

CS 760: Machine Learning Neural Networks Continued

Misha Khodak

University of Wisconsin-Madison

8 October 2025

Logistics

- Homework 1 grades will be returned today
- **NEW:** starting Homework 2, we will take off one point if questions are not matched to pages on Gradescope
- Midterm: October 22nd
 - covers material through October 15th
 - mix of short answer and derivations
 - one double-sided 8.5x11 cheat sheet
 - review in-class on October 20th
- **NEW:** my office hours are now
 - Mondays 10:45 - 11:45
 - Tuesdays 1:20 - 2:20

Outline

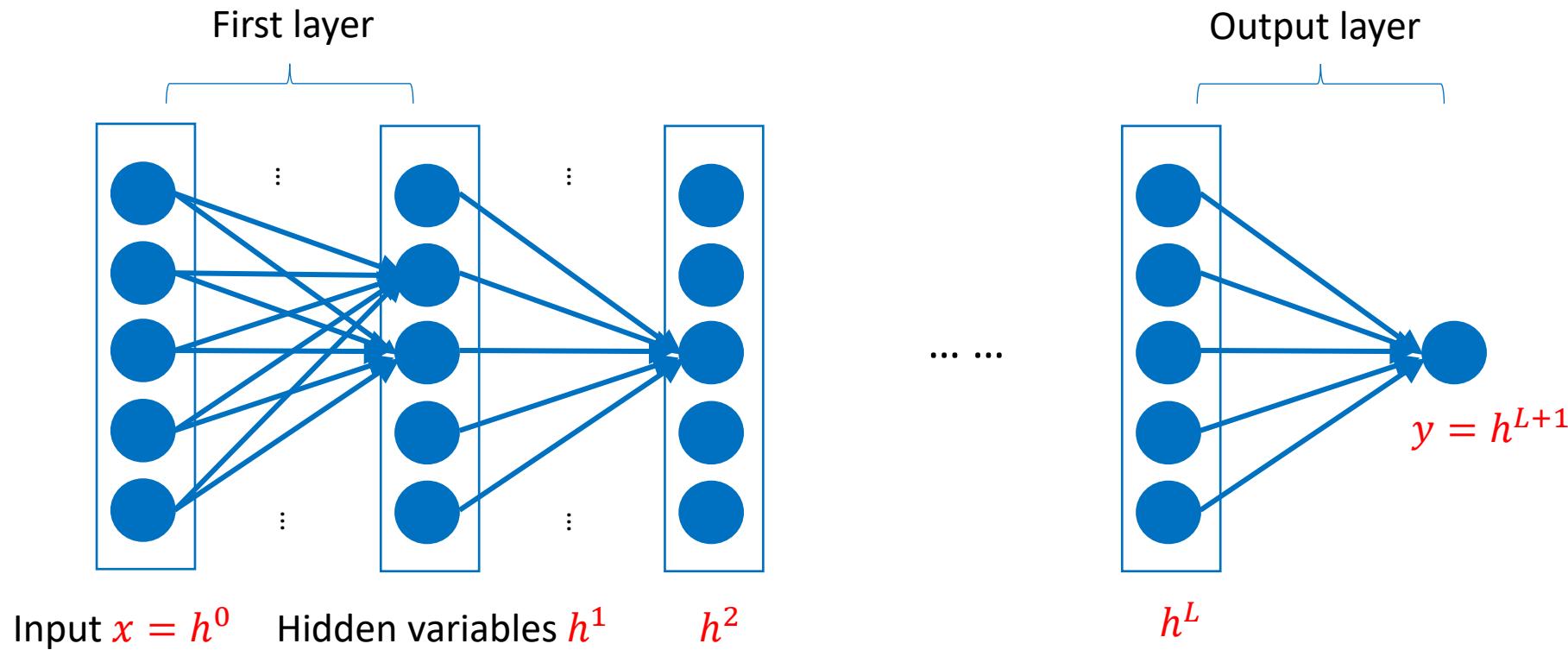
- **Review: Neural Networks**
 - Introduction, Setup, Components, Activations
- **Review: Training Neural Networks**
 - SGD, Computing Gradients, Backpropagation
- **Regularization**
 - Review, Penalties, Augmentation, Deep Net Approaches

Outline

- **Review: Neural Networks**
 - Introduction, Setup, Components, Activations
- **Review: Training Neural Networks**
 - SGD, Computing Gradients, Backpropagation
- **Regularization**
 - Review, Penalties, Augmentation, Deep Net Approaches

Neural Network Components

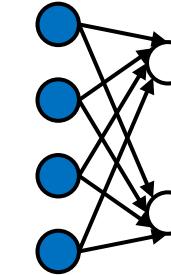
An $(L + 1)$ -layer network



Feature Encoding for NNs

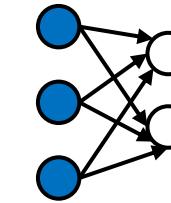
- Nominal features usually a one hot encoding

$$A = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad C = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad G = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \quad T = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$



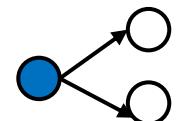
- Ordinal features: use a *thermometer* encoding

$$\text{small} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad \text{medium} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad \text{large} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$



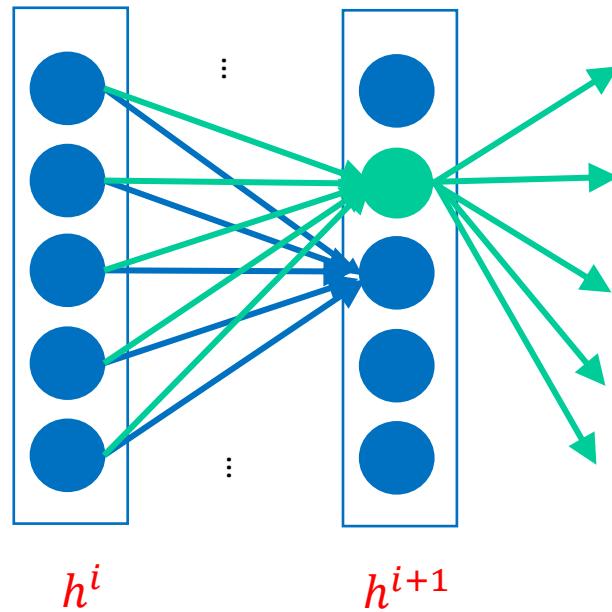
- Real-valued features use individual input units
(may want to scale/normalize them first though)

$$\text{precipitation} = [0.68]$$



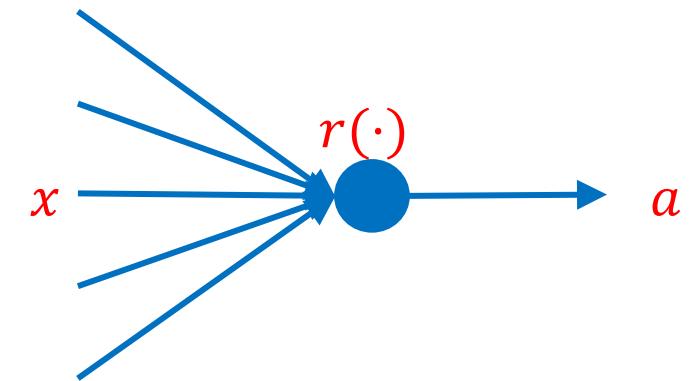
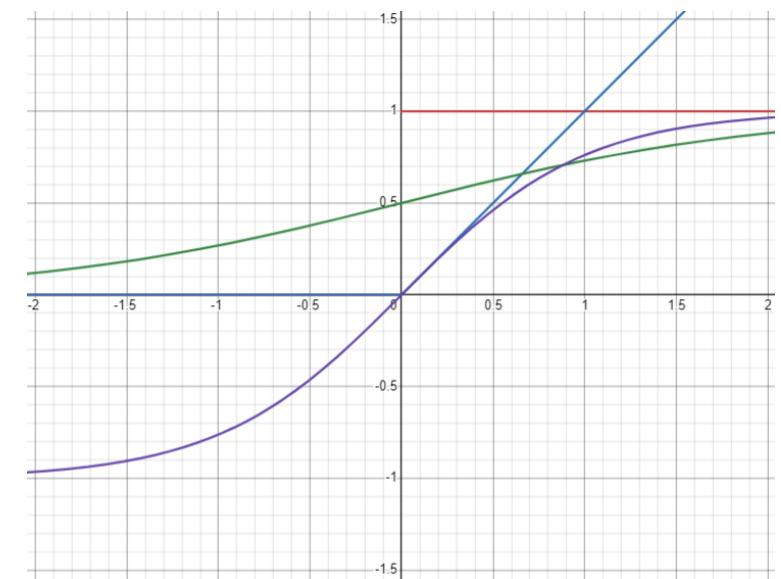
Hidden Layers

- Neuron takes weighted linear combination of the previous representation layer
 - Outputs one value for the next layer

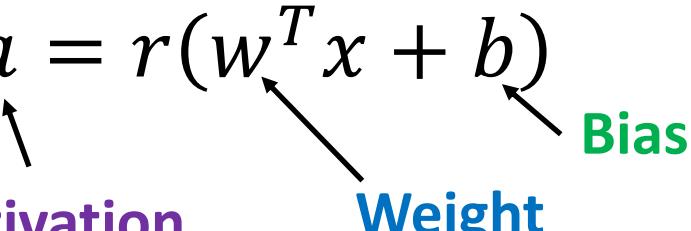


Hidden Layers

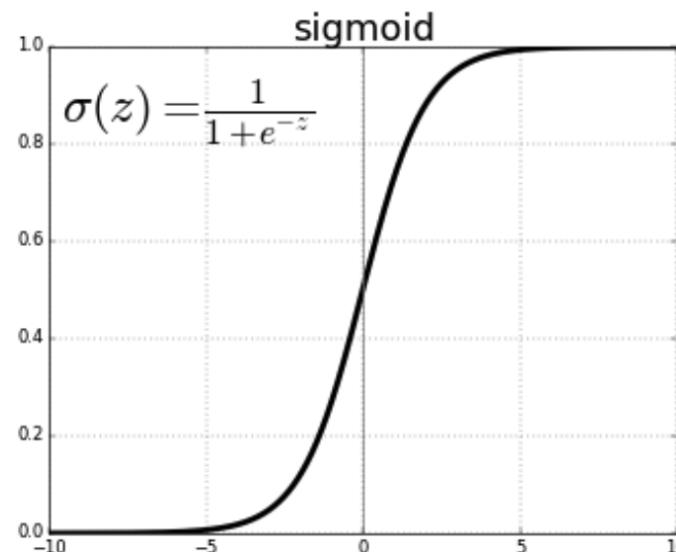
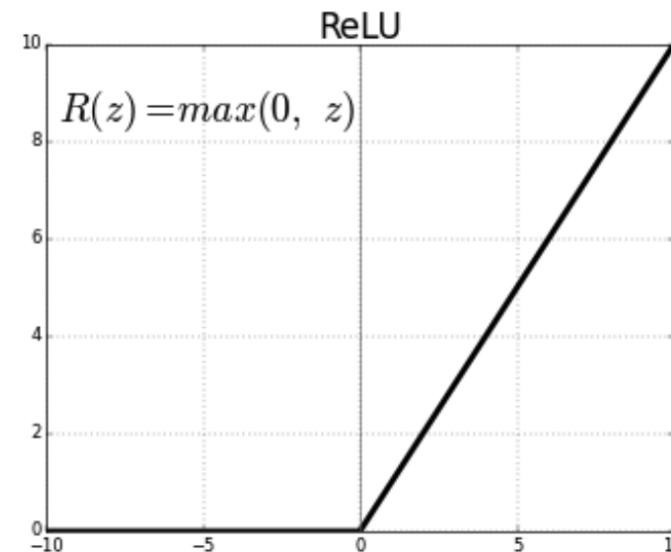
- Outputs $a = r(w^T x + b)$
- Typical activation function r
 - threshold $h(z) = 1_{\{z \geq 0\}}$
 - ReLU $\text{ReLU}(z) = z \cdot t(z) = \max\{0, z\}$
 - sigmoid $\sigma(z) = 1/(1 + \exp(-z))$
 - hyperbolic tangent $\tanh(z) = 2\sigma(2z) - 1$
- Why not **linear activation** functions?
 - Model would be linear.



More on Activations

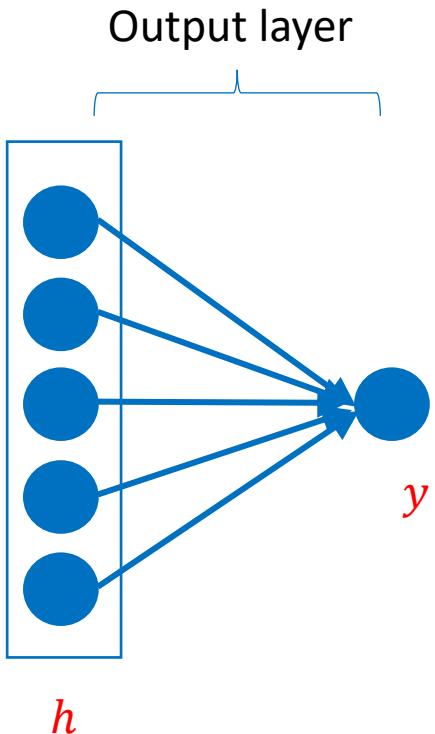
- Outputs $a = r(w^T x + b)$


Activation Weight Bias
- Consider gradients... saturating vs. nonsaturating



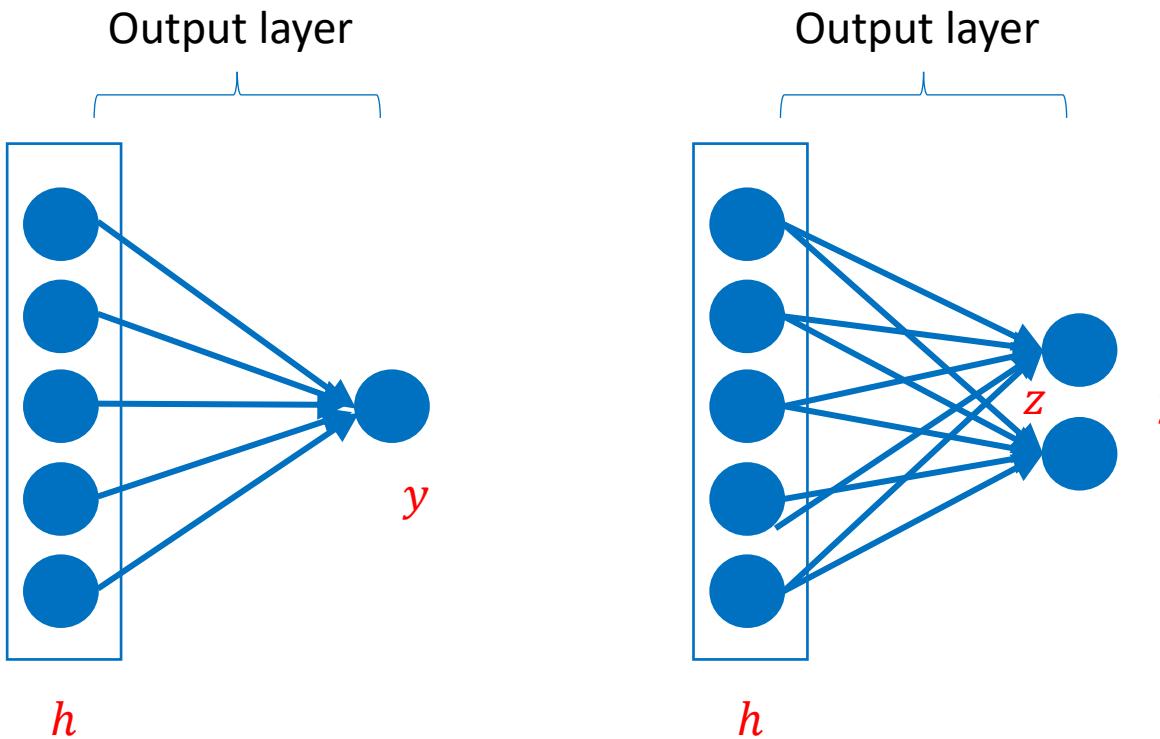
Output Layer: Examples

- Regression: $y = w^T h + b$
 - Linear units: no nonlinearity
- Multi-dimensional regression: $y = W^T h + b$
 - Linear units: no nonlinearity



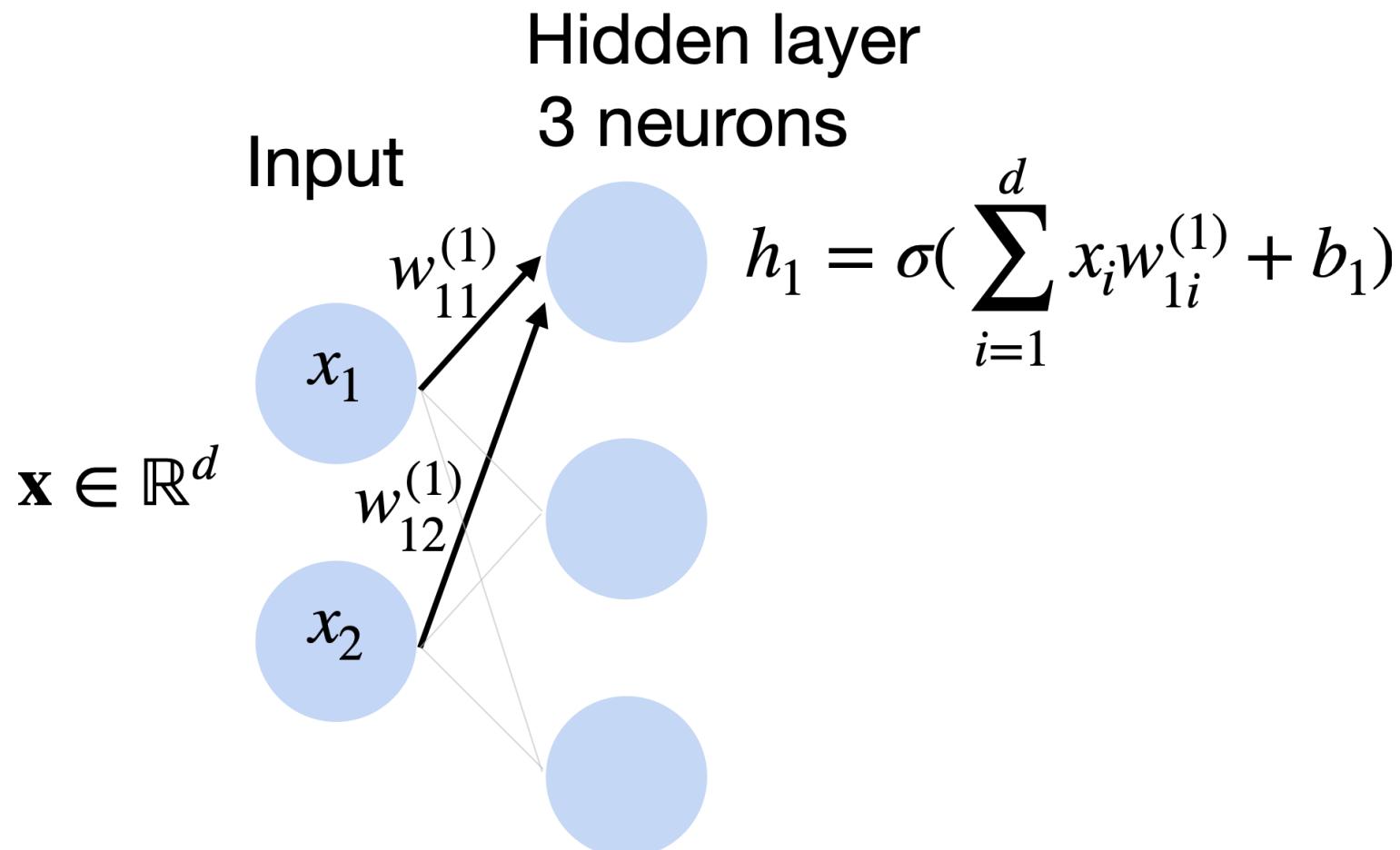
Output Layer: Examples

- Binary classification: $y = \sigma(w^T h + b)$
 - Corresponds to using logistic regression on h
- Multiclass classification:
 - $y = \text{softmax}(z)$ where $z = W^T h + b$



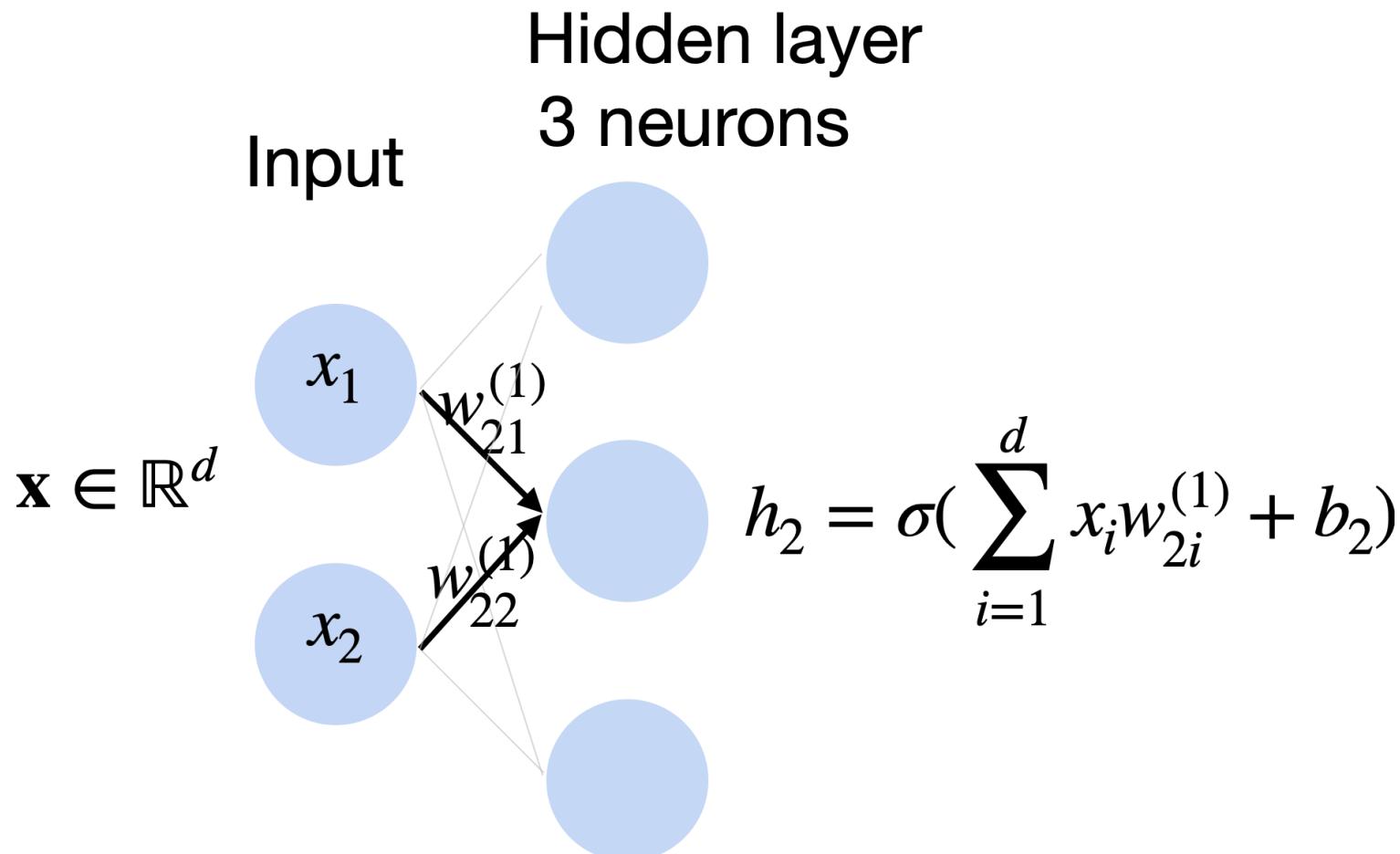
MLPs: Multilayer Perceptron

- Ex: 1 hidden layer, 1 output layer: depth 2



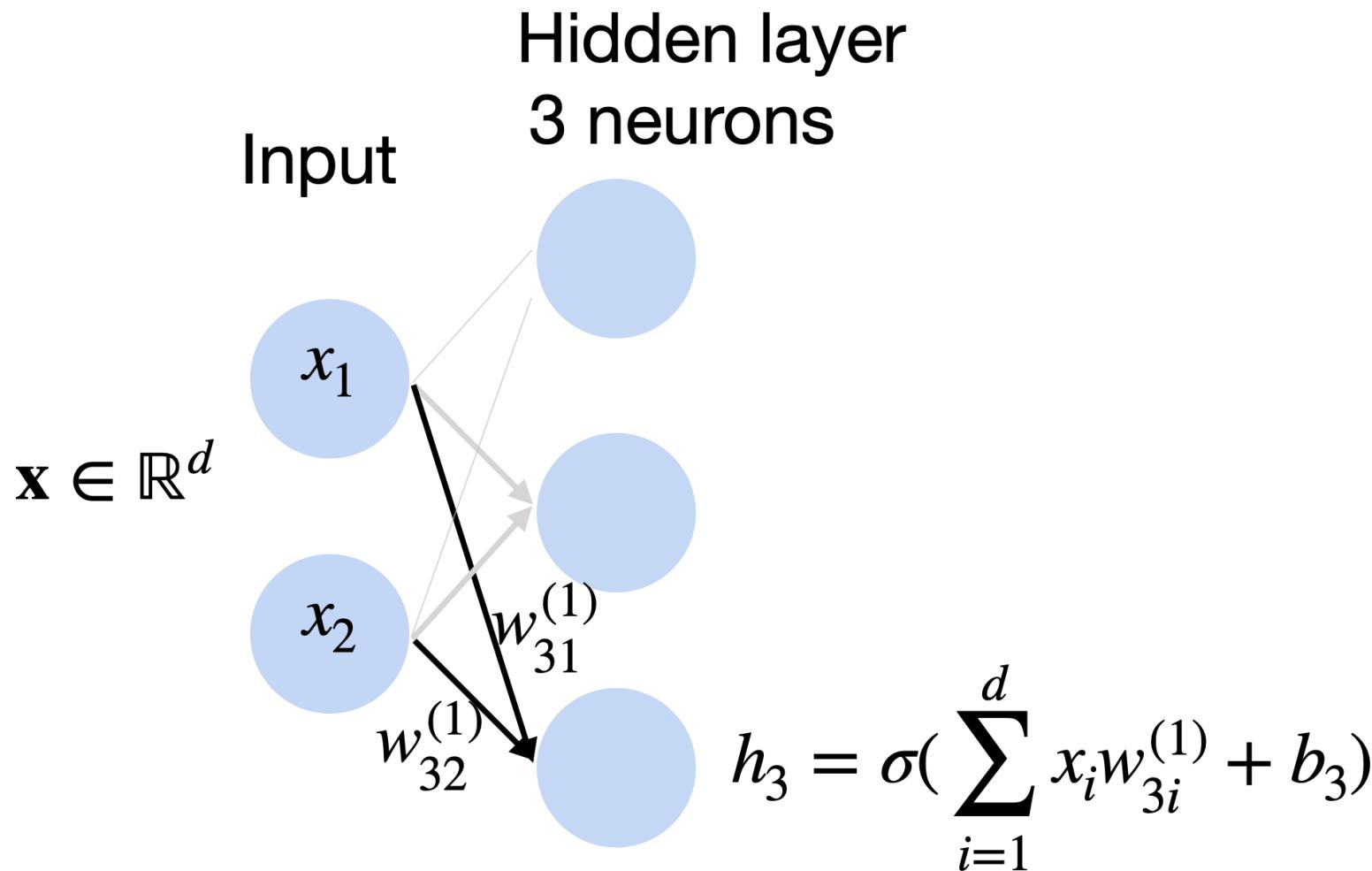
MLPs: Multilayer Perceptron

- Ex: 1 hidden layer, 1 output layer: depth 2



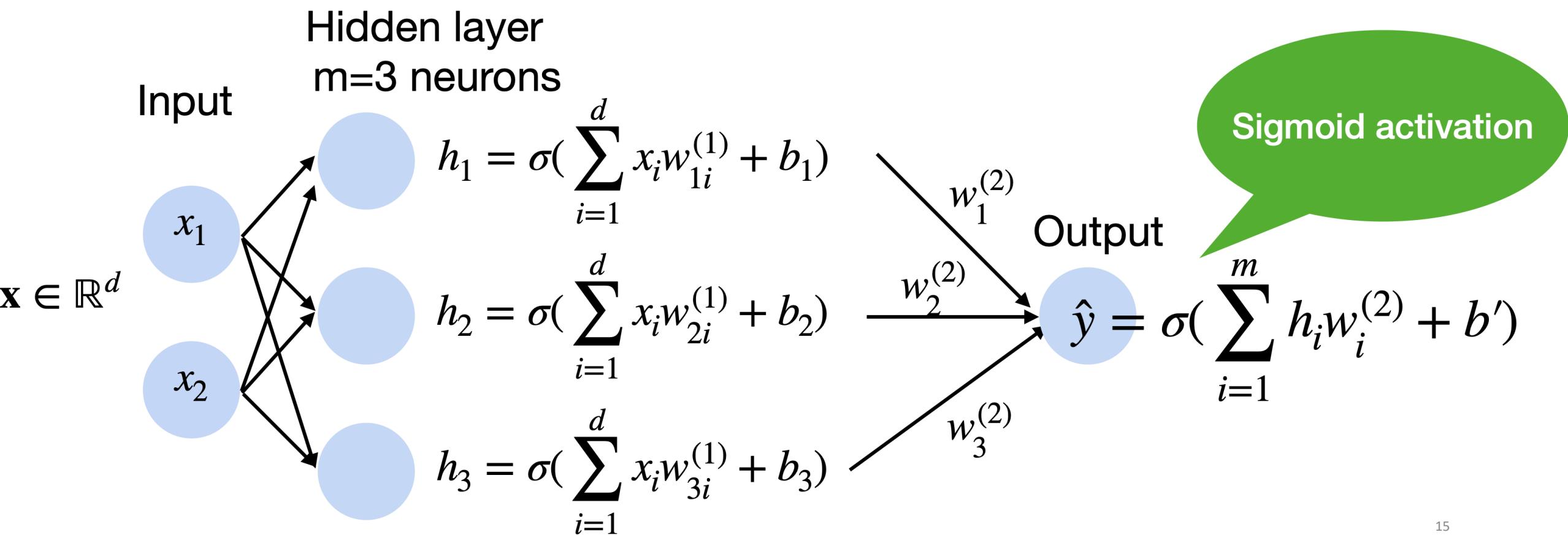
MLPs: Multilayer Perceptron

- Ex: 1 hidden layer, 1 output layer: depth 2



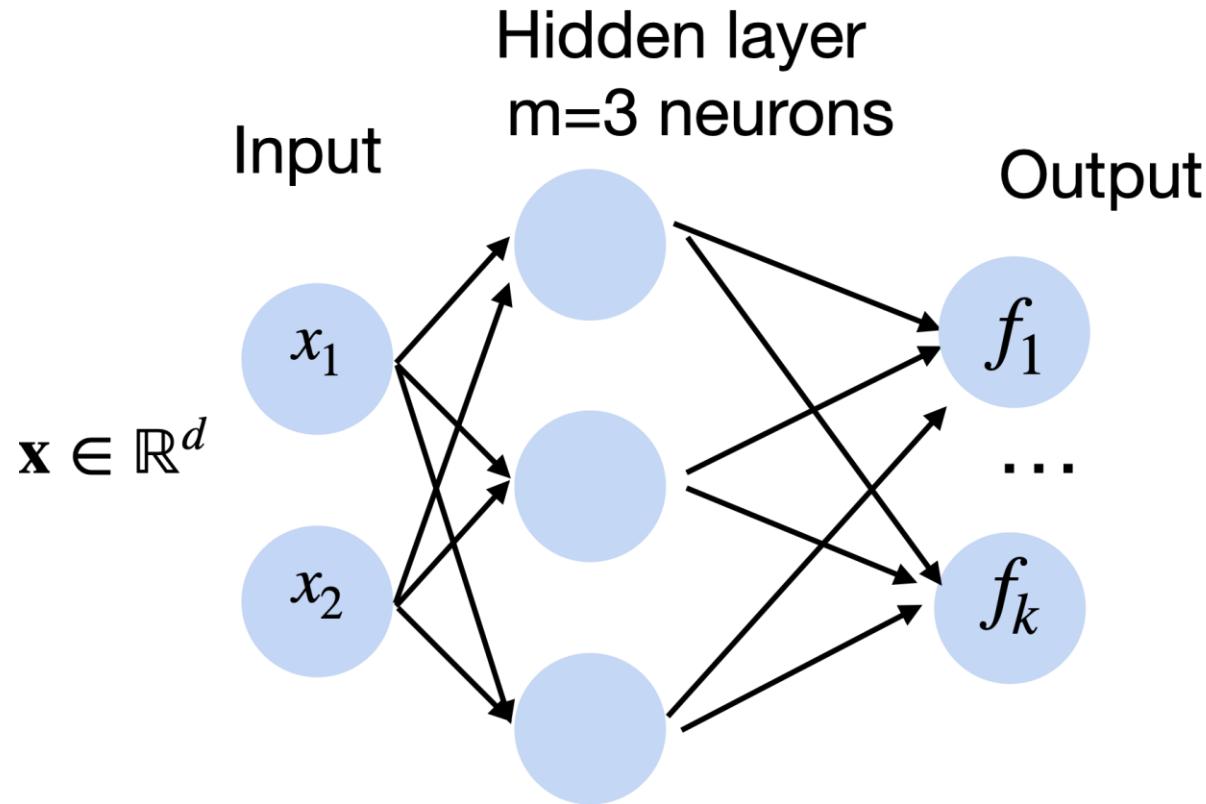
MLPs: Multilayer Perceptron

- Ex: 1 hidden layer, 1 output layer: depth 2



Multiclass Classification Output

- Create k output units
- Use softmax (just like logistic regression)



$$\begin{aligned} p(y | \mathbf{x}) &= \text{softmax}(f) \\ &= \frac{\exp f_y(x)}{\sum_i^k \exp f_i(x)} \end{aligned}$$

Break & Quiz

Q: Which of the following activation functions are typically **NOT** used in practice, and why not?

- a. sigmoid function $\sigma(z) = \frac{1}{1+\exp(-z)}$
- b. hyperbolic tangent $\tanh(z) = 2\sigma(z) - 1$
- c. threshold function $H(z) = 1_{z \geq 0}$
- d. linear (identity) function z
- e. Rectified linear unit $\text{ReLU}(z) = zH(z) = \max\{z, 0\}$

Q: Which of the following activation functions are **typically** NOT used in practice, and why not?

a. sigmoid function $\sigma(z) = \frac{1}{1+\exp(-z)}$

b. hyperbolic tangent $\tanh(z) = 2\sigma(z) - 1$

c. threshold function $H(z) = 1_{z \geq 0}$

hard to optimize (derivative=0 everywhere except $z=0$, where it is undefined)

d. linear (identity) function z

composition of linear functions is no more expressive than a single linear function

e. Rectified linear unit $\text{ReLU}(z) = zH(z) = \max\{z, 0\}$

Outline

- **Review: Neural Networks**
 - Introduction, Setup, Components, Activations
- **Review: Training Neural Networks**
 - SGD, Computing Gradients, Backpropagation
- **Regularization**
 - Review, Penalties, Augmentation, Deep Net Approaches

Training Neural Networks

Training is done in the usual way: pick a loss and optimize it

- **Example:** 2 scalar weights

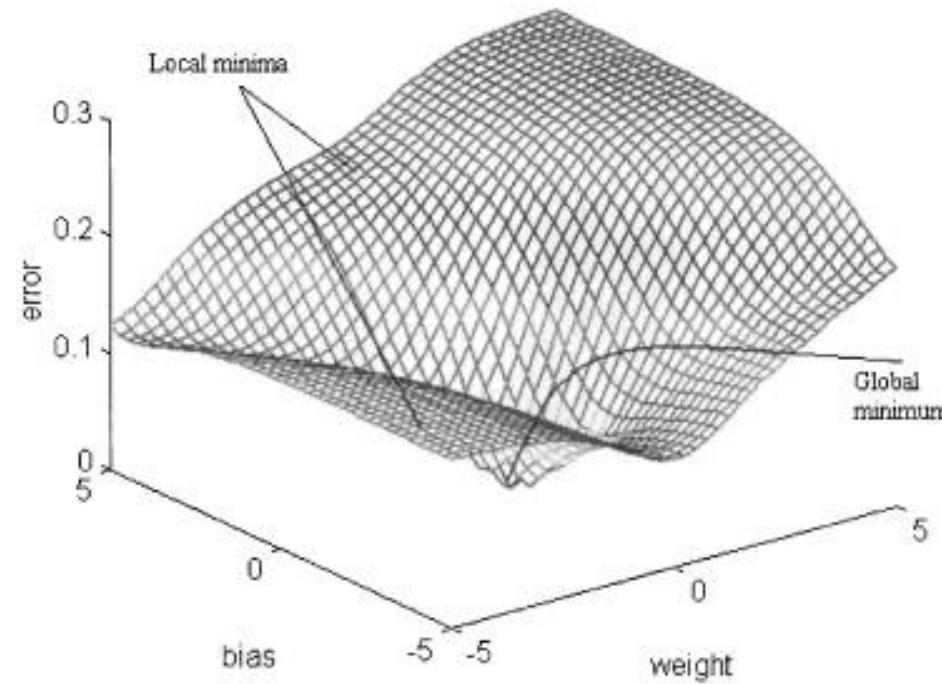


figure from Cho & Chow, *Neurocomputing* 1999

Training Neural Networks with SGD

Algorithm:

- Input dataset $D = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$
- Initialize weights
- Until stopping criterion is met:
 - For each training point $(x^{(i)}, y^{(i)})$ do
 - Compute prediction: $\hat{y}^{(i)} = f_w(x^{(i)})$ \longleftarrow **Forward Pass**
 - Compute loss: $L^{(i)} = L(\hat{y}^{(i)}, y^{(i)})$ \longleftarrow e.g. negative log-likelihood (NLL) loss
$$L(\hat{y}, y) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$
 - Compute gradient: $\nabla_w L^{(i)} = (\partial_{w_1} L^{(i)}, \partial_{w_2} L^{(i)}, \dots, \partial_{w_m} L^{(i)})^\top$ \longleftarrow **Backward Pass**
 - Update weights: $w \leftarrow w - \alpha \nabla_w L^{(i)}$ \longleftarrow SGD step

Training Neural Networks with minibatch SGD

Algorithm:

- Input dataset $D = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$
- Initialize weights
- Until stopping criterion is met:
 - Sample a **batch of b training points** i_1, \dots, i_b
 - Compute predictions: $\{\hat{y}^{(i_1)}, \dots, \hat{y}^{(i_b)}\} = \{f_w(x^{(i_1)}), \dots, f_w(x^{(i_b)})\}$
 - Compute avg. loss: $L^{(i_1, \dots, i_b)} = \frac{1}{b} \sum_{j=1}^b L(\hat{y}^{(i_j)}, y^{(i_j)})$
 - Compute gradient: $\nabla_w L^{(i_1, \dots, i_b)} = (\partial_{w_1} L^{(i_1, \dots, i_b)}, \dots, \partial_{w_m} L^{(i_1, \dots, i_b)})^\top$
 - Update weights: $w \leftarrow w - \alpha \nabla_w L^{(i_1, \dots, i_b)}$

Training Neural Networks: Chain Rule

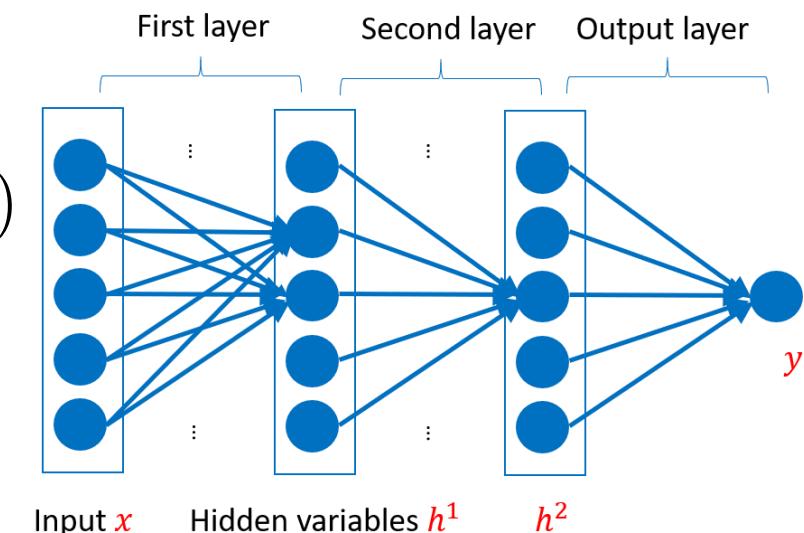
- Will need to compute terms like: $\frac{\partial L}{\partial w_1}$
 - But, L is a composition of:
 - Loss with output y
 - Output itself a composition of softmax with outer layer
 - Outer layer a combination of outputs from previous layer
 - Outputs from prev. layer a composition of activations and linear functions...

- Need the **chain rule**!

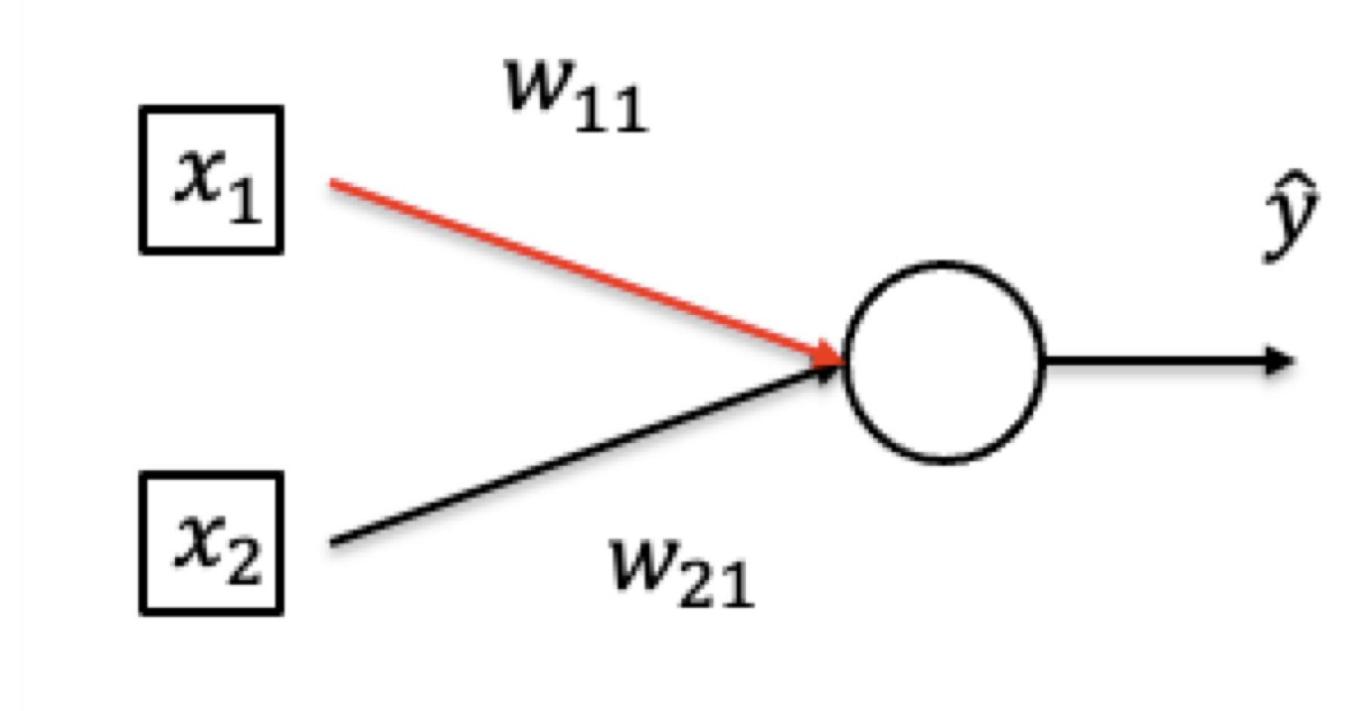
- Suppose $L = L(g_1, \dots, g_k)$ $g_j = g_j(w_1, \dots, w_p)$

- Then,

$$\frac{\partial L}{\partial w_i} = \sum_{j=1}^k \frac{\partial L}{\partial g_j} \frac{\partial g_j}{\partial w_i}$$

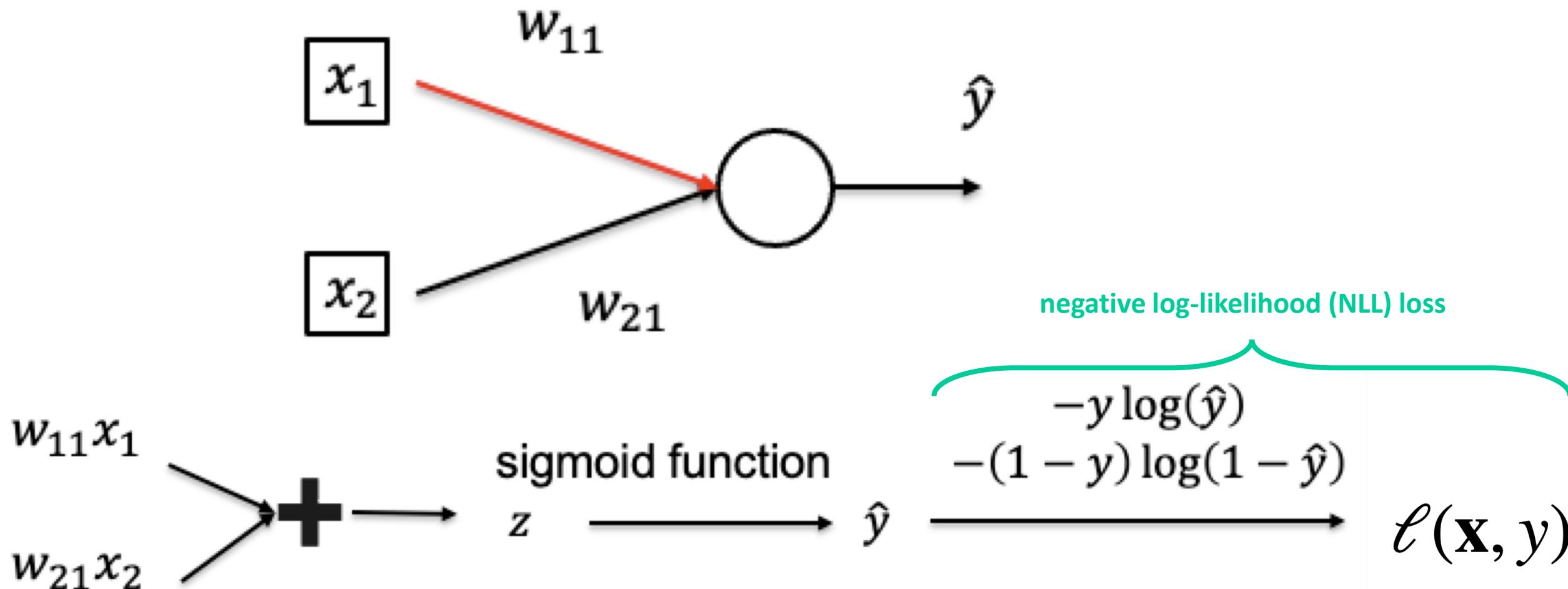


Computing Gradients

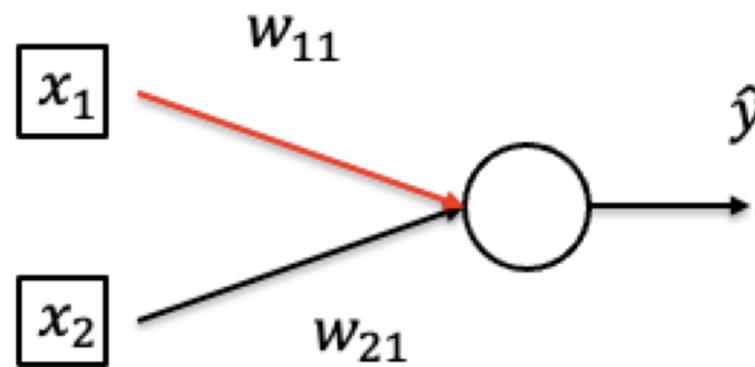


Want to compute $\frac{\partial \ell(\mathbf{x}, y)}{\partial w_{11}}$

Computing Gradients



Computing Gradients

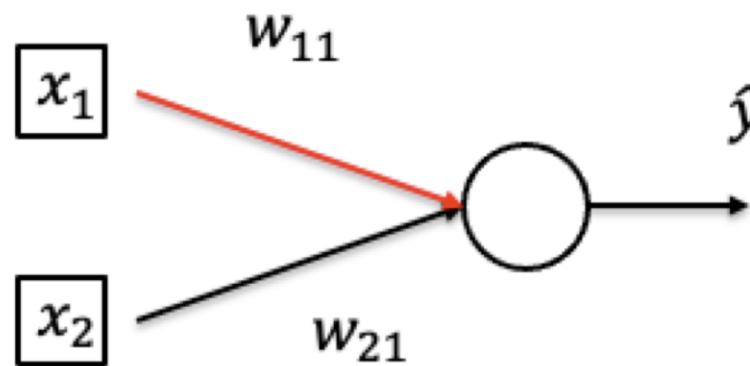


$$\begin{array}{ccccc} w_{11}x_1 & \xrightarrow{\quad\quad\quad} & z & \xrightarrow{\text{sigmoid function}} & \hat{y} \\ w_{21}x_2 & \xrightarrow{\quad\quad\quad} & & & \xrightarrow{\quad\quad\quad} \ell(\mathbf{x}, y) \\ & & & & \frac{\partial \hat{y}}{\partial z} = \sigma'(z) \\ & & & & \frac{\partial \ell(\mathbf{x}, y)}{\partial \hat{y}} = \frac{1 - y}{1 - \hat{y}} - \frac{y}{\hat{y}} \end{array}$$

By chain rule:

$$\frac{\partial l}{\partial w_{11}} = \frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} \frac{\partial z}{\partial w_{11}}$$

Computing Gradients



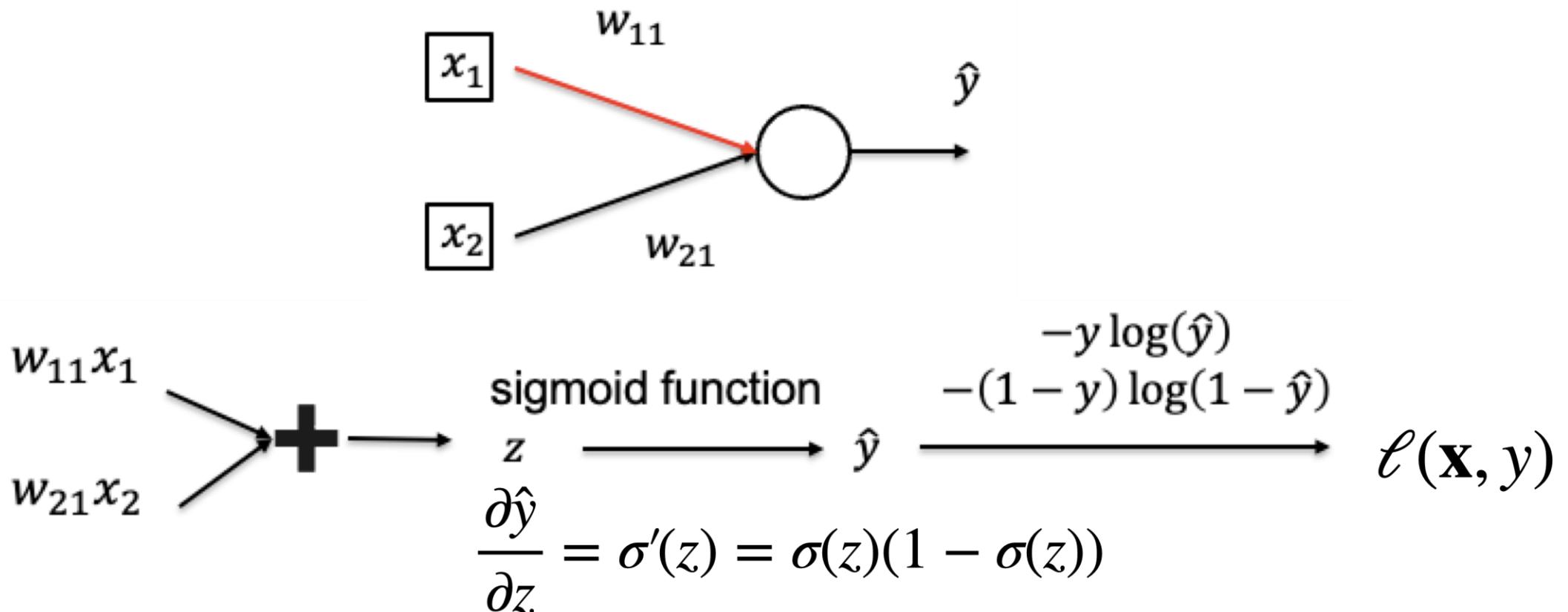
A computational graph showing the forward pass and gradients for a sigmoid function. The forward pass consists of three steps: a summation node (plus sign) with inputs $w_{11}x_1$ and $w_{21}x_2$, followed by a sigmoid function node, and finally a loss function node with inputs $-(y \log(\hat{y}))$ and $-(1 - y) \log(1 - \hat{y})$. The loss function is labeled $\ell(\mathbf{x}, y)$. Below the graph, the derivative of the sigmoid function is given as $\frac{\partial \hat{y}}{\partial z} = \sigma'(z)$, and the derivative of the loss function with respect to \hat{y} is given as $\frac{\partial \ell(\mathbf{x}, y)}{\partial \hat{y}} = \frac{1 - y}{1 - \hat{y}} - \frac{y}{\hat{y}}$.

$$\begin{array}{ccccc} w_{11}x_1 & \xrightarrow{\quad + \quad} & z & \xrightarrow{\text{sigmoid function}} & \hat{y} \\ w_{21}x_2 & & & & \xrightarrow{\quad -(y \log(\hat{y})) \quad \quad -(1 - y) \log(1 - \hat{y}) \quad} \ell(\mathbf{x}, y) \\ \frac{\partial \hat{y}}{\partial z} = \sigma'(z) & & & & \frac{\partial \ell(\mathbf{x}, y)}{\partial \hat{y}} = \frac{1 - y}{1 - \hat{y}} - \frac{y}{\hat{y}} \end{array}$$

By chain rule:

$$\frac{\partial l}{\partial w_{11}} = \frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} x_1$$

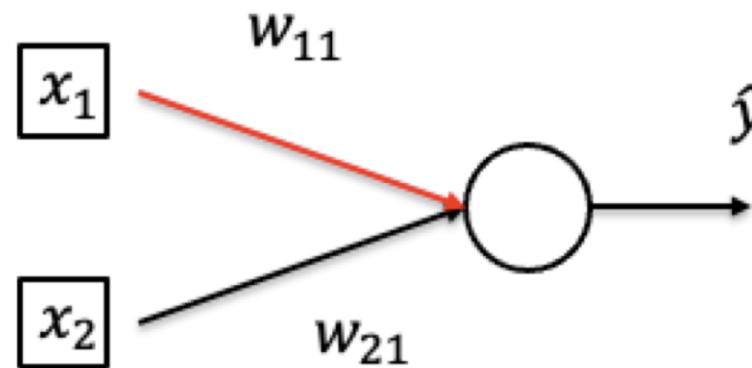
Computing Gradients



By chain rule:

$$\frac{\partial l}{\partial w_{11}} = \frac{\partial l}{\partial \hat{y}} \hat{y}(1 - \hat{y})x_1$$

Computing Gradients

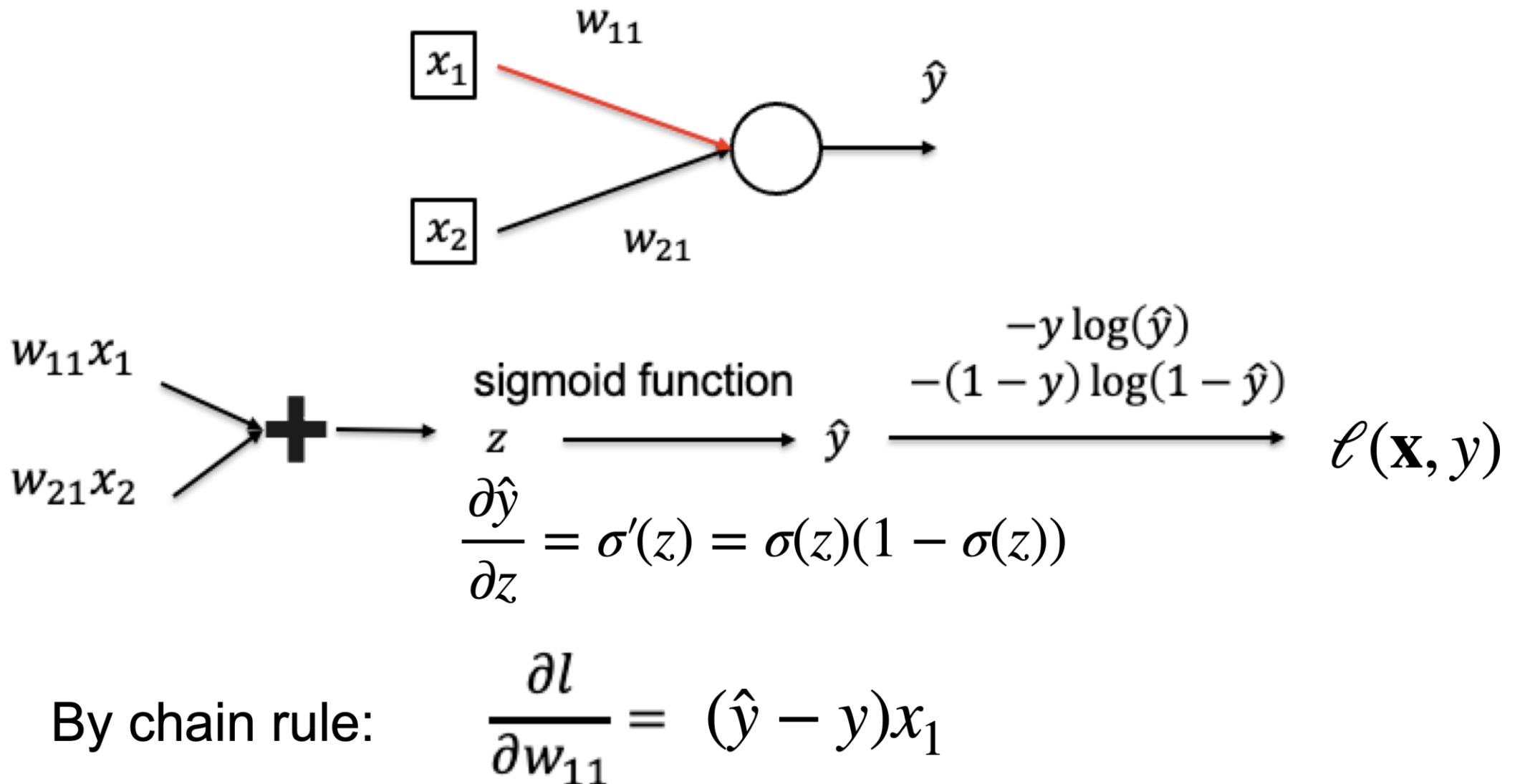


$$\begin{array}{c} w_{11}x_1 \\ w_{21}x_2 \end{array} \rightarrow \begin{array}{c} + \\ \text{sigmoid function} \\ z \end{array} \rightarrow \begin{array}{c} \hat{y} \\ \frac{\partial \hat{y}}{\partial z} = \sigma'(z) = \sigma(z)(1 - \sigma(z)) \end{array} \rightarrow \begin{array}{c} -y \log(\hat{y}) \\ -(1 - y) \log(1 - \hat{y}) \\ \ell(\mathbf{x}, y) \end{array}$$

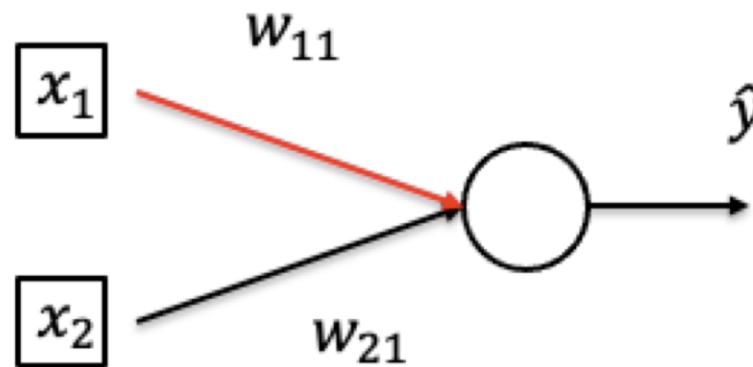
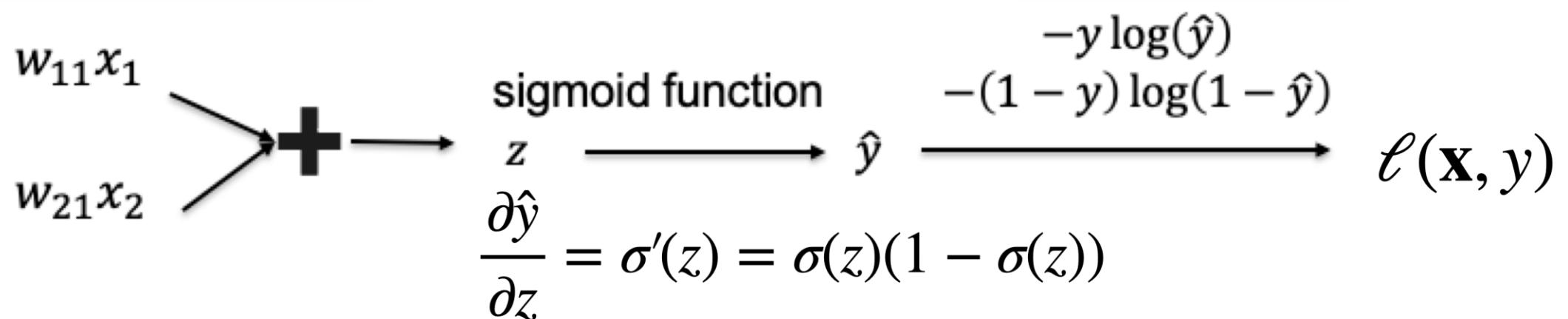
By chain rule:

$$\frac{\partial l}{\partial w_{11}} = \left(\frac{1 - y}{1 - \hat{y}} - \frac{y}{\hat{y}} \right) \hat{y}(1 - \hat{y})x_1$$

Computing Gradients



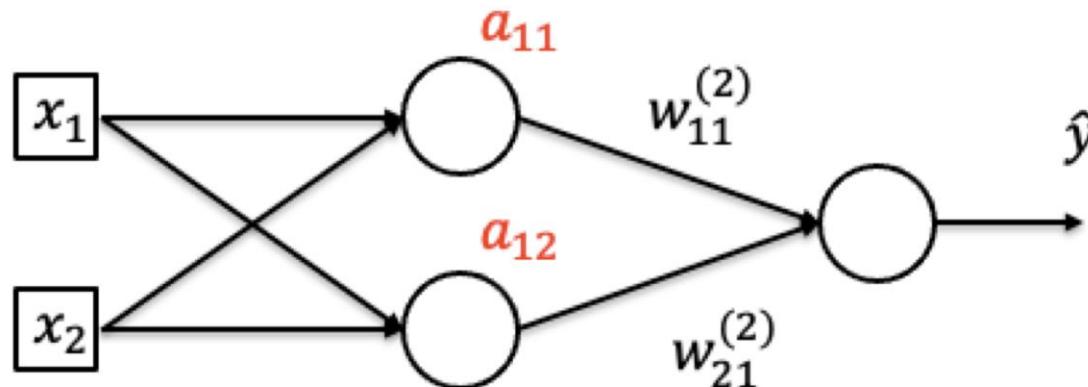
Computing Gradients



By chain rule:

$$\frac{\partial l}{\partial x_1} = \frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} w_{11} = (\hat{y} - y) w_{11}$$

Computing Gradients: More Layers



Make it deeper

Diagram illustrating the computation of gradients for the output layer:

Inputs $w_{11}^{(2)} a_{11}$ and $w_{21}^{(2)} a_{12}$ are summed to produce z .

z is passed through a sigmoid function to produce \hat{y} .

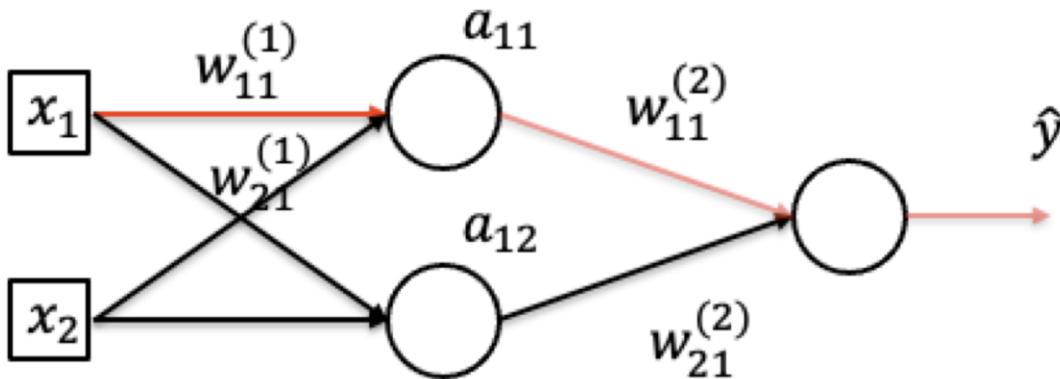
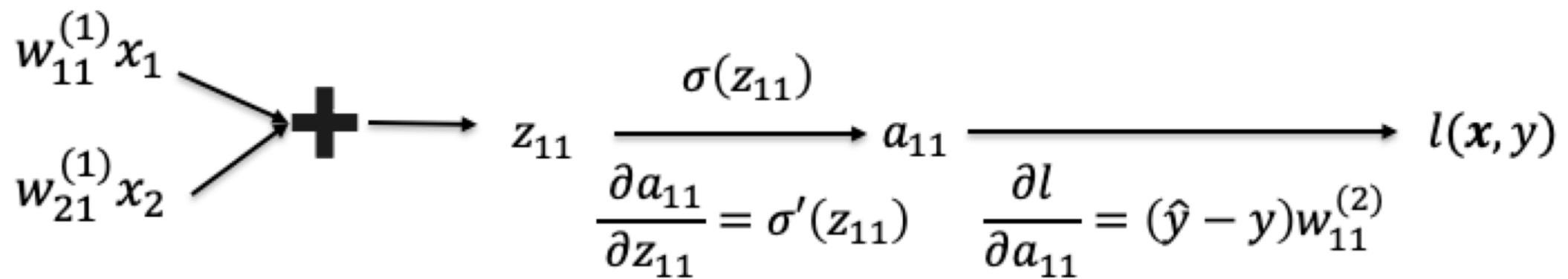
\hat{y} is then used to compute the loss function $\ell(\mathbf{x}, y)$.

Derivative of the loss function with respect to z is given as:

$$\frac{\partial \hat{y}}{\partial z} = \sigma'(z) = \sigma(z)(1 - \sigma(z))$$

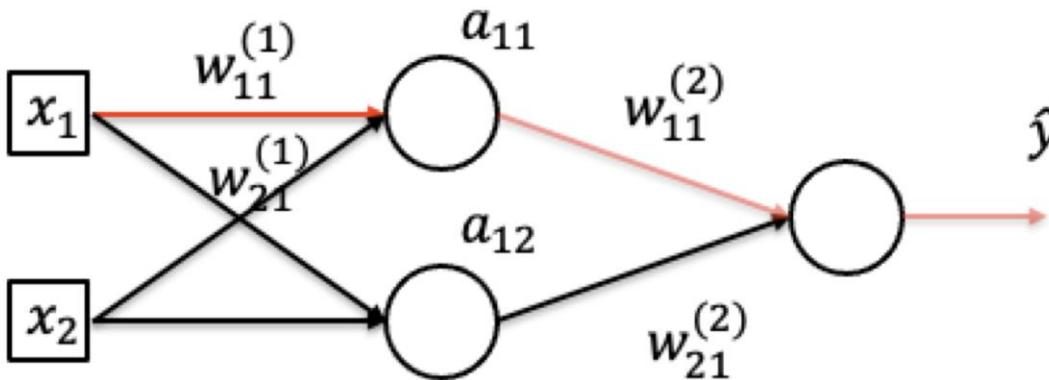
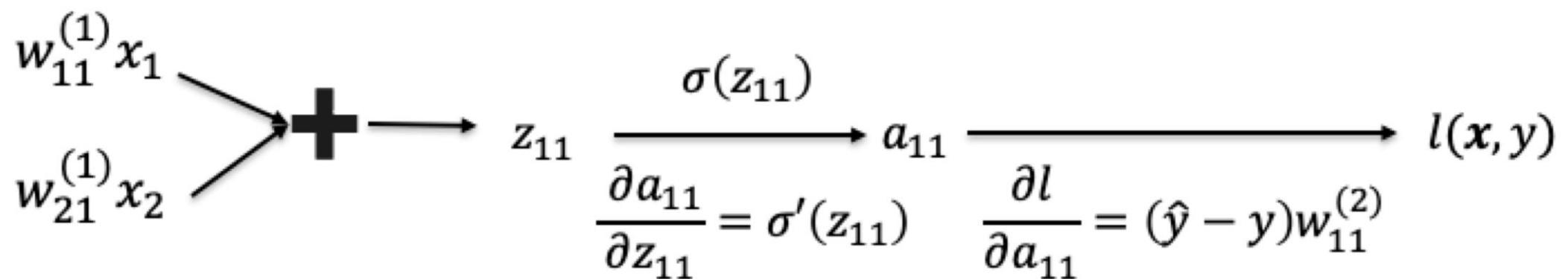
By chain rule: $\frac{\partial l}{\partial a_{11}} = (\hat{y} - y)w_{11}^{(2)}$, $\frac{\partial l}{\partial a_{12}} = (\hat{y} - y)w_{21}^{(2)}$

Computing Gradients: More Layers



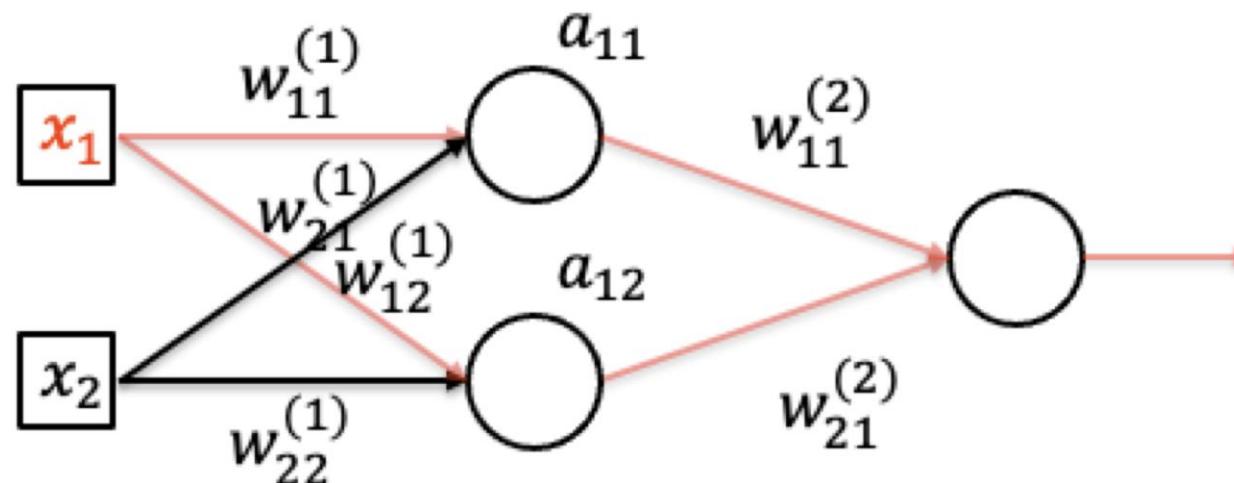
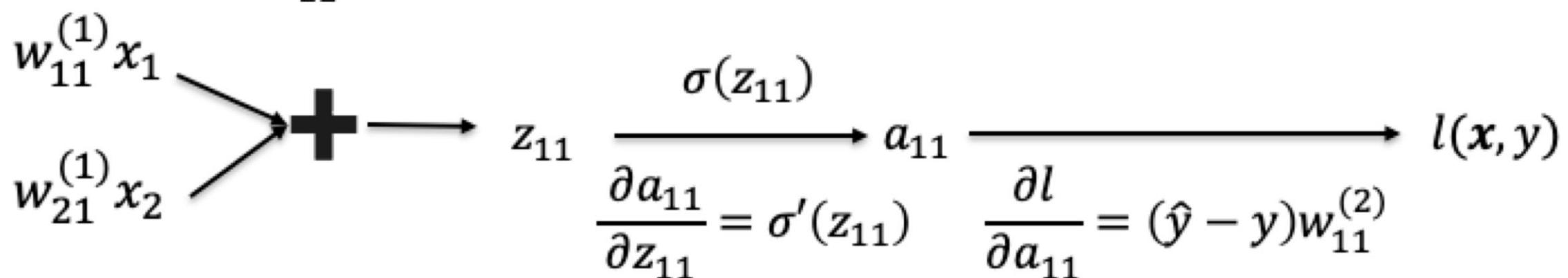
By chain rule:
$$\frac{\partial l}{\partial w_{11}} = \frac{\partial l}{\partial a_{11}} \frac{\partial a_{11}}{\partial w_{11}^{(1)}} = (\hat{y} - y) w_{11}^{(2)} \frac{\partial a_{11}}{\partial w_{11}^{(1)}}$$

Computing Gradients: More Layers



By chain rule: $\frac{\partial l}{\partial w_{11}} = \frac{\partial l}{\partial a_{11}} \frac{\partial a_{11}}{\partial w_{11}^{(1)}} = (\hat{y} - y)w_{11}^{(2)}a_{11}(1 - a_{11})x_1$

Computing Gradients: More Layers



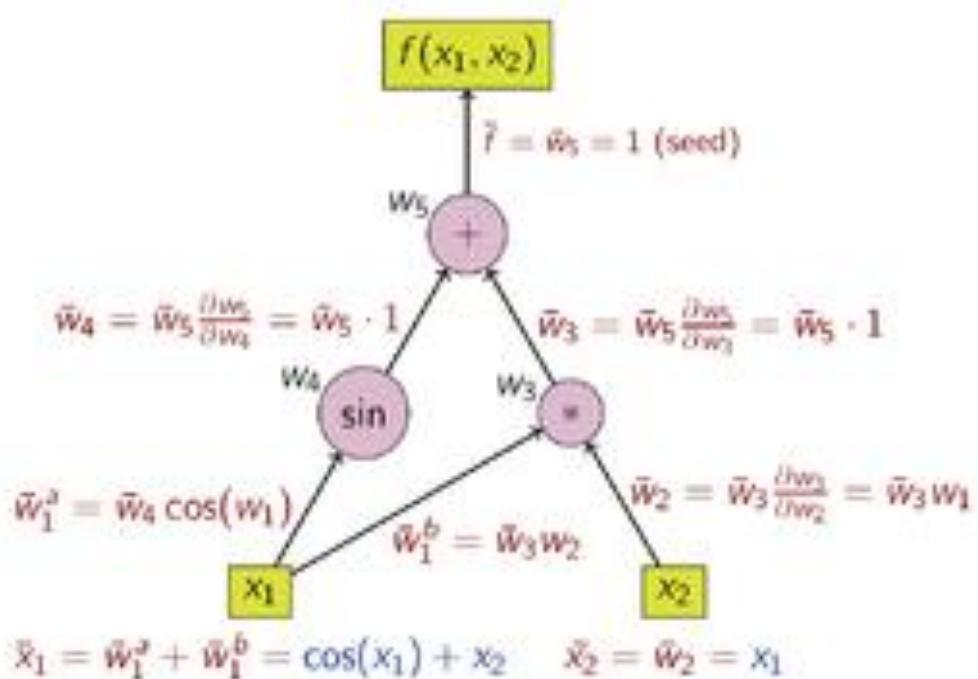
By chain rule:

$$\frac{\partial l}{\partial x_1} = \frac{\partial l}{\partial a_{11}} \frac{\partial a_{11}}{\partial x_1} + \frac{\partial l}{\partial a_{12}} \frac{\partial a_{12}}{\partial x_1}$$

Backpropagation

- So to compute derivative w.r.t specific weights we **propagate** loss information **back** through the network
- Today we do this by automatic differentiation (**autodiff**) for arbitrarily complex computation graphs
- Go backwards from top to bottom, recursively computing gradients

Backward propagation
of derivative values



Wiki

Break & Quiz

True or False: Backprop is an optimization algorithm.

a. False; some optimization algorithms use the output of backprop.

True or False: Backprop is a weight-updating algorithm

a. **False**; gradient-based optimization algorithms like SGD use the output of backprop to update the weights.

True or False: Backprop is a gradient-computation algorithm

a. True

Outline

- **Review: Neural Networks**
 - Introduction, Setup, Components, Activations
- **Review: Training Neural Networks**
 - SGD, Computing Gradients, Backpropagation
- **Regularization**
 - Review, Penalties, Augmentation, Deep Net Approaches

Review: Regularization

Any method to **prevent overfitting** or **help optimization**

So far, we've seen one approach: penalty-based regularization

$$\operatorname{argmin}_{\theta} \frac{1}{n} \sum_{i=1}^n \text{loss}_i(\theta) + \lambda R(\theta)$$

- $R(\theta) = \frac{1}{2} \|\theta\|_2^2$ (Ridge)
- $R(\theta) = \|\theta\|_1$ (LASSO)

Penalty-based regularization of convex losses

Helps **prevent overfitting** by reducing the hypothesis space

- equivalent to constraint formulation for convex penalties R :

$$\operatorname{argmin}_{\theta} \frac{1}{n} \sum_{i=1}^n \text{loss}_i(\theta) + \lambda R(\theta) = \operatorname{argmin}_{R(\theta) \leq \tau} \frac{1}{n} \sum_{i=1}^n \text{loss}_i(\theta)$$

- LASSO known to yield **sparse** parameters θ

Ridge **helps optimization** by making the objective **strongly convex**

- gives objective positive curvature at every point
- gradient descent on strongly convex + smooth losses has suboptimality $O((1 - \kappa)^T)$ after T iterations, vs. $O(1/T)$ with regular convexity

Ridge (ℓ_2) regularization of general losses

- Gradient of regularized objective

$$\nabla \hat{L}_R(\theta) = \nabla \hat{L}(\theta) + \lambda \theta$$

- Gradient descent update

$$\begin{aligned}\theta &\leftarrow \theta - \eta \nabla \hat{L}_R(\theta) = \theta - \eta \nabla \hat{L}(\theta) - \eta \lambda \theta \\ &= (1 - \eta \lambda) \theta - \eta \nabla \hat{L}(\theta)\end{aligned}$$

- In words, **weight decay**

ℓ_1 regularization of general losses

- Gradient of regularized objective

$$\nabla \hat{L}_R(\theta) = \nabla \hat{L}(\theta) + \lambda \text{sign}(\theta)$$

where **sign** applies to each element in θ

- Gradient descent update

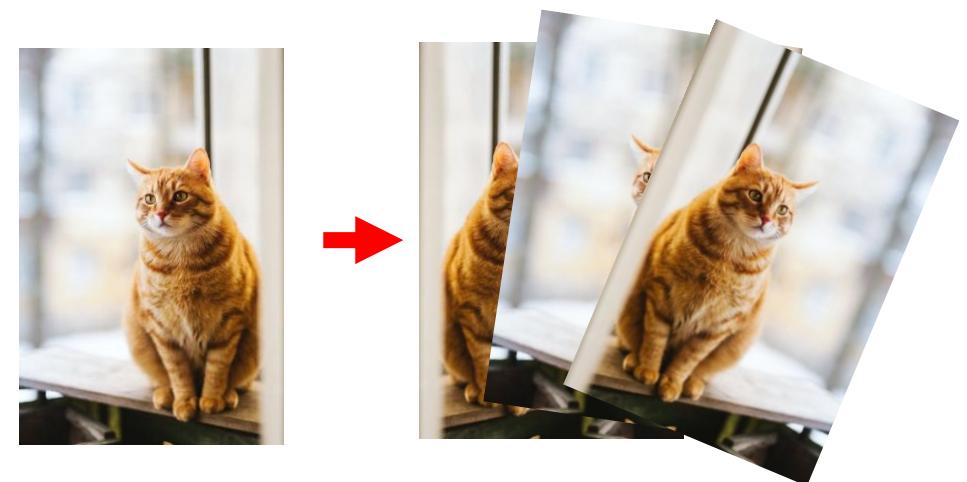
$$\theta \leftarrow \theta - \eta \nabla \hat{L}_R(\theta) = \theta - \eta \nabla \hat{L}(\theta) - \eta \lambda \text{sign}(\theta)$$

- Effects like sparsity less well-understood than convex case

Data Augmentation

Augmentation: transform + add new samples to dataset

- Transformations: based on domain
- Idea: build **invariances** into the model
 - Ex: if all images have same alignment, model learns to use it
- Keep the label the same!

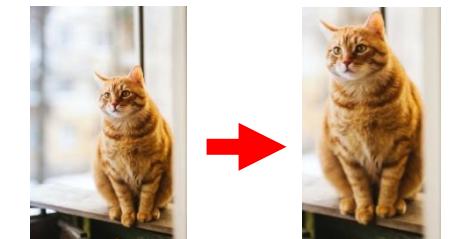
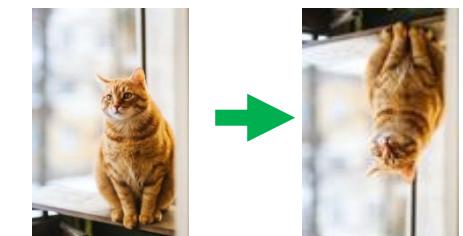


Data Augmentation: Examples

Examples of transformations for images

- **Crop** (and zoom)
- **Color** (change contrast/brightness)
- **Rotations+** (translate, stretch, shear, etc.)

Many more possibilities. Combine as well!



Q: how to know what performs best?

A: cross-validation

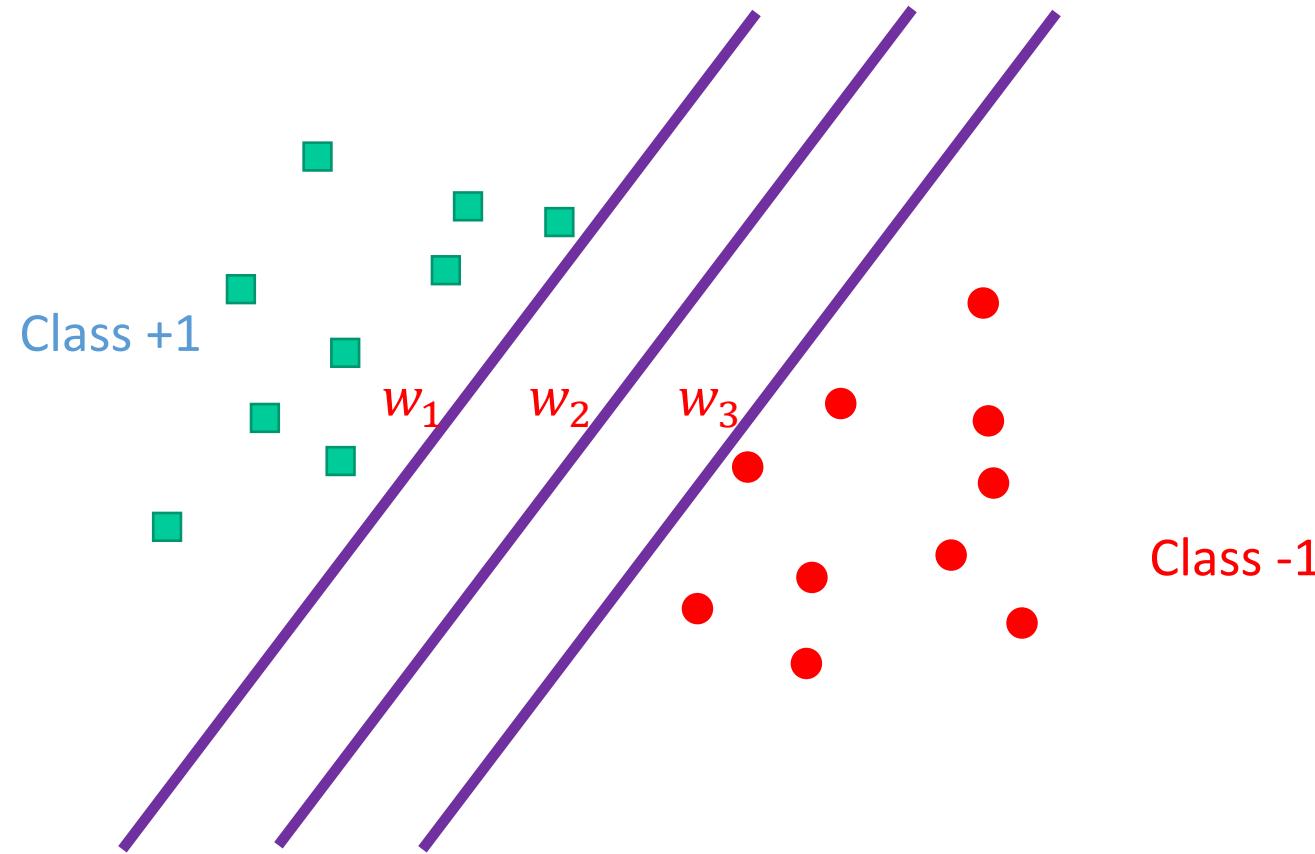
Data Augmentation: Other Domains

Not just for image data. For example, on text:

- Substitution
 - E.g. “It is a **great** day” → “It is a **wonderful** day”
 - Use a thesaurus for particular words
 - Or use a model. Pre-trained word embeddings, language models
- Back-translation
 - “Given the low budget and production limitations, this movie is very good.”
→ “There are few budget items and production limitations to make this film a really good one”

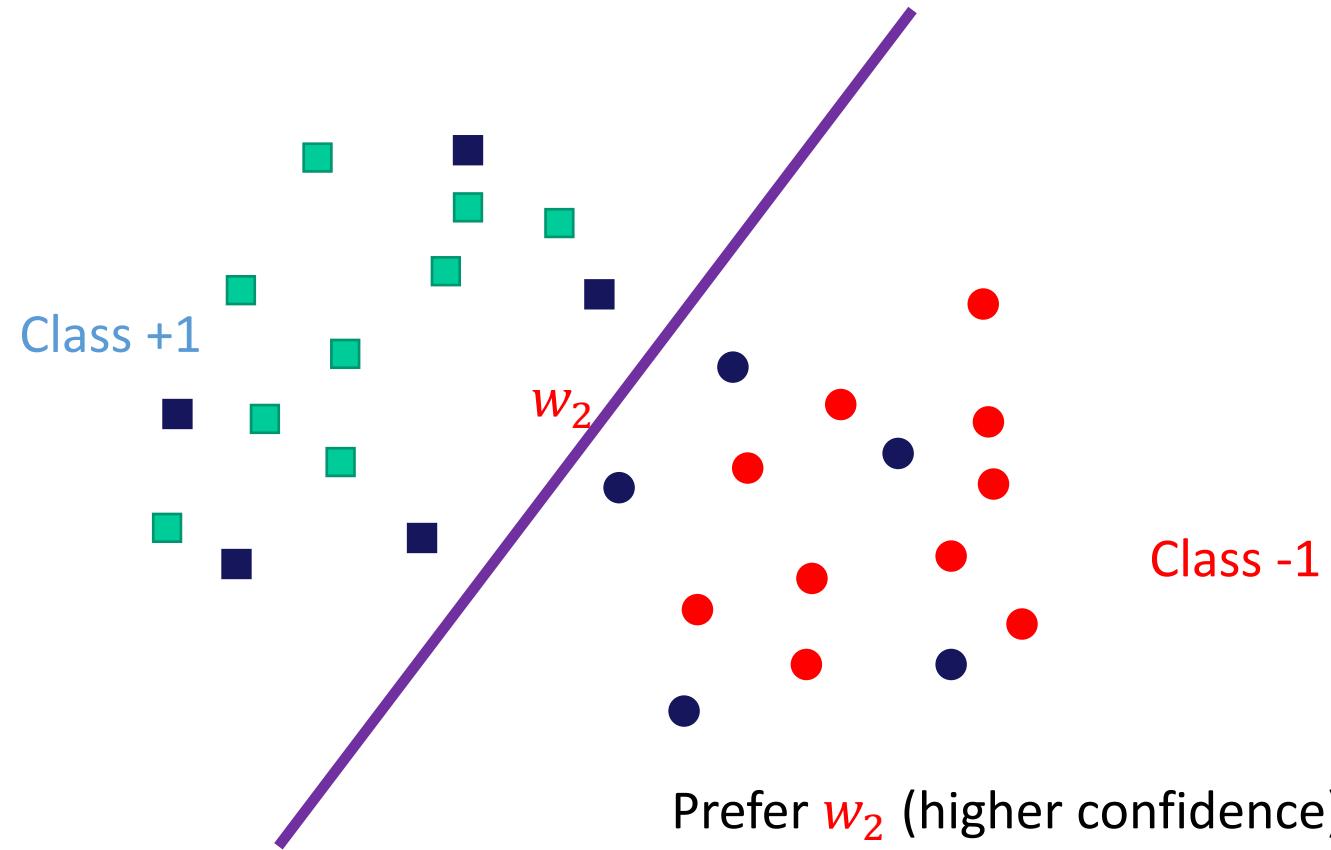
Adding Noise

- What if we have many solutions?



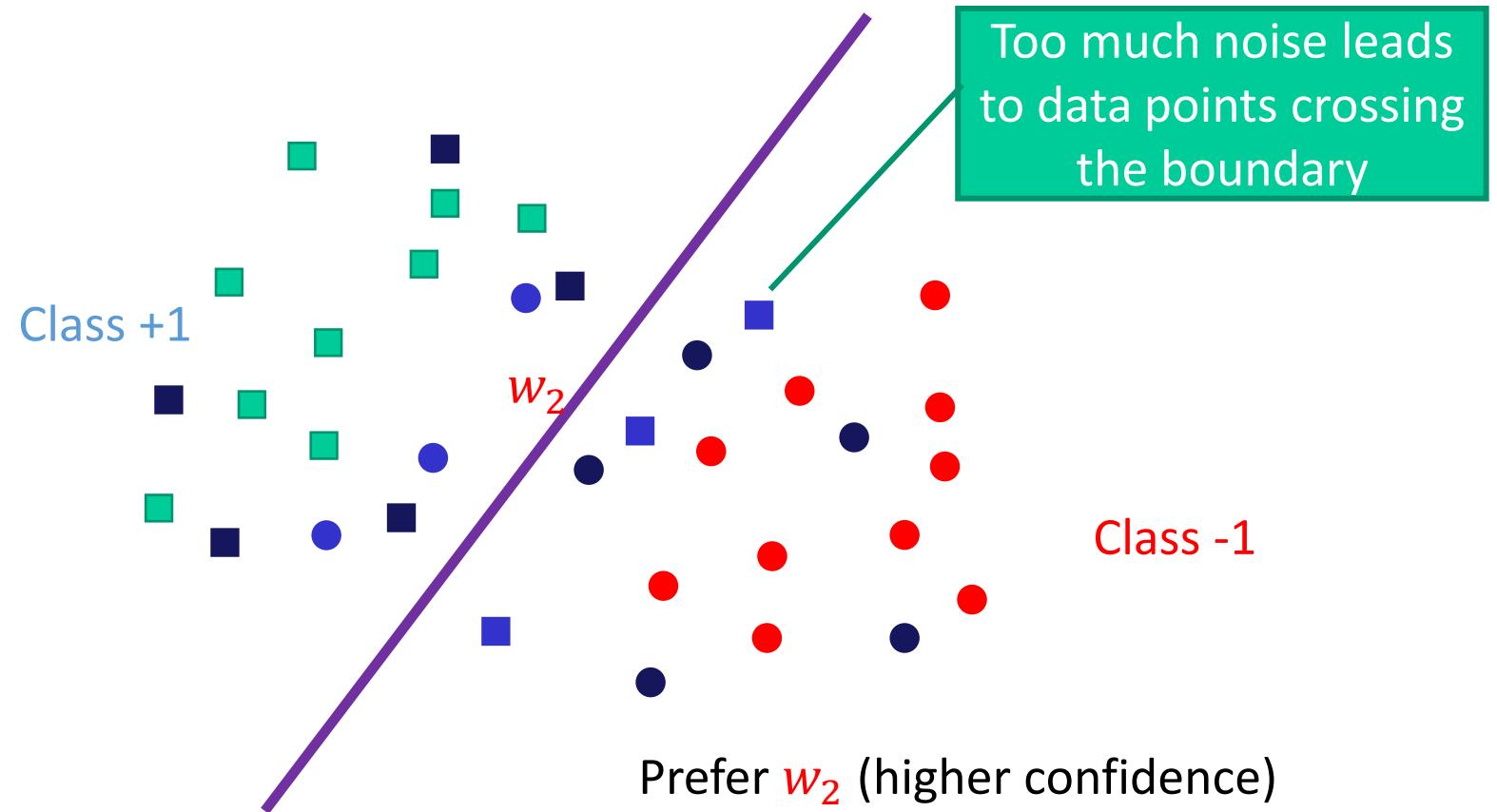
Adding Noise

- Adding some amount of noise helps us pick solution:



Adding Noise

- Too much: hurts instead



Adding Noise: Equivalence to Weight Decay

- Suppose the hypothesis is $f(x) = w^T x$, noise is $\epsilon \sim N(0, \lambda I)$
- After adding noise, the loss is

$$L(f) = \mathbb{E}_{x,y,\epsilon} [f(x + \epsilon) - y]^2 = \mathbb{E}_{x,y,\epsilon} [f(x) + w^T \epsilon - y]^2$$

$$L(f) = \mathbb{E}_{x,y,\epsilon} [f(x) - y]^2 + 2\mathbb{E}_{x,y,\epsilon} [w^T \epsilon (f(x) - y)] + \mathbb{E}_{x,y,\epsilon} [w^T \epsilon]^2$$

$$L(f) = \mathbb{E}_{x,y,\epsilon} [f(x) - y]^2 + \lambda \|w\|^2$$

Early Stopping

Idea: don't train to too small training error

- limits the volume of parameter space reachable from the initialization

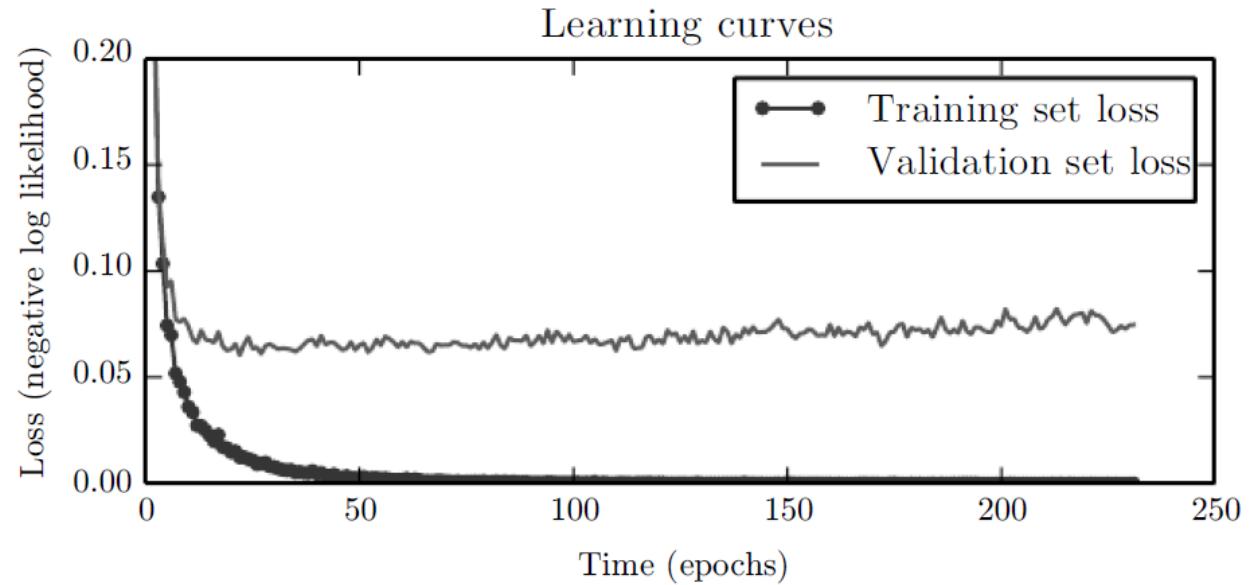


Figure from *Deep Learning*,
Goodfellow, Bengio and Courville

Practically: when training, also output validation error

- every time validation error improved, store a copy of the weights
- when validation error not improved for some time, stop
- return the copy of the weights stored

Dropout

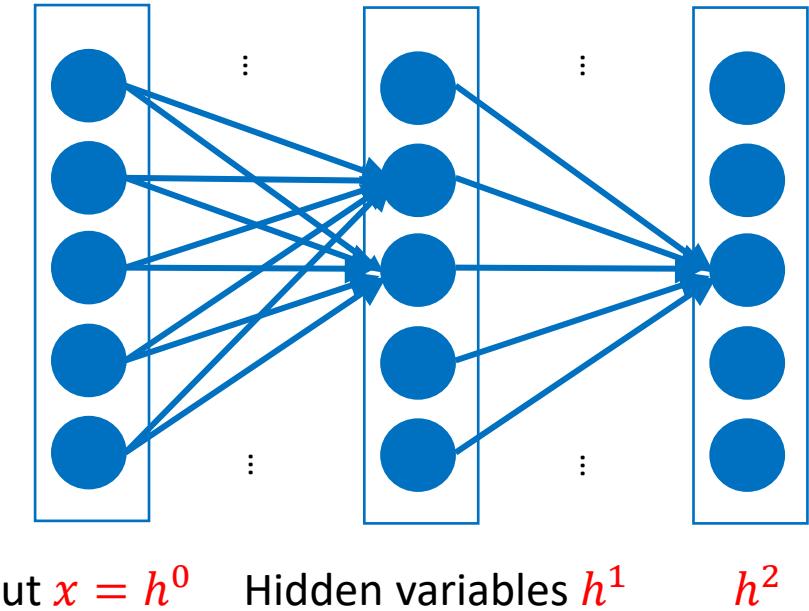
Basic idea: randomly select a subset of weights to update

- In each update step
 - Randomly sample a different binary mask to all the input and hidden units
 - Multiply the mask bits with the units and do the update as usual
- At test time: use all of the weights
- Typical dropout probabilities:
 - 0.2 for inputs weights
 - 0.5 for hidden units

Batch Normalization

Basic idea: standardize inputs to each layer of a neural network

- recall: it is often beneficial to standardize the i th **input** feature x_i by passing $(x_i - \mu_i)/\sigma_i$ to the model; statistics μ_i and σ_i are computed on the training data
- **batch normalization** standardizes the outputs h^L of each layer L before passing them to layer $L+1$, with **statistics computed on each batch**



Supposed to help optimization, but its mechanism is poorly understood

Summary of regularization

Linear models dominated by **well-understood** penalty-based approaches such as Ridge and LASSO

Neural network regularization is less understood:

- some (weight decay, data augmentation) are applicable to or adapted from linear models
- some (dropout, batch-norm) specific to deep nets
- usually selected via a mix of **trial-and-error + formal validation**

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Sharon Li, Fred Sala