CS 760: Machine Learning
Neural Networks

Misha Khodak

University of Wisconsin-Madison

6 October 2025 1

Logistics

*My office hours today end at 11:55

Midterm: October 22

covers material through October 15t
*mix of short answer and derivations
one double-sided 8.5x11 cheat sheet

Midterm review: October 20t"

*NEW: no class on November 26"
(day before Thanksgiving)

Outline

*Origins: The Perceptron Algorithm
*Definition, Training, Loss Equivalent, Mistake Bound

*Neural Networks
*Introduction, Setup, Components, Activations

*Training Neural Networks
* SGD, Computing Gradients, Backpropagation

Outline

*Origins: The Perceptron Algorithm
*Definition, Training, Loss Equivalent, Mistake Bound

Neural networks: Origins

 Artificial neural networks, connectionist models

Inspired by interconnected neurons in biological systems
* Simple, homogenous processing units

® &
o J)
o
@ @
o« . o - | N » .
& ®
a o ._? @ @ L 4
¢
& s o« @ ¥ o
L AV ° ®
L &
° ®
‘. | 9 —» e
. I '] % ® e
o) B
s A% o\ ' 1
<) \ 9\’ » ! &
\ @ e ®
& ° 5 @ & . @
&

3T %

ssssssssss ges away
from the cell body to
other neurons,m uscles,
or glands)

Actio pttl \
(electrical signal

signa
traveling down My | h th
the axon) (co of some
ne dh Ip speed
| mp ulses)

Perceptron: Simple Network

Input
X1
\44
L X w
5%
Y V“ \A‘ Output

1

7 () 1 wliz>0
€T —

X, Wa Y 0 otherwise

[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960]

Perceptron: Components

Input
X
qg‘?\ x2 W
Y{_ 4 \A’ Output
_,Vup / A 1 wa Z O
o J(x) = |
./ @ 0 otherwise
d
w! x o(a) = 1 a=0 j(z) = o(w)

0 otherwise

Linear Transformation + Activation Function

[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960] .

Perceptron: Representational Power

*Perceptrons can represent only linearly separable concepts

(@) 1 wlax>0

x _

q 0 otherwise
*Decision boundary given by: / Pd

Which Functions are Linearly Separable?

AND
X; X, y g
1 d]
a 00 0 \
b 01 0
C 10 0 P
d 11 1 0 1 x,
OR
X, X y g
1 %2 .]
a 00 0
b 01 1
C 10 1]
d 11 1

Which Functions are Linearly Separable?

XOR
X
X1 X Y .
a 00 0
b 01 1
C 10 1
d 11 0 0

A multilayer perceptron
can represent XOR!

(assume activation is 0(x) = 10y)

10

Perceptron: Training
*when are we correct?
y DTz >0
*j.e. signs of prediction and label match

*could also require a “margin”:
MONRASOR

* notion of robustness / easiness of classification

Perceptron: Training

*Algorithm:
*Initialize at Wo = [0, e ,O]T
*Atstept=0,...
*Select a datapoint i (randomly or cyclically)

°If y(i)’wTZI:‘(i) < C thendo Wi41 = Wi + y(i)x(i)

° Else’ wt—|—1 p— wt + /// + ,/,/ +;;.r

Perceptron: Training

Algorithm training example:

Perceptron: Training Comparison

*We're used to minimizing some loss function...

*Taking one example at a time...
* Stochastic Optimization (like SGD!)

* What is the update to our prediction?

Wl 2® = w2 + O3

Perceptron: Training Comparison

*looks like SGD with a loss function L
SGD w1 = wy — aVL(f(z,yW)

Perceptron ~ Wiyl = Wi T y(7’>gj(z)

* Need: gradient is 0 when we’re right, y'Ix() on mistakes

penalty (loss) size
i

Hinge loss!

Perceptron: Analysis

*How many mistakes does the Perceptron algorithm make?
*Key quantity needed: data margin
*Hyperplane H = — x : wlc = 0

* Margin .} ;
| °
v(S,w) = min dist(z'¥, H,) o'
1<:<n l °_ o
2" w|/||w] VR
¥(S) = max (S, w) \© %o

lw[[=1

Perceptron: Mistake Bound

Another quantity needed: data diameter

D(S) = /
() = max_||z| .

Mistake Bound Result: (Perceptron with ¢ = 0)
*The total # of mistakes on a linearly separable set S is at most

D(S)?
y(S)?

Perceptron: Mistake Bound Interpretation

Mistake Bound Result:
*The total # of mistakes on a linearly separable set S is at most

D(S)?

2
V(S) ~—_ smaller means harder
to find separator

Implications?

*running over a dataset S repeatedly until # mistakes stops
changing gives you a perfect separator

*says nothing about generalization (without further work)

Mistake Bound: Proof 1

*Intuitive idea we exploit: norm of weight vector « # mistakes

*Start with changes in weight norm

Jwia]? = [l + 2|2 itmistake

Jwesa [= lwel|® + 2y we) T2+ [l

2

|weia || < [wel|” + D(S)

Mistake Bound: Proof 2

*This is true for each mistake

|wesa || < [Jwel* + D(S)°

*Let m, be # mistakes by t step. Start at w, (norm 0). By w,

Jwe|| < D(S)y/m

* This was also a telescoping argument, like we used for gradient descent

Mistake Bound: Proof 3

*Now we’ll also lower bound the norm
*Let w be a unit-norm separating hyperplane

(i)] — w classifies
|w X | correctly

w! (w1 —wy) = w? (y W) =

.)T Tl — -

1
mistake

*But this is the margin for x({) , so:

> (S, w)

Mistake Bound: Proof 4

*So: UJT(

w1 — we) > Y(S, w)

lLet’s use our best solution: w,, the maximum margin w

*From Cauchy-Schwartz: |[we||||ws|| > wi w;

*lLet’s set up a telescoping sum:

wy|| > wy wy = Zw W — Wg—1)

Mistake Bound: Proof 5

*Have: ™ (wyy g —wy) > 7(5 w)

wy|| > wiw = Zw W — Wi—1)

eCombine:

|well > wy w; = Zw Wi — Wr—1) = mey(S)

k=1 \
Note: ’Y(S, w) — ’Y(S) 0 for no mistake,

Y (S, w,) for mistake

Mistake Bound: Proof 6

'S0, myy(S) < [wel| lwel| < D(S)v/my

*thus
my(S) < [lwel| < D(S)v/my
*Easy algebra gets us to D(S)?

v/

<
= 0(9)2

25

Q: Select the correct option.

A. A perceptron is guaranteed to perfectly learn a given linearly well-separable function within
a finite number of training steps.

B. A single perceptron can compute the XOR function.

1. Both statements are true.
2. Both statements are false.
3. Statement A is true, Statement B is false.

4. Statement B is true, Statement A is false.

Q: Select the correct option.

A. A perceptron is guaranteed to perfectly learn a given linearly well-separable function within
a finite number of training steps.

B. A single perceptron can compute the XOR function.

1. Both statements are true.

2. Both statements are false.

3. Statement A is true, Statement B is false. _

4. Statement B is true, Statement A is false.

Outline

Neural Networks
*Introduction, Setup, Components, Activations

Multilayer Neural Network

*Input: two features from spectral analysis of a spoken sound
*Output: vowel sound occurring in the context “h__ d”

output units "cad hid [~ who'd hood

hidden units

input units

figure from Huang & Lippmann, NeurlPS 1988

ions

Reg

1S10N

Neural Network Dec

Figure from Huang & Lippmann, NeurlPS 1988

40C0
2000
F2 (Hz)

who’d hood

head hid

1000{.

F1 (Hz)

30

Neural Network Components

An (L + 1)-layer network

First layer

A
[\

4
@

Input x = h® Hidden variables h'

h2

Output layer

Feature Encoding for NNs

*Nominal features usually a one hot encoding

1 0

_ 10
= 0
0 0 0 1.

0 0
*Ordinal features: use a thermometer encoding

- O

1 1 1
small= |0 medium= |1 large= |1
0 0 1

*Real-valued features use individual input units
(may want to scale/normalize them first though)

precipitation = 0.68] ‘<'g

Output Layer: Examples

*Regression: y = w'h + b
e Linear units: no nonlinearity

* Multi-dimensional regression: vy = W h + b
* Linear units: no nonlinearity

Output layer Output layer

\ \
| [|

- 90009 |

Output Layer: Examples

*Binary classification: y = o(w'h + b)
* Corresponds to using logistic regression on h

* Multiclass classification:
*y = softmax(z) wherez =W'h+b

Output layer Output layer
I I

| [

- 90009 |

Hidden Layers

*Neuron takes weighted linear combination of the previous
representation layer
* Qutputs one value for the next layer

hi hi+1

Hidden Layers

*Outputs a = r(w'x + b) 0

*Typical activation function r

*threshold h(z) = 1,50,

*RelU ReLU(z) = z - t(z) = max{0, z}
*sigmoid (z) = 1/(1 + exp(—2)) /

* hyperbolic tangent tanh(z) = 20(2z) — 1

*Why not linear activation functions?
* Model would be linear.

MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2

Hidden layer
3 neurons
Input d
1 — (1)
w(h hy = o() xw + b))
1

x € R4 (1)
Wis

%%

MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2

Hidden layer
3 heurons
Input
X1 (1) .
R
X € R h2 i O'(2 .xiwz(il) —+ bz)

W, :

MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2

Hidden layer

3 neurons
Input

131

D
1
=1

MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2

Hidden layer
m=3 neurons

Input d L o
Sigmoid activation
_ (1)
hy = o Z xw + b)) e
X1 =1 Output
x € R? (1) Wy c
x2]

©

Multiclass Classification Output

*Create k output units
*Use softmax (just like logistic regression)

Hidden layer
m=3 neurons
Input Output
AN ; p(y|x) = softmax(f)
X 1
i O ~expfi(x)
Tk
X Zi expfi(x)

Multiclass Classif

* Protein classification
(Kaggle challenge)

*|mageNet

— watercraft — sailing vessel —

saﬂboat

—_—

ication Examples

trimaran

o NG WN =

Nucleoplasm
Nuclear membrane
Nucleoli
Nucleoli fibrillar
Nuclear speckles
Nuclear bodies
Endoplasmic reticu
Golgi apparatus
Peroxisomes
Endosomes
Lysosomes
Intermediate fila
Actin filaments
Focal adhesion si
Microtubules
Microtubule ends

Putalkinatiecr hridna

42

43

Q: Select the correct option.

A. The more hidden-layer units a Neural Network has, the better it can predict desired outputs for
new inputs that it was not trained with.
B. A 3-layers Neural Network with 5 neurons in the input and hidden representations and 1 neuron in

the output has a total of 55 connections.

1. Both statements are true.
2. Both statements are false.
3. Statement A is true, Statement B is false.

4. Statement A is false, Statement B is true.

Q: Select the correct option.

A. The more hidden-layer units a Neural Network has, the better it can predict desired outputs for
new inputs that it was not trained with.
B. A 3-layers Neural Network with 5 neurons in the input and hidden representations and 1 neuron in

the output has a total of 55 connections.

First layer Second layer QOutput layer
I I I

1. Both statements are true.

2. Both statements are false.

3. Statement A is true, Statement B is false.

4. Statement A is false, Statement B is true. _

Input x Hidden variables h! h?

45

Outline

*Training Neural Networks
* SGD, Computing Gradients, Backpropagation

Training Neural Networks

Training is done in the usual way: pick a loss and optimize it

% e (PSS
) . i _, oty GRHIN
*Example: 2 scalar weights R LIS

‘ X 5 l"\’\h
SO 00"0' A 0,9°0.9.9.% % o000
0.2 SRS N KA KA XA
AN KA XRIORAESIEED
5 AR o "0/0.'0 '0’0’0,00:0"00":’g§:!62 >
@ > "'l.'"""\.'\.."*\v:*..",‘:',l‘.*i"‘: ‘.\‘\":;\' \ T.’fl". ‘TY‘,L X -LI(‘ XA ',’ ,){(“il{‘;":;'r"
0.1 RSt SR NS X XX AN N LN AR
¥ e \ (X A /K{ 3 }V }. ,})l/l/‘;";,";:w;;:* Global
B Wbty ey, :
(373 R s N :2:_"

bias S 5 weight

figure from Cho & Chow, Neurocomputing 1999

a7

Training Neural Networks with SGD

Algorithm:

*Input dataset D = {(x(l),y(l)), . (x("),y("))}
*|nitialize weights

* Until stopping criterion is met:

* For each training point (x¥, y() do

« Compute prediction: O = £, (x(¥) «~—— Forward Pass

e.g. negative log-likelihood (NLL) loss

. . LD = L@ 4Oy ——
Computefoss: L7 =LO™,y™) L®,7) = —ylogy — (1~) log(1 - 9)

e Compute gradient: V,, L) = (0W1L(i), 6W2L(i), ...,GWmL(i))T— Backward Pass

* Update weights: w <« w — aVWL(i) «— SGD step

Computing Gradients

W11

W21

0r(X,y)

&Wll

Want to compute

-

Computing Gradients

W11
y
.
W21 negative log-likelihood (NLL) loss
e N
~ " ™~
—y log(y)

Wi11X4

+ sigmoid function —(1-y)log(1—-9)
— 2 > P * (X,
e (X, y)

Computing Gradients

W11
xl 5‘,
X2 :

W21

—vy log(y
Wi1X1 v log(9)

>+ sigmoid function —(1—-y)log(1—-79)
—_— 5 > 5} > f(x, y)
W21X> 09 - orx,y) l1l—-y vy
— =0(7 — o — — —
07 0y 1=y 'y
al _ dl 0y 0z
ow,; 09 0z 0wy

By chain rule:

Computing Gradients

W11
xl ?
X2 :

W21

o —y log(®)
1141 + sigmoid function -1 -=y)log(1-9)
—_— 5 > 5} » f X,
. > (X,)

aj\) / af(xay) _ l_y Y
— =0'(2) - = — — —
07 0y 1—-9
dl dl dy
By chain rule: =—A—y)C1

Computing Gradients

W11
X1 : ?
X2

W31

- —ylog(y)
1171 + sigmoid function —(1 —-y)log(1—79)
—_— > ¥y »
W21X>2 > f(x, y)

;2 = 0'(z) = o(z)(1 — 0(2))
e

al ol
0wy a)’

y(= y)x,

By chain rule:

Computing Gradients

W11
x1 j}
X2 :

W21
o —y log(¥)
1141 sigmoid function ~ —(1 —y)log(1 -)
>t+— - 9 " £(X,)
W21X2 ay
— =0'(2) = o(2)(1 — 0(2))
0z
al L=y Yo s
By chain rule: = (—)y(1 = y)x,

0w14 1—y

Computing Gradients

Wi11X4

X1

>t+—
Wa1X>2

By chain rule:

sigmoid function

W11
: j}

W21

A

—ylog()

—(1-y)log(1—7)

0y

>)

— =0'(2) = o(2)(1 — 0(2))

07

© (X,)

Computing Gradients

Wi1
x1 : ?
X2

W21

—y log(y
Wi11X4 ylog(3)

+ sigmoid function -1 —=y)log(1—-9)
— Z > P * (X,
_— > ,\ (X,)

? = 0'(z) = o(2)(1 — 0(2))
<

ol al 39

6—x1 - @ EW“ =F —y)wiy

By chain rule:

Computing Gradients: More Layers

(2) —ylog(y)
SlngId function —(1-y)log(1—-9)

(2) >+—- A - 9 - (X,)

Waq %12 — =0'(2) = o(2)(1 — 6(2))
az

dl
aan

ol
=@ -)’)Wll, aLs = (-)’)W21

By chain rule:

Computing Gradients: More Layers

By chain rule:

Computing Gradients: More Layers

=

W11 %1 0(z11)
(1) >+ Z11 2 * 11 - > I(x,y)
Wy, Xo i1 _ — (o _ (2)
6211 o (211) 6011 (y)’)W
dl dl daqq

By chain rule:

Computing Gradients: More Layers

W21
0(211)
a * 11 al * l(x’y)
air e 2)
0z, 7 (Z11) da,, ¥ = yIw;

By chain rule: ﬂ_ ol 6a11+ al day,

axl B aall axl aalz axl

Backpropagation

*So to compute derivative w.r.t
specific weights we propagate
loss information back through
the network

*Today we do this by automatic
differentiation (autodiff) for
arbitrarily complex
computation graphs

*Go backwards from top to
bottom, recursively
computing gradients

Wiki

YWy

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Sharon Li, Fred Sala, Josiah Hanna >

	Slide 1: CS 760: Machine Learning Neural Networks
	Slide 2: Logistics
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Neural networks: Origins
	Slide 6: Perceptron: Simple Network
	Slide 7: Perceptron: Components
	Slide 8: Perceptron: Representational Power
	Slide 9: Which Functions are Linearly Separable?
	Slide 10: Which Functions are Linearly Separable?
	Slide 11: Perceptron: Training
	Slide 12: Perceptron: Training
	Slide 13: Perceptron: Training
	Slide 14: Perceptron: Training Comparison
	Slide 15: Perceptron: Training Comparison
	Slide 16: Perceptron: Analysis
	Slide 17: Perceptron: Mistake Bound
	Slide 18: Perceptron: Mistake Bound Interpretation
	Slide 19: Mistake Bound: Proof 1
	Slide 20: Mistake Bound: Proof 2
	Slide 21: Mistake Bound: Proof 3
	Slide 22: Mistake Bound: Proof 4
	Slide 23: Mistake Bound: Proof 5
	Slide 24: Mistake Bound: Proof 6
	Slide 25: Break & Quiz
	Slide 26: Q: Select the correct option.
	Slide 27: Q: Select the correct option.
	Slide 28: Outline
	Slide 29: Multilayer Neural Network
	Slide 30: Neural Network Decision Regions
	Slide 31: Neural Network Components
	Slide 32: Feature Encoding for NNs
	Slide 33: Output Layer: Examples
	Slide 34: Output Layer: Examples
	Slide 35: Hidden Layers
	Slide 36: Hidden Layers
	Slide 37: MLPs: Multilayer Perceptron
	Slide 38: MLPs: Multilayer Perceptron
	Slide 39: MLPs: Multilayer Perceptron
	Slide 40: MLPs: Multilayer Perceptron
	Slide 41: Multiclass Classification Output
	Slide 42: Multiclass Classification Examples
	Slide 43: Break & Quiz
	Slide 44: Q: Select the correct option.
	Slide 45: Q: Select the correct option.
	Slide 46: Outline
	Slide 47: Training Neural Networks
	Slide 48: Training Neural Networks with SGD
	Slide 49: Computing Gradients
	Slide 50: Computing Gradients
	Slide 51: Computing Gradients
	Slide 52: Computing Gradients
	Slide 53: Computing Gradients
	Slide 54: Computing Gradients
	Slide 55: Computing Gradients
	Slide 56: Computing Gradients
	Slide 57: Computing Gradients: More Layers
	Slide 58: Computing Gradients: More Layers
	Slide 59: Computing Gradients: More Layers
	Slide 60: Computing Gradients: More Layers
	Slide 61: Backpropagation
	Slide 62: Thanks Everyone!

