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ABSTRACT
Datacenter networks deal with a variety of workloads, rang-
ing from latency-sensitive small flows to bandwidth-hungry
large flows. Load balancing schemes based on flow hash-
ing, e.g., ECMP, cause congestion when hash collisions oc-
cur and can perform poorly in asymmetric topologies. Re-
cent proposals to load balance the network require central-
ized traffic engineering, multipath-aware transport, or ex-
pensive specialized hardware. We propose a mechanism that
avoids these limitations by (i) pushing load-balancing func-
tionality into the soft network edge (e.g., virtual switches)
such that no changes are required in the transport layer, cus-
tomer VMs, or networking hardware, and (ii) load balanc-
ing on fine-grained, near-uniform units of data (flowcells)
that fit within end-host segment offload optimizations used
to support fast networking speeds. We design and implement
such a soft-edge load balancing scheme, called Presto, and
evaluate it on a 10 Gbps physical testbed. We demonstrate
the computational impact of packet reordering on receivers
and propose a mechanism to handle reordering in the TCP
receive offload functionality. Presto’s performance closely
tracks that of a single, non-blocking switch over many work-
loads and is adaptive to failures and topology asymmetry.
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1. INTRODUCTION
Datacenter networks must support an increasingly diverse

set of workloads. Small latency-sensitive flows to support
real-time applications such as search, RPCs, or gaming share
the network with large throughput-sensitive flows for video,
big data analytics, or VM migration. Load balancing the net-
work is crucial to ensure operational efficiency and suitable
application performance. Unfortunately, popular load bal-
ancing schemes based on flow hashing, e.g., ECMP, cause
congestion when hash collisions occur [3, 17, 19, 22, 53, 54,
63] and perform poorly in asymmetric topologies [4, 65].

A variety of load balancing schemes aim to address the
problems of ECMP. Centralized schemes, such as Hedera [3]
and Planck [54], collect network state and reroute elephant
flows when collisions occur. These approaches are funda-
mentally reactive to congestion and are very coarse-grained
due to the large time constraints of their control loops [3]
or require extra network infrastructure [54]. Transport layer
solutions such as MPTCP [61] can react faster but require
widespread adoption and are difficult to enforce in multi-
tenant datacenters where customers often deploy customized
VMs. In-network reactive distributed load balancing schemes,
e.g., CONGA [4] and Juniper VCF [28], can be effective but
require specialized networking hardware.

The shortcomings of the above approaches cause us to re-
examine the design space for load balancing in datacenter
networks. ECMP, despite its limitations, is a highly practi-
cal solution due to its proactive nature and stateless behavior.
Conceptually, ECMP’s flaws are not internal to its operation
but are caused by asymmetry in network topology (or capac-
ities) and variation in flow sizes. In a symmetric network
topology where all flows are “mice”, ECMP should pro-
vide near optimal load balancing; indeed, prior work [4, 58]
has shown the traffic imbalance ECMP imposes across links
goes down with an increase in the number of flows and a
reduction in the variance of the flow size distribution.

Can we leverage this insight to design a good proactive
load balancing scheme without requiring special purpose hard-
ware or modifications to end-point transport? The system we
propose answers this in the affirmative. It relies on the dat-
acenter network’s software edge to transform arbitrary sized
flows into a large number of near uniformly sized small sub-
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flows and proactively spreads those uniform data units over
the network in a balanced fashion. Our scheme is fast (works
at 10+ Gbps) and doesn’t require network stack configura-
tions that may not be widely supported outside the datacen-
ter (such as increasing MTU sizes). We piggyback on recent
trends where several network functions, e.g., firewalls and
application-level load balancers, are moving into hypervi-
sors and software virtual switches on end-hosts [10, 36, 51].
Our paper makes a strong case for moving network load bal-
ancing functionality out of the datacenter network hardware
and into the software-based edge.

Several challenges arise when employing the edge to load
balance the network on a sub-flow level. Software is slower
than hardware, so operating at 10+ Gbps speeds means algo-
rithms must be simple, light-weight, and take advantage of
optimizations in the networking stack and offload features
in the NIC. Any sub-flow level load balancing should also
be robust against reordering because packets from the same
flow can be routed over different network paths which can
cause out-of-order delivery. As shown in Section 2, reorder-
ing not only impacts TCP’s congestion control mechanism,
but also imposes significant computational strain on hosts,
effectively limiting TCP’s achievable bandwidth if not prop-
erly controlled. Last, the approach must be resilient to hard-
ware or link failures and be adaptive to network asymmetry.

To this end, we build a proactive load balancing system
called Presto. Presto utilizes edge vSwitches to break each
flow into discrete units of packets, called flowcells, and dis-
tributes them evenly to near-optimally load balance the net-
work. Presto uses the maximum TCP Segment Offload (TSO)
size (64 KB) as flowcell granularity, allowing for fine-grained
load balancing at network speeds of 10+ Gbps. To combat
reordering, we modify the Generic Receive Offload (GRO)
handler in the hypervisor OS to mitigate the computational
burden imposed by reordering and prevent reordered pack-
ets from being pushed up the networking stack. Finally,
we show Presto can load balance the network in the face
of asymmetry and failures.

Our paper makes the following contributions:

1. We design and implement a system, called Presto, that
near-optimally load balances links in the network. We
show such a system can be built with no changes to
the transport layer or network hardware and scales to
10+ Gbps networking speeds. Our approach makes
judicious use of middleware already implemented in
most hypervisors today: Open vSwitch and the TCP
receive offload engine in the OS (Generic Receive Of-
fload, GRO, in the Linux kernel).

2. We uncover the importance of GRO on performance
when packets are reordered. At network speeds of 10+
Gbps, current GRO algorithms are unable to sustain
line rate under severe reordering due to extreme com-
putational overhead, and hence per-packet load bal-
ancing approaches [17, 22] need to be reconsidered.
We improve GRO to prevent reordering while ensur-
ing computational overhead is limited. We argue GRO
is the most natural place to handle reordering because

it can mask reordering in a light-weight manner while
simultaneously limiting CPU overhead by having a di-
rect impact on the segment sizes pushed up the net-
working stack. In addition, our scheme distinguishes
loss from reordering and adapts to prevailing network
conditions to minimize the time to recover lost packets.

3. Presto achieves near-optimal load balancing in a proac-
tive manner. For that, it leverages symmetry in the net-
work topology to ensure that all paths between a pair
of hosts are equally congested. However, asymmetries
can arise due to failures. We demonstrate Presto can
recover from network failures and adapt to asymmetric
network topologies using a combination of fast failover
and weighted multipathing at the network edge.

4. Finally, we evaluate Presto on a real 10 Gbps testbed.
Our experiments show Presto outperforms existing load
balancing schemes (including flowlet switching, ECMP,
MPTCP) and is able to track the performance of a sin-
gle, non-blocking switch (an optimal case) within a
few percentage points over a variety of workloads, in-
cluding trace-driven. Presto improves throughput, la-
tency and fairness in the network and also reduces the
flow completion time tail for mice flows.

2. DESIGN DECISIONS AND
CHALLENGES

In Presto, we make several design choices to build a highly
robust and scalable system that provides near optimal load
balancing without requiring changes to the transport layer or
switch hardware. We now discuss our design decisions.

2.1 Design Decisions
Load Balancing in the Soft Edge A key design decision in
Presto is to implement the functionality in the soft edge (i.e.,
the vSwitch and hypervisor) of the network. The vSwitch
occupies a unique position in the networking stack in that it
can easily modify packets without requiring any changes to
customer VMs or transport layers. Functionality built into
the vSwitch can be made aware of the underlying hardware
offload features presented by the NIC and OS, meaning it
can be fast. Furthermore, an open, software-based approach
prevents extra hardware cost and vendor lock-in, and allows
for simplified network management. These criteria are im-
portant for providers today [41]. Thanks to projects like
Open vSwitch, soft-switching platforms are now fast, ma-
ture, open source, adopted widely, remotely configurable,
SDN-enabled, and feature-rich [36, 50, 52]. Presto is built
on these platforms.

Reactive vs Proactive Load Balancing The second ma-
jor design decision in Presto is to use a proactive approach
to congestion management. Bursty behavior can create tran-
sient congestion that must be reacted to before switch buffers
overflow to prevent loss (timescales range from 100s of µs
to ~4 ms [54]). This requirement renders most of the cen-
tralized reactive schemes ineffective as they are often too



slow to react to any but the largest network events, e.g., link
failures. Furthermore, centralized schemes can hurt perfor-
mance when rerouting flows using stale information. Dis-
tributed reactive schemes like MPTCP [61] and CONGA [4]
can respond to congestion at faster timescales, but have a
high barrier to deployment. Furthermore, distributed reac-
tive schemes must take great care to avoid oscillations. Presto
takes a proactive, correct-by-design approach to congestion
management. That is, if small, near-uniform portions of traf-
fic are equally balanced over a symmetric network topology,
then the load-balancing can remain agnostic to congestion
and leave congestion control to the higher layers of the net-
working stack. Presto is only reactive to network events such
as link failures. Fortunately, the larger timescales of reactive
feedback loops are sufficient in these scenarios.

Load Balancing Granularity ECMP has been shown to
be ineffective at load balancing the network, and thus many
schemes advocate load balancing at a finer granularity than
a flow [4, 17, 22, 28]. A key factor impacting the choice
of granularity is operating at high speed. Operating at 10+
Gbps incurs great computational overhead, and therefore host-
based load balancing schemes must be fast, light-weight and
take advantage of optimizations provided in the networking
stack. For example, per-packet load balancing techniques [17]
cannot be employed at the network edge because TSO does
not work on a per-packet basis. TSO, commonly supported
in OSes and NICs, allows for large TCP segments (typi-
cally 64 KB in size) to be passed down the networking stack
to the NIC. The NIC breaks the segments into MTU-sized
packets and copies and computes header data, such as se-
quence numbers and checksums. When TSO is disabled,
a host incurs 100% utilization of one CPU core and can
only achieve around 5.5 Gbps [34]. Therefore, per-packet
schemes are unlikely to scale to fast networks without hard-
ware support. Limiting overhead by increasing the MTU
is difficult because VMs, switches, and routers must all be
configured appropriately, and traffic leaving the datacenter
must use normal 1500 byte packets. Furthermore, per-packet
schemes [17, 22] are likely to introduce significant reorder-
ing into the network.

Another possibility is to load balance on flowlets [4, 28].
A flow is comprised of a series of bursts, and a flowlet is
created when the inter-arrival time between two packets in a
flow exceeds a threshold inactivity timer. In practice, inac-
tivity timer values are between 100-500 µs [4]. These val-
ues intend to strike a good balance between load balancing
on a sub-flow level and acting as a buffer to limit reorder-
ing between flowlets. Flowlets are derived from traffic pat-
terns at the sender, and in practice this means the distribu-
tion of flowlet sizes is not uniform. To analyze flowlet sizes,
a simple experiment is shown in Figure 1. We connect a
sender and a receiver to a single switch and start an scp
transfer designed to emulate an elephant flow. Meanwhile,
other senders are hooked up to the same switch and send to
the same receiver. We vary the number of these competing
flows and show a stacked histogram of the top 10 flowlet
sizes for a 1 GB scp transfer with a 500 µs inactivity timer.
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Figure 1: Stacked histogram of flowlet sizes (in MB) for a 1
GB scp file transfer. We vary the number of nuttcp [44]
background flows and denote them as Competing Flows.
The size of each flowlet is shown within each bar, and
flowlets are created whenever there is a 500 µs delay be-
tween segments. The top 10 flowlet sizes are shown here.
We also analyzed the results of a 1 GB nuttcp, ftp, and
a simple custom client/server transfer and found them to be
similar.

The graph shows flowlet sizes can be quite large, with more
than half the transfer being attributed to a single flowlet for
up to 3 competing flows. Using a smaller inactivity timer,
such 100µs, helps (90% of flowlet sizes are 114KB or less),
but does not prevent a long tail: 0.1% of flowlets are larger
than 1 MB, with the largest ranging from 2.1-20.5 MB. Col-
lisions on large flowlet sizes can lead to congestion. The sec-
ond problem with flowlets is that small inactivity thresholds,
such as 100 µs, can lead to significant reordering. Not only
does this impact TCP performance (profiled in Section 5),
but it also needlessly breaks small flows into several flowlets.
With only one flow in the network, we found a 50 KB mice
flow was broken into 4-5 flowlets on average. Small flows
typically do not need to be load balanced on a sub-flow level
and need not be exposed to reordering.

The shortcomings of the previous approaches lead us to
reconsider on what granularity load balancing should occur.
Ideally, sub-flow load balancing should be done on near uni-
form sizes. Also, the unit of load balancing should be small
to allow for fine-grained load balancing, but not so small as
to break small flows into many pieces or as to be a signifi-
cant computational burden. As a result, we propose load bal-
ancing on 64 KB units of data we call flowcells. Flowcells
have a number of advantages. First, the maximum segment
size supported by TSO is 64 KB, so flowcells provide a nat-
ural interface to high speed optimizations provided by the
NIC and OS and can scale to fast networking speeds. Sec-
ond, an overwhelming fraction of mice flows are less than
64 KB in size and thus do not have to worry about reorder-
ing [11, 23, 33]. Last, since most bytes in datacenter net-
works originate from elephant flows [5, 11, 33], this ensures
that a significant portion of datacenter traffic is routed on
uniform sizes. While promising, this approach must com-
bat reordering to be effective. Essentially we make a trade-
off: the sender avoids congestion by providing fine-grained,



near-uniform load balancing, and the receiver handles re-
ordering to maintain line-rate.

Per-Hop vs End-to-End Multipathing The last design con-
sideration is whether multipathing should be done on a lo-
cal, per-hop level (e.g., ECMP), or on a global, end-to-end
level. In Presto, we choose the latter: pre-configured end-
to-end paths are allocated in the network and path selection
(and thus multipathing) is realized by having the network
edge place flowcells onto these paths. Presto can be used
to load-balance in an ECMP style per-hop manner, but the
choice of end-to-end multipathing provides additional ben-
efits due to greater control of how flowcells are mapped to
paths. Per-hop multipathing can be inefficient under asym-
metric topologies [65], and load-balancing on a global end-
to-end level can allow for weighted scheduling at the vSwitch
to rebalance traffic. This is especially important when fail-
ure occurs. The second benefit is flowcells can be assigned
over multiple paths very evenly by iterating over paths in a
round-robin, rather than randomized, fashion.

2.2 Reordering Challenges
Due to the impact of fine-grained, flowcell-based load bal-

ancing, Presto must account for reordering. Here, we high-
light reordering challenges. The next section shows how
Presto deals with these concerns.

Reordering’s Impact on TCP The impact of reordering
on TCP is well-studied [37, 47]. Duplicate acknowledg-
ments caused by reordering can cause TCP to move to a
more conservative sender state and reduce the sender’s con-
gestion window. Relying on parameter tuning, such as ad-
justing the DUP-ACK threshold, is not ideal because in-
creasing the DUP-ACK threshold increases the time to re-
cover from real loss. Other TCP settings such as Forward
Acknowledgement (FACK) assume un-acked bytes in the
SACK are lost and degrade performance under reordering. A
scheme that introduces reordering should not rely on careful
configuration of TCP parameters because (i) it is hard to find
a single set of parameters that work effectively over multi-
ple scenarios and (ii) datacenter tenants should not be forced
to constantly tune their networking stacks. Finally, many
reordering-robust variants of TCP have been proposed [14,
15, 64], but as we will show, GRO becomes ineffective under
reordering. Therefore, reordering should be handled below
the transport layer.

Computational Bottleneck of Reordering Akin to TSO,
Generic Receive Offload (GRO) mitigates the computational
burden of receiving 1500 byte packets at 10 Gbps. GRO is
implemented in the kernel of the hypervisor, and its handler
is called directly by the NIC driver. It is responsible for ag-
gregating packets into larger segments that are pushed up
to OVS and the TCP/IP stack. GRO is implemented in the
Linux kernel and is used even without virtualization. Sim-
ilar functionality can be found in Windows (RSC [55]) and
hardware (LRO [24]).

Because modern CPUs use aggressive prefetching, the cost
of receiving TCP data is now dominated by per-packet, rather
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Figure 2: GRO pushes up small segments (Si) during re-
ordering.

than per-byte, operations. As shown by Menon [39], the
majority of this overhead comes from buffer management
and other routines not related to protocol processing, and
therefore significant computational overhead can be avoided
by aggregating "raw" packets from the NIC into a single
sk_buff. Essentially, spending a few cycles to aggregate
packets within GRO creates less segments for TCP and pre-
vents having to use substantially more cycles at higher layers
in the networking stack. Refer to [31, 39] for detailed study
and explanation.

To better understand the problems reordering causes, a
brief description of the TCP receive chain in Linux follows.
First, interrupt coalescing allows the NIC to create an inter-
rupt for a batch of packets [13, 40], which prompts the driver
to poll the packets into an aggregation queue. Next, the
driver invokes the GRO handler, located in the kernel, which
merges the packets into larger segments. The merging con-
tinues, possibly across many polling events, until a segment
reaches a threshold size, a certain age, or cannot be com-
bined with the incoming packet. Then, the combined, larger
segment is pushed up to the rest of the TCP/IP networking
stack. The GRO process is done on a per-flow level. With
GRO disabled, throughput drops to around 5.7-7.1 Gbps and
CPU utilization spikes to 100% (Section 5 and [34]). Re-
ceive offload algorithms, whether in hardware (LRO) [7, 24]
or in software (GRO), are usually stateless to make them
fast: no state is kept beyond the segment being merged.

We now uncover how GRO breaks down in the face of re-
ordering. Figure 2 shows the impact of reordering on GRO.
Reordering does not allow the segment to grow: each re-
ordered packet cannot be merged with the existing segment,
and thus the previously created segment must be pushed up.
With extreme reordering, GRO is effectively disabled be-
cause small MTU-sized segments are constantly pushed up.
This causes (i) severe computational overhead and (ii) TCP
to be exposed to significant amounts of reordering. We term
this the small segment flooding problem.

Determining where to combat the reordering problem has
not previously taken the small segment flooding problem
into account. Using a reordering buffer to deal with re-
ordered packets is a common solution (e.g., works like [17]
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Figure 3: Our testbed: 2-tier Clos network with 16 hosts.

re-sort out-of-order packets in a shim layer below TCP), but
a buffer implemented above GRO cannot prevent small seg-
ment flooding. Implementing a buffer below GRO means
that the NIC must be changed, which is (i) expensive and
cumbersome to update and (ii) unlikely to help combat re-
ordering over multiple interrupts.

In our system, the buffer is implemented in the GRO layer
itself. We argue this is a natural location because GRO can
directly control segment sizes while simultaneously limit-
ing the impact of reordering. Furthermore, GRO can still
be applied on packets pushed up from LRO, which means
hardware doesn’t have to be modified or made complex. Im-
plementing a better GRO algorithm has multiple challenges.
The algorithm should be light-weight to scale to fast net-
working speeds. Furthermore, an ideal scheme should be
able to distinguish loss from reordering. When a gap in se-
quence numbers is detected (e.g., when P5 is received after
P2 in Figure 2), it is not obvious if this gap is caused from
loss or reordering. If the gap is due to reordering, GRO
should not push segments up in order to try to wait to re-
ceive the missing gap and merge the missing packets into a
preestablished segment. If the gap is due to loss, however,
then GRO should immediately push up the segments to al-
low TCP to react to the loss as fast as possible. Ideally, an
updated GRO algorithm should ensure TCP does not per-
form any worse than a scheme with no reordering. Finally,
the scheme should adapt to prevailing network conditions,
traffic patterns and application demands.

3. DESIGN
This section presents the design of Presto by detailing the

sender, the receiver, and how the network adapts in the case
of failures and asymmetry.

3.1 Sender
Global Load Balancing at the Network Edge In Presto,
a centralized controller is employed to collect the network
topology and disseminate corresponding load balancing in-
formation to the edge vSwitches. The goal of this design is
to ensure the vSwitches, as a whole, can load balance the
network in an even fashion, but without requiring an indi-
vidual vSwitch to have detailed information about the net-
work topology, updated traffic matrices or strict coordination
amongst senders. At a high level, the controller partitions
the network into a set of multiple spanning trees. Then, the
controller assigns each vSwitch a unique forwarding label in
each spanning tree. By having the vSwitches partition traf-

fic over these spanning trees in a fine-grained manner, the
network can load balance traffic in a near-optimal fashion.

The process of creating spanning trees is made simple by
employing multi-stage Clos networks commonly found in
datacenters. For example, in a 2-tier Clos network with ν
spine switches, the controller can easily allocate ν disjoint
spanning trees by having each spanning tree route through
a unique spine switch. Figure 3 shows an example with
four spine switches and four corresponding disjoint span-
ning trees. When there are γ links between each spine and
leaf switch in a 2-tier Clos network, the controller can allo-
cate γ spanning trees per spine switch. Note that 2-tier Clos
networks cover the overwhelming majority of enterprise dat-
acenter deployments and can support tens of thousands of
physical servers [4]. The controller ensures links in the net-
work are equally covered by the allocated spanning trees.

Once the spanning trees are created, the controller assigns
a unique forwarding label for each vSwitch in every span-
ning tree and installs the relevant forwarding rules into the
network. Forwarding labels can be implemented in a variety
of ways using technologies commonly deployed to forward
on labels, such as MPLS [18], VXLAN [4, 36], or IP en-
capsulation [17]. In Presto, label switching is implemented
with shadow MACs [1]. Shadow MACs implement label-
switching for commodity Ethernet by using the destination
MAC address as an opaque forwarding label that can eas-
ily be installed in L2 tables. Each vSwitch is assigned one
shadow MAC per spanning tree. Note Shadow MACs are
extremely scalable on existing chipsets because they utilize
the large L2 forwarding table. For example, Trident II-based
switches [8, 16, 21] have 288k L2 table entries and thus 8-
way multipathing (i.e., each vSwitch has 8 disjoint span-
ning trees) can scale up to 36,000 physical servers. To in-
crease scalability, shadow MAC tunnels can be implemented
from edge switch to edge switch instead of from vSwitch
to vSwitch. Switch-to-switch tunneling has been proposed
in previous works such as MOOSE [57] and NetLord [43].
Tunneling requires O(|switches| × |paths|) rules instead of
O(|vSwitches|×|paths|) rules. All shadow MAC labels can
route to a destination edge switch that forwards the packet to
the correct destination by forwarding on L3 information.

Finally, we note that shadow MACs are also compatible
with network virtualization (both L2 and L3 address space
virtualization). Tunneling techniques such as VXLAN en-
capsulate packets in Ethernet frames, which means shadow
MACs should still allow path selection in virtualized envi-
ronments by modifying outer Ethernet headers. VXLAN
hardware offload is supported in modern NICs and has lit-
tle performance overhead [60].

Load Balancing at the Sender After the controller installs
the shadow MAC forwarding rules into the network, it cre-
ates a mapping from each physical destination MAC address
to a list of corresponding shadow MAC addresses. These
mappings provide a way to send traffic to a specific destina-
tion over different spanning trees. The mappings are pushed
from the controller to each vSwitch in the network, either
on-demand or preemptively. In Presto, the vSwitch on the



Algorithm 1 Pseudo-code of flowcell creation

1: if bytecount + len(skb) > threshold then
2: bytecount← len(skb)
3: current_mac← (current_mac + 1) % total_macs
4: flowcellID← flowcellID + 1
5: else
6: bytecount← bytecount + len(skb)
7: end if
8: skb← update(skb, current_mac, flowcellID)
9: sendToNIC(skb)

sender monitors outgoing traffic (i.e., maintains a per-flow
counter in the datapath) and rewrites the destination MAC
address with one of the corresponding shadow MAC ad-
dresses. The vSwitch assigns the same shadow MAC ad-
dress to all consecutive segments until the 64 KB limit is
reached. In order to load balance the network effectively, the
vSwitch iterates through destination shadow MAC addresses
in a round-robin fashion. This allows the edge vSwitch to
load balance over the network in a very fine-grained fashion.

Sending each 64 KB worth of flowcells over a different
path in the network can cause reordering and must be care-
fully addressed. To assist with reordering at the receiver
(Presto’s mechanisms for combatting reordering are detailed
in the next section), the sender also includes a sequentially
increasing flowcell ID into each segment. In our setup the
controller installs forwarding rules solely on the destination
MAC address and ARP is handled in a centralized manner.
Therefore, the source MAC address can be used to hold the
flowcell ID. Other options are possible, e.g., some schemes
include load balancing metadata in the reserved bits of the
VXLAN header [26] and implementations could also stash
flowcell IDs into large IPv6 header fields.1 Note that since
the flowcell ID and the shadow MAC address are modified
before a segment is handed to the NIC, the TSO algorithm
in the NIC replicates these values to all derived MTU-sized
packets. The pseudo-code of flowcell creation is presented
in Algorithm 1. Since this code executes in the vSwitch,
retransmitted TCP packets run through this code for each re-
transmission.

3.2 Receiver
The main challenge at the receiver is dealing with reorder-

ing that can occur when different flowcells are sent over dif-
ferent paths. The high-level goal of our receiver implemen-
tation is to mitigate the effects of the small segment flooding
problem by (i) not so aggressively pushing up segments if
they cannot be merged with an incoming packet and (ii) en-
suring that segments pushed up are delivered in-order.

Mitigating Small Segment Flooding Let’s use Figure 2 as
a motivating example on how to combat the small segment
flooding problem. Say a polling event has occurred, and the
driver retrieves 9 packets from the NIC (P0-P8). The driver
calls the GRO handler, which merges consecutive packets
1In our implementation, TCP options hold the flowcell ID
for simplicity and ease of debugging.

Algorithm 2 Pseudo-code of Presto GRO flush function

1: for each flow f do
2: for S ∈ f.segment_list do
3: if f.lastFlowcell == getFlowcell(S) then
4: f.expSeq← max(f.expSeq, S.endSeq)
5: pushUp(S)
6: else if getFlowcell(S) > f.lastFlowcell then
7: if f.expSeq == S.startSeq then
8: f.lastFlowcell← getFlowcell(S)
9: f.expSeq← S.endSeq

10: pushUp(S)
11: else if f.expSeq > S.startSeq then
12: f.lastFlowcell← getFlowcell(S)
13: pushUp(S)
14: else if timeout(S) then
15: f.lastFlowcell← getFlowcell(S)
16: f.expSeq← S.endSeq
17: pushUp(S)
18: end if
19: else
20: pushUp(S)
21: end if
22: end for
23: end for

into larger segments. The first three packets (P0-P2) are merged
into a segment, call it S1 (note: in practice S1 already con-
tains in-order packets received before P0). When P5 arrives, a
new segment S2, containing P5, should be created. Instead of
pushing up S1 (as is done currently), both segments should
be kept. Then, when P3 is received, it can be merged into
S1. Similarly, P6 can be merged into S2. This process can
continue until P4 is merged into S1. At this point, the gap
between the original out-of-order reception (P2-P5) has been
filled, and S1 can be pushed up and S2 can continue to grow.
This means the size of the segments being pushed up is in-
creased, and TCP is not exposed to reordering.

The current default GRO algorithm works as follows. An
interrupt by the NIC causes the driver to poll (multiple) pack-
ets from the NIC’s ring buffer. The driver calls the GRO
handler on the received batch of packets. GRO keeps a sim-
ple doubly linked list, called gro_list, that contains seg-
ments, with a flow having at most one segment in the list.
When packets for a flow are received in-order, each packet
can be merged into the flow’s preexisting segment. When a
packet cannot be merged, such as with reordering, the cor-
responding segment is pushed up (ejected from the linked
list and pushed up the networking stack) and a new segment
is created from the packet. This process is continued un-
til all packets in the batch are serviced. At the end of the
polling event, a flush function is called that pushes up all
segments in the gro_list.

Our GRO algorithm makes the following changes. First,
multiple segments can be kept per flow in a doubly linked list
(called segment_list). To ensure the merging process is
fast, each linked list is kept in a hash table (keyed on flow).



When an incoming packet cannot be merged with any exist-
ing segment, the existing segments are kept and a new seg-
ment is created from the packet. New segments are added to
the head of the linked list so that merging subsequent pack-
ets is typically O(1). When the merging is completed over
all packets in the batch, the flush function is called. The
flush function decides whether to push segments up or to
keep them. Segments may be kept so reordered packets still
in flight have enough time to arrive and can then be placed
in-order before being pushed up. Reordering can cause the
linked lists to become slightly out-of-order, so at the begin-
ning of flush an insertion sort is run to help easily decide
if segments are in-order.

The pseudo-code of our flush function is presented in
Algorithm 2. For each flow, our algorithm keeps track of the
next expected in-order sequence number (f.expSeq) and
the corresponding flowcell ID of the most recently received
in-order sequence number (f.lastFlowcell). When the
merging is completed, the flush function iterates over the
sorted segments (S), from lowest sequence number to high-
est sequence number in the segment_list (line 2). The
rest of the code is presented in the subsections that follow.

How to Differentiate Loss from Reordering? In the case
of no loss or reordering, our algorithm keeps pushing up seg-
ments and updating state. Lines 3-5 deal with segments from
the same flowcell ID, so we just need to update f.expSeq
each time. Lines 6-10 represent the case when the current
flowcell ID is fully received and we start to receive the next
flowcell ID. The problem, however, is when there is a gap
that appears between the sequence numbers of the segments.
When a gap is encountered, it isn’t clear if it is caused from
reordering or from loss. If the gap is due to reordering, our
algorithm should be conservative and try to wait to receive
the packets that "fill in the gap" before pushing segments up
to TCP. If the gap is due to loss, however, then we should
push up the segments immediately so that TCP can react to
the loss as quickly as possible.

To solve this problem, we leverage the fact that all packets
carrying the same flowcell ID traverse the same path and
should be in-order. This means incoming sequence numbers
can be monitored to check for gaps. A sequence number
gap within the same flowcell ID is assumed to be a loss, and
not reordering, so those packets are pushed up immediately
(lines 3-5). Note that because a flowcell consists of many
packets (a 64 KB flowcell consists of roughly 42 1500 byte
packets), when there is a loss it is likely that it occurs within
flowcell boundaries. The corner case, when a gap occurs on
the flowcell boundary, leads us to the next design question.

How to Handle Gaps at Flowcell Boundaries? When a
gap is detected in sequence numbers at flowcell boundaries,
it is not clear if the gap is due to loss or reordering. There-
fore, the segment should be held long enough to handle rea-
sonable amounts of reordering, but not so long that TCP
cannot respond to loss promptly. Previous approaches that
deal with reordering typically employ a large static timeout
(10ms) [17]. Setting the timeout artificially high can han-
dle reordering, but hinders TCP when the gap is due to loss.

Setting a low timeout is difficult because many dynamic fac-
tors, such as delays between segments at the sender, network
congestion, and traffic patterns (multiple flows received at
the same NIC affect inter-arrival time), can cause large vari-
ations. As a result, we devise an adaptive timeout scheme,
which monitors recent reordering events and sets a dynamic
timeout value accordingly. Presto tracks cases when there is
reordering, but no loss, on flowcell boundaries and keeps
an exponentially-weighted moving average (EWMA) over
these times. Presto then applies a timeout of α ∗ EWMA
to a segment when a gap is detected on flowcell boundaries.
Here α is an empirical parameter that allows for timeouts to
grow. As a further optimization, if a segment has timed out,
but a packet has been merged into that segment in the last
1
β
∗ EWMA time interval, then the segment is still held in

hopes of preventing reordering. We find α and β work over
a wide range of parameters and set both of them to 2 in our
experiments. A timeout firing is dealt with in lines 14-18.

How to Handle Retransmissions? Retransmitted TCP pack-
ets are pushed up immediately in order to allow the TCP
stack to react without delay. If the flowcell ID of the re-
transmission is the same as the expected flowcell ID, then
the retransmission will be pushed up immediately because
its sequence number will be ≤ f.expSeq. If the flowcell ID
is larger than the expected flowcell ID (when the first packet
of a flowcell is a retransmission), then the packet is pushed
up (line 13). If a retransmitted packet has a smaller flowcell
ID than the next expected flowcell ID (a stale packet), then
it will be pushed up immediately (line 20). Note we ensure
overflow is handled properly in all cases.

3.3 Failure Handling and Asymmetry
When failures occur, Presto relies on the controller to up-

date the forwarding behavior of the affected vSwitches. The
controller can simply prune the spanning trees that are af-
fected by the failure, or more generally enforce a weighted
scheduling algorithm over the spanning trees. Weighting al-
lows for Presto to evenly distribute traffic over an asymmet-
ric topology. Path weights can be implemented in a simple
fashion by duplicating shadow MACs used in the vSwitch’s
round robin scheduling algorithm. For example, assume we
have three paths in total (p1, p2 and p3) and their updated
weights are 0.25, 0.5 and 0.25 respectively. Then the con-
troller can send the sequence of p1, p2, p3, p2 to the vSwitch,
which can then schedule traffic over this sequence in a round
robin fashion to realize the new path weights. This way of
approximating path weights in the face of network asymme-
try is similar to WCMP [65], but instead of having to change
switch firmware and use scarce on-chip SRAM/TCAM en-
tries, we can push the weighted load balancing entirely to
the network edge.

As an added optimization, Presto can leverage any fast
failover features that the network supports, such as BGP fast
external failover, MPLS fast reroute, or OpenFlow failover
groups. Fast failover detects port failure and can move cor-
responding traffic to a predetermined backup port. Hard-
ware failover latency ranges from several to tens of millisec-



onds [20, 48]. This ensures traffic is moved away from the
failure rapidly and the network remains connected when re-
dundant links are available. Moving to backup links causes
imbalance in the network, so Presto relies on the controller
learning of the network change, computing weighted multi-
path schedules, and disseminating the schedules to the edge
vSwitches.

4. METHODOLOGY
Implementation We implemented Presto in Open vSwitch
v2.1.2 [45] and Linux kernel v3.11.0 [38]. In OVS, we mod-
ified 5 files and ∼600 lines of code. For GRO, we modified
11 files and ∼900 lines of code.

Testbed We conducted our experiments on a physical testbed
consisting of 16 IBM System x3620 M3 servers with 6-core
Intel Xeon 2.53GHz CPUs, 60GB memory, and Mellanox
ConnectX-2 EN 10GbE NICs. The servers were connected
in a 2-tier Clos network topology with 10 Gbps IBM Rack-
Switch G8264 switches, as shown in Figure 3.

Experiment Settings We ran the default TCP implementa-
tion in the Linux kernel (TCP CUBIC [27]) and set param-
eters tcp_sack, tcp_fack, tcp_low_latency to 1.
Further, we tuned the host Receive Side Scaling (RSS) [56]
and IRQ affinity settings and kept them the same in all ex-
periments. We send and receive packets from the hypervisor
OS instead of VMs. LRO is not enabled on our NICs.

Workloads We evaluate Presto with a set of synthetic and
realistic workloads. Similar to previous works [2, 3, 54],
our synthetic workloads include: Shuffle: Each server in the
testbed sends 1GB data to every other server in the testbed
in random order. Each host sends two flows at a time. This
workload emulates the shuffle behavior of Hadoop work-
loads. Stride(8): We index the servers in the testbed from left
to right. In stride(8) workload, server[i] sends to server[(i+8)
mod 16]. Random: Each server sends to a random destina-
tion not in the same pod as itself. Multiple senders can send
to the same receiver. Random Bijection: Each server sends
to a random destination not in the same pod as itself. Dif-
ferent from random, each server only receives data from one
sender. Finally, we also evaluate Presto with trace-driven
workloads from real datacenter traffic [33].

Performance Evaluation We compare Presto to ECMP,
MPTCP, and a single non-blocking switch used to represent
an optimal scenario. ECMP is implemented by enumerat-
ing all possible end-to-end paths and randomly selecting a
path for each flow. MPTCP uses ECMP to determine the
paths of each of its sub-flows. The MPTCP implementation
is still under active development, and we spent significant
effort in finding the most stable configuration of MPTCP on
our testbed. Ultimately, we found that Mellanox mlx_en4
driver version 2.2, MPTCP version 0.88 [42], subflow count
set to 8, OLIA congestion control algorithm [35], and con-
figured buffer sizes as recommended by [35, 46, 53] gave us
the best trade-offs in terms of throughput, latency, loss and
stability. Unfortunately, despite our efforts, we still occa-
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Figure 4: (a) Scalability benchmark and (b) Oversubscrip-
tion benchmark topology.
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Figure 5: (a) Illustration of the modified GRO’s effective-
ness on masking reordering. (b) In case of massive packet
reordering, official GRO cannot merge packets effectively
such that lots of small packets are processed by TCP which
poses great processing overhead for CPU.

sionally witness some stability issues with MPTCP that we
believe are due to implementation bugs.

We evaluate Presto on various performance metrics, in-
cluding: throughput (measured by nuttcp), round trip time
(a single TCP packet, measured by sockperf [59]), mice
flow completion time (time to send a 50 KB flow and receive
an application-layer acknowledgement), packet loss (mea-
sured from switch counters), and fairness (Jain’s fairness in-
dex [30] over flow throughputs). Mice flows are sent every
100 ms and elephant flows last 10 seconds. Each experiment
is run for 10 seconds over 20 runs. Error bars on graphs
denote the highest and lowest value over all runs.

5. MICROBENCHMARKS
We first evaluate the effectiveness of Presto over a series

of microbenchmarks: (i) Presto’s effectiveness in prevent-
ing the small segment flooding problem and reordering, (ii)
Presto’s CPU overhead, (iii) Presto’s ability to scale to multi-
ple paths, (iv) Presto’s ability to handle congestion, (v) com-
parison to flowlet switching, and (vi) comparison to local,
per-hop load balancing.

Presto’s GRO Combats Reordering To examine Presto’s
ability to handle packet reordering, we perform a simple ex-
periment on the topology shown in Figure 4b. Here two
servers attached to leaf switch L1 send traffic to their own
receivers attached to leaf switch L2 by spreading flowcells
over two network paths. This setup can cause reordering
for each flow, so we compare Presto’s GRO to an unmodi-
fied GRO, denoted "Official GRO". The amount of reorder-
ing exposed to TCP is presented in Figure 5a. To quantify
packet reordering, we show a CDF of the out-of-order seg-
ment count: i.e., the number of segments from other flow-
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Figure 6: Presto incurs 6% CPU overhead on average.

cells between the first packet and last packet of each flowcell.
A value of zero means there is no reordering and larger val-
ues mean more reordering. The figure shows Presto’s GRO
can completely mask reordering while official GRO incurs
significant reordering. As shown in Section 2, reordering
can also cause smaller segments to be pushed up the net-
working stack, causing significant processing overhead. Fig-
ure 5b shows the received TCP segment size distribution.
Presto’s GRO pushes up large segments, while the official
GRO pushes up many small segments. The average TCP
throughputs in official GRO and Presto GRO are 4.6 Gbps
(with 86% CPU utilization) and 9.3 Gbps (with 69% CPU
utilization), respectively. Despite the fact that official GRO
only obtains about half the throughput of Presto’s GRO, it
still incurs more than 24% higher CPU overhead. There-
fore, an effective scheme must deal with both reordering and
small segment overhead.

Presto Imposes Limited CPU Overhead We investigate
Presto’s CPU usage by running the stride workload on a 2-
tier Clos network as shown in Figure 3. For comparison,
official GRO is run with the stride workload using a non-
blocking switch (so there is no reordering). Note both of-
ficial GRO and Presto GRO can achieve 9.3 Gbps. The re-
ceiver CPU usage is sampled every 2 seconds over a 400
second interval, and the time-series is shown in Figure 6.
On average, Presto GRO only increases CPU usage by 6%
compared with the official GRO. The minimal CPU over-
head comes from Presto’s careful design and implementa-
tion. At the sender, Presto needs just two memcpy opera-
tions (1 for shadow MAC rewriting, 1 for flowcell ID encod-
ing). At the receiver, Presto needs one memcpy to rewrite
the shadow MAC back to the real MAC and also incurs slight
overhead because multiple segments are now kept per flow.
The overhead of the latter is reduced because these segments
are largely kept in reverse sorted order, which means merge
on an incoming packet is usually O(1). The insertion sort
is done at the beginning of each flush event over a small
number of mostly in-order segments, which amortizes over-
head because it is called infrequently compared to merge.

Presto Scales to Multiple Paths We analyze Presto’s abil-
ity to scale in the number of paths by setting the number of
flows (host pairs) equal to the number of available paths in
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the topology shown in Figure 4a. The number of paths is
varied from 2 to 8, and Presto always load-balances over all
available paths. Figure 7 shows Presto’s throughput closely
tracks Optimal. ECMP (and MPTCP) suffer from lower
throughput when flows (or subflows) are hashed to the same
path. Hashing on the same path leads to congestion and thus
increased latency, as shown in Figure 8. Because this topol-
ogy is non-blocking and Presto load-balances in a near op-
timal fashion, Presto’s latency is near Optimal. Packet drop
rates are presented in Figure 9a and show Presto and Optimal
have no loss. MPTCP has higher loss because of its bursty
nature [4] and its aggression in the face of loss: when a sin-
gle loss occurs, only one subflow reduces its rate. The other
schemes are more conservative because a single loss reduces
the rate of the whole flow. Finally, Figure 9b shows Presto,
Optimal and MPTCP achieve almost perfect fairness.

Presto Handles Congestion Gracefully Presto’s ability to
handle congestion is analyzed by fixing the number of spine
and leaf switches to 2 and varying the number of flows (host
pairs) from 2 to 8, as shown in Figure 4b. Each flow sends
as much as possible, which leads to the network being over-
subscribed by a ratio of 1 (two flows) to 4 (eight flows).
Figure 10 shows all schemes track Optimal in highly over-
subscribed environments. ECMP does poorly under moder-
ate congestion because the limited number of flows can be
hashed to the same path. Presto does no worse in terms of la-
tency (Figure 11) and loss (Figure 12a). The long tail latency
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Figure 9: (a) Loss rate and (b) Fairness index comparison in
scalability benchmark.
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Figure 10: Throughput comparison in oversubscription
benchmark.

for MPTCP is caused by its higher loss rates. Both Presto
and MPTCP have greatly improved fairness compared with
ECMP (Figure 12b).

Comparison to Flowlet Switching We first implemented
a flowlet load-balancing scheme in OVS that detects inac-
tivity gaps and then schedules flowlets over disjoint paths in
a round robin fashion. The receiver for flowlets uses offi-
cial GRO. Our flowlet scheme is not a direct reflection of
CONGA because (i) it is not congestion-aware and (ii) the
flowlets are determined in the software edge instead of the
networking hardware. Presto is compared to 500 µs and 100
µs inactivity timers in the stride workload on the 2-tier Clos
network (Figure 3). The throughput of the schemes are 9.3
Gbps (Presto), 7.6 Gbps (500 µs), and 4.3 Gbps (100 µs).
Analysis of the 100 µs network traces show 13%-29% pack-
ets in the connection are reordered, which means 100 µs is
not enough time to allow packets to arrive in-order at the des-
tination and thus throughput is severely impacted. Switching
flowlets with 500 µs prevents most reordering (only 0.03%-
0.5% packets are reordered), but creates very large flowlets
(see Figure 1). This means flowlets can still suffer from col-
lisions, which can hurt throughput (note: while not shown
here, 500 µs outperforms ECMP by over 40%). Figure 13
shows the latencies. Flowlet 100 µs has low throughput and
hence lower latencies. However, since its load balancing
isn’t perfect, it can still cause increased congestion in the
tail. Flowlet 500 µs also has larger tail latencies because
of more pronounced flowlet collisions. As compared to the
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Figure 12: (a) Loss rate and (b) Fairness index comparison
in oversubscription benchmark.
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flowlet schemes, Presto decreases 99.9th percentile latency
by 2x-3.6x.

Comparison to Local, Per-Hop Load Balancing Presto
sends flowcells in a round robin fashion over pre-configured
end-to-end paths. An alternative is to have ECMP hash on
flowcell ID and thus provide per-hop load balancing. We
compare Presto + shadow MAC with Presto + ECMP using
a stride workload on our testbed. Presto + shadow MAC’s
average throughput is 9.3 Gbps while Presto + ECMP’s is
8.9 Gbps. The round trip time CDF is shown in Figure 14.
Presto + shadow MAC gives better latency performance com-
pared with Presto + ECMP. The performance difference comes
from the fact that Presto + shadow MAC provides better fine-
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Figure 15: Elephant flow throughput for ECMP, MPTCP,
Presto and Optimal in shuffle, random, stride and random
bijection workloads.

grained flowcell load balancing because randomization in
per-hop multipathing can lead to corner cases where a large
fraction of flowcells get sent to the same link over a small
timescale by multiple flows. This transient congestion can
lead to increased buffer occupancy and higher delays.

6. EVALUATION
In this section, we analyze the performance of Presto for

(i) synthetic workloads, (ii) trace-driven workloads, (iii) work-
loads containing north-south cross traffic, and (iv) failures.
All tests are run on the topology in Figure 3.

Synthetic Workloads Figure 15 shows the average through-
puts of elephant flows in the shuffle, random, stride and ran-
dom bijection workloads. Presto’s throughput is within 1-
4% of Optimal over all workloads. For the shuffle workload,
ECMP, MPTCP, Presto and Optimal show similar results be-
cause the throughput is mainly bottlenecked at the receiver.
In the non-shuffle workloads, Presto improves upon ECMP
by 38-72% and improves upon MPTCP by 17-28%.

Figure 16 shows a CDF of the mice flow completion time
(FCT) for each workload. The stride and random bijection
workloads are non-blocking, and hence the latency of Presto
closely tracks Optimal: the 99.9th percentile FCT for Presto
is within 350 µs for these workloads. MPTCP and ECMP
suffer from congestion, and therefore the tail FCT is much
worse than Presto: ECMP’s 99.9th percentile FCT is over

Percentile ECMP Optimal Presto
50% 1.0 −12% −9%
90% 1.0 −34% −32%
99% 1.0 −63% −56%

99.9% 1.0 −61% −60%
Table 1: Mice (<100KB) FCT in trace-driven work-
load [33]. Negative numbers imply shorter FCT.

7.5x worse (∼11ms) and MPTCP experiences timeout (be-
cause of higher loss rates and the fact that small sub-flow
window sizes from small flows can increase the chances of
timeout [53]). We used the Linux default timeout (200 ms)
and trimmed graphs for clarity. The difference in the random
and shuffle workloads is less pronounced (we omit random
due to space constraints). In these workloads elephant flows
can collide on the last-hop output port, and therefore mice
FCT is mainly determined by queuing latency. In shuffle, the
99.9th percentile FCT for ECMP, Presto and Optimal are all
within 10% (MPTCP again experiences TCP timeout) and in
random, the 99.9th percentile FCT of Presto is within 25%
of Optimal while ECMP’s is 32% worse than Presto.

Trace-driven Workload We evaluate Presto using a trace-
driven workload based on traffic patterns measured in [33].
Each server establishes a long-lived TCP connection with
every other server in the testbed. Then each server contin-
uously samples flow sizes and inter-arrival times and each
time sends to a random receiver that is not in the same rack.
We scale the flow size distribution by a factor of 10 to em-
ulate a heavier workload. Mice flows are defined as flows
that are less than 100 KB in size, and elephant flows are de-
fined as flows that are greater than 1 MB. The mice FCT,
normalized to ECMP, is shown in Table 1. Compared with
ECMP, Presto has similar performance at the 50th percentile
but reduces the 99th and 99.9th percentile FCT by 56% and
60%, respectively. Note MPTCP is omitted because its per-
formance was quite unstable in workloads featuring a large
number of small flows. The average elephant throughput
(not shown) for Presto tracks Optimal (within 2%), and im-
proves upon ECMP by over 10%.

Percentile ECMP Optimal Presto MPTCP
50% 1.0 −34% −20% −12%
90% 1.0 −83% −79% −73%
99% 1.0 −89% −86% −73%

99.9% 1.0 −91% −87% TIMEOUT
Table 2: FCT comparison (normalized to ECMP) with
ECMP load balanced north-south traffic. Optimal means all
the hosts are attached to a single switch.

Impact of North-South Cross Traffic Presto load balances
on "east-west" traffic in the datacenter, i.e., traffic originat-
ing and ending at servers in the datacenter. In a real data-
center environment "north-south" traffic (i.e., traffic with an
endpoint outside the datacenter) must also be considered. To
study the impact of north-south traffic on Presto, we attach
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Figure 16: Mice FCT of ECMP, MPTCP, Presto and Optimal in stride, random bijection, and shuffle workloads.
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Figure 17: Presto’s throughput in symmetry, fast failover and
weighted multipathing stages for different workloads.

an additional server to each spine switch in our testbed to
emulate remote users. The 16 servers establish a long-lived
TCP connection with each remote user. Next, each server
starts a flow to a random remote user every 1 millisecond.
This emulates the behavior of using ECMP to load balance
north-south traffic. The flow sizes for north-south traffic are
based on the distribution measurement in [29]. The through-
put to remote users is limited to 100Mbps to emulate the
limitation of an Internet WAN. Along with the north-south
flows, a stride workload is started to emulate the east-west
traffic. The east-west mice FCT is shown in Table 2 (normal-
ized to ECMP). ECMP, MPTCP, Presto, and Optimal’s av-
erage throughput is 5.7, 7.4, 8.2, and 8.9Gbps respectively.
The experiment shows Presto can gracefully co-exist with
north-south cross traffic in the datacenter.

Impact of Link Failure Finally, we study the impact of link
failure. Figure 17 compares the throughputs of Presto when
the link between spine switch S1 and leaf switch L1 goes
down. Three stages are defined: symmetry (the link is up),
failover (hardware fast-failover moves traffic from S1 to S2),
and weighted (the controller learns of the failure and prunes
the tree with the bad link). Workload L1–>L4 is when each
node connected to L1 sends to one node in L4 (L4–>L1 is
the opposite). Despite the asymmetry in the topology, Presto
still achieves reasonable average throughput at each stage.
Figure 18 shows the round trip time of each stage in a ran-
dom bijection workload. Due to the fact that the network
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Figure 18: Presto’s RTT in symmetry, fast failover and
weighted multipathing stages in random bijection workload.

is no longer non-blocking after the link failure, failover and
weighted multipathing stages have larger round trip time.

7. RELATED WORK
We summarize the related work into three categories: dat-

acenter traffic load balancing, reducing tail latency and han-
dling packet reordering.

Load Balancing in Datacenters MPTCP [53, 61] is a
transport protocol that uses subflows to transmit over mul-
tiple paths. CONGA [4] and Juniper VCF [28] both em-
ploy congestion-aware flowlet switching [58] on specialized
switch chipsets to load balance the network. RPS [22] and
DRB [17] evaluate per-packet load balancing on symmetric
1 Gbps networks at the switch and end-host, respectively.
The CPU load and feasibility of end-host-based per-packet
load balancing for 10+ Gbps networks remains open. Hed-
era [3], MicroTE [12] and Planck [54] use centralized traffic
engineering to reroute traffic based on network conditions.
FlowBender [32] reroutes flows when congestion is detected
by end-hosts and Fastpass [49] employs a centralized arbiter
to schedule path selection for each packet. As compared to
these schemes, Presto is the only one that proactively load-
balances at line rate for fast networks in a near uniform fash-
ion without requiring additional infrastructure or changes to
network hardware or transport layers. Furthermore, to the
best of our knowledge, Presto is the first work to explore



the interactions of fine-grained load balancing with built-in
segment offload capabilities used in fast networks.

Reducing Tail Latency DeTail [63] is a cross-layer net-
work stack designed to reduce the tail of flow completion
times. DCTCP [5] is a transport protocol that uses the por-
tion of marked packets by ECN to adaptively adjust sender’s
TCP’s congestion window to reduce switch buffer occupancy.
HULL [6] uses Phantom Queues and congestion notifica-
tions to cap link utilization and prevent congestion. In con-
trast, Presto is a load balancing system that naturally im-
proves the tail latencies of mice flows by uniformly spread-
ing traffic in fine-grained units. QJUMP [25] utilizes priority
levels to allow latency-sensitive flows to "jump-the-queue"
over low priority flows. PIAS [9] uses priority queues to
mimic the Shortest Job First principle to reduce FCTs. Last,
a blog post by Casado and Pettit [19] summarized four po-
tential ways to deal with elephants and mice, with one ad-
vocating to turn elephants into mice at the edge. We share
the same motivation and high-level idea and design a com-
plete system that addresses many practical challenges of us-
ing such an approach.

Handling Packet Reordering TCP performs poorly in
the face of reordering, and thus several studies design a more
robust alternative [14, 15, 64]. Presto takes the position that
reordering should be handled below TCP in the existing re-
ceive offload logic. In the lower portion of the networking
stack, SRPIC [62] sorts reordered packets in the driver af-
ter each interrupt coalescing event. While this approach can
help mitigate the impact of reordering, it does not sort pack-
ets across interrupts, have a direct impact on segment sizes,
or distinguish between loss and reordering.

8. CONCLUSION
In this paper, we present Presto: a near uniform sub-flow

distributed load balancing scheme that can near optimally
load balance the network at fast networking speeds. Our
scheme makes a few changes to the hypervisor soft-edge
(vSwitch and GRO) and does not require any modifications
to the transport layer or network hardware, making the bar
for deployment lower. Presto is explicitly designed to load
balance the network at fine granularities and deal with re-
ordering without imposing much overhead on hosts. Presto
is flexible and can also deal with failures and asymmetry. Fi-
nally, we show the performance of Presto can closely track
that of an optimal non-blocking switch, meaning elephant
throughputs remain high while the tail latencies of mice flow
completion times do not grow due to congestion.
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