that latencies underlying switch actions in (ii)
could be significant. However, it is not clear what factors
impact these latencies, what the underlying causes are, and
whether the causes are fundamental to switch designs. As
a result, whether it is possible to overcome these latencies
at all is not known. Thus, SDN’s ability to provide suffi-
ciently responsive control to support the aforementioned ap-
plications remains in question.

To this end, we make two contributions. In this first part,
we present a thorough systematic exploration of these laten-
cies in production SDN switches from 2 different vendors—
Vendor A and Vendor B—using a variety of workloads. We
investigate the relationship between switch design and ob-
served latencies using both greybox probes and feedback
from vendors. Key highlights from our measurements are
as follows: (1) We find that inbound latency, i.e., the la-
tency involved in the switch generating events (e.g., when
a flow is seen for the first time) can be high (8 ms per rule
on average on Vendor B). We find the delay is particularly



high whenever the switch CPU is simultaneously processing
forwarding rules received from the controller. (2) We find
that outbound latency, i.e., the latency involved in the switch
installing/modifying/deleting forwarding rules provided by
control applications, is high as well (3ms and 30ms per rule
for insertion and modification, respectively, in Vendor A).
The latency crucially depends on the priority patterns both
in rules being inserted as well those already in a switch’s ta-
ble. We find that there are significant differences in latency
trends across the two switches, pointing to different internal
optimizations.

We find that poor switch software design contributes sig-
nificantly to the observed high latencies. However, patholog-
ical interactions between some rule priority input sequences
and switch hardware table heuristics for rule layout play a
significant role in inflating latency as well. Crucially, the
latter issue is fundamental and may be hard to overcome.

Informed by our measurements, we design a framework
called Mazu that leverages the centralized view and global
control in SDN to overcome or mitigate the impact of laten-
cies, including both latencies from implementation-related
causes and those from fundamental ones. The first technique
in Mazu is to avoid the switch CPU processing events due
to data plane packet arrivals by redirecting packets to a fast
proxy that is tasked with generating the necessary messages
for the controller. By leveraging a fast commodity processor
and decoupling inbound and outbound actions, this elimi-
nates inbound latency.

Because outbound latency is intrinsically linked to switch
software and hardware, we develop techniques that can be
used (in isolation or together) for systematically mitigating
it. Our first technique, flow engineering, leverages our em-
pirical latency models to compute paths such that the latency
of installing forwarding state at any switch is minimized.
Our second technique, rule offloading, computes strategies
for opportunistically offloading portions of forwarding state
to be installed at a switch to other switches downstream from
it. By virtue of reducing installation latency per switch and
enabling parallel execution of updates, these two techniques
ensure rule update tasks to finish much faster. Finally, we
provide rules for installation at a switch in an order that is
optimal for the vendor in question.

We evaluate these techniques for fast fail-over and respon-
sive traffic engineering applications under various settings.
Depending on the topology and the nature of rules in switches,
we find that in/outbound latencies can render SDN incapable
of supporting such applications. In contrast, our techniques
can improve the time taken to update network state in these
scenarios by factors of 1.6-5X, which we argue makes SDN-
based control suitably responsive for these settings.

2. BACKGROUND AND MOTIVATION

Our work focuses mainly on switches supporting the pop-
ular OpenFlow [15] protocol, specifically OpenFlow 1.0, which
is widely available in production switches today. As we will

be clear, our results apply qualitatively to more recent ver-
sions of OpenFlow e.g., OpenFlow 1.3., as well.

2.1 Basics

An OpenFlow SDN switch by default does not run control
plane protocols, as these are delegated to an external applica-
tion running on a logically central controller. Applications
determine the routes traffic must take through the network
and instruct the controller to update the switching substrate
with the appropriate forwarding state. OpenFlow is the API
employed by switches to communicate with the controller to
enable such state update operations.
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Figure 1: Schematic of an OpenFlow switch. Different rect-
angular blocks indicate different components of a switch;
different boxes do not mean different chips. We also show
the factors contributing to inbound and outbound latency

packet_in processing: When a packet arrives, the switch
ASIC first looks it up against the switch’s hardware forward-
ing tables. If a match is found, the packet is forwarded at
line rate. Otherwise the following steps take place (Fig-
ure 1): (I1) Switch ASIC decides to send the packet to the
switch’s CPU via the PCI/PCle bus. (I2) An OS interrupt is
raised at which point the ASIC SDK gets the packet and dis-
patches it to the switch-side openflow agent. (I3) The agent
wakes up, processes the packet, and sends to the controller a
packet_in message spanning the first 128B including header.
All of three steps, I1-13, can impact the latency in generating
packet_in which we call inbound latency.

The application residing on the controller processes the
message and upon determining routes for packets belonging
to the corresponding flow, sends a flow_mod and a packet_out
message. The flow_mod message describes the action the
switch should apply to all future packets of the flow: this
could be forward according to some rule, update an existing
rule, or delete a rule. The format of a typical “simple” rule
is srcip=A,dstip=B,action=output:3 (the rule can cover a to-
tal of 12 matching fields in Openflow 1.0); wild-cards can
be used. The rule may also specify a priority (to determine
which rule to apply when multiple rules match a packet) and
a timeout after which the rule is deleted from the table. The
packet_out message simply releases the packets buffered at
the switch to be forwarded along.

flow_mod processing: When it receives a flow_mod the



switch takes the following steps: (O1) The switch software
running on the CPU parses the OpenFlow message. (02)
The software schedules the rule to be applied to hardware
tables, typically TCAM. (O3) Depending on the nature of
the rule, the chip SDK may require existing rules on the
switch to be moved around, e.g., to accommodate high pri-
ority rules. (O4) The hardware table is updated with the rule.
All of four steps O1-0O4 impact the total delay in fully exe-
cuting flow_mod action, which we call outbound delay.
SDN applications can be of two forms: reactive or proac-
tive. The former work by enforcing default-off forwarding
to flow sub-spaces; this causes any flow in that sub-space to
generate a packet_in event when it reaches an ingress switch
for the first time. The application then determines the for-
warding action and sends the corresponding flow_mod mes-
sages down to the switch. These applications are impacted
by both in- and outbound delays. Proactive applications di-
rectly update network forwarding state using flow_mod mes-
sages. They are mainly impacted by outbound delays.

2.2 Motivating Applications

In what follows, we provide examples of management ap-
plications that require fine-grained control over data plane
state. We highlight the impact of inbound and outbound la-
tencies on the applications’ objectives.

Mobility: Recent work [11] advocates using SDN to
simplify path setup and management in cellular networks.
In these settings, paths need to be set up whenever devices
want to access the Internet. In addition, these paths need to
be reconfigured during handoff. Currently these paths are
implemented as GPRS Tunneling Protocol (GTP) tunnels in
LTE. To avoid impacting the performance of subscribers,
these tunnels must be setup within a small latency bound.
For example, when a mobile device in idle state wants to
communicate with an Internet server it needs first to transi-
tion from idle state to connected state. According to recent
measurement studies [8], this transition delay is around 260
ms in LTE. To keep access latency below 300 ms as recom-
mended by Web service providers, path setup must finish in
40 ms. This can be very challenging especially when paths
for multiple devices need to be setup at once, e.g., during a
popular event.

Failover: It is possible that SDN can help mitigate the
network-wide impact of failures in wide-area networks, re-
ducing both downtime and congestion without requiring sig-
nificant over provisioning: when failures occur, the SDN
management application can quickly compute new paths for
flows traversing failed nodes or links, while also simultane-
ously rerouting other high/low priority flows so as to avoid
hot-spots [7]. However, this requires significant updates to
network state at multiple network switches. The longer this
update takes, the longer the effect of failure is felt in the form
of congestion and drops. We find that outbound latencies
can inflate the time by nearly 20s (§7) putting into question
SDN’s applicability to this scenario.

. Flow
Switch CPU | RAM Table Size Data Plane
14*10Gbps
Vendor A | 1Ghz | 1GB 896 + 4%40Gbps
40*10Gbps
Vendor B | 2Ghz | 2GB | 4096 + 4%40Gbps

Table 1: Specific details of the switches
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Figure 2: Measurement experiment setup.

Intra-DC Traffic Engineering: Some recent proposals,
such as MicroTE [3] and Hedera [2] have argued for using
SDN to route traffic subsets at fine time-scales in order to
achieve fine-grained traffic engineering in data centers. For
instance, MicroTE leverages the fact that a significant frac-
tion of ToR-to-ToR DC traffic (ToR is “top-of-rack” switch)
is predictable on short time-scales of a 1-2s. It computes
and installs at ToR switches routes for such traffic on short
time-scales. Thus, latencies in installing routes can signifi-
cantly undermine MicroTE’s effectiveness. Indeed, we find
that updating a set of routes at a ToR switch in MicroTE can
take as long as 0.5s on some SDN switches (§7).

3. LATENCY MEASUREMENTS

An important first step to taming in/outbound latencies is
to understand the various factors that affect them within the
SDN switch. We conduct a variety of measurements aimed
at carefully isolating these factors. To draw general obser-
vation, we use 2 commercial switch platforms (Table 1). To
ensure that we are experimenting in the optimal regimes for
the different switches we take into account switch specifics
such as maximum flow table sizes as well as support for pri-
ority in rule set up.

3.1 Measurement Methodology

Our empirical setup is shown in Figure 2. The PC has
one 1Gbps and two 10Gbps ports that are connected to the
switch under test. The ethO port is connected to the control
port of the switch on one side and a POX SDN controller
running on the PC is set to listen on this port. The ports eth1
and eth2 are connected to the data ports on the switch. The
propagation delay between the switch and the controller is
negligible (about 0.1 ms). The controller is used to send a
set of Openflow 1.0 flow_mod commands to the switch in
burst mode. To generate traffic for the 10Gbps NIC on the
data plane, we use pktgen [17] in kernel space. Using this
generator we are able to generate traffic at 600-1000 Mbps.

Prior work notes that accurate execution of open flow com-
mands on commercial switches can only be accurately ob-
served in the data plane [20]. Thus, our experiments are
crafted toward ensuring that the impact of various factors on
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Figure 3: Inbound delay on Vendor B. Flow arrival rate =
200/s

with flow mod/pkt out
flow rate | 100/s | 200/s
cpuusage | 15.7% | 265%

w/o flow mod/pkt out
flow rate [ 100/s | 200/s
cpuusage | 9.8% | 144%

Table 2: CPU usage on Vendor B switch

the latencies can be measured directly from the data plane (at
eth2 in figure), except for packet_in part of inbound latency.
We use libpcap running on a high performance host to ac-
curately time stamp the different packet and rule processing
events of each flow. We first log the timestamps in memory
and when the experimental run is completed, the results are
dumped to the disk and processed. We use the time stamp
of the first packet associated with a particular flow as the
finish time of the corresponding flow_mod command. Fur-
ther details that depend on the specific issues we measure are
presented in later sections.

3.2 Dissecting Inbound Delay

To capture inbound delay, we empty the table at the switch.
We generated traffic such that packet_in events are gener-
ated at a certain rate (i.e., we create packets for new flows
at a fixed rate). To isolate the impact of packet_in process-
ing from other message processing, we perform two kinds
of experiments. In the first experiment, the packet_in will
trigger corresponding flow_mod and packet_out messages;
the flow_mod messages insert simple OpenFlow rules (dif-
fering just in destination IP). In the second experiment, the
packet_in message is dropped silently by the controller.

We record the timestamp (1) when each packet is trans-
mitted on the measurement server’s NIC. We also record the
timestamp (t2) when the server receives packet_in message.
The difference t5 — t; is the inbound delay.l

Representative results for these two experiments are shown
in Figures 3(a) and (b), respectively, for the Vendor B switch;
results for the Vendor A switch are qualitatively similar. For
the first experiment (a), we see that the inbound delay is
quite variable with a mean of 8.33 ms and standard devia-
tion of 31.34; also, it increases with the packet_in rates (e.g.,
the mean is 3.32 ms for 100/s; not shown). For the sec-
ond experiment (b) the inbound delay is significantly small
for most of the time. The only difference across the two

'This measurement technique differs from the approach used in [9],
where the delay was captured from the switch to the POX controller
which includes the overhead at the controller.

experiments is that in the former case, the switch CPU is
processing flow_mod and packet_out alongside generating
packet_in messages. As such, we see significant CPU uti-
lization during this experiment (Table 2). Thus, we conclude
that inbound delay is mainly caused by switch CPU and due
to interference with flow_mod and packet_out processing.

3.3 Dissecting Outbound Delay

Before we perform the outbound delay measurements, first
we install a single default low priority rule which instructs
the switch to drop all the traffic. Then we install specially
designed Openflow rules at the switch; while they simply
specify the destination IP address leaving other fields wild-
carded, they may have different priorities. All instruct the
switch to output traffic to the port which is connected to the
measurement host on which we are monitoring.

We examine outbound latencies for three different flow_mod
operations in turn, namely, insertion, modification and dele-
tion. We examine the impact of key factors on these laten-
cies, namely, table occupancy and rule priority structure.

3.3.1 Insertion Latency

We conduct a variety of tests to examine how different
patterns of rule workloads impact insertion latency. In al-
most all experiments, we install a burst of rules. Let us de-
note these rules in a sequence as 1,72, , 74, -+ , 7. De-
note T'(r;) as the time we observe the first packet matching
r; emerging from the intended port of the rule action. We
define insertion latency as T'(r;) — T'(r; — 1).

Table occupancy: To understand the impact of table oc-
cupancy, we insert a burst of B rules back to back into a
switch that already has S rules in it. All B + S rules have
the same priority. We fix B and experiment with different S
on both Vendor A and Vendor B switches. We ensure B + .S
rules can be accommodated in the switch’s hardware table.

Taking B = 400 as an example, we found that the flow
table occupancy does not impact the insertion operation if
all rules have the same priority. The mean insertion delay
is 3.14, 1.11 ms and the standard deviation is 2.14, 0.18 for
Vendor A and Vendor B respectively, irrespective of .S.

Rule priority: To understand rule priority effects on the
insertion operations, we conducted three different experi-
ments each covering different patterns of priorities. In each,
we insert a burst of B rules into an empty table. We vary B.
In the “same priority” experiment, all rules have the same
priority. In the “increasing” and “decreasing priority” ex-
periments each rule has a different priority and the rules are
inserted in increasing/decreasing priority order, respectively.

Vendor A: same priority. We experimented with several
values of B. Representative results for B = 100 and B =
200 are shown in Fig 4(a) and Fig 4(b), respectively. In both
cases, we see that the per rule insertion delay is similar: with
medians of 3.12, 3.02 ms and standard deviations of 1.70,
2.60, for B = 100 and B = 200, respectively. We conclude
that same priority rule insertion delay does not vary with
burst size on Vendor A.
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Figure 5: Vendor B priority per-rule insert latency results

Vendor A: increasing priority. Figure 4(c) shows the re-
sult for B = 100. We note that the per rule insertion delay
actually increases linearly with the number of rules inserted.
Figure 4(d) shows the result for B = 200; we see that the
slope stays the same as B = 100. Compared with the same
priority experiment, the average per rule delay can be much
larger 9.47 (17.66) ms vs 3.12 (3.02) ms, for B = 100 (200).
Results for other B’s are qualitatively similar. The TCAM in
this switch stores high priority rules at low (preferred) mem-
ory addresses. Thus, each rule inserted in this experiment
displaces all prior rules!

Vendor A: decreasing priority. We also performed de-
creasing priority insertion (not shown in figure). We observe
that the burst of n rules is divided into a number of groups,
and each group is reordered and inserted in TCAM in order
of increasing priority. This indicates that Vendor A firmware
reorders the rules and prefers increasing priority insertion.

Vendor B: same priority. For B = 800 on Vendor B we
see that the per rule insertion delay is similar across the 800
rules, with a median of 1.17 ms and standard deviation of
0.16 (not shown). The results for other Bs are similar. Thus,
similar to Vendor A, same priority rule insertion delay does
not vary with burst size on Vendor B.

Vendor B: increasing priority. Figure 5(a) shows per-rule
latencies for B = 800. Surprisingly, in contrast with Vendor
A, the per rule insertion delay among the rules is more or less
the same, with a median of 1.18 ms and a standard deviation
of 1.08. We see similar results for other Bs. This shows that
the Vendor B TCAM architecture is fundamentally different
from Vendor A. Rules are ordered in Vendor B’s TCAM in
a way that higher priority rule insertion does not displace
existing low priority rules.

Vendor B: decreasing priority. Figure 5(c) shows per-rule

latencies for B = 800. We see two effects: (1) the latencies
alternate between two modes at any given time, and (2) a
step-function affect after every 300 or so rules.

A likely explanation for #1 is bus buffering. Since itis part
of the control path of the switch it is not really optimized for
latency. The latter can be explained as follows: Examining
Vendor B switch architecture, we found that it has 24 slices,
say A; ... Agy, and each slice holds 300 flow entries. There
exists a consumption order (low-priority first!) across all
slices. Slice A; stores the i*" lowest priority rule group. If
rules are inserted in decreasing priority, A; is consumed first
until it becomes full. Subsequently, when the next low pri-
ority rule is inserted in our experiment, this causes one rule
to be displaced from A; to A,. This happens for each of the
next 300 rules, after which cascaded displacements happen
A1 — Ay — As, and so on. We confirmed with Vendor B.

Summary and root causes: We observe that (1) same
priority insertions are fast and are not affected by flow ta-
ble occupancy. This is true for both Vendor A and Vendor
B; (2) priority insertion patterns can affect insertion delay
very differently. For Vendor B, increasing priority insertion
is similar to same priority insertion. However, insertion in
decreasing priority can incur much higher delay. For Ven-
dor A, insertions with different priority patterns are all much
higher than insertions with same priority.

Key root cause for observed latencies are how rules are
organized in the TCAM, and the number of slices.

Even in the faster of the two switches, Vendor B, per rule
insertion latency of 1ms is higher than what the state-of-
the-art TCAMS can support in terms of update rates. Thus,
there appears to be an intrinsic switch software overhead
contributing to all latencies as well.

3.3.2  Modification Latency

We now study modification operations. As before, we ex-
periment with bursts of rules. Modification latency is defined
similar to insertion.

Table occupancy: To understand the impact of table oc-
cupancy, we pre-insert S rules into a switch (simple rules as
before), all with the same priority. We then modify one rule
at a time by changing the rule’s output port, sending modifi-
cation requests back to back.

Per-rule modification delay for Vendor A at .S = 100 and
S = 200 are shown in Figure 6(a) and (b) respectively. We
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see that the per rule delay is more than 30 ms for S = 100.
When we double the number of rules, S = 200, latency dou-
bles as well. It grows linearly with .S (not shown). Note that
this latency is much higher than the corresponding insertion
latency (3.12 ms per rule) (§3.3.1). For Vendor B, the modi-
fication delay for S = 100, 200 is around 1 ms (standard de-
viation 0.06) for all modified rules, similar to insertion delay
with same priority, in contrast with Vendor A.

Rule Priority: We conducted two experiments. In each,
we insert B rules into an empty table. In the increasing pri-
ority experiments, the rules in the table each have a unique
priority, and we send back-to-back modification requests for
rules in increasing priority order. Likewise, we define the
decreasing priority experiment. We vary B.

Vendor A: increasing/decreasing priority. Figure 7(a) and
(b) show the results for the increasing and decreasing prior-
ity experiments, respectively, for B = 100. In both cases,
we see: (i) the per rule modification delay is similar across
the rules, with a median of 25.10 ms and a standard devia-
tion of 6.74, (ii) the latencies are identical across the experi-
ments. We observed that the latencies grew with B for both
experiments.

Taken together with the table occupancy results above, we
conclude that the per rule latency for modification on Vendor
A is impacted purely by table occupancy, not by rule prior-
ity structure. For Vendor B, the modification delay is 1 ms
independent of rule priority, table occupancy or B.

Summary and root causes: We observe that flow rule
priority do not impact modification delay. Modification de-
lay in Vendor A is a function of table occupancy, whereas
this is not the case for Vendor B where modification is as
fast as insertion. Conversations with Vendor A indicated that
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TCAM modification should ideally be fast, so the underlying
cause appears to be poorly optimized switch software.

3.3.3 Deletion Latency

We now estimate the impact of rule deletions. We use
bursts of operations as before. Denote 7'(r;) as the first time
we stopped observing packets matching rule r; from the in-
tended port of the rule action. We define deletion latency as
T(’I‘i) — T(Tl — 1)

Table Occupancy: We pre-insert S rules into a switch,
all with the same priority. We then delete one rule at a time,
sending deletion requests back to back. The results for Ven-
dor A at S = 100 and S = 200 are shown in Figure 8(a)
and (b), respectively. We see that per rule deletion delay de-
creases as the table occupancy drops. We see a similar trend
for Vendor B (Figure 9(a) and (b)).

Rule Priorities: From B existing rules in the switch, we
delete one rule at a time, “with” and “without priority”. In
case of priority, we delete rules in increasing and decreasing
priority order. As shown in Figures 10(a), (b) for Vendor A,
and Figures 11 (a) and (b) for Vendor B, deletion is not af-
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Figure 12: Polling effects on completion time on Vendor A
switch. Burst size 100. Measured using simple openflow
rules (i.e., just vary destination IP).

fected by rule priorities in the table and the order of deletion
for either platform. However, deletion delay is affected by
the number of rules in the table.

Root cause: Since deletion delay decreases with rule
number in all cases, we conclude that deletion is incurring
TCAM reordering. We also observe that rule time out pro-
cessing does not impact flow_mod perations much. Given
these two observations, our recommendation is to let rules
time out rather than explicitly delete them, if possible.

3.3.4 Impact of concurrent switch CPU jobs

To investigate the impact of concurrent switch CPU activi-
ties, we instruct the switch to perform flow statistics queries.
Figure 12 shows that concurrent activities such as polling
statistics can have a great impact on insertion delay, espe-
cially at high table occupancy. E.g., the total completion
time of inserting a burst of 100 rules with same priority into
a table with 500 rules can take around 853 ms when there are
two polling events during the insertion process. In contrast,
it takes 356 ms when there is no polling event.

3.4 Opverall burst insertion completion time

With the understanding of per-rule insertion latency, we
present burst rule completion time as this is the metric many
applications such as failover depend on.

We conduct two experiments. With .S rules in the table,
we insert a burst of B rules. For the first experiment, S has
high priority and we insert the burst with low priority. For
the second experiment, if it is Vendor A, S has low priority
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and we insert rules with high priority; if it is Vendor B, S
has high priority and we insert rules in decreasing priority.

For Vendor A, based on our hypothesis, as long as the
same number of rules get displaced, the completion time
should be the same. Indeed, from Figure 13(a), we see that
even with 400 high priority rules in the table, the insertion
delay for the first experiment is no different from the set-
ting when there is only 100 high priority rules in the table.
In Figure 13(b), since newly inserted high priority rules will
displace 400 low priority rules in the table, the completion
time will be about three times higher than .S = 100.

For Vendor B, we also run the same two experiments as
for Vendor A. The results are similar to rule insertion with
same priority. This indicates that Vendor B optimizes for
rule priority better than Vendor A. When we insert in de-
creasing priority, as shown in Figure 14, the completion time
is about 3.5 seconds, three times higher than the case of in-
sertion with same priority.

4. MAZU OVERVIEW

Our goal is to develop a general set of techniques that an
SDN network can employ to overcome the impact of the la-
tencies described above on key management applications.
Ideally, the techniques must work across all applications,
switches and deployment settings. To this end, we present
a new controller framework called Mazu (Figure 15).

The Mazu controller implements a number of modules.
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The first, i.e., proxy, handles inbound processing. We show
that the proxy can in fact eliminate all inbound delays (§5).

Because the underlying causes of outbound delays are tightly

linked with switch software and hardware, we can hope at

best to mitigate these latencies. The remaining modules achieve

this. The key insight underlying them all is to organize the
flow_mod input provided to switches such that the aggre-
gate rule installation latency experienced by the application
is minimized, given the underlying latency causes.

Flow engineering is an application-dependent module that
compute routes that spreads flows across paths in a network,
so as to minimize rule installation latency by controlling rule
displacement at any switch, while adhering to network ob-
jectives (§6.1). Rule offloading takes the set of rules to be
installed at any ingress switch as an input (these could be
rules computed by the flow engineering step above), and
carefully offloads/spreads subsets of these rules to down-
stream switches/routers having sufficient capacity to hold
the rules (§6.2). By virtue of reducing the installation la-
tency per switch and enabling parallel execution of updates,
these techniques ensure rule update tasks finish much faster.

Optimal rule update reorders the rules to be installed at a
switch (e.g., those computed by rule offload scheme above)
into a sequence that is optimal with respect to the switch’s
hardware table management scheme. This helps further con-
trol rule installation latency (§6.3).

5. HANDLING INBOUND DELAY

To overcome the inbound latency entirely a simple idea
we employ is to physically decouple the switch’s handling
of packet_in and packet_out messages from flow_mod mes-

sages. We punt all packet_in message generation (and packet_out

processing) to a separate optimized processing unit, i.e., a
custom proxy, co-located with ingress switches in a network;
multiple ingress switches can share a proxy too.

We establish a (short) label-switched path between the
switch and its corresponding proxy. The switch continues to
have a control channel to the controller (an SSL connection);
in addition, we establish a control channel (SSL) between

the proxy and the controller. The controller must associate
each switch with its relevant proxy.

To exercise the proxy, we insert a default low priority rule
in the switch; this redirects at line rate all unmatched packets
on the label-switched path to the proxy. The switch stamps
the incoming port ID in the IPID field on the packet be-
fore label-switching it to the proxy. The proxy generates
the necessary packet_in messages reflecting the switch’s in-
coming port ID, and forwards them on its control channel
to the controller, and buffers packet_in locally (similar to a
regular switch). The controller sends packet_out messages
to the proxy; the proxy processes the message and forwards
the buffered packet corresponding to the packet_in back to
the switch for routing to the eventual destination. flow_mod
messages are sent directly to the switch.

6. MINIMIZING OUTBOUND DELAY

We describe three Mazu modules for overcoming outbound
latencies. Our approaches deal mainly with rule insertions.
To handle rule deletions and modifications, we leverage the
following key ideas based on our measurement results:

1. Avoid deleting rules: Rule deletions are expensive
across all the platforms we measured. Thus, we never delete
rules. Instead, we simply let them time out (and insert higher
priority rules to supersede them as needed).

2. Avoid modifying rules for Vendor A: Our measurements
with the Vendor A switch showed that modifying a rule can
be much more expensive than inserting a new rule. There-
fore, we always insert a new rule R’ for a flow at a switch
instead of modifying the existing R to R’. We ensure R’ is
of higher priority than R but lower priority than any R" that
overlaps with R’ and is higher priority than R’. We simply
let R expire (similar to above). A nice side-effect of this is
that rule priorities generally “stay high”, resulting in lower
rule displacements from future insertions compared to mod-
ifying rules (as only higher priority rules can cause displace-
ments in Vendor A). For the Vendor B switch, modification
latency is small and independent of rule priorities in the flow
table, so no such provision needs to be made.

6.1 Flow Engineering

SDN applications typically compute paths between vari-
ous network locations that meet some global objective per-
taining to, e.g., performance or security. A common issue
considered in most prior works on such applications is to
deal with limited switch table sizes, by picking routes that
obey or optimize table space constraints [7, 16, 19]. Unfor-
tunately, these techniques do not provide sufficient control
over outbound delay.

Minimize maximum flow table occupancy is very sub-
optimal: For example, consider a simple setting where there
are three candidate paths between a pair of nodes as shown in
Figure 16. Each path has one Vendor A switch. The switch
on the first path has 100 rules of low priority L, whereas the
switches on the second and third paths each have 400 rules
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of high priority H. Suppose that a hypothetical traffic engi-
neering application has 100 flows of priority H to allocate to
these paths, and each path is equally preferable for a flow.
Existing techniques for table space management would as-
sign all flows to the first path to minimize maximum flow
table occupancy; but our measurements for Vendor A show
that each of these 100 rules will displace all the 100 low
priority rules in the TCAM, resulting in high latencies! Al-
locating 50 flows each on the latter two paths instead results
in no rule displacement, and the number of rules installed
per path will be smaller. Thus, when the flows are installed
in parallel across the latter two paths, this results in signifi-
cant reduction in installation latency. Based on Figure 13, it
is about 200 ms vs 2 seconds, a 10X difference! Vendor B
switches have similar issues, but for other priority patterns.

The goal of flow engineering is to select paths across the
network such that installation delay is minimized. The key
insight we use is the following: in general, there are many
possible sets of paths {P?, j}i in a network that optimize an
SDN application’s objectives, e.g., optimal capacity and la-
tency. From this, flow engineering selects the set ng;%‘;f;
that minimizes the aggregate impact of both rule displace-
ment in TCAM as well as the number of rules installed at any
switch, while obeying table space constraints. ng;ffb?f: _can
be computed by running a two step optimization, where the
first step computes the value of the network’s objective func-
tion, but not the actual routes to use, and the second step
computes routes that minimize the aggregate effect of rule
displacement and the number of rules to be inserted at any
switch. The detailed optimization formulation is a large in-
teger linear program (omitted for brevity) and hence ineffi-
cient to solve. Below, we discuss a simplifying heuristic in
the context of a traffic engineering application.

We represent the network as a graph G = (VE), where
each node is a switch (or a PoP) and each edge is a phys-
ical link (or virtual tunnel). Given a traffic matrix M, the
application attempts to route it such that the average link
utilization is within some bound; the heuristic can be eas-
ily extended to accommodate other objectives. Our heuristic
works by exploring for each source-destination pair whether

a path can accommodate both its demand, and the path setup
latency is within some bound. If either is violated, we try
out the next candidate path.

More precisely, suppose we want to bound the maximum
cost of installing rules at any switch by some C. We start
by selecting some low value for C. We assume that we have
computed K candidate equal cost paths for each (u,v) € V.
Suppose the priority of the (u,v) flow is Pri(u,v) at every
switch in the network (this is typically set by the operator).

We sort the traffic demands in decreasing order of magni-
tude and iterate through them. For each (u,v) in the sorted
order, we consider the corresponding K equal cost paths in
decreasing order of available capacity; supposed P(ld;;f)( is
the sorted order.

If the demand d,,,, can be satisfied by the path P(lum within
the utilization bound, then we compute whether installing
the (u, v) path violates the rule installation latency bound or
not. We do this by modeling the per-switch latency, as well
as maximum latency on the path:

Per-switch latency: Given our measurement results, for
every switch s € P(lu, v)» We can model the latency at s due to
routing (u, v) as Ls = max(a, (b+ ¢ * Disps(Pri(u,v)))).
Here, Disps(Pri(u,v)) is the number of rules at s that will
be displaced by the rule for (u, v). For the Vendor A switch,
this is the number of rules of priority lower priority than
Pri(u,v), whereas for the Vendor B switch Disp, (Pri(u,v))
is the number of rules of priority higher than Pri(u,v) di-
vided by 300. This is a conservative estimate assuming all

rules are packed in increasing priority of slices (§3.3.1). Disps(Pri(u,v))

can be easily tracked by the SDN controller. In the above,
a, b ad c are constants derived from our measurements. This
model essentially says that if the current rule does not dis-
place any rules from s’s existing table, then it incurs a fixed
cost of a; otherwise, it incurs the cost given by b + ¢ %
Disps(Pri(u,v)). The fixed cost a is the insertion delay
without any TCAM ordering. « is the same whether it is
modification or insertion for Vendor B. For Vendor A, since
we avoided modification, it represents insertion delay with-
out TCAM displacement.

Maximum installation latency: Now, Vs € Plu’v) , We
check if Ly + CurrentLy < C, where CurrentLy is the
current running total cost of installing the rules at s, accumu-
lated from source-destination pairs considered prior to (u, v)
in our iterative approach.

If this inequality is satisfied, we assign (u,v) to the path
P(lu’v) and move to the next source-destination pair. If not,
meaning that installing the (u,v) route on this path violates
the maximum cost bound C' for some switch on the path,
then we move to the next candidate path for (u, v), i.e., P(Qu, )
and repeat the same as above.

If after iterating through all (u,v) pairs once, the traffic
matrix cannot be allocated, then we increase C and start over
again. Alternately, we could do a simple binary search on C.

Comments: Because the paths are computed by the SDN
application, flow engineering will necessarily have to be im-
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Figure 17: Illustration of rule offloading

plemented within the application. Flow engineering does
not apply to scenarios where route updates are confined to
just one location, presenting no opportunity to spread up-
date load laterally. One such example is MicroTE [3] (§2),
where changes in traffic demands are accommodated by al-
tering rules at the source ToR to reallocate ToR-to-ToR flows
across different tunnels.

6.2 Rule Offload

Rule offloading applies particularly to networks where tun-
nels are used, e.g., cellular networks (§2), carrier networks
that rely on label-switching, data centers using VXLAN and
inter-DC WAN networks such as those consider in [7, 10].
In such networks, fine-grained SDN applications perform-
ing traffic engineering or reactive routing typically control
tunnel end-points, setting up overlay paths. Compared to
the rate of changes at these tunnel end-points, the under-
lay, which may also be run using an SDN, maintains much
smaller forwarding state, and observes much less churn in
forwarding state. Our approach leverages these attributes of
switches in the underlay to offload to them rules that would
otherwise be installed at the tunnel end points.

Thus, we wish to partition rules to be installed into a switch
into subsets that can be installed at downstream switches,
with the appropriate default rules added at upstream switches.
If the original number of rules is NV and no partition (together
with default rules) has more than H rules, then we can re-
duce rule installation latency by a factor of % by updating
the partitions in parallel.

The main idea in our algorithm is to recursively partition
the rules into a number of child partitions. Since we offload
to next hop switches, each partition has an associated next
hop. In other words, packets matching rules in the same
partition all go to the same next hop. The partition algorithm
ensures that there is no dependency among child partitions.
For each partition, we also compute default rules to direct
packets to that partition. The objective is to maximize the
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number of rules that can be offloaded minus the number of
default rules introduced.

Different from [16]’s goal of reducing computational load
of host hypervisor, our goal in rule offloading is to reduce
path setup latency by enabling fast parallel execution of up-
dates. Also, per source rule offloading is considered in [16].
In contrast, we offload by grouping the next hop of rule ac-
tions to increase offloading opportunities.

We illustrate this using an example in Figure 17. Fig-
ure 17(a) shows the topology. Suppose we need to install
six rules Ry, Ra, - - ,Rg to switch S7. The rule dependency
graph is shown in Figure 17(b). If there are rule entries
in the flow table, the dependency graph will include those
rules. For example, there is an edge from R3 to R;. This
means that the two rules overlap. When a packet matches
both rules, R3 takes precedence. The labels A and B denote
the next hop of the rules’ action. If a rule’s action is to send
through a tunnel, the label will be the next hop of the tunnel
path, not the tunnel destination. If a rule’s action is deny, for
simplicity, it will not be offloaded.

The algorithm starts from the leaf nodes (rules R such that
there is no R’ with R — R/). All of them with the same next
hop are placed in one partition. In the example, we have two
next hops S3 and S5 through port A and B respectively. We
have two leaf rules Ry and Ry. R;’s next hop is S3 and
Ry’s next hop is S5. Ry will be in partition 1 and Rs will
be in partition 2. Since we have R3 — R; and Rj3’s next
hop is the same as R; (which is S3 through port A), and
R5 (nexthop S3) and R3 have no dependency, then R3 will
be in partition 1. Similarly, R4 will be in partition 2. For
Rs, Rs — R3, and R5 — Rjy; thus, Rs has to be in the
root partition (“pinned” to the ingress switch S1). Also all
rules R’ such that R" — Rj5 will be pinned down in a similar
fashion. Ry is such arule. So Rg will be in the root partition.

The outcome of the above routine is an allocation of rules
to the root (ingress switch S7), and to its two next hops. Be-
cause we need to direct traffic to the appropriate next hop for
offloading, we need to create default rules to cover the flows-
pace of the partitions. Suppose one rule R 4 covers the flows-
pace of partition 1 and one rule Rp covers the flowspace of
partition 2. The final rules to install at switches S, Sz, S3 is
shown in Figure 17(c). Four rules will be installed in switch
S1 and two each will be installed at switches S5, S5 respec-
tively. This reduces the number of rules to install at switch
R, by one third.

We start by picking a bound H < N for the rules at any
switch, where [V is the total number of rules we started with
that were to be installed at the edge switch. We also use
a bound H,,,. that controls the maximum number of rules
any edge switch can offload to a given core switch. If at
any iteration, partitioning at a node causes either of these
bounds to be violated at a downstream core switch, then we
terminate partitioning for the node.

We then run the above routine recursively starting at the
edge switch, followed by running it at the next hop core



switches over the rules allocated to them, and so on. Ter-
mination condition is that a set number of next hops (down-
stream switches in the tree rooted at the edge switch) are
explored. If at termination, the number of rules accommo-
dated at every core switch is < H, then we lower H by a
factor v < 1 and repeat again. If H* is the value of H at
the last of such iterations, then we achieve a speedup of HA
from parallely installing the offload rules.

When running this scheme across the network, we sort
edge nodes in decreasing order of rules to be installed and
run the above algorithm on them in this order.

For ease of description, in the above algorithm, we do not
account for switch table occupancy or consider the detailed
delay model as in Section 6.1. To accommodate table oc-
cupancy, we can stop rule offloading process on a particular
switch if the occupancy level will exceed a threshold. To
avoid high delays due to rule structure in core switches, we
apply the detailed delay model to our partition results. If
the estimated delay is higher than no offloading because of a
particular core switch, we will remove that switch from con-
sideration and rerun the algorithm. It is also easy to consider
the delay model directly in our algorithm as we have done
for flow engineering in Section 6.1. However, for simplicity,
we omit the details.

Next, we discuss computing default rules that direct traf-
fic from upstream switches for eventual processing at down-
stream switches.

//G: rule dependency graph with nodes annotated with next hop label
/I'P;: partition ¢ for next hop %, initially empty
/IC};: set of rules covering the flowspace of partition ¢
/IN': threshold for extra covering rules
While (BFS from leaf node) { //traverse reverse edges
If rule R; with label L; depends on no other rules,
include R; in Pr,
Else If rule R; depends on rules with more than one distinct label
pin the rule to the root partition
Else
If rule R; results inn > N covering rules,
skip R;
Else include R; in Pr,,

Figure 18: Recursive Rule Partition Algorithm

Computing default rules: Given two partitions A and B
computed above, we wish determine default rules that need
to go into A and B’s root partition. The main challange
is dealing with the fact that the simplistic default rules de-
scribed above may have a non-empty intersection, where the
intersection has rules from either A or B. This introduces
ambiguity at the root. Splitting up the default rules into
smaller parts to try and deal with this may introduce too may
default rules. We present a heuristic optimization, described
briefly below.

We assume that each rule can be represented by a rectan-
gle (src, dst IP) for simplicity. Our heuristic below can be
easily extended to higher dimensions. Given the rules in A
and B, we create covering rectangles’ one each for the rules
in A and B, called C'4 and C. A covering rectangle is one
whose src IP range covers the entire src IP range specified in
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the rules (likewise for destination IPs).

We check if the number of rules from either A or B in
C4 N Cp is below some threshold ©. If so, all such rules
are “promoted” to the root partition and get pinned there.
Furthermore, we create two default rules, one each for C'4
and C'p and install them in the root.

If, however, the number of rules in C'4 N C'p exceeds O,
then we further divide C'4 and C'p in two sub-rectangles
each. We repeat the process above for pairs of sub-rectangles
one corresponding to A and the other to B.

We recursively repeated this process for a small number
of steps. If at the end of these steps, the combined number
of default rules and pinned rules to be installed at the root is
significant (> (2), then we merge A and B and simply install
all of it at the root.

6.3 Ordered Rule Insertion

Our measurements show that given rules of different pri-
orities to be inserted at a switch, the “optimal” order of rule
insertion varies with switch platform because of the differ-
ence in architecture and the workload the hardware is opti-
mized for. For Vendor B, the optimal order is to insert rules
in increasing order of priority, whereas the opposite is true
for Vendor A. Given this observation, Mazu controls the ac-
tual rule insertion using the pattern that is optimal for the
switch.

We assume consistent update mechanisms [13,14] are used
for network path update. In consistent update, new rules will
not take effect unless all of them are installed. Therefore,
Mazu can optimize the ordering without causing temporal
policy violations.

7. EVALUATION

In this section, we conduct a thorough analysis of the ef-
fectiveness of Mazu’s modules toward mitigating flow setup
latencies. Ultimately, our goal is to understand whether Mazu
can help SDN be more effective in providing fine time-scale
control over network state.

7.1 Inbound Latency

We prototyped the proxy described in §5 on a commod-
ity host (Intel quad core CPU at 2.66Ghz and 8GB RAM).
We evaluated it using the same setup as described in §3.2.
We found that the proxy almost completely eliminates the
inbound delay: the delay is under 0.199ms (0.146ms) for a
flow arrival rate of 200/s (2000/s); the 99th percentile delay
is as small as 0.476ms (3.56ms), which is mainly due to the
proxy’s software overhead. Since the proxy is physically de-
coupled from the switch, there is no impact of the switch’s
flow_mod or packet_out operations on the proxy’s packet_in
operations. In contrast, without the proxy, the mean and
99th percentile delays are 8ms and 192ms respectively, with
a flow arrival rate of 200/s. These improvements are sig-
nificant, especially for latency sensitive applications such as
VoIP calls in cellular networks.



Popularity Popularity Index No of low
Workload Index for high priority priority rules
traffic in the flowtable

sl 1-10 1-5 0-50

s2 1-10 1-5 100-200
s3 1-10 1-5 300-500
s4 1-20 1-7 0-50

s5 1-20 1-7 100-200
s6 1-20 1-7 300-500

Table 3: Workloads used in simulation

7.2 Outbound Latency

In what follows, we use a variety of large-scale simula-
tions on various topologies with different workloads to study
the impact of delays imposed by outbound latencies and the
improvements offered by Mazu. We leverage the switch la-
tency models derived from our measurements in §3.3.

7.2.1 Flow Engineering

To evaluate the effectiveness of Mazu’s flow engineer-
ing technique, we simulate a failover scenario in a tunneled
WAN network, where a random link experiences a failure.

Topology: We use a simple full mesh (overlay) network
of 25 nodes. The tunnels between these nodes share the same
physical network. Each tunnel has between 5 and 10 inter-
mediate switches. Per link capacity lies in [100, 1000].

Traffic matrix: We assign a popularity index (random
number) to each node. The number of flows between a pair
of nodes is proportional to the product of their popularities.
Each flow imposes a unit demand. At the start of our sim-
ulation, the traffic matrix is routed in a way such that the
maximum load on any link is minimized.

Table occupancy: We assume that the new rules being
installed upon failure (some of these could be updates to ex-
isting rules) all have the same priority P. Further, we assume
that the tunnel end-points already have some rules in them,
a subset of which are displaced by the new rules. We ran-
domly pick the number of such displaced rules within some
interval (explained in more detail below). For simplicity, we
assume that there are no dependencies across rules; we con-
sider dependencies in subsequent sections.

Workloads: We consider six workloads (“s1”, “s2”, “s3”,
“s4”, “s5”, and “s6”) shown in Table 3. In low traffic work-
loads, s1, s2 and s3, the number of rules that can be displaced
at any switch is in [0, 50], [100, 200], [300, 500] respectively;
and the number of flows between any pair of nodes is on av-
erage 50 with a maximum of 100. In high traffic workloads,
s4, s5 and s6, the number of rules that can be displaced at
any switch is in [0, 50], [100, 200], [300, 500] respectively;
and the number of flows between any pair of nodes is on
average 200 with a maximum of 400.

To simulate failures we randomly select a tunnel in the
mesh and fail it. We assume that there is enough spare ca-
pacity in the network to route the affected traffic.

We study three mechanisms: (a) Base case, which re-
routes the affected flows while minimizing the maximum
link load, ignoring setup latencies.(b) Flow engineering (FE)
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to select paths for affected flows such that flow installation
latency is minimized (§6.1). (c) Flow Engineering and Rule
Offload (FE + RO), which implements rule offloading (§6.2)
in addition to FE. It offloads a set of rules from the tunnel
end-nodes to at most k£ = 3 next hop switches per tunnel.

In all cases, we assume that one-shot consistent updates
are employed to install routes. Thus, our metric of interest
is the worst case latency incurred at any switch to install all
new/modified routes at the switch.

On a link failure, around 70 flows get rerouted for low
traffic workloads and 220 for high traffic workloads. All the
rerouted flows are treated as new flows.

We simulate both with Vendor A and Vendor B, assuming
all switches in the network are from the same vendor.

Figure 19 shows the latencies with Vendor A switches for
the three techniques. For the lowest volume workload, the
base case incurs a latency of 720ms, whereas FE improves
this to 259ms and FE+RO to 133ms. These improvements
are crucial, especially for latency sensitive interactive appli-
cations.

For the rest of the workloads, base case latency varies be-
tween 2 and 14s. Using FE offers 22-35% improvement,
but using FE together with RO leads to nearly a factor of
3 improvement in all cases. Note that the gains can be im-
proved further by: (1) leveraging more core switches for of-
fload, (2) providing a modest amount of reserved capacity
for highly critical traffic, so that during failures the number
of flows whose routes have to be recomputed is small and
the rerouted non-critical flows can tolerate modest amounts
of downtime or congestion. In other words, Mazu provides
operators additional flexibility in designing schemes to bet-
ter meet failover requirements in their networks.

We also run our simulation with the Vendor B switch model.
Recall that all rules we insert have the same priority. Since
the Vendor B switch does not impose rule displacement in
such situations, the latency is purely driven by the maximum
number of rules inserted at any switch. In our simulations,
this is almost always at source end-point on a failed tunnel.
Since both base case and FE are equally impacted by this,
we don’t see any improvement from using FE. However, RO
still applies, as rules can be offloaded to core switches—
we see an improvement of over 2X (324ms in base case, vs
129ms with Mazu).

7.2.2  Rule Offload in Depth

ClassBench: While the above scenarios did leverage rule
offload, the rules inserted had a flat priority structure and did
not have dependencies. In what follows, we study how well
rule offload works when these simplifying criteria may not
apply. We leverage ClassBench [21] to generate a variety of
rule sets representative of real world access control. Since
dependent rule sets in most cases hinder rule offloading to
the next hops switches we believe that the ACL rule sets gen-
erated from ClassBench—which have a significant amount of
dependencies—will present a near worst case scenario for our
rule offload scheme.
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Figure 19: Worst case flow setup time of affected flows in
failover scenario with base case, FE and FE+RO techniques
in a full mesh (25 nodes) topology with Vendor A switches

We consider the following simple setup: we use a three-
level FatTree topology [1] with degree 8, containing 128
servers connected by 32 edge switches, 32 aggregate switches
and 16 core switches. We use ClassBench to generate 90
rules for each edge switch. Each rule is assigned a different
priority and a tunnel tag to indicate its tunnel or path.

Without rule offloading, assuming one-shot updates, the
installation time will be the maximum at any edge switch
when inserting 90 rules. Under rule offload, we assume that
a core switch cannot accommodate more than 60 rules in
total from all of its immediate upstream neighbors.

We experimented with a variety of rule sets generated by
ClassBench. On average, we found that the speedup from
using rule offload relative to not using it is 2.1 for Vendor
A switches and 1.4 for Vendor B switches. This speedup is
made possible by rule offload “spreading” out rules to down-
stream switches, enabling parallel execution of updates.

MicroTE: We now consider an important scenario discus-
sion in §2, namely fine-grained intra-DC traffic engineering
using MicroTE [3]. MicroTE leverages the partial and short
term predictability of the traffic matrix in a datacenter to per-
form traffic engineering at small time-scales. As noted in
§6.1, FE does not apply to MicroTE since routes span a sin-
gle tunnel and route changes all happen at a single switch.
Thus, MicroTE can only benefit from rule offload, the ex-
tent of which we study next.

We use the same data center topology as discussed ear-
lier in this section. We assume that the traffic rate between
a pair of servers is derived from a Zipfian distribution. Fig-
ure 20 shows the rule installation completion time. We see
that RO provides a 2X improvement (400ms to 200ms) as-
suming the Vendor A switch. Given the time-scales of pre-
dictability considered, this can help MicroTE leverage traffic
predictability longer, thereby achieving more optimal rout-
ing. The improvement in case of Vendor B is 1.6X (80ms to
48ms).

7.2.3  Two-level Responsive Traffic Engineering

Our experiments above evaluated individual components
of Mazu in isolation. Next, we consider a network manage-
ment application where FE and RO (with priority handling)
both come into play.
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Figure 20: Flow setup time of MicroTE with and without
RO in a Fat Tree (k=8) topology

Our application is a two-level responsive traffic engineer-
ing scheme whose goal is to simultaneously route two cate-
gories of traffic — high and low priority — according to dif-
ferent objectives over the same underlying network. This
could apply to an ISP that deploys (two classes of) service
differentiation. The question we address here is how quickly
can the network establish routes when requests arrive closely
in time for both categories of traffic. The faster this is, the
closer the network’s ability to meet the SLAs for the corre-
sponding classes. This experiment underscores the ability
of Mazu to help applications that desire fine-grained state
control in order to meet complex objectives.

To emulate this, in a somewhat simplistic fashion, we use
different objective functions to route each category. For rout-
ing low priority traffic, the objective is to minimize the over-
all link utilization of the network due to this traffic. We in-
stall coarse grained (wildcard) rules in the switch to route
this traffic. The objective for higher priority traffic is to
minimize the overall link cost, where cost of a link could
be latency. To route the high priority traffic we install fine
grained high priority rules. These fine grained rules could
overlap with the coarse grained rules and when they do, they
have higher rule priority. At first we route the low priority
traffic and then on the remaining network capacity we route
the high priority traffic. For simplicity we assume that both
categories of traffic can be accommodated without causing
any congestion. The rest of the setup we use is same as in
§7.2.1. The high and low priority traffic between any pair of
nodes is proportional to their respective “popularity” indices
(we assign popularity to the nodes at random in the range
as shown in Table 3). For high volume workloads (s4, s5
and s6) the volume of high priority and low priority traffic
between any two overlay nodes is about 17 and 200 flows
respectively and for low volume workloads (s1, s2 and s3)
the volume of high priority and low priority traffic between
any two overlay nodes is about 12 and 50 flows respectively.

Figures 21a and 21b show the total completion time us-
ing Vendor A and Vendor B switches respectively, with and
without our techniques. The base case has a significantly
high flow set up time when the number of low priority rules
in the table are high: as high as 80s for Vendor A. This im-
plies that ignoring flow setup latency can cost traffic engi-
neering dearly in terms of being responsive. For low volume
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Figure 21: Worst case flow set up time of two level traffic en-
gineering scheme with base case, FE and FE+RO techniques
in a full mesh topology with 25 nodes

workloads (s1, s2, s3) the factor of improvement from just
FE is about 2.5X for Vendor A and 1.8X for Vendor B, and
is about 5X for Vendor A and 4X for Vendor B with FE+RO.
We observe similar speedups for high volume workloads (s4,
s5, s6).

We conclude that all the mechanisms in Mazu are cru-
cial to ensuring that the route setup is sufficiently fast for
management applications that desire fine-grained control to
achiev complex objectives.

8. RELATED WORK

A few studies have considered SDN switch performance
in the past. However, they have either focused on narrow
issues, have not offered sufficient in-depth explanations for
observed performance issues, or they did not explore impli-
cations on applications that require tight control. Devoflow [5]
showed that the rate of statistics gathering is limited by the
size of the flow table and that statistics gathering negatively
impacts flow setup rate. More recently, two studies [9, 20]
provided a more in-depth look into switch performance across
various vendors. In [20], the authors evaluate 3 commercial
switches and observed that switching performance is vendor
specific and depends on applied operations, forwarding table
management, and firmware. In [9], the authors also studied
3 commercial switches (HP Procurve, Fulcrum, Quanta) and
found that delay distributions were distinct, mainly due to
variable control delays. Our work is complementary with,
and more general, than these results. We provide in-depth
characterization of the impact of rule priority structures. We
also provide low-level explanations of the latency causes.

Some studies have consider approaches to mitigate the
overhead of SDN rule matching and processing. [5] presents
a rule cloning solution which reduces the number of con-
troller requests being made by the switch by having the con-
troller set up rules on aggregate or elephant flows. Mazu’s
techniques are largely complementary to this. DIFANE [22]
reduces flow set up latency by splitting pre-installed wild
card rules among multiple switches and therefore all deci-
sions are still made in the data plane. However this approach
does not apply for the kind of applications we are target-
ing that need to make fast, frequent updates/modifications to
data plane state. In [16], the authors design a rule manager
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that automatically partitions and places rules at both hyper-
visors and switches. Different from their goal of reducing
computational load of host hypervisor, we wish to reduce
path setup latency by enabling fast parallel execution of up-
dates.

9. CONCLUSION

With the promise of flexible control by SDN, critical ap-
plications such as fast failover and mobility demand a tight
interaction between the control plane and data plane. How-
ever, our measurement studies show that latency between
controller and switches are highly variable depending on rule
priorities in the flow table, the order of flow_mod opera-
tions and concurrent switch CPU activities. This creates
significant challenges for SDN to support critical manage-
ment applications. We present Mazu, a systematic frame-
work to minimize such latencies. To reduce the latency from
the switch to the controller, we bypass the slow embedded
switch CPU completely by redirecting unmatched packets
to a proxy. To reduce the latency of flow_mod operations,
we introduce a novel concept, flow engineering, a mecha-
nism to allow managemet applications to take path setup la-
tency as a second objective. We then present rule offloading
which computes strategies for opportunistically offloading
portions of forwarding state to be installed at a switch to
other switches downstream from it. Our evaluation shows
that our mechanisms can tame flow setup latencies, thereby
enabling SDN-based control of critical applications.
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