
LiquidSwitch: Transport Enforcement for Datacenter
Networks∗

Keqiang He†, Eric Rozner‡, Kanak Agarwal‡, Yu Gu‡, Wes Felter‡, John Carter‡, Aditya Akella†
†UW-Madison ‡IBM

{keqhe,akella}@cs.wisc.edu {erozner,kba,yugu,wmf,retrac}@us.ibm.com

1. INTRODUCTION
In multi-tenant datacenters, VMs play an integral role

by enabling a diverse set of operating systems and soft-
ware to be run on a unified underlying framework. How-
ever, out-dated, inefficient, or misconfigured TCP stacks
can be implemented in the VMs. In this paper, we explore
how operators can regain control of TCP’s congestion
control, regardless of the TCP stack running in a VM.
Our aim is to allow a cloud provider to utilize advanced
TCP stacks, such as DCTCP [1], without having control
over the VM or requiring changes in network hardware.
We propose a scheme that exerts fine-grained control
over arbitrary tenant TCP stacks by enforcing per-flow
congestion control in the virtual switch.

2. OUR APPROACH
We present LiquidSwitch, a new technology that im-

plements TCP congestion control within a vSwitch to
help ensure VM TCP performance cannot impact the
network in an adverse way. At a high-level (Figure 1),
the vSwitch monitors all packets for a flow, modifies
packets to support features not implemented in the VM’s
TCP stack (e.g., ECN) and reconstructs important TCP
parameters for congestion control. LiquidSwitch runs the
congestion control logic specified by an administrator
and then enforces an intended congestion window by
modifying the receiver advertised window (RWND) on
incoming ACKs. A policing mechanism ensures stacks
cannot benefit from ignoring RWND and can also be used
for non-TCP traffic.

LiquidSwitch allows for administrators to enforce
a uniform, network-wide congestion control algorithm
without changing VMs. DCTCP congestion control al-
gorithm is implemented in LiquidSwitch, this allows
for high throughput and low latency, regardless of the
congestion control algorithms VMs use. Furthermore,
our system mitigates the impact of varying TCP stacks
running on the same fabric. This improves fairness and
additionally solves the ECN co-existence problem identi-

∗Keqiang He is a student author

OS OS OS

AppsApps Apps

Control	plane
Data	path	(LiquidSwitch)

vNIC vNIC vNIC

Datacenter	Network

vS
w

itc
h

Virtual Machines
LiquidSwitch
(sender)

LiquidSwitch
(receiver)

U
ni

fo
rm

 p
er

-fl
ow

 C
C

P
er

-fl
ow

 C
C

 fe
ed

ba
ck

Server

Figure 1: LiquidSwitch high-level architecture.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14 16

C
D

F

Round Trip Time (milliseconds)

Default
DCTCP

Ours

(a) TCP RTT in 16-to-1 incast.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14

C
D

F

Mice FCT (milliseconds)

Default
DCTCP

Ours

(b) mice flow (16KB) FCT.
Figure 2: LiquidSwitch Performance

fied in production networks [2, 3]. LiquidSwitch is easy
to implement, computationally lightweight, scalable and
modular.

3. EXPERIMENT RESULTS
We attach 17 servers to a IBM G8264 10Gbps switch.

We measure Default (CUBIC stack without ECN) and
DCTCP (ECN-enabled) on an unmodified vSwitch. We
compare them to LiquidSwitch (CUBIC on host with
LiquidSwitch-based vSwitch). Our evaluation (Figure 2)
shows LiquidSwitch closely tracks DCTCP’s performance
regardless of the VM’s TCP stack and outperforms De-
fault. The computational overhead of LiquidSwitch is
less than 4% compared with the baseline case.

References
[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,

S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP). In
SIGCOMM, 2010.

[2] G. Judd. Attaining the Promise and Avoiding the Pitfalls of TCP in the
Datacenter. In NSDI, 2015.

[3] H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and Y. Zhang. Tuning ECN for
Data Center Networks. In CoNEXT, 2012.

	Introduction
	Our Approach
	Experiment Results

