
CS 760: Machine Learning
Neural Networks Continued

Misha Khodak

University of Wisconsin-Madison

8 October 2025 1

Logistics

•Homework 1 grades will be returned today

•NEW: starting Homework 2, we will take off one point
if questions are not matched to pages on Gradescope

•Midterm: October 22nd

• covers material through October 15th

•mix of short answer and derivations
•one double-sided 8.5x11 cheat sheet
• review in-class on October 20th

•NEW: my office hours are now
•Mondays 10:45 - 11:45
•Tuesdays 1:20 - 2:20

2

Outline

•Review: Neural Networks
•Introduction, Setup, Components, Activations

•Review: Training Neural Networks
• SGD, Computing Gradients, Backpropagation

•Regularization
• Review, Penalties, Augmentation, Deep Net Approaches

3

Outline

•Review: Neural Networks
•Introduction, Setup, Components, Activations

•Review: Training Neural Networks
• SGD, Computing Gradients, Backpropagation

•Regularization
• Review, Penalties, Augmentation, Deep Net Approaches

4

Neural Network Components

… …

…
… …

…

Hidden variables ℎ1 ℎ2Input 𝑥 = ℎ0

First layer

ℎ𝐿

𝑦 = ℎ𝐿+1

Output layer

An 𝐿 + 1 -layer network

5

Feature Encoding for NNs

•Nominal features usually a one hot encoding

•Ordinal features: use a thermometer encoding

•Real-valued features use individual input units
(may want to scale/normalize them first though)

𝐴 =

1
0
0
0

𝐶 =

0
1
0
0

𝐺 =

0
0
1
0

𝑇 =

0
0
0
1

small=
1
0
0

medium=
1
1
0

large=
1
1
1

precipitation= 0.68[]

6

Hidden Layers

•Neuron takes weighted linear combination of the previous
representation layer
•Outputs one value for the next layer

…
…

ℎ𝑖 ℎ𝑖+1

7

Hidden Layers

•Outputs 𝑎 = 𝑟 𝑤𝑇𝑥 + 𝑏

•Typical activation function 𝑟
• threshold h 𝑧 = 1{𝑧≥0}

•ReLU ReLU 𝑧 = 𝑧 ⋅ 𝑡 𝑧 = max{0, 𝑧}
• sigmoid 𝜎 𝑧 = 1/ 1 + exp(−𝑧)
•hyperbolic tangent tanh 𝑧 = 2𝜎 2𝑧 − 1

•Why not linear activation functions?
•Model would be linear.

𝑎𝑥
𝑟(⋅)

8

More on Activations

•Outputs 𝑎 = 𝑟 𝑤𝑇𝑥 + 𝑏

•Consider gradients… saturating vs. nonsaturating

9

Bias

WeightActivation

Output Layer: Examples

•Regression: 𝑦 = 𝑤𝑇ℎ + 𝑏
• Linear units: no nonlinearity

•Multi-dimensional regression: 𝑦 = 𝑊𝑇ℎ + 𝑏
• Linear units: no nonlinearity

ℎ

𝑦

Output layer

ℎ

𝑦

Output layer

10

Output Layer: Examples

•Binary classification: 𝑦 = 𝜎(𝑤𝑇ℎ + 𝑏)
•Corresponds to using logistic regression on ℎ

•Multiclass classification:
•𝑦 = softmax 𝑧 where 𝑧 = 𝑊𝑇ℎ + 𝑏

ℎ

𝑦

Output layer

ℎ

𝑦

Output layer

𝑧

11

MLPs: Multilayer Perceptron

•Ex: 1 hidden layer, 1 output layer: depth 2

12

MLPs: Multilayer Perceptron

•Ex: 1 hidden layer, 1 output layer: depth 2

13

MLPs: Multilayer Perceptron

•Ex: 1 hidden layer, 1 output layer: depth 2

14

MLPs: Multilayer Perceptron

•Ex: 1 hidden layer, 1 output layer: depth 2

15

Multiclass Classification Output

•Create k output units

•Use softmax (just like logistic regression)

16

Break & Quiz

17

Q: Which of the following activation functions are typically NOT used in
practice, and why not?

a. sigmoid function 𝜎 𝑧 = ൗ1
1+exp(−𝑧)

b. hyperbolic tangent tanh 𝑧 = 2𝜎 𝑧 − 1

c. threshold function 𝐻 𝑧 = 1𝑧≥0

d. linear (identity) function 𝑧

e. Rectified linear unit ReLU 𝑧 = 𝑧𝐻 𝑧 = max{𝑧, 0}

18

Q: Which of the following activation functions are typically NOT used in
practice, and why not?

a. sigmoid function 𝜎 𝑧 = ൗ1
1+exp(−𝑧)

b. hyperbolic tangent tanh 𝑧 = 2𝜎 𝑧 − 1

c. threshold function 𝐻 𝑧 = 1𝑧≥0

d. linear (identity) function 𝑧

e. Rectified linear unit ReLU 𝑧 = 𝑧𝐻 𝑧 = max{𝑧, 0}

19

hard to optimize (derivative=0 everywhere
except z=0, where it is undefined)

composition of linear functions is no more
expressive than a single linear function

Outline

•Review: Neural Networks
•Introduction, Setup, Components, Activations

•Review: Training Neural Networks
• SGD, Computing Gradients, Backpropagation

•Regularization
• Review, Penalties, Augmentation, Deep Net Approaches

20

Training Neural Networks

Training is done in the usual way: pick a loss and optimize it

•Example: 2 scalar weights

figure from Cho & Chow, Neurocomputing 1999

21

Training Neural Networks with SGD

Algorithm:

•Input dataset 𝐷 = 𝑥 1 , 𝑦 1 , … , 𝑥(𝑛), 𝑦(𝑛)

•Initialize weights
•Until stopping criterion is met:

•For each training point (𝑥 𝑖 , 𝑦 𝑖) do

• Compute prediction: ො𝑦(𝑖) = 𝑓𝑤(𝑥 𝑖)

• Compute loss: 𝐿(𝑖) = 𝐿(ො𝑦 𝑖 , 𝑦 𝑖)

• Compute gradient: ∇𝑤𝐿 𝑖 = 𝜕𝑤1
𝐿 𝑖 , 𝜕𝑤2

𝐿 𝑖 , … , 𝜕𝑤𝑚
𝐿 𝑖 ⊤

• Update weights: 𝑤 ← 𝑤 − 𝛼∇𝑤𝐿 𝑖

Forward Pass

Backward Pass

22SGD step

e.g. negative log-likelihood (NLL) loss
 𝐿 ො𝑦, 𝑦 = −𝑦 log ො𝑦 − (1 − 𝑦) log(1 − ො𝑦)

Training Neural Networks with minibatch SGD

Algorithm:

• Input dataset 𝐷 = 𝑥 1 , 𝑦 1 , … , 𝑥(𝑛), 𝑦(𝑛)

• Initialize weights
•Until stopping criterion is met:

• Sample a batch of 𝒃 training points 𝑖1, … , 𝑖𝑏

• Compute predictions: ො𝑦 𝑖1 , … , ො𝑦 𝑖𝑏 = 𝑓𝑤 𝑥 𝑖1 , … , 𝑓𝑤 𝑥 𝑖𝑏

• Compute avg. loss: 𝐿(𝑖1,…,𝑖𝑏) = 1

𝑏
σ𝑗=1

𝑏 𝐿(ො𝑦 𝑖𝑗 , 𝑦 𝑖𝑗)

• Compute gradient: ∇𝑤𝐿 𝑖1,…,𝑖𝑏 = 𝜕𝑤1
𝐿 𝑖1,…,𝑖𝑏 , … , 𝜕𝑤𝑚

𝐿 𝑖1,…,𝑖𝑏
⊤

•Update weights: 𝑤 ← 𝑤 − 𝛼∇𝑤𝐿 𝑖1,…,𝑖𝑏

23

Training Neural Networks: Chain Rule

•Will need to compute terms like:

•But, L is a composition of:
• Loss with output y
• Output itself a composition of softmax with outer layer
• Outer layer a combination of outputs from previous layer
• Outputs from prev. layer a composition of activations and linear functions…

•Need the chain rule!
•Suppose
•Then,

Computing Gradients

25

Computing Gradients

26

negative log-likelihood (NLL) loss

Computing Gradients

27

Computing Gradients

28

Computing Gradients

29

Computing Gradients

30

Computing Gradients

31

Computing Gradients

32

Computing Gradients: More Layers

33

Computing Gradients: More Layers

34

Computing Gradients: More Layers

35

Computing Gradients: More Layers

36

Backpropagation

•So to compute derivative w.r.t
specific weights we propagate
loss information back through
the network

•Today we do this by automatic
differentiation (autodiff) for
arbitrarily complex
computation graphs

•Go backwards from top to
bottom, recursively
computing gradients 37

Wiki

Break & Quiz

38

True or False: Backprop is an optimization algorithm.

a.False; some optimization algorithms use the output of backprop.

True or False: Backprop is a weight-updating algorithm

a.False; gradient-based optimization algorithms like SGD
use the output of backprop to update the weights.

True or False: Backprop is a gradient-computation algorithm

a.True

Outline

•Review: Neural Networks
•Introduction, Setup, Components, Activations

•Review: Training Neural Networks
• SGD, Computing Gradients, Backpropagation

•Regularization
• Review, Penalties, Augmentation, Deep Net Approaches

42

Review: Regularization

Any method to prevent overfitting or help optimization

So far, we’ve seen one approach: penalty-based regularization

argmin
𝜃

1

𝑛
෍

𝑖=1

𝑛

𝑙𝑜𝑠𝑠𝑖 𝜃 + 𝜆𝑅(𝜃)

•𝑅 𝜃 = 1

2
𝜃 2

2 (Ridge)

•𝑅 𝜃 = 𝜃 1 (LASSO)

Penalty-based regularization of convex losses

Helps prevent overfitting by reducing the hypothesis space
•equivalent to constraint formulation for convex penalties 𝑅:

argmin
𝜃

1

𝑛
෍

𝑖=1

𝑛

𝑙𝑜𝑠𝑠𝑖 𝜃 + 𝜆𝑅(𝜃) = argmin
𝑅 𝜃 ≤𝜏

1

𝑛
෍

𝑖=1

𝑛

𝑙𝑜𝑠𝑠𝑖 𝜃

•LASSO known to yield sparse parameters 𝜃

Ridge helps optimization by making the objective strongly convex
•gives objective positive curvature at every point
•gradient descent on strongly convex + smooth losses has
suboptimality 𝑂 1 − 𝜅 𝑇 after T iterations, vs. 𝑂 1/𝑇 with
regular convexity

Ridge (ℓ𝟐) regularization of general losses

•Gradient of regularized objective

𝛻෠𝐿𝑅 𝜃 = 𝛻෠𝐿(𝜃) + 𝜆𝜃

•Gradient descent update

𝜃 ← 𝜃 − 𝜂𝛻෠𝐿𝑅 𝜃 = 𝜃 − 𝜂 𝛻෠𝐿 𝜃 − 𝜂𝜆𝜃

= 1 − 𝜂𝜆 𝜃 − 𝜂 𝛻෠𝐿 𝜃

•In words, weight decay

ℓ𝟏 regularization of general losses

•Gradient of regularized objective

𝛻෠𝐿𝑅 𝜃 = 𝛻෠𝐿 𝜃 + 𝜆sign(𝜃)

 where 𝐬𝐢𝐠𝐧 applies to each element in 𝜃

•Gradient descent update

𝜃 ← 𝜃 − 𝜂𝛻෠𝐿𝑅 𝜃 = 𝜃 − 𝜂 𝛻෠𝐿 𝜃 − 𝜂𝜆sign(𝜃)

•Effects like sparsity less well-understood than convex case

Data Augmentation

Augmentation: transform + add new samples to dataset

•Transformations: based on domain

•Idea: build invariances into the model
•Ex: if all images have same alignment, model learns to use it

•Keep the label the same!

Data Augmentation: Examples

Examples of transformations for images
•Crop (and zoom)

•Color (change contrast/brightness)

•Rotations+ (translate, stretch, shear, etc.)

Many more possibilities. Combine as well!

Q: how to know what performs best?

A: cross-validation

Data Augmentation: Other Domains

Not just for image data. For example, on text:

•Substitution
• E.g. “It is a great day” ➔ “It is a wonderful day”
• Use a thesaurus for particular words
• Or use a model. Pre-trained word embeddings, language models

•Back-translation
• “Given the low budget and production limitations, this movie is very good.”
➔ “There are few budget items and production limitations to make this
film a really good one”

Adding Noise

•What if we have many solutions?

Class +1

Class -1

𝑤2 𝑤3𝑤1

Adding Noise

•Adding some amount of noise helps us pick solution:

Class +1

Class -1

𝑤2

Prefer 𝑤2 (higher confidence)

Adding Noise

•Too much: hurts instead

Class +1

Class -1

𝑤2

Prefer 𝑤2 (higher confidence)

Too much noise leads
to data points crossing

the boundary

Adding Noise: Equivalence to Weight Decay

•Suppose the hypothesis is 𝑓 𝑥 = 𝑤𝑇𝑥, noise is 𝜖~𝑁(0, 𝜆𝐼)

•After adding noise, the loss is

𝐿(𝑓) = 𝔼𝑥,𝑦,𝜖 𝑓 𝑥 + 𝜖 − 𝑦 2 = 𝔼𝑥,𝑦,𝜖 𝑓 𝑥 + 𝑤𝑇𝜖 − 𝑦 2

𝐿(𝑓) =𝔼𝑥,𝑦,𝜖 𝑓 𝑥 − 𝑦 2 + 2𝔼𝑥,𝑦,𝜖 𝑤𝑇𝜖 𝑓 𝑥 − 𝑦 + 𝔼𝑥,𝑦,𝜖 𝑤𝑇𝜖 2

𝐿(𝑓) =𝔼𝑥,𝑦,𝜖 𝑓 𝑥 − 𝑦 2 + 𝜆 𝑤
2

Early Stopping

Idea: don’t train to too small
training error

• limits the volume of
parameter space reachable
from the initialization

Figure from Deep Learning,
Goodfellow, Bengio and Courville

Practically: when training, also output validation error
• every time validation error improved, store a copy of the weights
• when validation error not improved for some time, stop
• return the copy of the weights stored

Dropout

Basic idea: randomly select a subset of weights to update

•In each update step
•Randomly sample a different binary mask to all the input and

hidden units
•Multiply the mask bits with the units and do the update as usual

•At test time: use all of the weights

•Typical dropout probabilities:
•0.2 for inputs weights
•0.5 for hidden units

Batch Normalization

Basic idea: standardize inputs to each
layer of a neural network
•recall: it is often beneficial to

standardize the 𝑖th input feature 𝑥𝑖 by
passing (𝑥𝑖 − 𝜇𝑖)/𝜎𝑖 to the model;
statistics 𝜇𝑖 and 𝜎𝑖 are computed on
the training data
•batch normalization standardizes the

outputs ℎ𝐿 of each layer L before
passing them to layer L+1, with
statistics computed on each batch

Supposed to help optimization, but its
mechanism is poorly understood

…
… …

…

Hidden variables ℎ1 ℎ2Input 𝑥 = ℎ0

Summary of regularization

Linear models dominated by well-understood
penalty-based approaches such as Ridge and LASSO

Neural network regularization is less understood:

•some (weight decay, data augmentation) are
applicable to or adapted from linear models

•some (dropout, batch-norm) specific to deep nets

•usually selected via a mix of trial-and-error +
formal validation

57

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Sharon Li, Fred Sala 58

	Slide 1: CS 760: Machine Learning Neural Networks Continued
	Slide 2: Logistics
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Neural Network Components
	Slide 6: Feature Encoding for NNs
	Slide 7: Hidden Layers
	Slide 8: Hidden Layers
	Slide 9: More on Activations
	Slide 10: Output Layer: Examples
	Slide 11: Output Layer: Examples
	Slide 12: MLPs: Multilayer Perceptron
	Slide 13: MLPs: Multilayer Perceptron
	Slide 14: MLPs: Multilayer Perceptron
	Slide 15: MLPs: Multilayer Perceptron
	Slide 16: Multiclass Classification Output
	Slide 17: Break & Quiz
	Slide 18: Q: Which of the following activation functions are typically NOT used in practice, and why not?
	Slide 19: Q: Which of the following activation functions are typically NOT used in practice, and why not?
	Slide 20: Outline
	Slide 21: Training Neural Networks
	Slide 22: Training Neural Networks with SGD
	Slide 23: Training Neural Networks with minibatch SGD
	Slide 24: Training Neural Networks: Chain Rule
	Slide 25: Computing Gradients
	Slide 26: Computing Gradients
	Slide 27: Computing Gradients
	Slide 28: Computing Gradients
	Slide 29: Computing Gradients
	Slide 30: Computing Gradients
	Slide 31: Computing Gradients
	Slide 32: Computing Gradients
	Slide 33: Computing Gradients: More Layers
	Slide 34: Computing Gradients: More Layers
	Slide 35: Computing Gradients: More Layers
	Slide 36: Computing Gradients: More Layers
	Slide 37: Backpropagation
	Slide 38: Break & Quiz
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Outline
	Slide 43: Review: Regularization
	Slide 44: Penalty-based regularization of convex losses
	Slide 45: Ridge (ℓ sub bold 2) regularization of general losses
	Slide 46: ℓ sub bold 1 regularization of general losses
	Slide 47: Data Augmentation
	Slide 48: Data Augmentation: Examples
	Slide 49: Data Augmentation: Other Domains
	Slide 50: Adding Noise
	Slide 51: Adding Noise
	Slide 52: Adding Noise
	Slide 53: Adding Noise: Equivalence to Weight Decay
	Slide 54: Early Stopping
	Slide 55: Dropout
	Slide 56: Batch Normalization
	Slide 57: Summary of regularization
	Slide 58: Thanks Everyone!

