P
Z
A

X oy S
AN

o~

CS 760: Machine Learning
Neural Networks Continued

Misha Khodak

University of Wisconsin-Madison

8 October 2025 1

Logistics

*Homework 1 grades will be returned today

*NEW: starting Homework 2, we will take off one point
if questions are not matched to pages on Gradescope

*Midterm: October 22"
e covers material through October 15t
* mix of short answer and derivations
*one double-sided 8.5x11 cheat sheet
* review in-class on October 20t"

*NEW: my office hours are now
* Mondays 10:45 - 11:45
* Tuesdays 1:20 - 2:20

Outline

*Review: Neural Networks
*Introduction, Setup, Components, Activations

*Review: Training Neural Networks
* SGD, Computing Gradients, Backpropagation

*Regularization
* Review, Penalties, Augmentation, Deep Net Approaches

Outline

*Review: Neural Networks
*Introduction, Setup, Components, Activations

Neural Network Components

An (L + 1)-layer network

First layer

A
[\

4
@

Input x = h® Hidden variables h'

h2

Output layer

Feature Encoding for NNs

*Nominal features usually a one hot encoding

1 0

_ 10
= 0
0 0 0 1.

0 0
*Ordinal features: use a thermometer encoding

- O

1 1 1
small= |0 medium= |1 large= |1
0 0 1

*Real-valued features use individual input units
(may want to scale/normalize them first though)

precipitation = 0.68] ‘<'g

Hidden Layers

*Neuron takes weighted linear combination of the previous
representation layer
* Qutputs one value for the next layer

hi hi+1

Hidden Layers

*Outputs a = r(w'x + b) 0

*Typical activation function r

*threshold h(z) = 1(,-¢y

*RelU ReLU(z) = z - t(z) = max{0, z}
*sigmoid (z) = 1/(1 + exp(—2)) /

* hyperbolic tangent tanh(z) = 20(2z) — 1

*Why not linear activation functions?
* Model would be linear.

More on Activations

*Outputsa =r(w!x + b)
\ \ ™ Bias
Activation Weight

*Consider gradients... saturating vs. nonsaturating

sigmoid - RelU

R(z) =max(0, 2)
B

08

04

Output Layer: Examples

*Regression: y = w'h + b
e Linear units: no nonlinearity

* Multi-dimensional regression: vy = W h + b
* Linear units: no nonlinearity

Output layer Output layer

\ \
| [|

- 90009 |

Output Layer: Examples

*Binary classification: y = o(w'h + b)
* Corresponds to using logistic regression on h

* Multiclass classification:
*y = softmax(z) wherez =W'h+b

Output layer Output layer
I I

| [

- 90009 |

MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2

Hidden layer
3 neurons
Input d
1 — (1)
w(h hy = o() xw + b))
1

x € R4 (1)
Wis

%%

MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2

Hidden layer
3 heurons
Input
X1 (1) .
R
X € R h2 i O'(2 .xiwz(il) —+ bz)

W, :

MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2

Hidden layer

3 neurons
Input

131

D
1
=1

MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2

Hidden layer
m=3 neurons

Input d L o
Sigmoid activation
_ (1)
hy = o Z xw + b)) e
X1 =1 Output
x € R? (1) Wy c
x2]

©

Multiclass Classification Output

*Create k output units
*Use softmax (just like logistic regression)

Hidden layer
m=3 neurons
Input Output
AN ; p(y|x) = softmax(f)
X 1
i O ~expfi(x)
Tk
X Zi expfi(x)

17

Q: Which of the following activation functions are typically NOT used in
practice, and why not?

a. sigmoid function 0(2) = /1, exp(—2)

b. hyperbolic tangent tanh(z) = 20(z) — 1
c. threshold function H(z) = 1,5,

d. linear (identity) function z

e. Rectified linear unit ReLU(z) = zH (z) = max{z, 0}

18

Q: Which of the following activation functions are typically NOT used in

practice, and why not?

a. sigmoid function o(z) = '/;, exp(-2)

b. hyperbolic tangent tanh(z) = 20(z) — 1

c. threshold function H(z) = 1,5 _
d. linear (identity) function z _

e. Rectified linear unit ReLU(z) = zH (z) = max{z, 0}

hard to optimize (derivative=0 everywhere
except z=0, where it is undefined)

composition of linear functions is no more
expressive than a single linear function

Outline

*Review: Training Neural Networks
* SGD, Computing Gradients, Backpropagation

Training Neural Networks

Training is done in the usual way: pick a loss and optimize it

% e (PSS
) . i _, oty GRHIN
*Example: 2 scalar weights R LIS

‘ X 5 l"\’\h
SO 00"0' A 0,9°0.9.9.% % o000
0.2 SRS N KA KA XA
AN KA XRIORAESIEED
5 AR o "0/0.'0 '0’0’0,00:0"00":’g§:!62 >
@ > "'l.'"""\.'\.."*\v:*..",‘:',l‘.*i"‘: ‘.\‘\":;\' \ T.’fl". ‘TY‘,L X -LI(‘ XA ',’ ,){(“il{‘;":;'r"
0.1 RSt SR NS X XX AN N LN AR
¥ e \ (X A /K{ 3 }V }. ,})l/l/‘;";,";:w;;:* Global
B Wbty ey, :
(373 R s N :2:_"

bias S 5 weight

figure from Cho & Chow, Neurocomputing 1999

21

Training Neural Networks with SGD

Algorithm:

Input dataset D = {(x(l),y(l)), . (x("),y("))}
*|nitialize weights

* Until stopping criterion is met:

* For each training point (x®, y() do

« Compute prediction: @ = £, (x()) «~— Forward Pass

e.g. negative log-likelihood (NLL) loss

. . LD = L@ 4Oy ——
Computefoss: L7 =LO™,y™) L®,7) = —ylogy — (1~) log(1 - 9)

e Compute gradient: V,, L) = (0W1L(i), 6W2L(i), ...,GWmL(i))T— Backward Pass

* Update weights: w <« w — aVWL(i) «— SGD step

Training Neural Networks with minibatch SGD

Algorithm:

*Input dataset D = {(x(l),y(l)), . (x("),y("))}
*|nitialize weights

* Until stopping criterion is met:

* Sample a batch of b training points i, ..., i},

* Compute predictions: {y@'ﬂ, ...,y(ib)} = {fw(x(il)); ---»fw(x(ib))}

* Compute avg. loss: L{tvip) = 1 b_lL(y(‘J) y(lj))

. T
e Compute gradient: V,, LUvi) = (6‘W1L(‘1"""b), v 6WmL(‘1"""b))

e Update weights: w <« w — aV,, L{iv-ib)

Training Neural Networks: Chain Rule

*Will need to compute terms like: oL

8w1
*But, L is a composition of:

* Loss with outputy

e Qutput itself a composition of softmax with outer layer

» Quter layer a combination of outputs from previous layer

* Qutputs from prev. layer a composition of activations and linear functions...

First layer Second layer Output layer
|

*Need the chain rule! °.
* Suppose L= L(gl, . 7gk) g; = gj(wlv JOR 7wp) @-

*Then, Z L By,
8wz ag:, ow;

000600 |

Input x Hidden variables h! h?

Computing Gradients

W11

W21

0r(X,y)

&Wll

Want to compute

-

Computing Gradients

W11
y
.
W21 negative log-likelihood (NLL) loss
e N
~ " ™~
—y log(y)

Wi11X4

+ sigmoid function —(1-y)log(1—-9)
— 2 > P * (X,
e (X, y)

Computing Gradients

W11
xl 5‘,
X2 :

W21

—vy log(y
Wi1X1 v log(9)

>+ sigmoid function —(1—-y)log(1—-79)
—_— 5 > 5} > f(x, y)
W21X> 09 - orx,y) l1l—-y vy
— =0(7 — o — — —
07 0y 1=y 'y
al _ dl 0y 0z
ow,; 09 0z 0wy

By chain rule:

Computing Gradients

W11
xl ?
X2 :

W21

o —y log(®)
1141 + sigmoid function -1 -=y)log(1-9)
—_— 5 > 5} » f X,
. > (X,)

aj\) / af(xay) _ l_y Y
— =0'(2) - = — — —
07 0y 1—-9
dl dl dy
By chain rule: =—A—y)C1

Computing Gradients

W11
X1 : ?
X2

W31

- —ylog(y)
1171 + sigmoid function —(1 —-y)log(1—79)
—_— > ¥y »
W21X>2 > f(x, y)

;2 = 0'(z) = o(z)(1 — 0(2))
e

al ol
0wy a)’

y(= y)x,

By chain rule:

Computing Gradients

W11
x1 j}
X2 :

W21
o —y log(¥)
1141 sigmoid function ~ —(1 —y)log(1 -)
>t+— - 9 " £(X,)
W21X2 ay
— =0'(2) = o(2)(1 — 0(2))
0z
al L=y Yo s
By chain rule: = (—)y(1 = y)x,

0w14 1—y

Computing Gradients

Wi11X4

X1

>t+—
Wa1X>2

By chain rule:

sigmoid function

W11
: j}

W21

A

—ylog()

—(1-y)log(1—7)

0y

>)

— =0'(2) = o(2)(1 — 0(2))

07

© (X,)

Computing Gradients

Wi1
x1 : ?
X2

W21

—y log(y
Wi11X4 ylog(3)

+ sigmoid function -1 —=y)log(1—-9)
— Z > P * (X,
_— > ,\ (X,)

? = 0'(z) = o(2)(1 — 0(2))
<

ol al 39

6—x1 - @ EW“ =F —y)wiy

By chain rule:

Computing Gradients: More Layers

(2) —ylog(y)
SlngId function —(1-y)log(1—-9)

(2) >+—- A - 9 - (X,)

Waq %12 — =0'(2) = o(2)(1 — 6(2))
az

dl
aan

ol
=@ -)’)Wll, aLs = (-)’)W21

By chain rule:

Computing Gradients: More Layers

By chain rule:

Computing Gradients: More Layers

=

W11 %1 0(z11)
(1) >+ Z11 2 * 11 - > I(x,y)
Wy, Xo i1 _ — (o _ (2)
6211 o (211) 6011 (y)’)W
dl dl daqq

By chain rule:

Computing Gradients: More Layers

W21
0(211)
a * 11 al * l(x’y)
air e 2)
0z, 7 (Z11) da,, ¥ = yIw;

By chain rule: ﬂ_ ol 6a11+ al day,

axl B aall axl aalz axl

Backpropagation

*So to compute derivative w.r.t
specific weights we propagate
loss information back through
the network

*Today we do this by automatic
differentiation (autodiff) for
arbitrarily complex
computation graphs

*Go backwards from top to
bottom, recursively
computing gradients

Wiki

YWy

38

True or False: Backprop is an optimization algorithm.

a.False; some optimization algorithms use the output of backprop.

True or False: Backprop is a weight-updating algorithm

a.False; gradient-based optimization algorithms like SGD
use the output of backprop to update the weights.

True or False: Backprop is a gradient-computation algorithm

a. True

Outline

*Regularization
* Review, Penalties, Augmentation, Deep Net Approaches

Review: Regularization

Any method to prevent overfitting or help optimization

So far, we’ve seen one approach: penalty-based regularization
1 n
argmin 52 loss;(6) + AR(6)
, :
1=1

*R(6) = ;110115 (Ridge)
*R(8) = [|6]]1 (LASSO)

Penalty-based regularization of convex losses

Helps prevent overfitting by reducing the hypothesis space

*equivalent to constraint formulation for convex penalties R:
n

n

1 1

argmin—) loss;(68) + AR(0) = argmin—z loss;(0)
0 n = R(@)<st N =

* LASSO known to yield sparse parameters &

Ridge helps optimization by making the objective strongly convex
*gives objective positive curvature at every point

*gradient descent on strongly convex + smooth losses has
suboptimality 0((1 — k)T') after T iterations, vs. 0(1/T) with
regular convexity

Ridge (£,) regularization of general losses

*Gradient of regularized objective
VL,(0) = VL(O) + A0

*Gradient descent update
0«60 —nVLis(0) =60 —nVL(O)—nAb

= (1-n1)8 —nVL(6)

*In words, weight decay

£ regularization of general losses

*Gradient of regularized objective

VL,(0) = VL(O) + Asign(0)
where sign applies to each elementin

*Gradient descent update
O 6 —nVLp(0) =0 —nVL(O) — nlsign(6)

e Effects like sparsity less well-understood than convex case

Data Augmentation

Augmentation: transform + add new samples to dataset
*Transformations: based on domain
e|dea: build invariances into the model

*Ex: if all images have same alighment, model learns to use it
*Keep the label the same!

Data Augmentation: Examples

Examples of transformations for images

*Crop (and zoom)

*Color (change contrast/brightness)
*Rotations+ (translate, stretch, shear, etc.)
Many more possibilities. Combine as well!

Q: how to know what performs best?
A: cross-validation

Data Augmentation: Other Domains

Not just for image data. For example, on text:

 Substitution
*E.g. “Itis a great day” = “It is a wonderful day”
» Use a thesaurus for particular words
* Or use a model. Pre-trained word embeddings, language models

e Back-translation

* “Given the low budget and production limitations, this movie is very good.”
= “There are few budget items and production limitations to make this
film a really good one”

Adding Noise

*What if we have many solutions?

Class +1

Class -1

Adding Noise

* Adding some amount of noise helps us pick solution:

] |
H g
O
O
Class +1 0 ¢
H B o
O ® ®
O
N o ©® Class -1
® O
o o

Prefer w, (higher confidence)

Adding Noise

*Too much: hurts instead

Too much noise leads
to data points crossing

= u the boundary
B g
O [|
Class +1 0O
H n o
O ® ©

- @ P o Class -1

® O

o o

Prefer w, (higher confidence)

Adding Noise: Equivalence to Weight Decay

*Suppose the hypothesis is f(x) = wlx, noise is e~N (0, AI)

e After adding noise, the loss is
L(f) = Ex,y,e[f(x +€) — Y]Z = Exye[f(x) +wle — Y]z

L(f) :IEx,y,e 1f (x) — Y]Z + ZIEx,y,e[WTE(f(x) -y +]Ex,y,e [WTE]Z

L(f) =Eyy e [f () — y12 + 2| Iw|’

Early Stopping

0.20 | | 1

—e Training set loss

]

0.15 —— Validation set loss

Idea: don’t train to too small
training error

e [imits the volume of
parameter space reachable 0.00 _ - ._
. L. . . 0 50 100 150 200 250
frOm the Inltlallzathn Time (epochs)

Loss (negative log likelihood)

Figure from Deep Learning,
Goodfellow, Bengio and Courville

Practically: when training, also output validation error

e every time validation error improved, store a copy of the weights
 when validation error not improved for some time, stop

* return the copy of the weights stored

Dropout

Basic idea: randomly select a subset of weights to update

*In each update step

* Randomly sample a different binary mask to all the input and
hidden units

* Multiply the mask bits with the units and do the update as usual

* At test time: use all of the weights

*Typical dropout probabilities:

(0.2 for inputs weights
0.5 for hidden units

Batch Normalization

Basic idea: standardize inputs to each
layer of a neural network

*recall: it is often beneficial to
standardize the ith input feature x; by
passing (x; — u;)/o; to the model;
statistics u; and og; are computed on
the training data

* batch normalization standardizes the
outputs h* of each layer L before
passing them to layer L+1, with
statistics computed on each batch

Supposed to help optimization, but its
mechanism is poorly understood

4
@

Input x = h° Hidden variables h'

h2

Summary of regularization

Linear models dominated by well-understood
penalty-based approaches such as Ridge and LASSO

Neural network regularization is less understood:

*some (weight decay, data augmentation) are
applicable to or adapted from linear models

*some (dropout, batch-norm) specific to deep nets

eusually selected via a mix of trial-and-error +
formal validation

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Sharon Li, Fred Sala o

	Slide 1: CS 760: Machine Learning Neural Networks Continued
	Slide 2: Logistics
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Neural Network Components
	Slide 6: Feature Encoding for NNs
	Slide 7: Hidden Layers
	Slide 8: Hidden Layers
	Slide 9: More on Activations
	Slide 10: Output Layer: Examples
	Slide 11: Output Layer: Examples
	Slide 12: MLPs: Multilayer Perceptron
	Slide 13: MLPs: Multilayer Perceptron
	Slide 14: MLPs: Multilayer Perceptron
	Slide 15: MLPs: Multilayer Perceptron
	Slide 16: Multiclass Classification Output
	Slide 17: Break & Quiz
	Slide 18: Q: Which of the following activation functions are typically NOT used in practice, and why not?
	Slide 19: Q: Which of the following activation functions are typically NOT used in practice, and why not?
	Slide 20: Outline
	Slide 21: Training Neural Networks
	Slide 22: Training Neural Networks with SGD
	Slide 23: Training Neural Networks with minibatch SGD
	Slide 24: Training Neural Networks: Chain Rule
	Slide 25: Computing Gradients
	Slide 26: Computing Gradients
	Slide 27: Computing Gradients
	Slide 28: Computing Gradients
	Slide 29: Computing Gradients
	Slide 30: Computing Gradients
	Slide 31: Computing Gradients
	Slide 32: Computing Gradients
	Slide 33: Computing Gradients: More Layers
	Slide 34: Computing Gradients: More Layers
	Slide 35: Computing Gradients: More Layers
	Slide 36: Computing Gradients: More Layers
	Slide 37: Backpropagation
	Slide 38: Break & Quiz
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Outline
	Slide 43: Review: Regularization
	Slide 44: Penalty-based regularization of convex losses
	Slide 45: Ridge (ℓ sub bold 2) regularization of general losses
	Slide 46: ℓ sub bold 1 regularization of general losses
	Slide 47: Data Augmentation
	Slide 48: Data Augmentation: Examples
	Slide 49: Data Augmentation: Other Domains
	Slide 50: Adding Noise
	Slide 51: Adding Noise
	Slide 52: Adding Noise
	Slide 53: Adding Noise: Equivalence to Weight Decay
	Slide 54: Early Stopping
	Slide 55: Dropout
	Slide 56: Batch Normalization
	Slide 57: Summary of regularization
	Slide 58: Thanks Everyone!

