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Logistics

*My office hours today end at 11:55

Midterm: October 22

covers material through October 15t
*mix of short answer and derivations
one double-sided 8.5x11 cheat sheet

Midterm review: October 20t"

*NEW: no class on November 26"
(day before Thanksgiving)



Outline

*Origins: The Perceptron Algorithm
*Definition, Training, Loss Equivalent, Mistake Bound

*Neural Networks
*Introduction, Setup, Components, Activations

*Training Neural Networks
* SGD, Computing Gradients, Backpropagation



Outline

*Origins: The Perceptron Algorithm
*Definition, Training, Loss Equivalent, Mistake Bound



Neural networks: Origins

 Artificial neural networks, connectionist models

Inspired by interconnected neurons in biological systems
* Simple, homogenous processing units
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Perceptron: Simple Network

Input
X1
\44
L X w
5%
Y V“ \A‘ Output

1

7 () 1 wliz>0
€T —

X, Wa Y 0 otherwise

[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960]



Perceptron: Components

Input
X
qg‘?\ x2 W
Y{_ 4 \A’ Output
_,Vup / A 1 wa Z O
o J(x) = |
./ @ 0 otherwise
d
w! x o(a) = 1 a=0 j(z) = o(w )

0 otherwise

Linear Transformation + Activation Function

[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960] .



Perceptron: Representational Power

*Perceptrons can represent only linearly separable concepts

(@) 1 wlax>0

x _

q 0 otherwise
*Decision boundary given by: / Pd




Which Functions are Linearly Separable?

AND
X; X, y g
1 d]
a 00 0 \
b 01 0
C 10 0 P
d 11 1 0 1 x,
OR
X, X y g
1 %2 . ]
a 00 0
b 01 1
C 10 1 ]
d 11 1



Which Functions are Linearly Separable?

XOR
X
X1 X Y .
a 00 0
b 01 1
C 10 1
d 11 0 0

A multilayer perceptron
can represent XOR!

(assume activation is 0(x) = 10y )
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Perceptron: Training
*when are we correct?
y DTz >0
*j.e. signs of prediction and label match

*could also require a “margin”:
MONRASOR

* notion of robustness / easiness of classification



Perceptron: Training

*Algorithm:
*Initialize at Wo = [0, e ,O]T
*Atstept=0,...
*Select a datapoint i (randomly or cyclically)

°If y(i)’wTZI:‘(i) < C thendo Wi41 = Wi + y(i)x(i)

° Else’ wt—|—1 p— wt + /// + ,/,/ +;;.r



Perceptron: Training

Algorithm training example:




Perceptron: Training Comparison

*We're used to minimizing some loss function...

*Taking one example at a time...
* Stochastic Optimization (like SGD!)

* What is the update to our prediction?

Wl 2® = w2 + O3



Perceptron: Training Comparison

*looks like SGD with a loss function L
SGD w1 = wy — aVL(f(z,yW)

Perceptron ~ Wiyl = Wi T y(7’>gj(z)

* Need: gradient is 0 when we’re right, y'Ix() on mistakes

penalty (loss) size
i

Hinge loss!




Perceptron: Analysis

*How many mistakes does the Perceptron algorithm make?
*Key quantity needed: data margin
*Hyperplane H = — x : wlc = 0

* Margin .} ;
| °
v(S,w) = min dist(z'¥, H,) o'
1<:<n l °_ o
2" w|/||w] VR
¥(S) = max (S, w) \© %o

lw[[=1



Perceptron: Mistake Bound

Another quantity needed: data diameter

D(S) = /
() = max_||z| .

Mistake Bound Result: (Perceptron with ¢ = 0)
*The total # of mistakes on a linearly separable set S is at most

D(S)?
y(S)?




Perceptron: Mistake Bound Interpretation

Mistake Bound Result:
*The total # of mistakes on a linearly separable set S is at most

D(S)?

2
V(S) ~—_ smaller means harder
to find separator

Implications?

*running over a dataset S repeatedly until # mistakes stops
changing gives you a perfect separator

*says nothing about generalization (without further work)



Mistake Bound: Proof 1

*Intuitive idea we exploit: norm of weight vector « # mistakes

*Start with changes in weight norm

Jwia]? = [l + 2|2 itmistake

Jwesa [ = lwel|® + 2y we ) T2+ [l

2

|weia || < [wel|” + D(S)



Mistake Bound: Proof 2

*This is true for each mistake

|wesa || < [Jwel* + D(S)°

*Let m, be # mistakes by t step. Start at w, (norm 0). By w,

Jwe|| < D(S)y/m

* This was also a telescoping argument, like we used for gradient descent



Mistake Bound: Proof 3

*Now we’ll also lower bound the norm
*Let w be a unit-norm separating hyperplane

(i) ] — w classifies
|w X | correctly

w! (w1 —wy) = w? (y W) =

. )T Tl — -

1
mistake

*But this is the margin for x({) , so:

> (S, w)



Mistake Bound: Proof 4

*So: UJT(

w1 — we) > Y(S, w)

lLet’s use our best solution: w,, the maximum margin w

*From Cauchy-Schwartz: |[we||||ws|| > wi w;

*lLet’s set up a telescoping sum:

wy|| > wy wy = Zw W — Wg—1)




Mistake Bound: Proof 5

*Have: ™ (wyy g —wy) > 7(5 w)

wy|| > wiw = Zw W — Wi—1)

eCombine:

|well > wy w; = Zw Wi — Wr—1) = mey(S)

k=1 \
*Note: ’Y(S, w*) — ’Y(S) 0 for no mistake,

Y (S, w,) for mistake



Mistake Bound: Proof 6

'S0, myy(S) < [wel|  lwel| < D(S)v/my

*thus
my(S) < [lwel| < D(S)v/my
*Easy algebra gets us to D(S)?

v/

<
= 0(9)2
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Q: Select the correct option.

A. A perceptron is guaranteed to perfectly learn a given linearly well-separable function within
a finite number of training steps.

B. A single perceptron can compute the XOR function.

1. Both statements are true.
2.  Both statements are false.
3. Statement A is true, Statement B is false.

4. Statement B is true, Statement A is false.



Q: Select the correct option.

A. A perceptron is guaranteed to perfectly learn a given linearly well-separable function within
a finite number of training steps.

B. A single perceptron can compute the XOR function.

1. Both statements are true.

2. Both statements are false.

3. Statement A is true, Statement B is false. _

4. Statement B is true, Statement A is false.



Outline

Neural Networks
*Introduction, Setup, Components, Activations



Multilayer Neural Network

*Input: two features from spectral analysis of a spoken sound
*Output: vowel sound occurring in the context “h__ d”

output units  "cad hid [ ~ who'd hood

hidden units

input units

figure from Huang & Lippmann, NeurlPS 1988
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Figure from Huang & Lippmann, NeurlPS 1988
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Neural Network Components

An (L + 1)-layer network

First layer

A
[ \

4
@

Input x = h® Hidden variables h'

h2

Output layer




Feature Encoding for NNs

*Nominal features usually a one hot encoding

1 0

_ 10
= 0
0 0 0 1.

0 0
*Ordinal features: use a thermometer encoding

- O

1 1 1
small= |0 medium= |1 large= |1
0 0 1

*Real-valued features use individual input units
(may want to scale/normalize them first though)

precipitation = 0.68] ‘<'g



Output Layer: Examples

*Regression: y = w'h + b
e Linear units: no nonlinearity

* Multi-dimensional regression: vy = W h + b
* Linear units: no nonlinearity

Output layer Output layer

\ \
| [ |

- 90009 |



Output Layer: Examples

*Binary classification: y = o(w'h + b)
* Corresponds to using logistic regression on h

* Multiclass classification:
*y = softmax(z) wherez =W'h+b

Output layer Output layer
I I

| [

- 90009 |



Hidden Layers

*Neuron takes weighted linear combination of the previous
representation layer
* Qutputs one value for the next layer

hi hi+1



Hidden Layers

*Outputs a = r(w'x + b) 0

*Typical activation function r

*threshold h(z) = 1,50,

*RelU ReLU(z) = z - t(z) = max{0, z}
*sigmoid (z) = 1/(1 + exp(—2)) /

* hyperbolic tangent tanh(z) = 20(2z) — 1

*Why not linear activation functions?
* Model would be linear.



MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2

Hidden layer
3 neurons
Input d
1 — (1)
w(h hy = o( ) xw + b))
1

x € R4 (1)
Wis

%%



MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2

Hidden layer
3 heurons
Input
X1 (1) .
R
X € R h2 i O'( 2 .xiwz(il) —+ bz)

W, :



MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2

Hidden layer

3 neurons
Input

131

D
1
=1



MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2

Hidden layer
m=3 neurons

Input d L o
Sigmoid activation
_ (1)
hy = o Z xw + b)) e
X1 =1 Output
x € R? (1) Wy c
x2 ]

©



Multiclass Classification Output

*Create k output units
*Use softmax (just like logistic regression)

Hidden layer
m=3 neurons
Input Output
AN ; p(y|x) = softmax(f)
X 1
i O ~expfi(x)
Tk
X Zi expfi(x)



Multiclass Classif

* Protein classification
(Kaggle challenge)

*|mageNet

— watercraft — sailing vessel —

saﬂboat

—_—

ication Examples

trimaran

o NG WN =

Nucleoplasm
Nuclear membrane
Nucleoli
Nucleoli fibrillar
Nuclear speckles
Nuclear bodies
Endoplasmic reticu
Golgi apparatus
Peroxisomes
Endosomes
Lysosomes
Intermediate fila
Actin filaments
Focal adhesion si
Microtubules
Microtubule ends

Putalkinatiecr hridna

42
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Q: Select the correct option.

A. The more hidden-layer units a Neural Network has, the better it can predict desired outputs for
new inputs that it was not trained with.
B. A 3-layers Neural Network with 5 neurons in the input and hidden representations and 1 neuron in

the output has a total of 55 connections.

1. Both statements are true.
2.  Both statements are false.
3. Statement A is true, Statement B is false.

4. Statement A is false, Statement B is true.



Q: Select the correct option.

A. The more hidden-layer units a Neural Network has, the better it can predict desired outputs for
new inputs that it was not trained with.
B. A 3-layers Neural Network with 5 neurons in the input and hidden representations and 1 neuron in

the output has a total of 55 connections.

First layer Second layer QOutput layer
I I I

1. Both statements are true.

2. Both statements are false.

3. Statement A is true, Statement B is false.

4. Statement A is false, Statement B is true. _

Input x  Hidden variables h! h?

45



Outline

*Training Neural Networks
* SGD, Computing Gradients, Backpropagation



Training Neural Networks

Training is done in the usual way: pick a loss and optimize it

% e (PSS
) . i _, oty GRHIN
*Example: 2 scalar weights R LIS

‘ X 5 l"\’\h
SO 00"0' A 0,9°0.9.9.% % o000
0.2 SRS N KA KA XA
AN KA XRIORAESIEED
5 AR o "0/0.'0 '0’0’0,00:0"00":’g§:!62 >
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0.1 RSt SR NS X XX AN N LN AR
¥ e \ ( X A /K{ 3 }V }. ,})l/l/‘;";,";:w;;:* Global
B Wbty ey, :
(373 R s N :2:_"

bias S 5 weight

figure from Cho & Chow, Neurocomputing 1999
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Training Neural Networks with SGD

Algorithm:

*Input dataset D = {(x(l),y(l)), . (x("),y("))}
*|nitialize weights

* Until stopping criterion is met:

* For each training point (x¥, y() do

« Compute prediction: O = £, (x(¥) «~—— Forward Pass

e.g. negative log-likelihood (NLL) loss

. . LD = L@ 4Oy ——
Computefoss: L7 =LO™,y™) L®,7) = —ylogy — (1~ ) log(1 - 9)

e Compute gradient: V,, L) = (0W1L(i), 6W2L(i), ...,GWmL(i))T— Backward Pass

* Update weights: w <« w — aVWL(i) «— SGD step



Computing Gradients

W11

W21

0r(X,y)

&Wll

Want to compute

-



Computing Gradients

W11
y
.
W21 negative log-likelihood (NLL) loss
e N
~ " ™~
—y log(y)

Wi11X4

+ sigmoid function —(1-y)log(1—-9)
— 2 > P * (X,
e (X, y)




Computing Gradients

W11
xl 5‘,
X2 :

W21

—vy log(y
Wi1X1 v log(9)

>+ sigmoid function —(1—-y)log(1—-79)
—_— 5 > 5} > f(x, y)
W21X> 09 - orx,y) l1l—-y vy
— =0(7 — o — — —
07 0y 1=y 'y
al _ dl 0y 0z
ow,; 09 0z 0wy

By chain rule:



Computing Gradients

W11
xl ?
X2 :

W21

o —y log(®)
1141 + sigmoid function -1 -=y)log(1-9)
—_— 5 > 5} » f X,
. > (X, )

aj\) / af(xay) _ l_y Y
— =0'(2) - = — — —
07 0y 1—-9
dl dl dy
By chain rule: =—A—y)C1



Computing Gradients

W11
X1 : ?
X2

W31

- —ylog(y)
1171 + sigmoid function —(1 —-y)log(1—79)
—_— > ¥y »
W21X>2 > f(x, y)

;2 = 0'(z) = o(z)(1 — 0(2))
e

al ol
0wy a)’

y( = y)x,

By chain rule:



Computing Gradients

W11
x1 j}
X2 :

W21
o —y log(¥)
1141 sigmoid function ~ —(1 —y)log(1 - )
>t+— - 9 " £(X,)
W21X2 ay
— =0'(2) = o(2)(1 — 0(2))
0z
al L=y Yo s
By chain rule: = ( —)y(1 = y)x,

0w14 1—y



Computing Gradients

Wi11X4

X1

>t+—
Wa1X>2

By chain rule:

sigmoid function

W11
: j}

W21

A

—ylog()

—(1-y)log(1—7)

0y

> )

— =0'(2) = o(2)(1 — 0(2))

07

© (X, )



Computing Gradients

Wi1
x1 : ?
X2

W21

—y log(y
Wi11X4 ylog(3)

+ sigmoid function -1 —=y)log(1—-9)
— Z > P * (X,
_— > ,\ (X, )

? = 0'(z) = o(2)(1 — 0(2))
<

ol  al 39

6—x1 - @ EW“ =F —y)wiy

By chain rule:



Computing Gradients: More Layers

(2) —ylog(y)
SlngId function —(1-y)log(1—-9)

(2) >+—- A - 9 - (X, )

Waq %12 — =0'(2) = o(2)(1 — 6(2))
az

dl
aan

ol
=@ - )’)Wll, aLs = (- )’)W21

By chain rule:



Computing Gradients: More Layers

By chain rule:



Computing Gradients: More Layers

=

W11 %1 0(z11)
(1) >+ Z11 2 * 11 - > I(x,y)
Wy, Xo i1 _ — (o _ (2)
6211 o (211) 6011 (y )’)W
dl dl daqq

By chain rule:



Computing Gradients: More Layers

W21
0(211)
a * 11 al * l(x’y)
air e 2)
0z, 7 (Z11) da,, ¥ = yIw;

By chain rule: ﬂ_ ol 6a11+ al day,

axl B aall axl aalz axl




Backpropagation

*So to compute derivative w.r.t
specific weights we propagate
loss information back through
the network

*Today we do this by automatic
differentiation (autodiff) for
arbitrarily complex
computation graphs

*Go backwards from top to
bottom, recursively
computing gradients

Wiki

YWy



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Sharon Li, Fred Sala, Josiah Hanna >
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