

CS 760: Machine Learning **Convolutional Neural Networks**

Misha Khodak

University of Wisconsin-Madison
13 October 2025

Logistics

- Midterm: October 22nd
 - covers material through October 15th
 - mix of short answer and derivations
 - one double-sided 8.5x11 cheat sheet
 - no calculators
 - review in-class on October 20th
- Please complete mid-term course evaluations
 - useful feedback for me to make adjustments
 - should receive an email via HelioCampus

Outline

- **Convolutional Neural Networks (CNN) Basics**
 - motivation, convolution operator
- **CNN Components & Layers**
 - padding, stride, dilation, channels, pooling layers
- **CNN Tasks & Architectures**
 - MNIST, ImageNet, LeNet, AlexNet, ResNet

Outline

- **Convolutional Neural Networks (CNN) Basics**

- motivation, convolution operator

- **CNN Components & Layers**

- padding, stride, dilation, channels, pooling layers

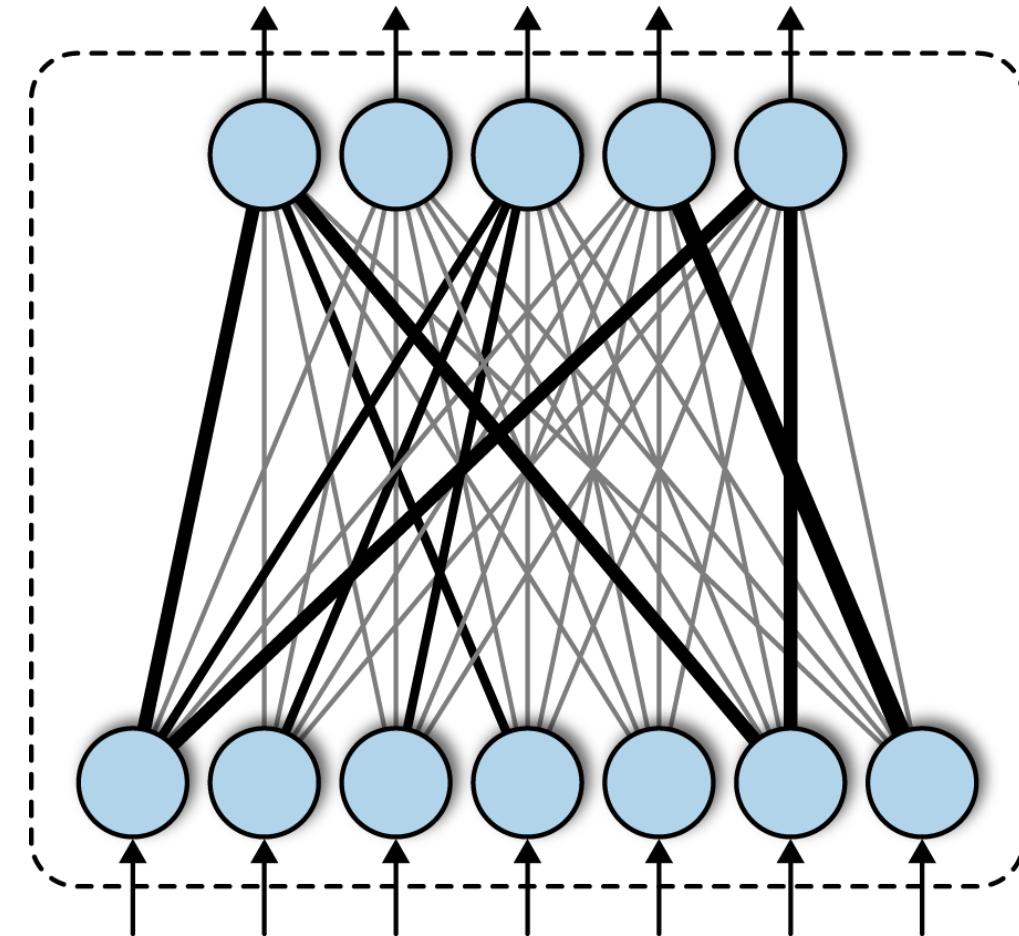
- **CNN Tasks & Architectures**

- MNIST, ImageNet, LeNet, AlexNet, ResNet

Review: Multi-layer perceptrons (MLPs)

So far we've been using MLP networks, which consist of compositions of **fully-connected layers**, so named because every input unit is connected to every output unit

$$h^{L+1} = \sigma(Wh^L + b)$$

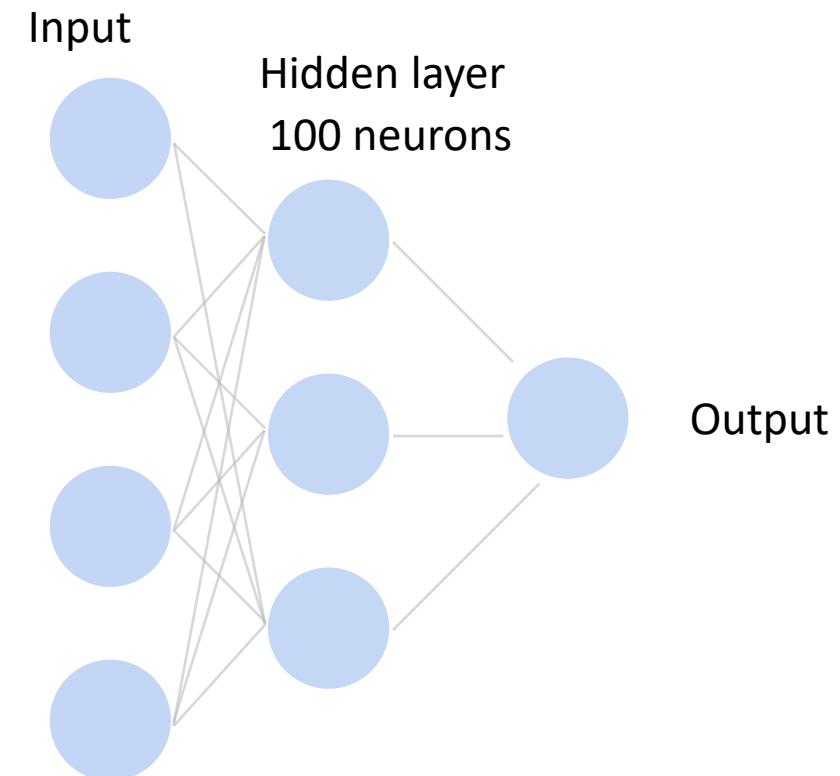


What if we have images as our inputs?

Dual
12MP
wide-angle and
telephoto cameras

36M floats in a RGB image!

What if we have images as our inputs?



~ 36M input elements x 100 = **~3.6B** parameters!

Convolutions to the rescue

Convolution layers

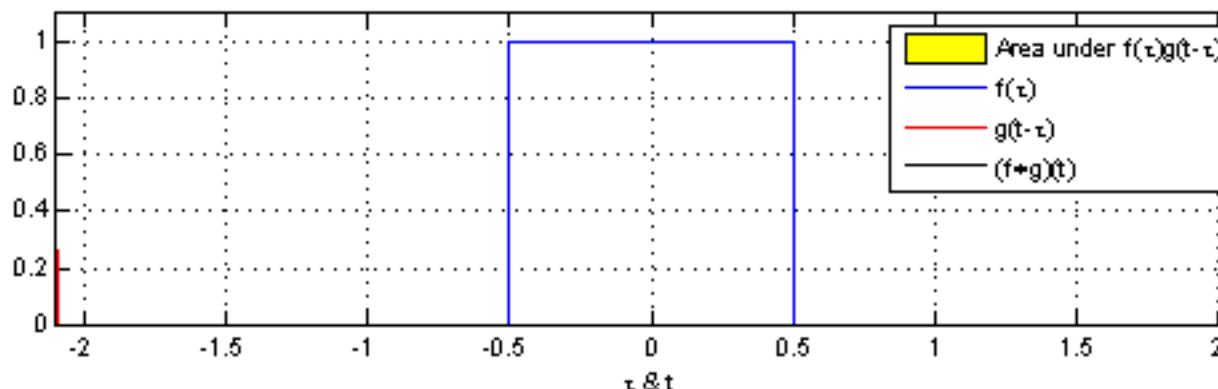
- can process images with varying numbers of pixels
- have a parameter count that doesn't increase with image resolution, unlike $O(wh)$ or more for fully connected layers
- have computational complexity $\tilde{O}(w + h)$ rather than $O(wh)$ or worse for fully connected layers
- are **translation equivariant**, i.e. extract the same feature from a translation of the image

Background: Convolution Operation

- Given array u_t and w_t , their convolution is a function s_t

$$s_t = \sum_{a=-\infty}^{+\infty} u_a w_{t-a}$$

- Written as $s = (u * w)$ or $s_t = (u * w)_t$
- When u_t or w_t is not defined, assumed to be 0

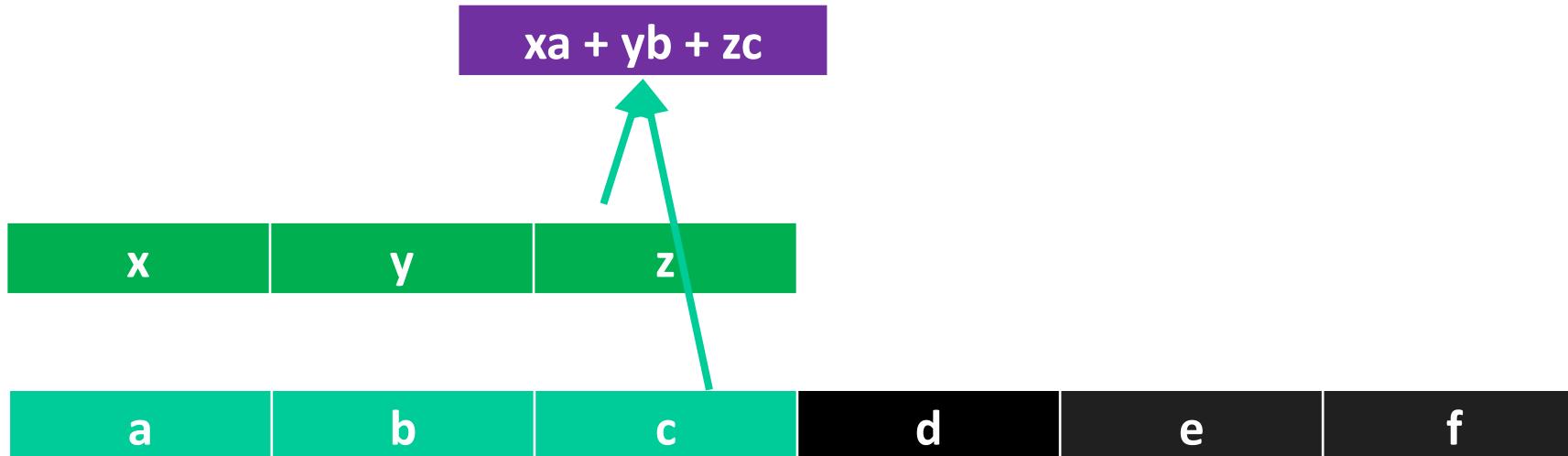


Background: Convolution Operation

- Example:

$$w = [z, y, x]$$

$$u = [a, b, c, d, e, f]$$

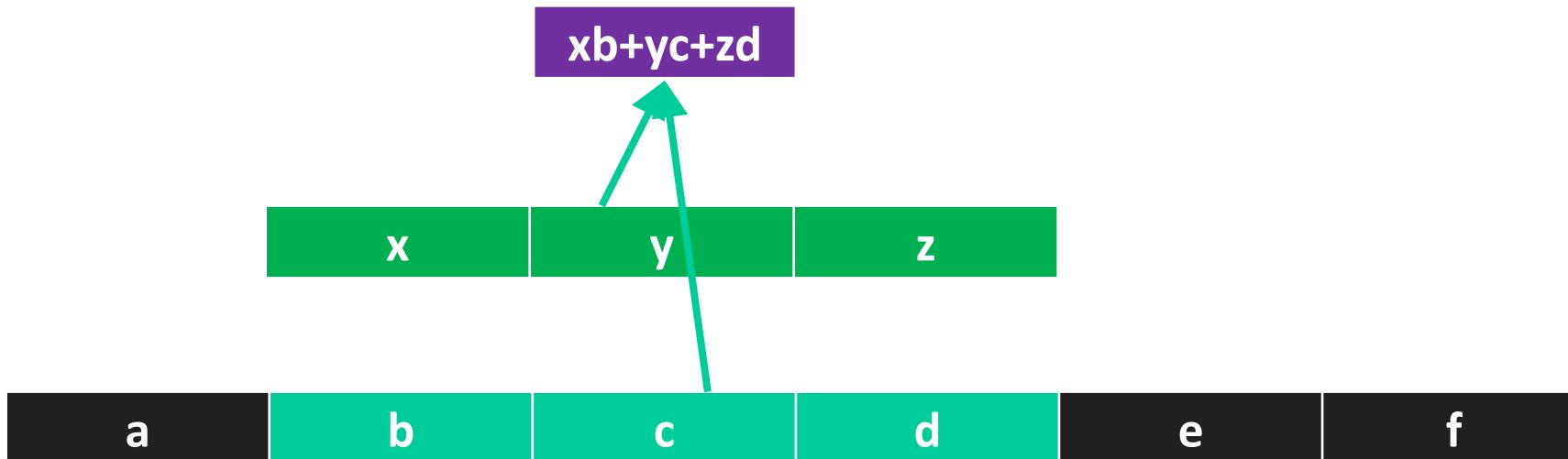


Background: Convolution Operation

- Example:

$$w = [z, y, x]$$

$$u = [a, b, c, d, e, f]$$

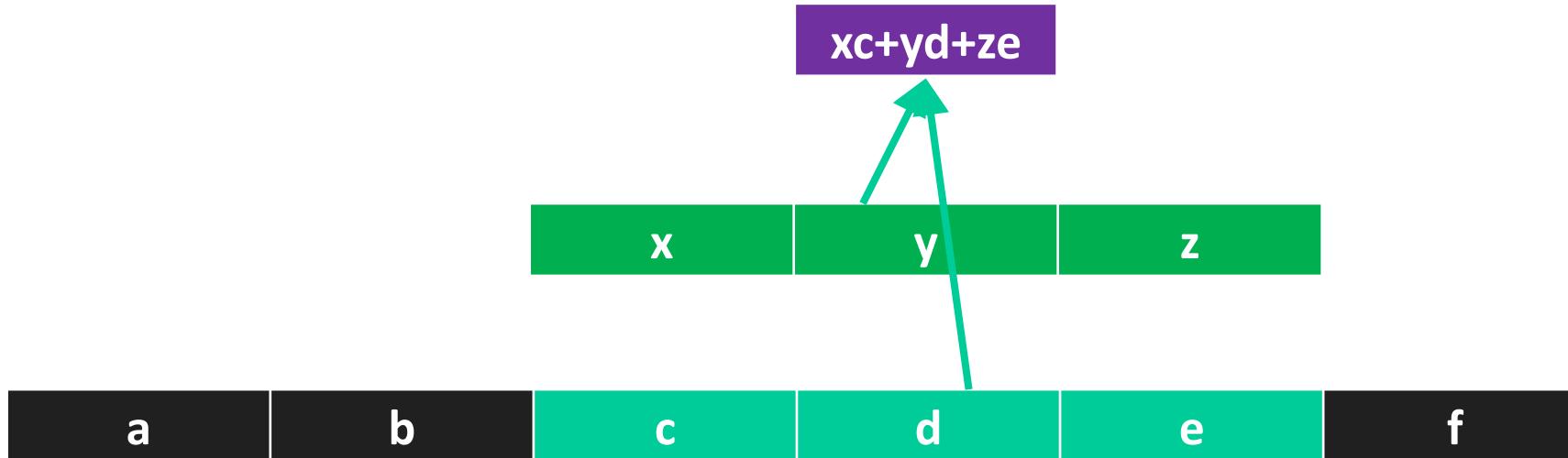


Background: Convolution Operation

- Example:

$$w = [z, y, x]$$

$$u = [a, b, c, d, e, f]$$

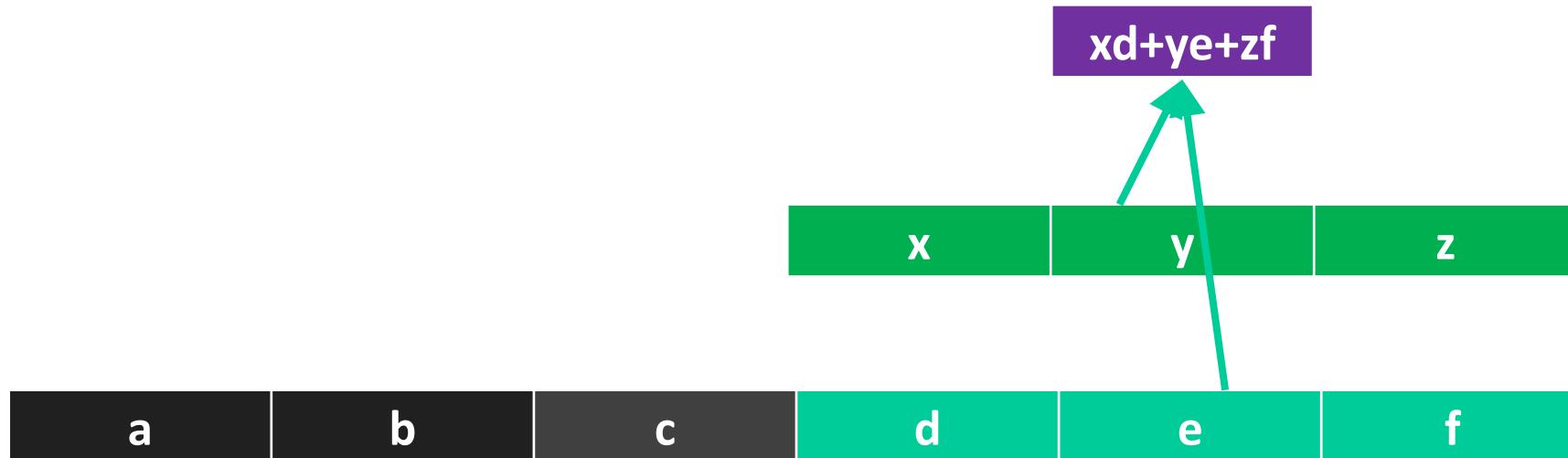


Background: Convolution Operation

- Example:

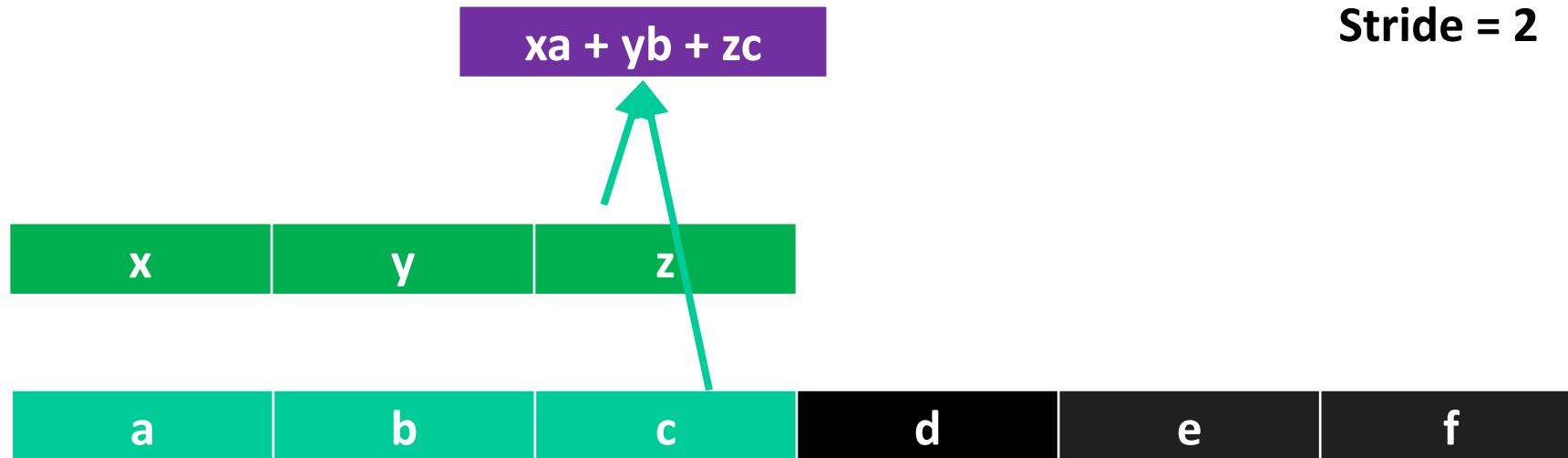
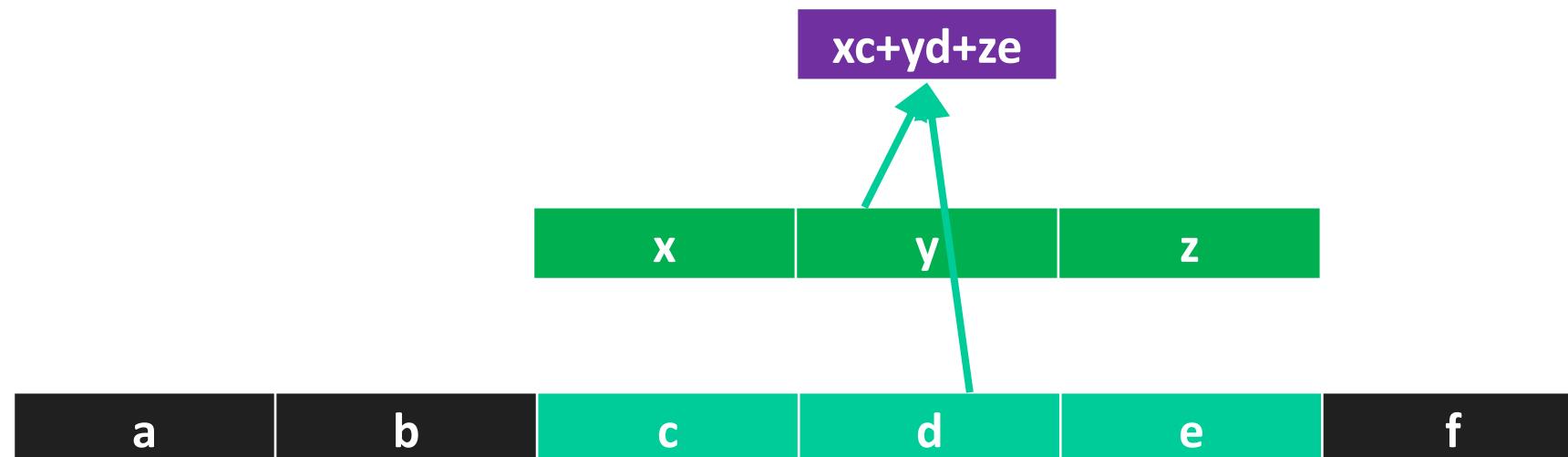
$$w = [z, y, x]$$

$$u = [a, b, c, d, e, f]$$



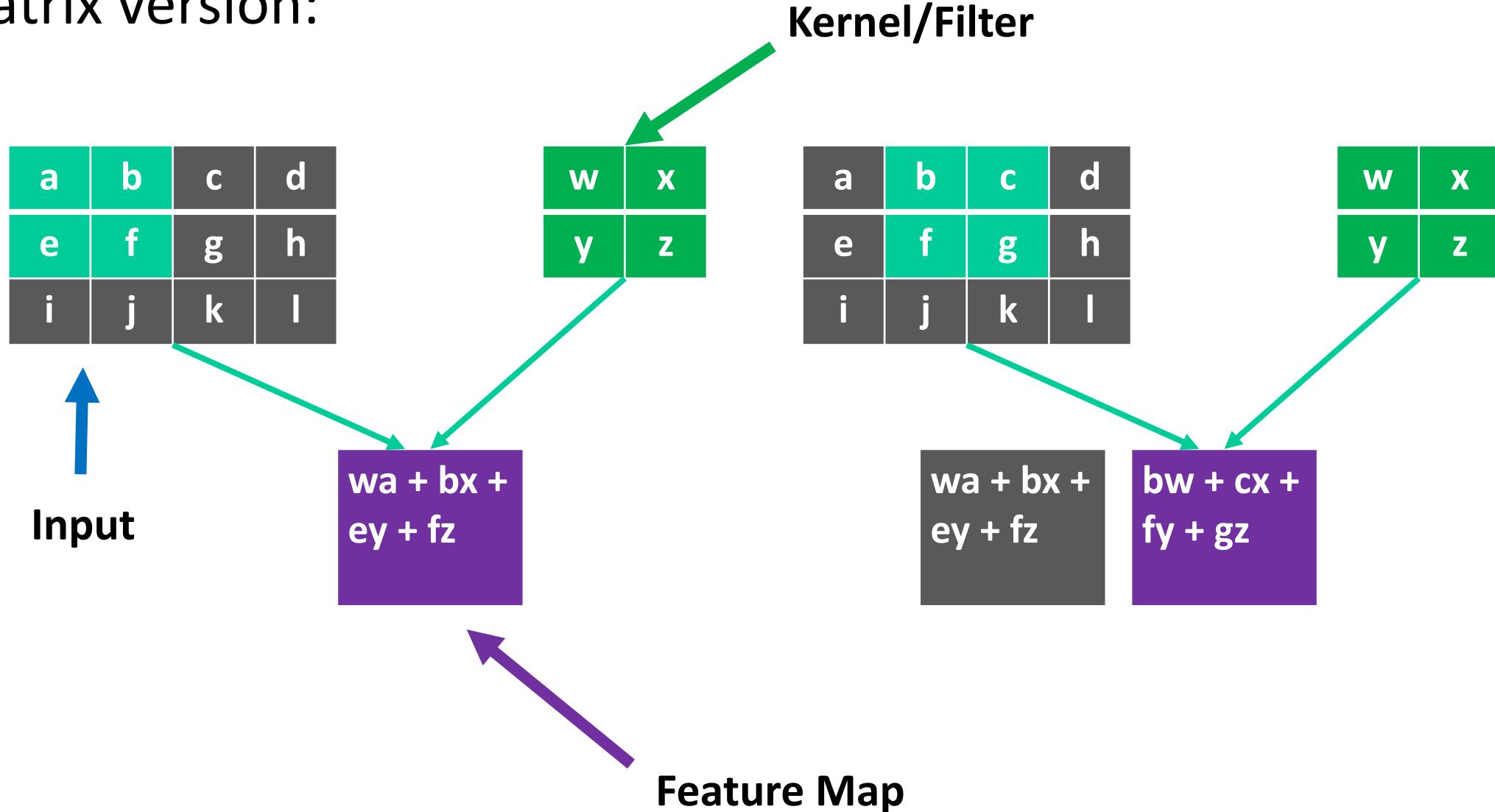
Background: Convolution Operation

- Stride: # of positions we move per step



Background: Convolution Operation

- Matrix version:

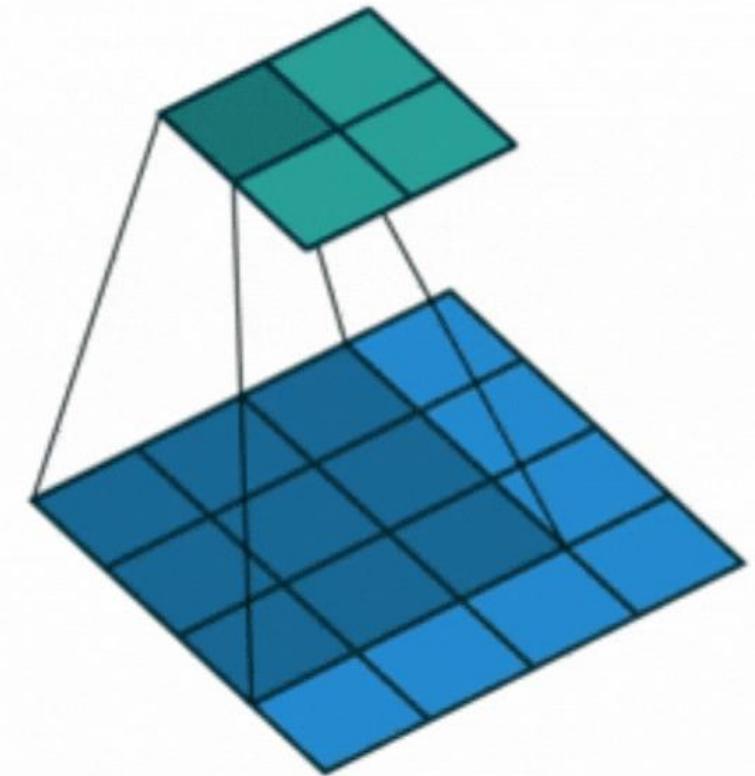


2-D Convolutions

Example:

Input			Kernel		Output	
0	1	2	*		19	25
3	4	5			37	43
6	7	8				

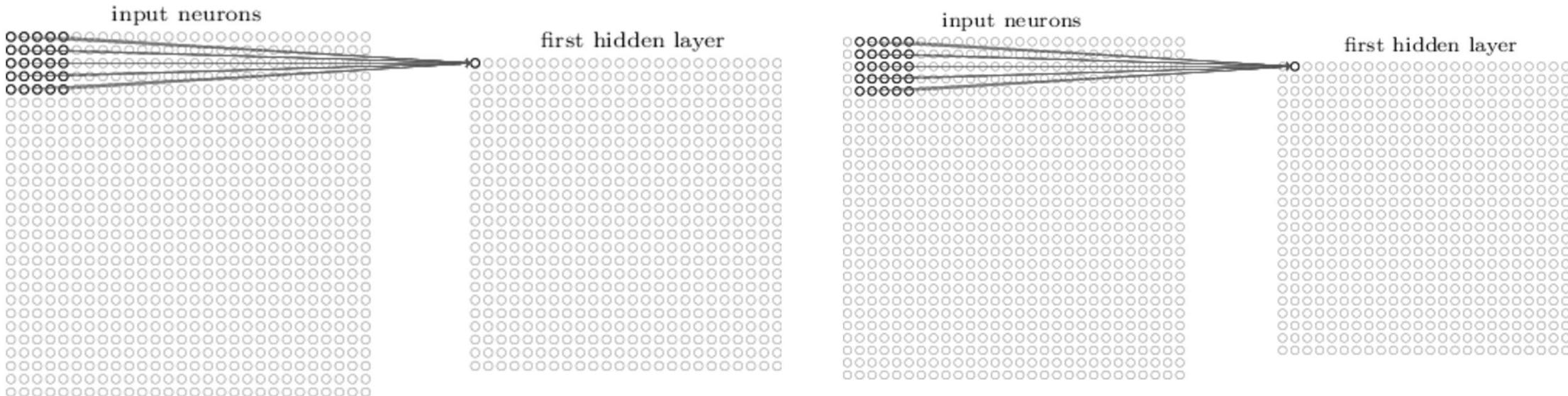
$$0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 = 19,$$
$$1 \times 0 + 2 \times 1 + 4 \times 2 + 5 \times 3 = 25,$$
$$3 \times 0 + 4 \times 1 + 6 \times 2 + 7 \times 3 = 37,$$
$$4 \times 0 + 5 \times 1 + 7 \times 2 + 8 \times 3 = 43.$$



Vincent Dumoulin

Convolution Operation

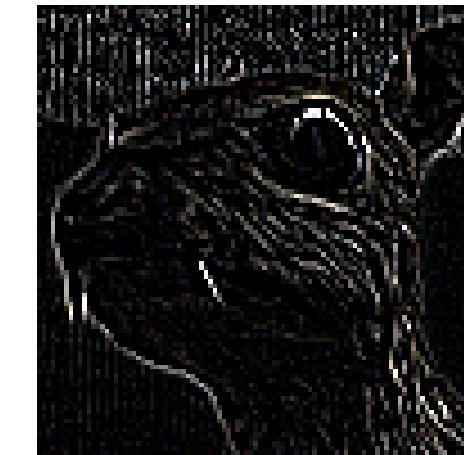
- All the units used the same set of weights (kernel)
- The units detect the same “feature” but at different locations



Kernels: Examples

(Wikipedia)

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

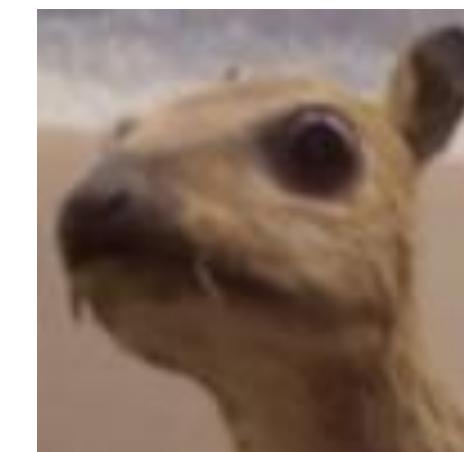


Edge
Detection

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Sharpen

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$



Gaussian
Blur

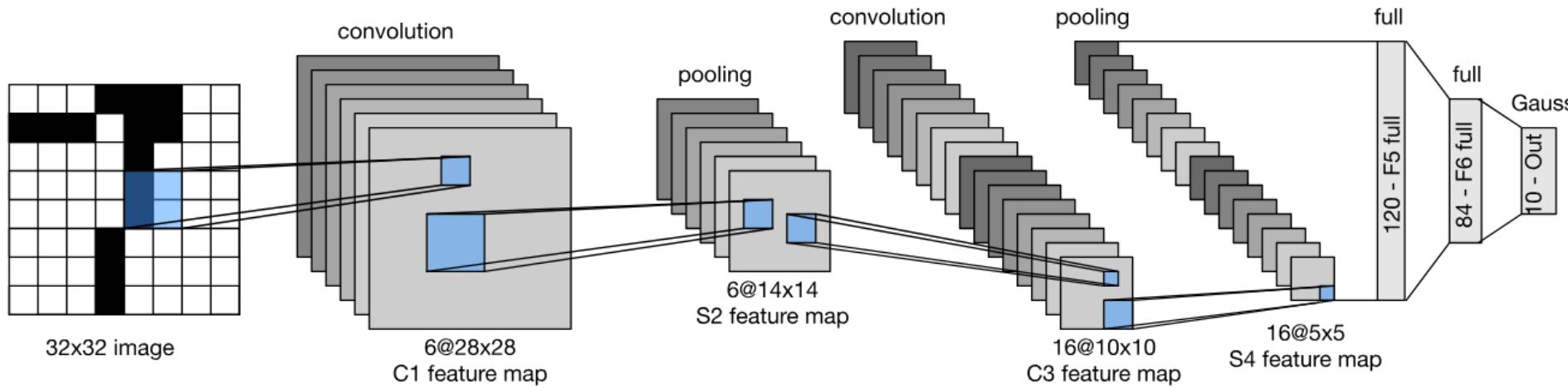
Convolution Layers

- Notation:
 - X : $n_h \times n_w$ input matrix
 - W : $k_h \times k_w$ kernel matrix
 - b : bias (a scalar)
- As usual W, b are learnable parameters

$$\begin{array}{|c|c|c|} \hline 0 & 1 & 2 \\ \hline 3 & 4 & 5 \\ \hline 6 & 7 & 8 \\ \hline \end{array} \quad * \quad \begin{array}{|c|c|} \hline 0 & 1 \\ \hline 2 & 3 \\ \hline \end{array} \quad = \quad \begin{array}{|c|c|} \hline 19 & 25 \\ \hline 37 & 43 \\ \hline \end{array}$$

Convolutional Neural Networks

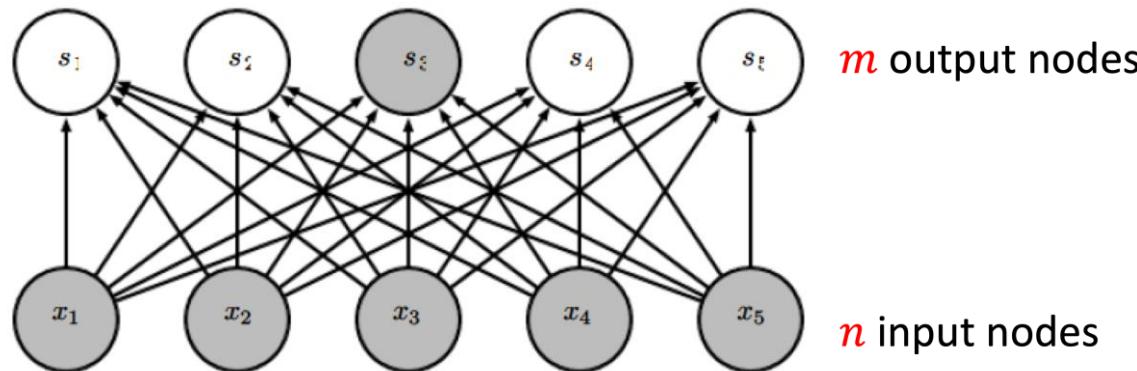
Convolutional networks: neural networks that use convolution in place of general matrix multiplication in at least one layer



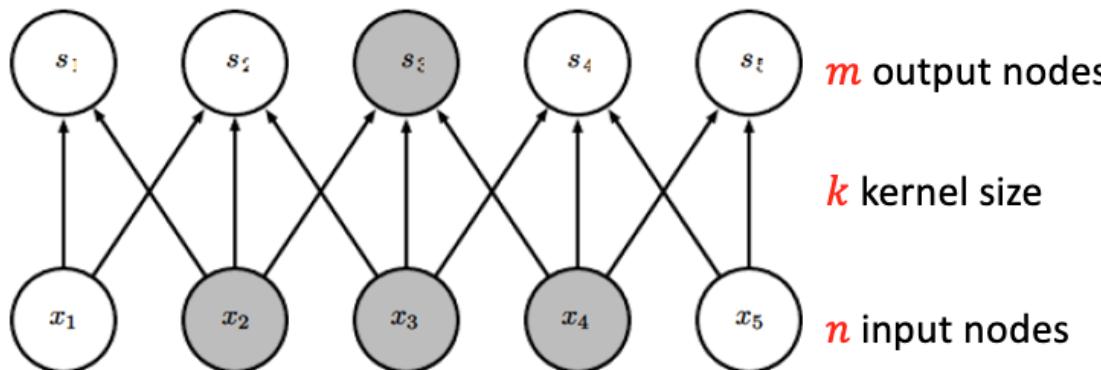
- default approach for image tasks
- still used even in modern Transformer alternatives

CNNs: Advantages

- Fully connected layer: $m \times n$ edges and parameters



- Convolutional layer: $\leq m \times k$ edges, k parameters



Break & Quiz

Q: If the input size is $N \times N$ and the kernel/filter size is $K \times K$, what is the size of the output matrix after performing convolution? Assume $N > K$, no padding, and stride (how much we move the kernel each time) = 1.

1. $(N - K + 1) \times (N - K + 1)$
2. $(N - K) \times (N - K)$
3. $(N - K - 1) \times (N - K - 1)$
4. None of the above

Q: If the input size is $N \times N$ and the kernel/filter size is $K \times K$, what is the size of the output matrix after performing convolution? Assume $N > K$, no padding, and stride (how much we move the kernel each time) = 1.

1. $(N - K + 1) \times (N - K + 1)$
2. $(N - K) \times (N - K)$
3. $(N - K - 1) \times (N - K - 1)$
4. None of the above

- when sliding to the right, we have $N - K + 1$ positions
- similar when sliding downwards

Outline

- **Convolutional Neural Networks (CNN) Basics**
 - motivation, convolution operator
- **CNN Components & Layers**
 - padding, stride, dilation, channels, pooling layers
- **CNN Tasks & Architectures**
 - MNIST, ImageNet, LeNet, AlexNet, ResNet

Convolutional Layers: Padding

Padding adds rows/columns around input

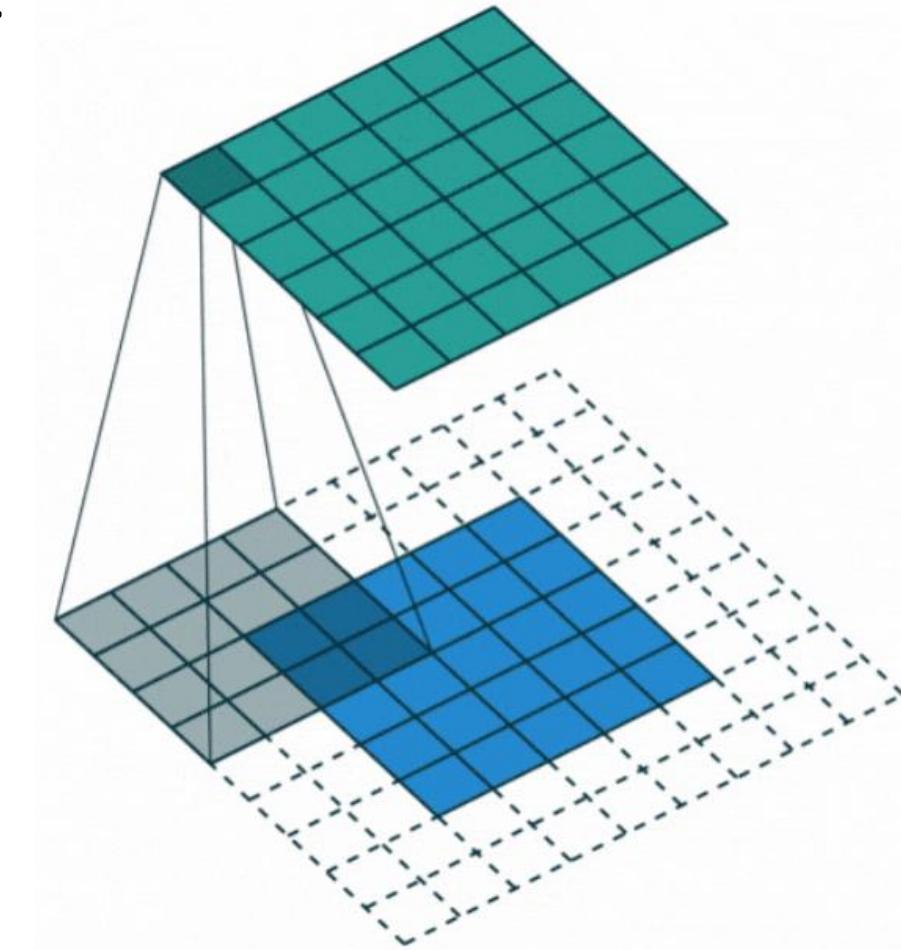
Input				
0	0	0	0	0
0	0	1	2	0
0	3	4	5	0
0	6	7	8	0
0	0	0	0	0

$*$

Kernel	
0	1
2	3

$=$

Output				
0	3	8	4	
9	19	25	10	
21	37	43	16	
6	7	8	0	

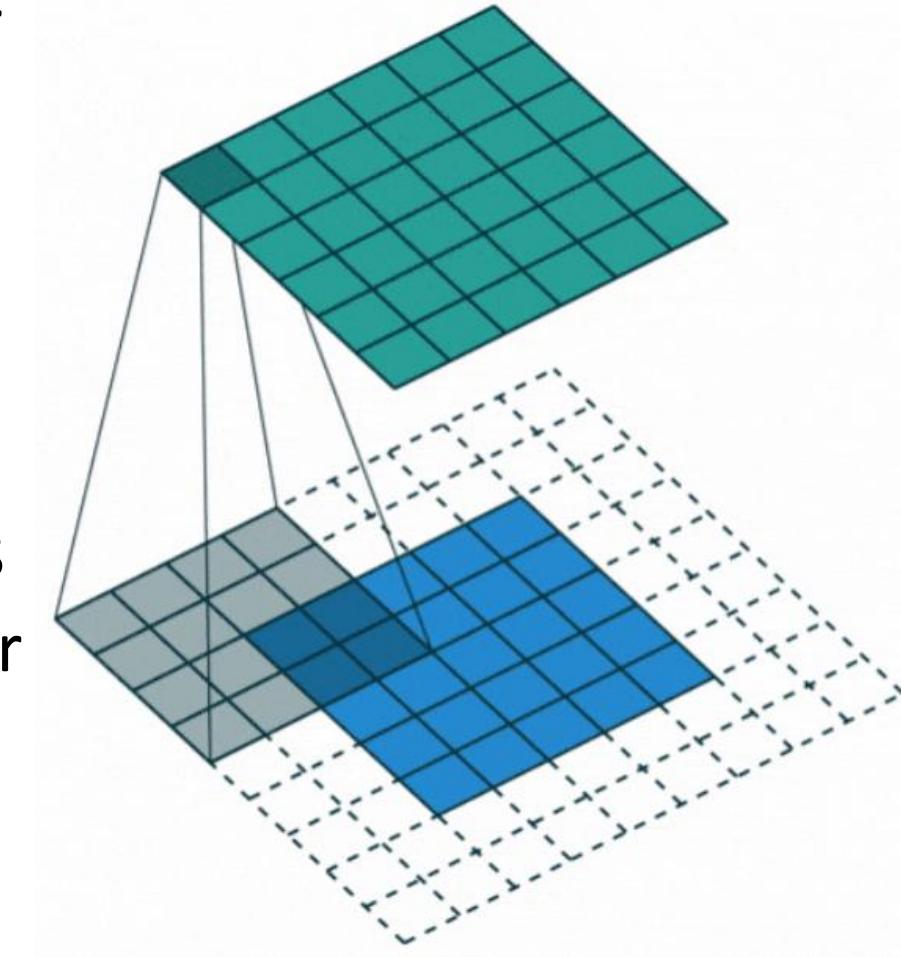


Convolutional Layers: Padding

Padding adds rows/columns around input

Why?

1. Keeps **edge information**
2. Preserves sizes / allows deep networks
 - i.e. for a 32x32 input image, 5x5 kernel, after 1 layer, get 28x28, after 7 layers, **only 4x4**
3. Can combine different filter sizes



Convolutional Layers: Padding

- Padding p_h rows and p_w columns, output shape is

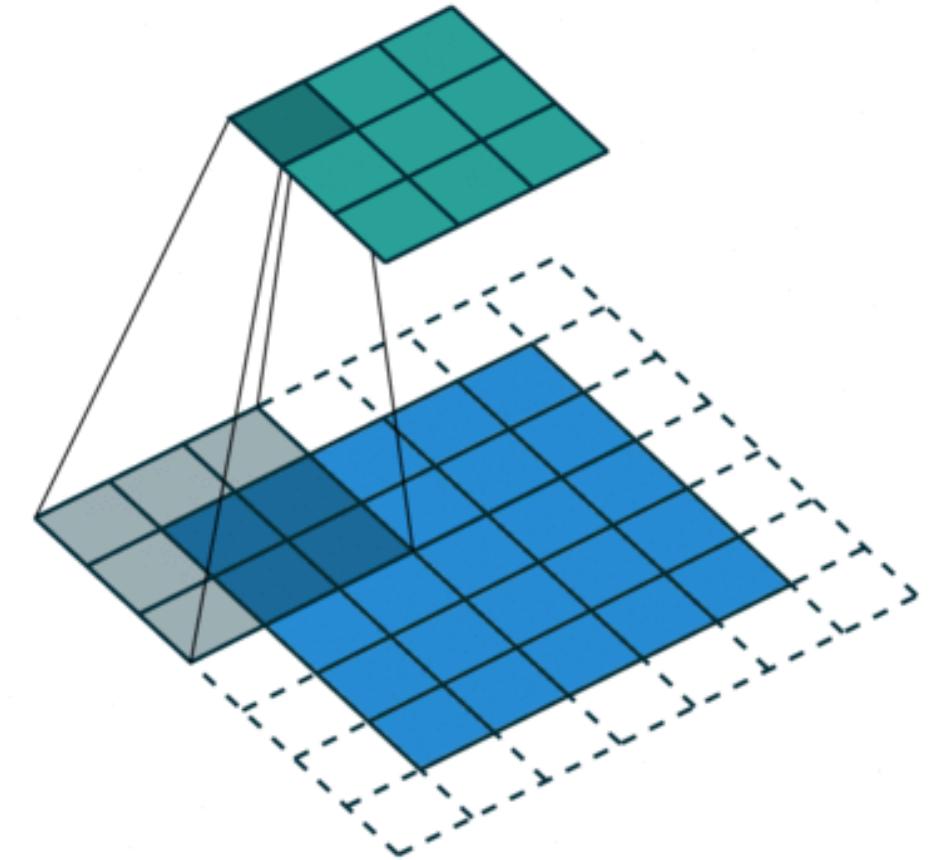
$$(n_h - k_h + p_h + 1) \times (n_w - k_w + p_w + 1)$$

- Common choice is $p_h = k_h - 1$ and $p_w = k_w - 1$
 - Odd k_h : pad $p_h/2$ on both sides
 - Even k_h : pad $\text{ceil}(p_h/2)$ on top, $\text{floor}(p_h/2)$ on bottom

Convolutional Layers: Stride

Stride: #rows / #columns per slide

- On the right is a 3x3 kernel with row stride = column stride = 2



Convolutional Layers: Stride

- Given stride s_h for the height and stride s_w for the width, the output shape is

$$\lfloor (n_h - k_h + p_h + s_h) / s_h \rfloor \times \lfloor (n_w - k_w + p_w + s_w) / s_w \rfloor$$

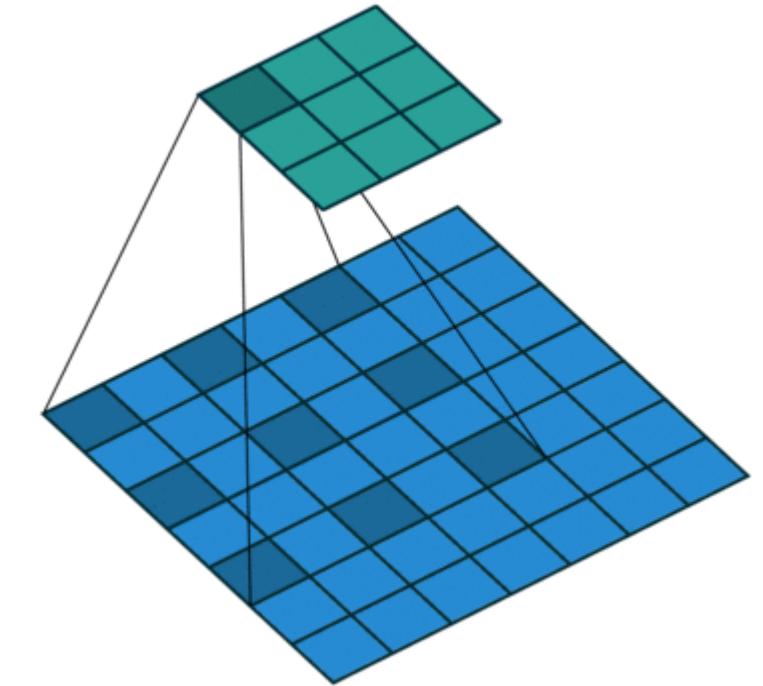
- Set $p_h = k_h - 1$, $p_w = k_w - 1$, then get

$$\lfloor (n_h + s_h - 1) / s_h \rfloor \times \lfloor (n_w + s_w - 1) / s_w \rfloor$$

Convolutional Layers: Dilated kernels

Dilation rate: sets gaps between kernel elements

- on the right is a 3×3 kernel with dilation rate 2
- a $k \times k$ kernel with dilation rate d is effectively a $(d(k - 1) + 1) \times (d(k - 1) + 1)$ kernel with the extra elements set to zero



Convolutional Layers: Channels

Color images are multi-channel, e.g. RGB:

=

Convolutional Layers: Channels

How to integrate multiple channels?

- Have a kernel for each channel i ,
then sum results over c_i channels

$$\mathbf{X} : c_i \times n_h \times n_w$$

$$\mathbf{W} : c_i \times k_h \times k_w$$

$$\mathbf{Y} : m_h \times m_w$$

$$\mathbf{Y} = \sum_{i=0}^{c_i} \mathbf{X}_{i,:,:} \star \mathbf{W}_{i,:,:}$$

Convolutional Layers: Channels

- We can also have multiple **output** channels c_o
 - have a kernel for each of $c_i \times c_o$ pairs (i, o) of input channel i and output channel o
 - output channel o gets the sum over $i = 1, \dots, c_i$ over the applications of the kernels (i, o)

$$\mathbf{X} : c_i \times n_h \times n_w$$

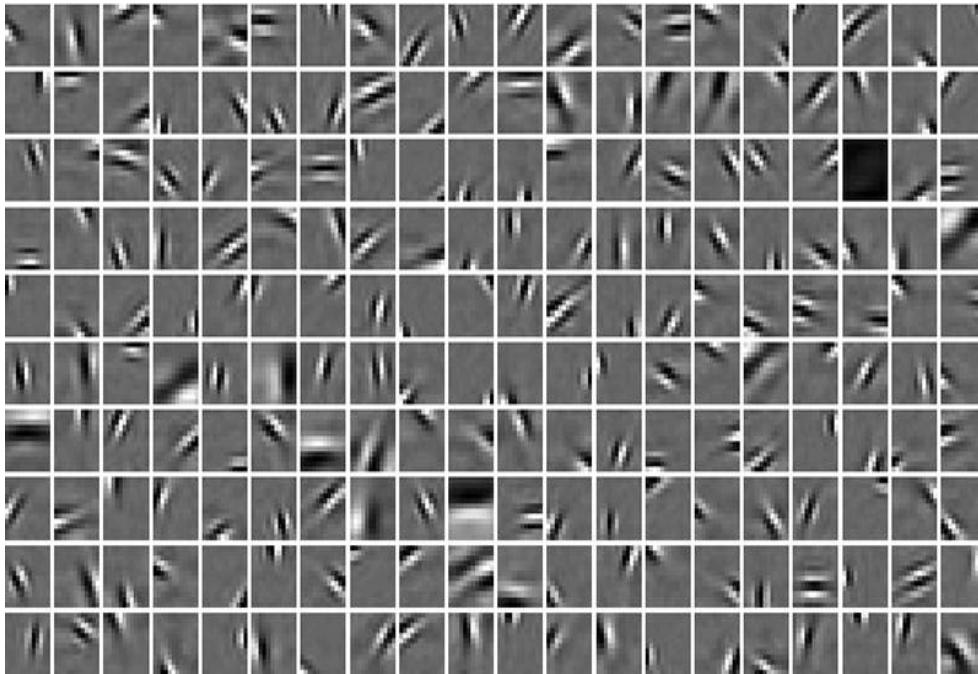
$$\mathbf{W} : c_o \times c_i \times k_h \times k_w$$

$$\mathbf{Y} : c_o \times m_h \times m_w$$

$$\mathbf{Y}_{i,:,:} = \mathbf{X} \star \mathbf{W}_{i,:,:,:}$$

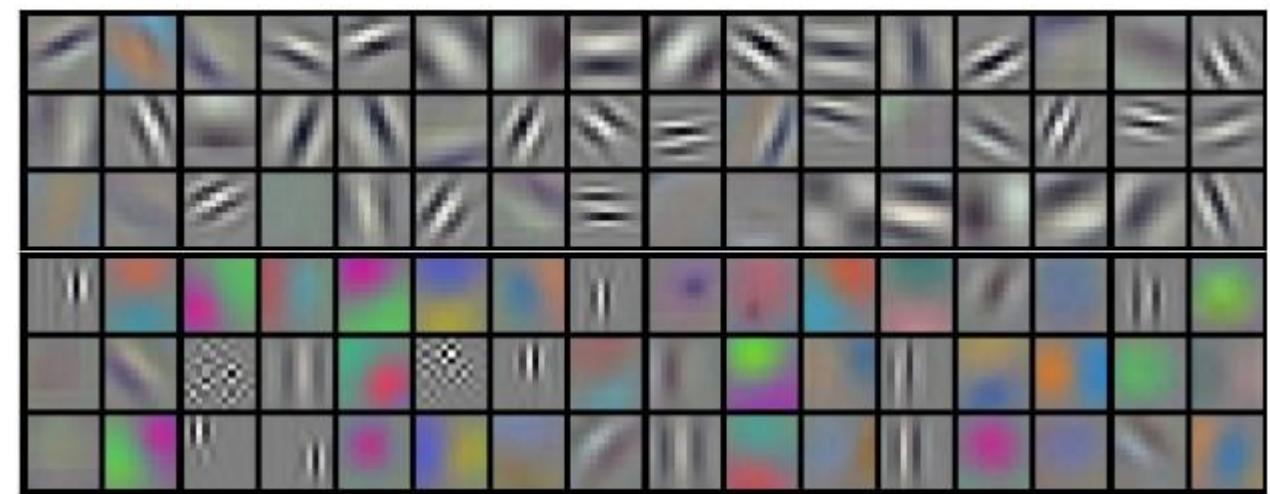
Convolutional Layers: Multiple Kernels

- Each kernel may recognize a particular pattern
 - Gabor filters



(Olshausen & Field, 1997)

[From Human Brain]



Krizhevsky et al

[Machine Learned CNN]

Convolutional Layers: Summary

Properties

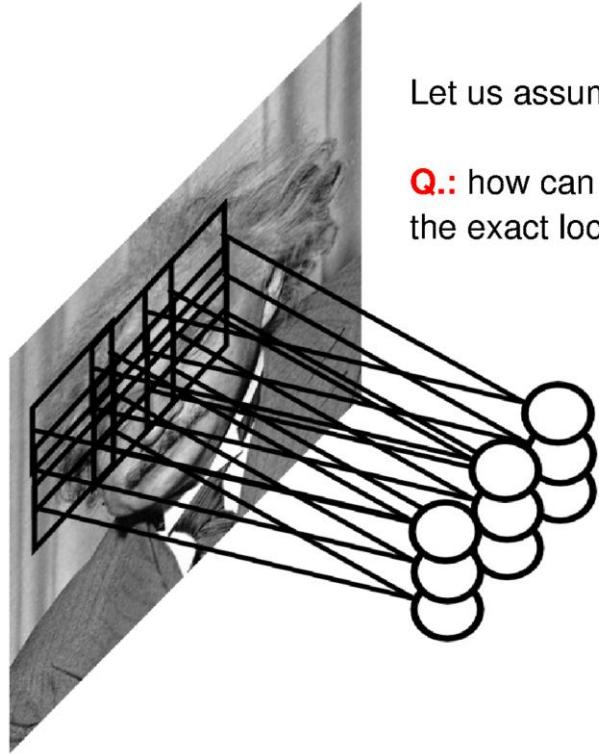
- **Input:** volume $c_i \times n_h \times n_w$ (channels x height x width)
- **Hyperparameters:** # of kernels / filters c_o , size $k_h \times k_w$, stride $s_h \times s_w$, dilation rate d, zero padding $p_h \times p_w$
- **Output:** volume $c_o \times m_h \times m_w$ (channels x height x width)
- **Parameters:** $k_h \times k_w \times c_i$ per filter, total $(k_h \times k_w \times c_i) \times c_o$

How to pick these hyperparameters?

- trial-and-error
- hyperparameter tuning / architecture search
- often easiest to just use an off-the-shelf CNN

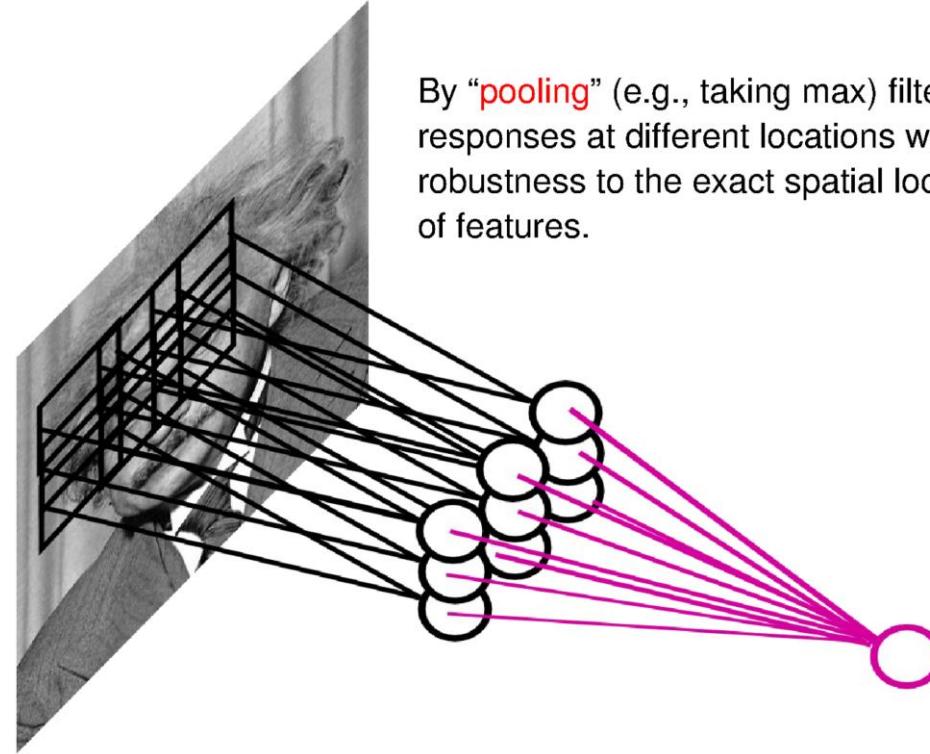
Other CNN Layers: Pooling

- Another type of layer



Let us assume filter is an “eye” detector.

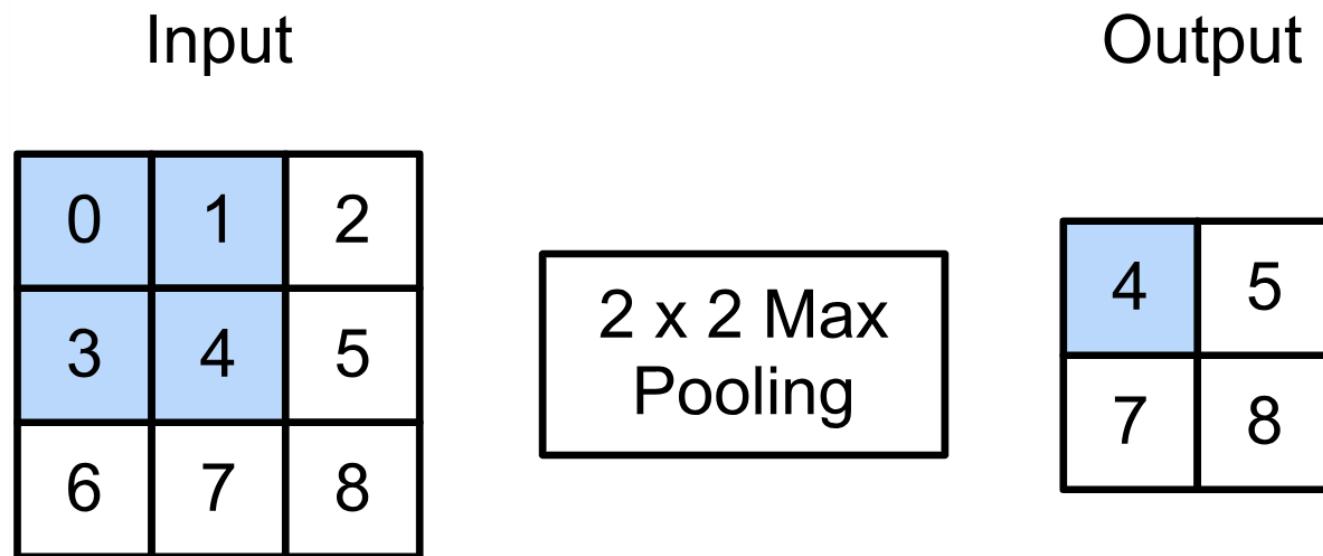
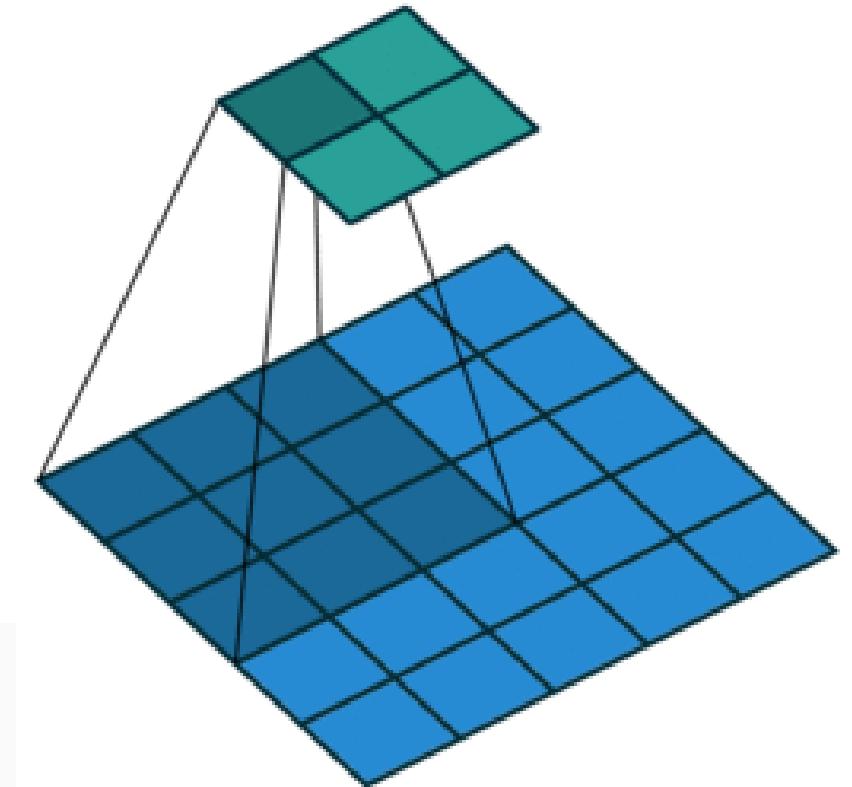
Q.: how can we make the detection robust to the exact location of the eye?



By “**pooling**” (e.g., taking max) filter responses at different locations we gain robustness to the exact spatial location of features.

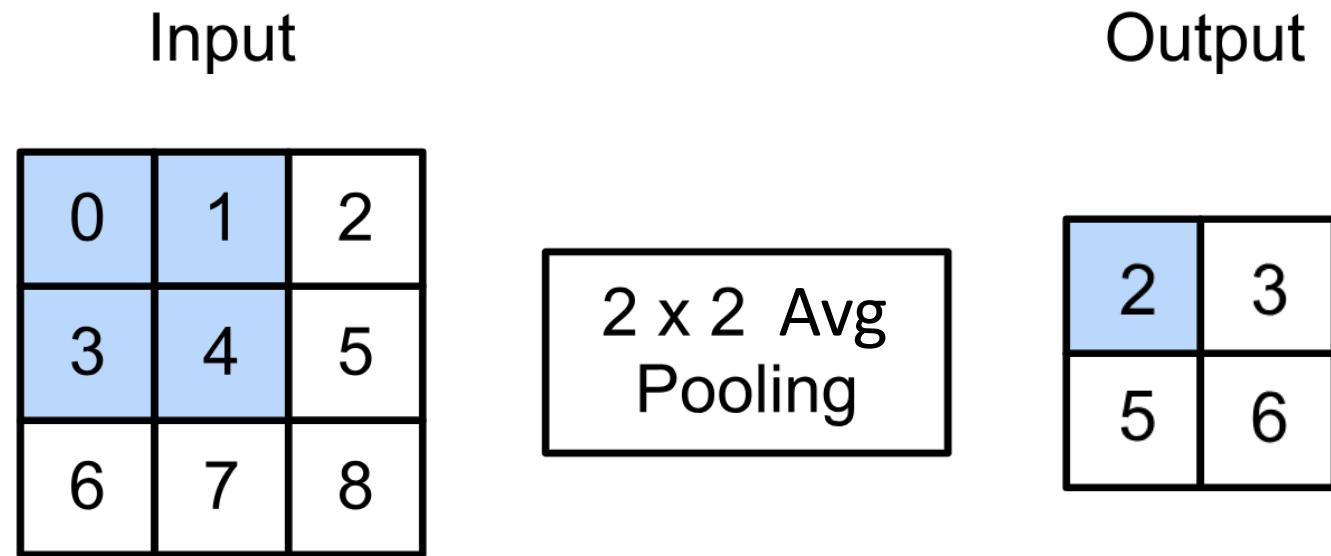
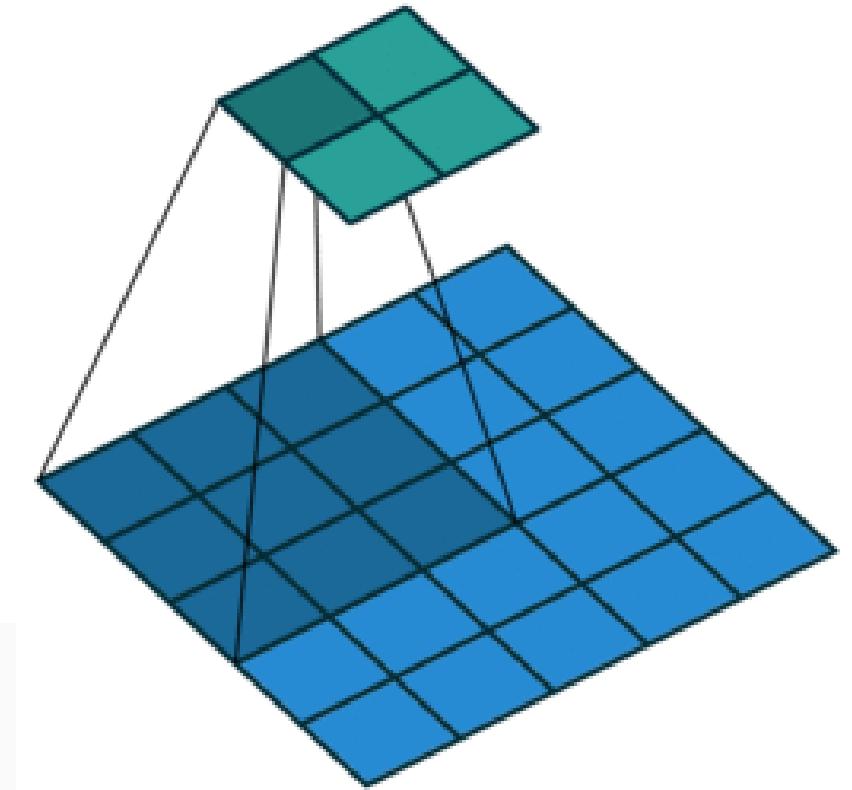
Max Pooling

- Returns the maximal value in the sliding window
- Example:
 - $\max(0,1,3,4) = 4$



Average Pooling

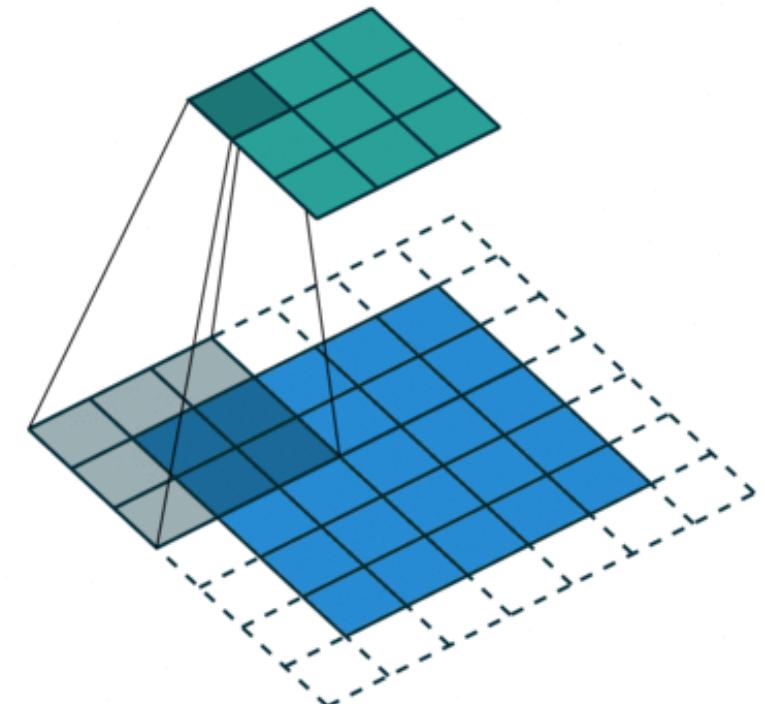
- Returns the average value in the sliding window
- Example:
 - $\text{avg}(0,1,3,4) = 2$



Other CNN Layers: Pooling

1. Pooling layers have similar padding and stride as convolutional layers
2. No learnable parameters
3. Apply pooling for each input channel to obtain the corresponding output channel

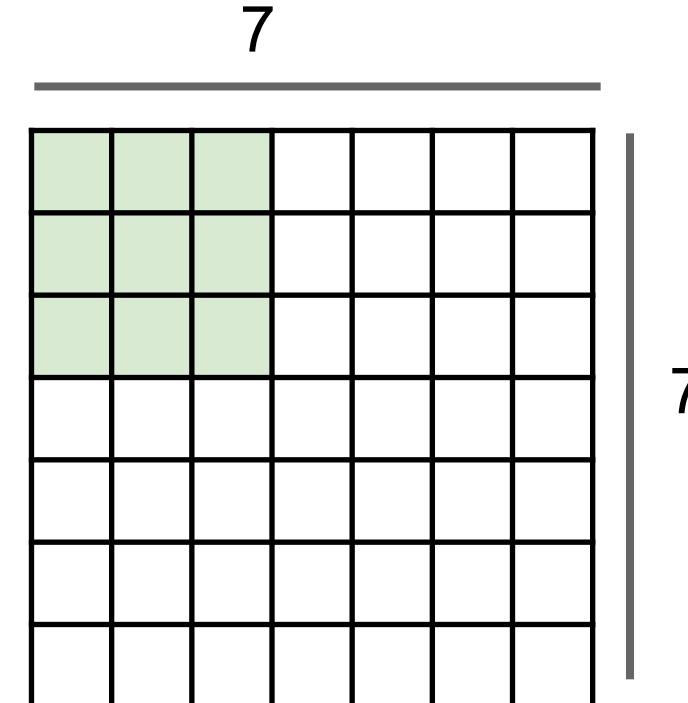
#output channels = #input channels



Break & Quiz

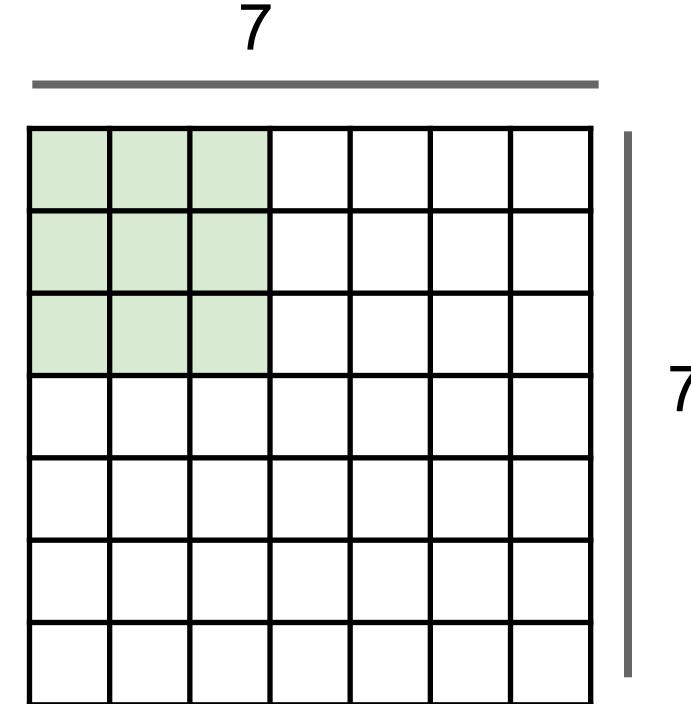
Q2-1. Suppose we want to perform convolution on a single channel image of size 7×7 (no padding) with a kernel of size 3×3 , and stride = 2. What is the dimension of the output?

- A. 3×3
- B. 7×7
- C. 5×5
- D. 2×2



Q2-1. Suppose we want to perform convolution on a single channel image of size 7×7 (no padding) with a kernel of size 3×3 , and stride = 2. What is the dimension of the output?

- A. 3×3
- B. 7×7
- C. 5×5
- D. 2×2



$$\lfloor (n_h - k_h + p_h + s_h)/s_h \rfloor \times \lfloor (n_w - k_w + p_w + s_w)/s_w \rfloor$$

Q2-2. Suppose we want to perform 2x2 average pooling on the following single channel feature map of size 4x4 (no padding), and stride = 2. What is the output?

A.

20	30
70	90

B.

16	8
20	25

C.

20	30
20	25

D.

12	2
70	5

12	20	30	0
20	12	2	0
0	70	5	2
8	2	90	3

Q2-2. Suppose we want to perform 2x2 average pooling on the following single channel feature map of size 4x4 (no padding), and stride = 2. What is the output?

A.

20	30
70	90

B.

16	8
20	25

C.

20	30
20	25

D.

12	2
70	5

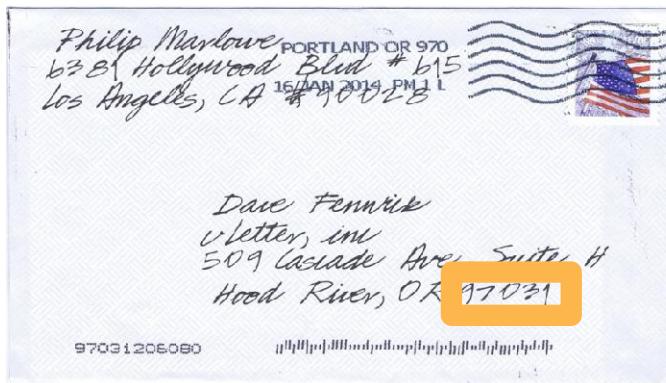
12	20	30	0
20	12	2	0
0	70	5	2
8	2	90	3

Outline

- **Convolutional Neural Networks (CNN) Basics**
 - motivation, convolution operator
- **CNN Components & Layers**
 - padding, stride, dilation, channels, pooling layers
- **CNN Tasks & Architectures**
 - MNIST, ImageNet, LeNet, AlexNet, ResNet

CNN Tasks

- Traditional tasks: handwritten digit recognition
- Dates back to the '70s and '80s
 - Low-resolution images, 10 classes



CNN Tasks

- Traditional tasks: handwritten digit recognition
- Classic dataset: MNIST

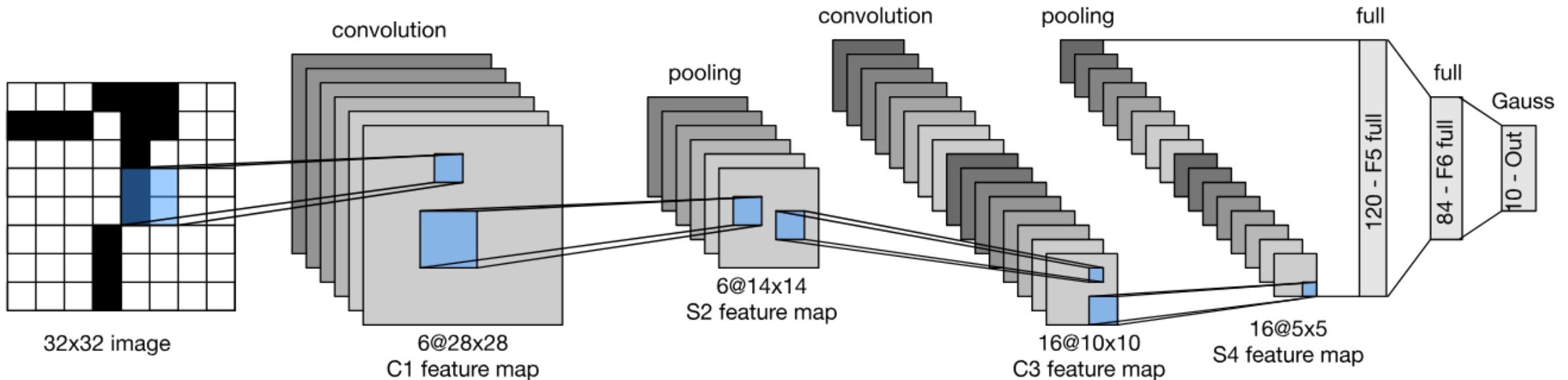
- Properties:
 - 10 classes
 - 28×28 images
 - Centered and scaled
 - 50,000 training data
 - 10,000 test data

CNN Architectures

- Traditional tasks: handwritten digit recognition
- Classic dataset: MNIST
- 1989-1999: LeNet model

LeCun, Y. et al. (1989). Backpropagation applied to handwritten zip code recognition. *Neural Computation*

LeCun, Y.; Bottou, L.; Bengio, Y. & Haffner, P. (1998). Gradient-based learning applied to document recognition. *Proc. IEEE*



LeNet in PyTorch

- Object setup:

```
def __init__(self):  
    super(LeNet5, self).__init__()  
    # Convolution (In LeNet-5, 32x32 images are given as input. Hence padding of 2 is done below)  
    self.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2, bias=True)  
    # Max-pooling  
    self.max_pool_1 = torch.nn.MaxPool2d(kernel_size=2)  
    # Convolution  
    self.conv2 = torch.nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0, bias=True)  
    # Max-pooling  
    self.max_pool_2 = torch.nn.MaxPool2d(kernel_size=2)  
    # Fully connected layer  
    self.fc1 = torch.nn.Linear(16*5*5, 120)      # convert matrix with 16*5*5 (= 400) features to a matrix of 120 features (columns)  
    self.fc2 = torch.nn.Linear(120, 84)           # convert matrix with 120 features to a matrix of 84 features (columns)  
    self.fc3 = torch.nn.Linear(84, 10)            # convert matrix with 84 features to a matrix of 10 features (columns)
```

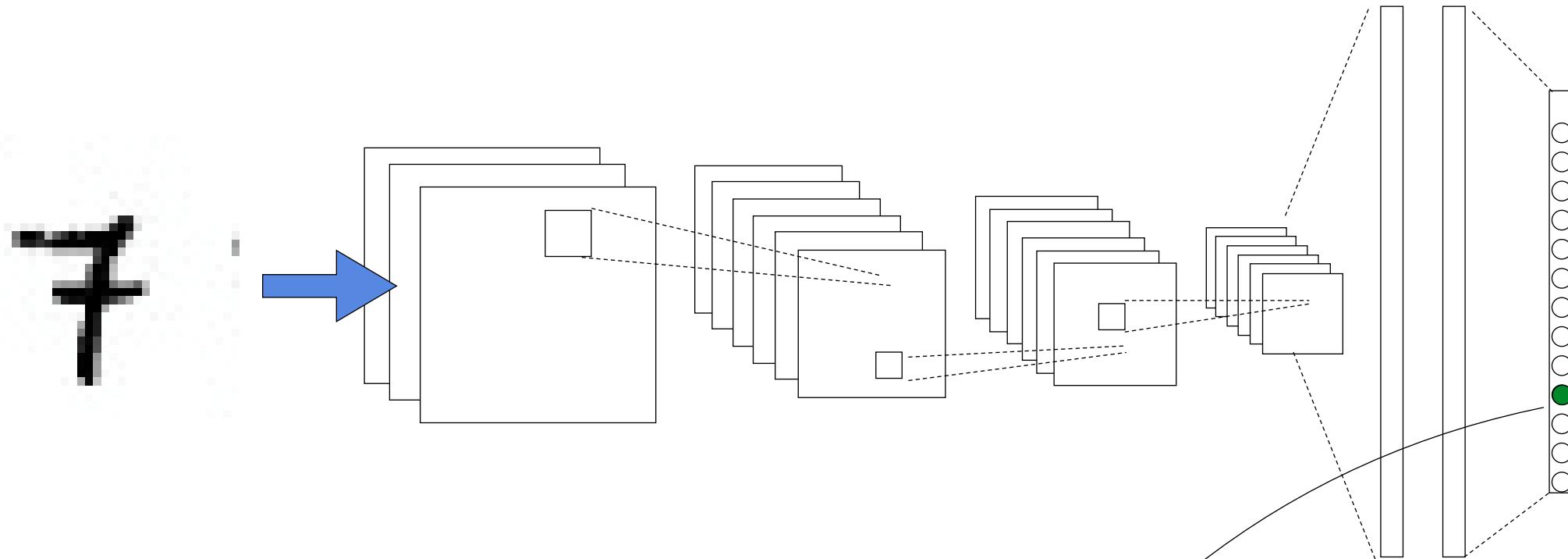
LeNet in PyTorch

- Forward pass:

```
def forward(self, x):  
    # convolve, then perform ReLU non-linearity  
    x = torch.nn.functional.relu(self.conv1(x))  
    # max-pooling with 2x2 grid  
    x = self.max_pool_1(x)  
    # convolve, then perform ReLU non-linearity  
    x = torch.nn.functional.relu(self.conv2(x))  
    # max-pooling with 2x2 grid  
    x = self.max_pool_2(x)  
    # first flatten 'max_pool_2_out' to contain 16*5*5 columns  
    # read through https://stackoverflow.com/a/42482819/7551231  
    x = x.view(-1, 16*5*5)  
    # FC-1, then perform ReLU non-linearity  
    x = torch.nn.functional.relu(self.fc1(x))  
    # FC-2, then perform ReLU non-linearity  
    x = torch.nn.functional.relu(self.fc2(x))  
    # FC-3  
    x = self.fc3(x)  
  
    return x
```

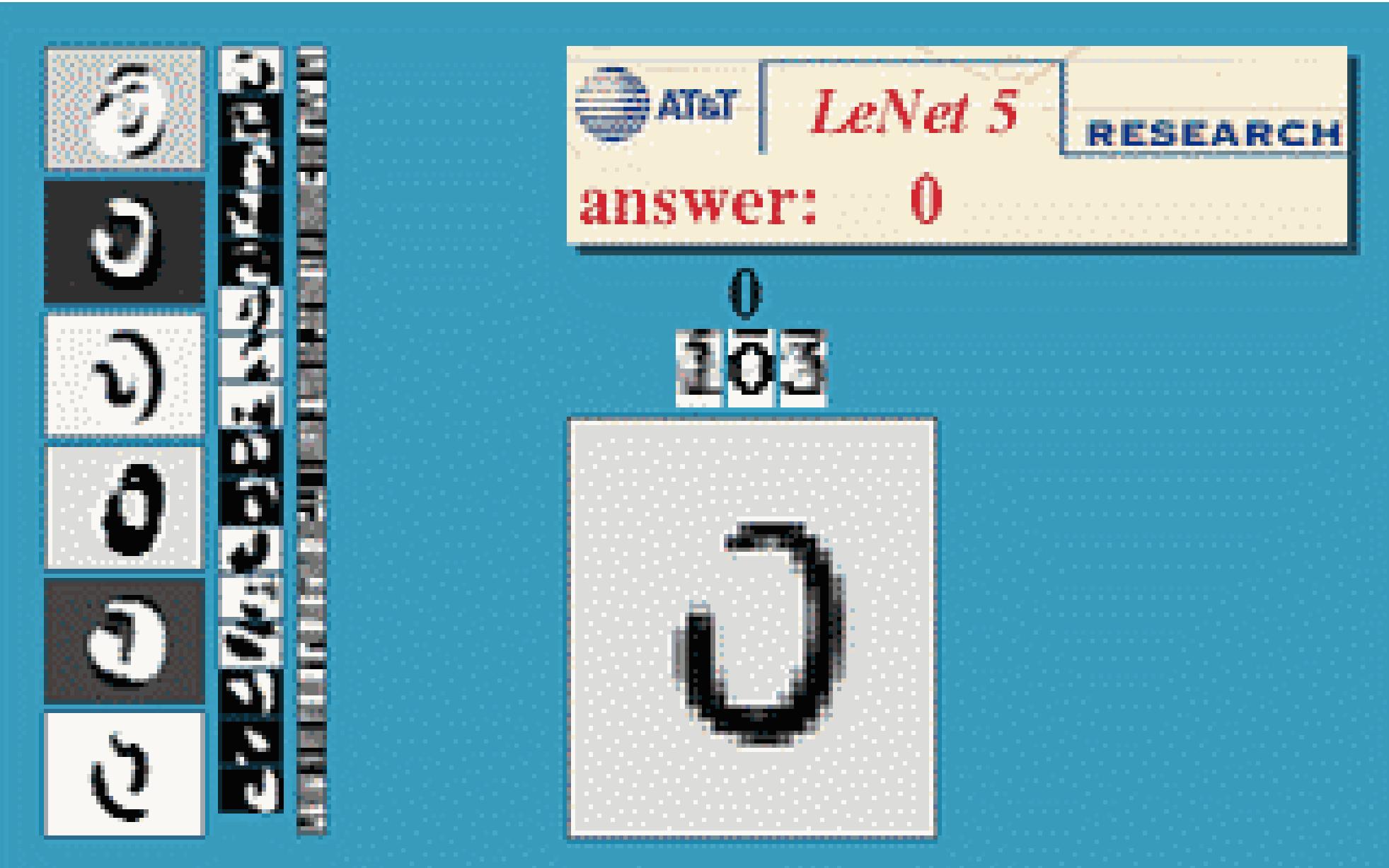
Training a CNN

- Q: So we have a bunch of layers. How do we train?
- A: Same as before. Apply softmax at the end, use backprop.



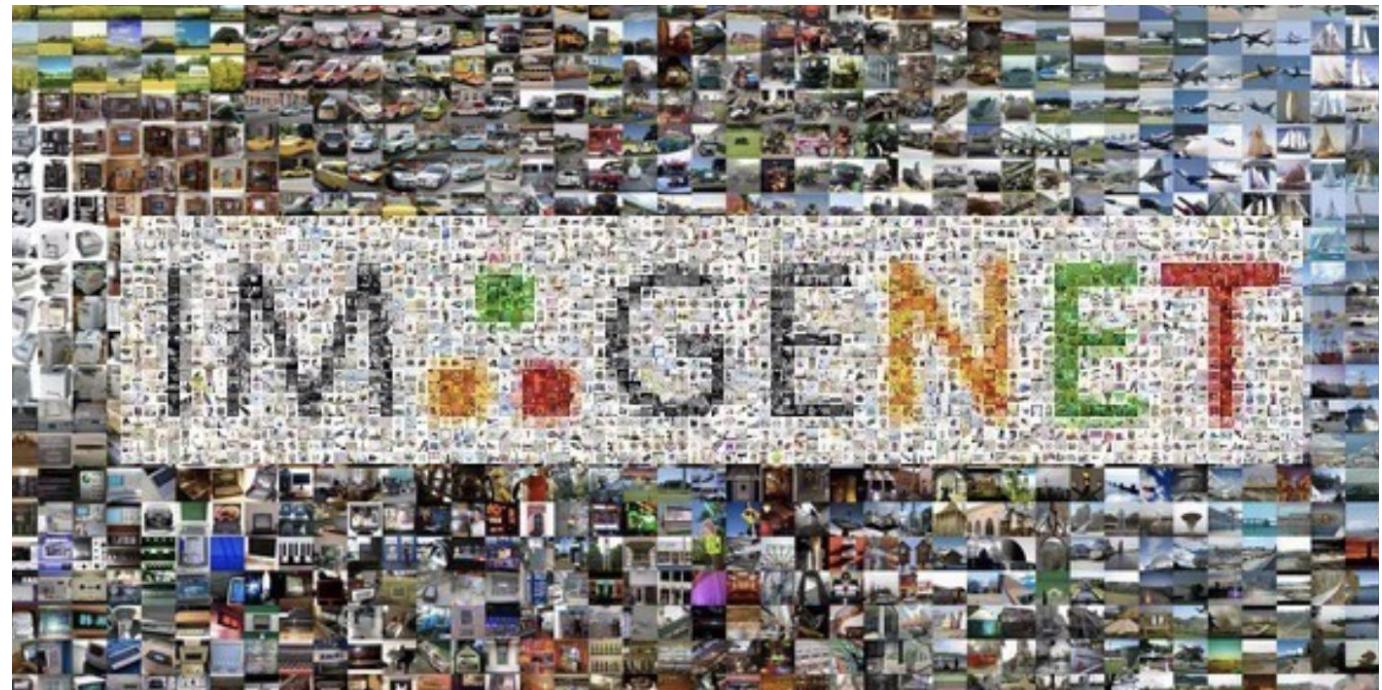
$$p_i(\mathbf{x}) = \frac{\exp(f_i(\mathbf{x}))}{\sum_{j=1}^N \exp(f_j(\mathbf{x}))}, \quad \text{softmax}$$

Result:



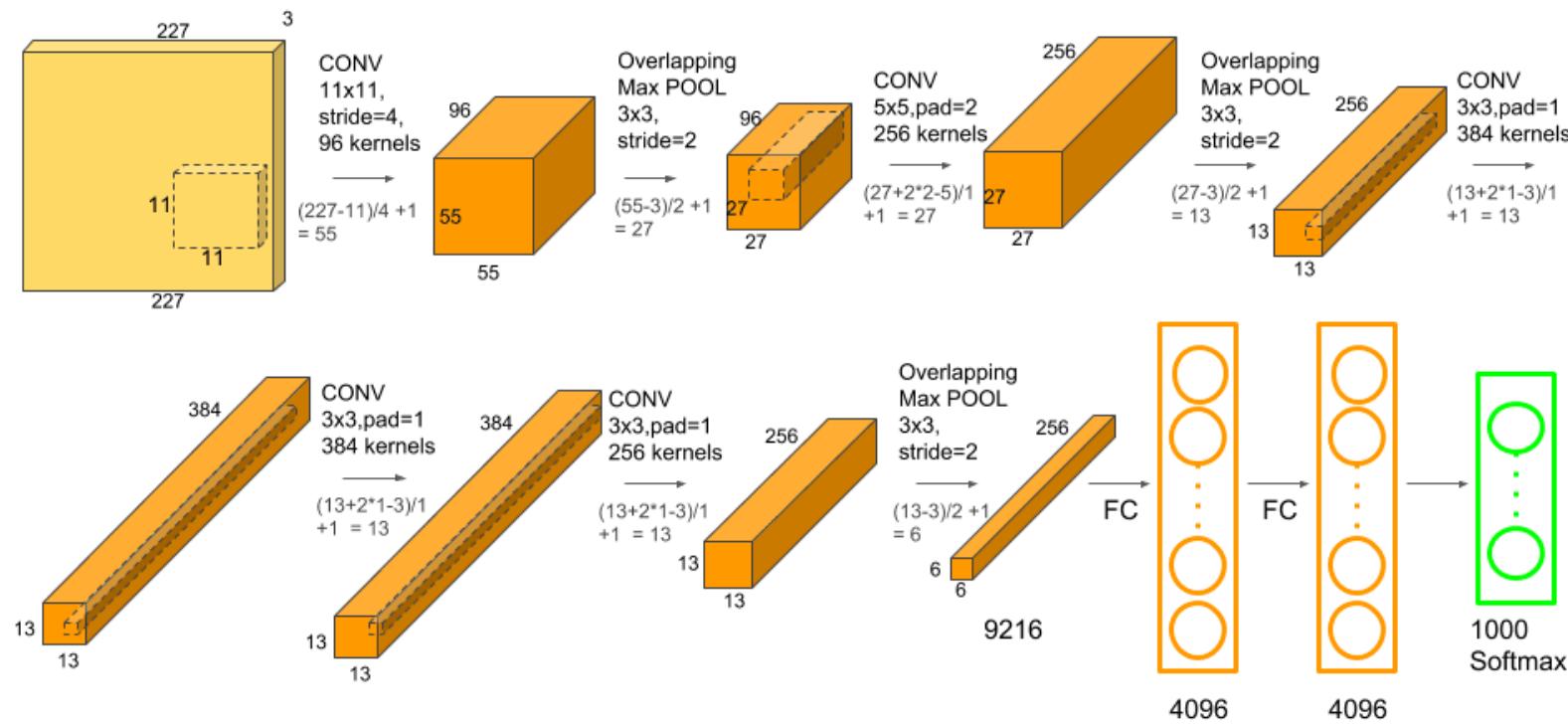
More CNN Architectures: ImageNet Task

- Next big task/dataset: image recognition on ImageNet
- Large Scale Visual Recognition Challenge (ILSVRC) 2012-2017
- Properties:
 - Thousands of classes
 - Full-resolution
 - 14,000,000 images
- Started 2009 (Deng et al)



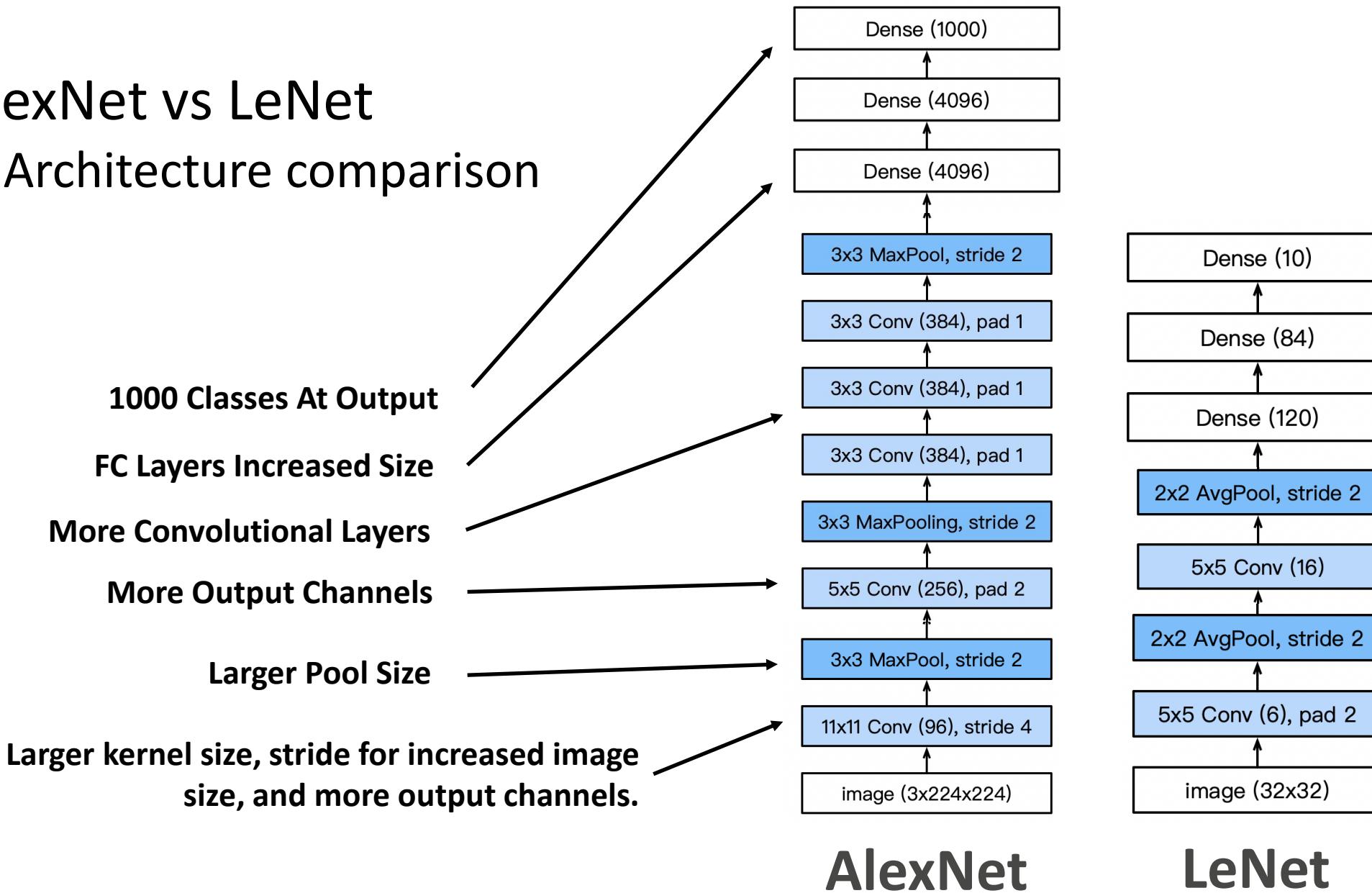
CNN Architectures: AlexNet

- AlexNet winning ImageNet 2012 was a paradigm shift in computer vision
- Major advances: deeper and bigger version of LeNet



More CNN Architectures

- AlexNet vs LeNet
 - Architecture comparison

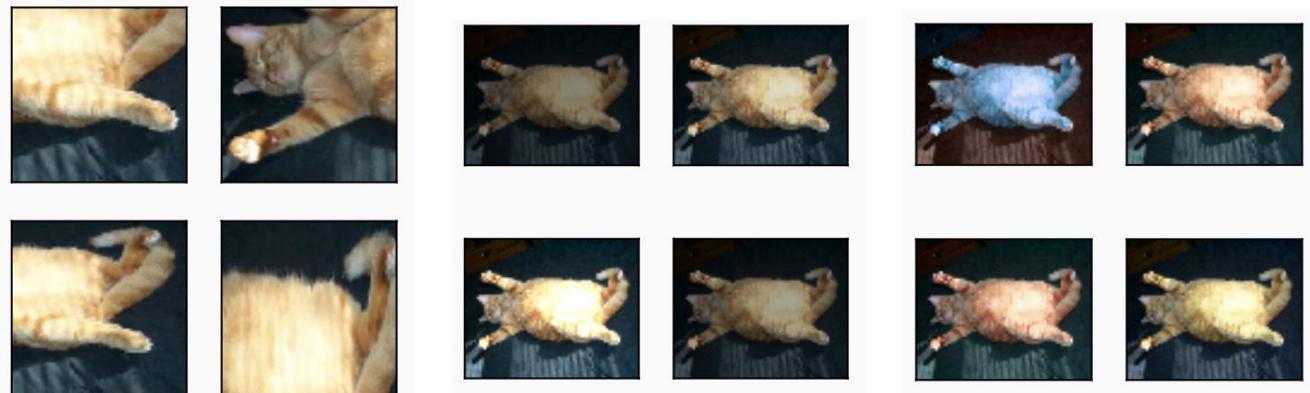
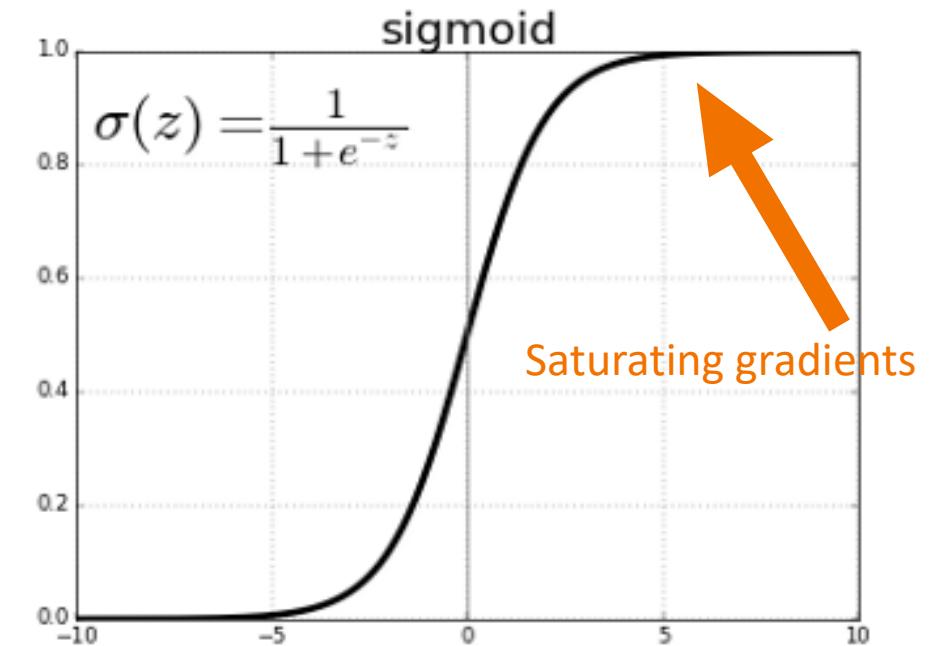


More Differences

Activations: from sigmoid to ReLU

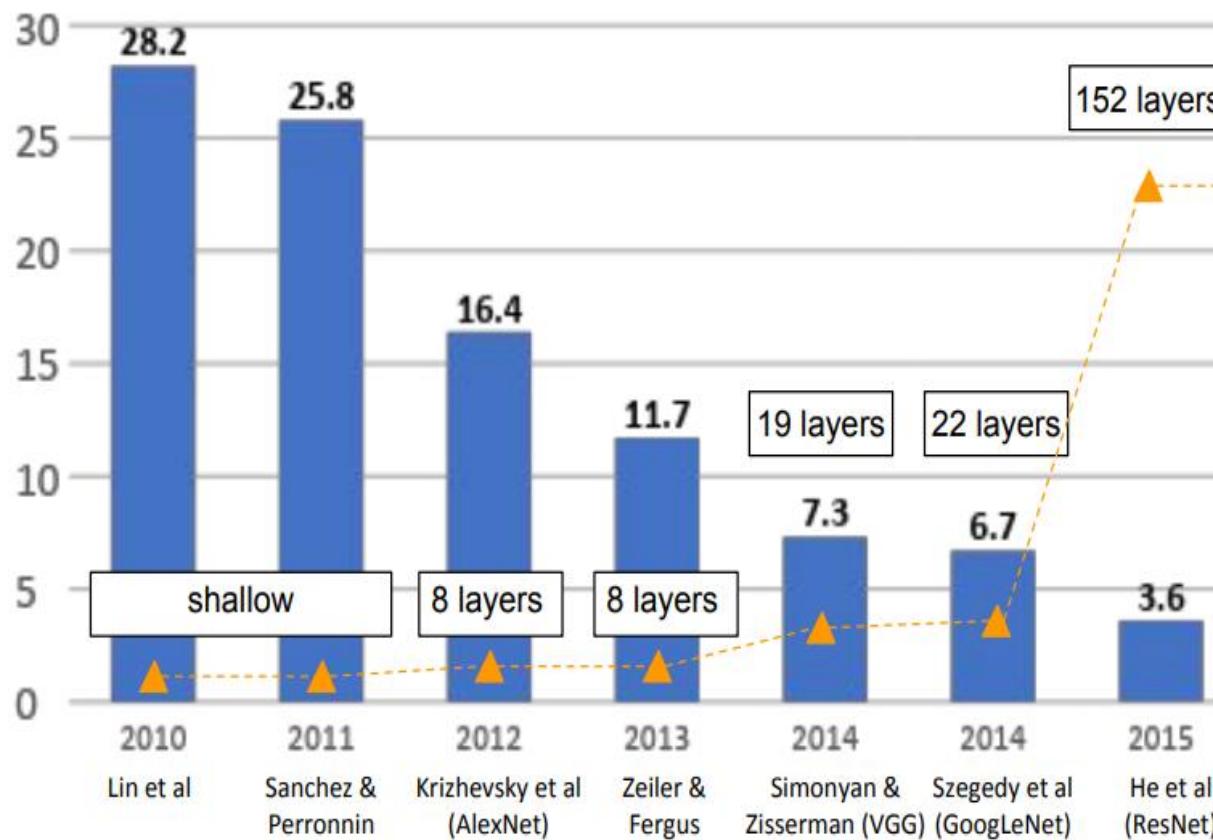
- Deal with vanishing gradient issue

Data Augmentation



Going Further

ImageNet error rate by year; note layer count on right.

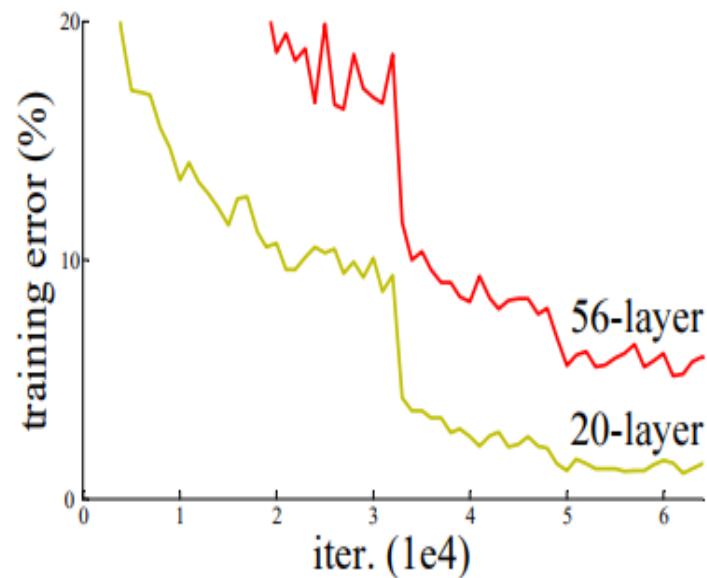
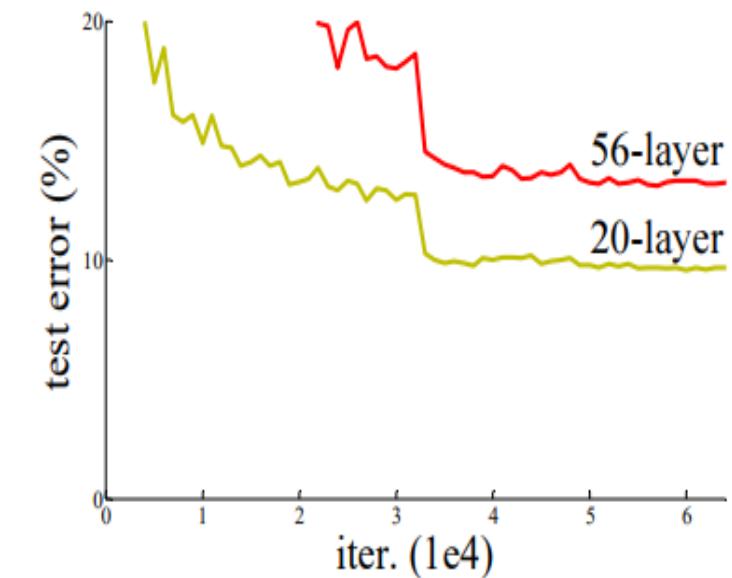


Credit: Stanford CS 231n

How to make neural networks deep

Adding too many layers leads to optimization issues:

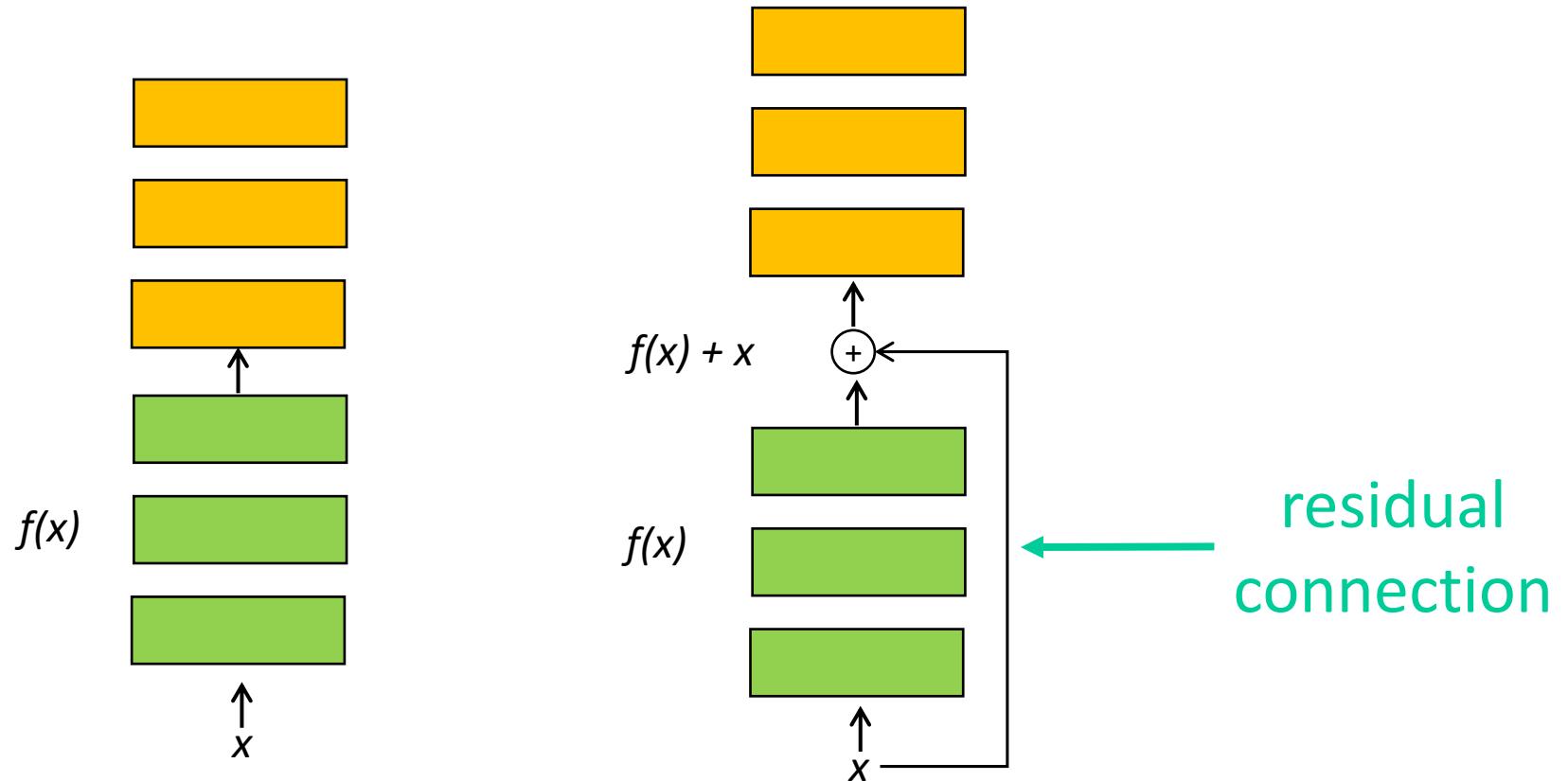
- Vanishing gradients
- Unstable training



He et al: "Deep Residual Learning for Image Recognition"

Residual Connections

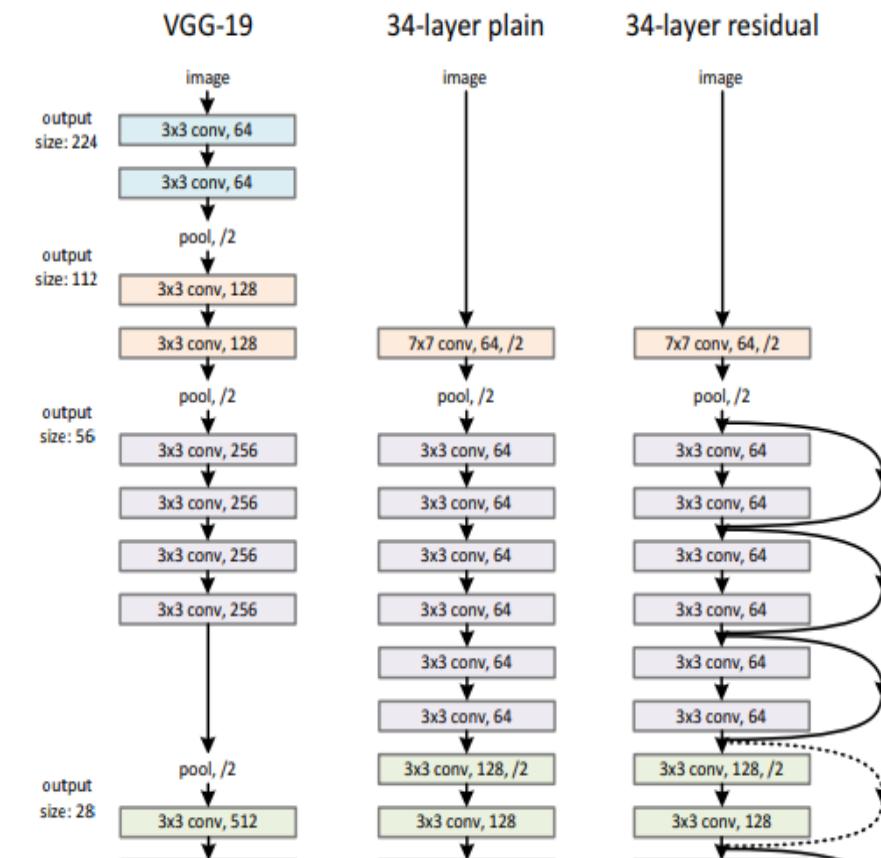
Idea: instead of transforming the input, learn a correction of the identity



ResNet Architecture

Residual or skip connections help make learning easier

- Vastly better performance
 - No additional parameters!
 - Records on many benchmarks
- Have been used in many other models, including Transformers

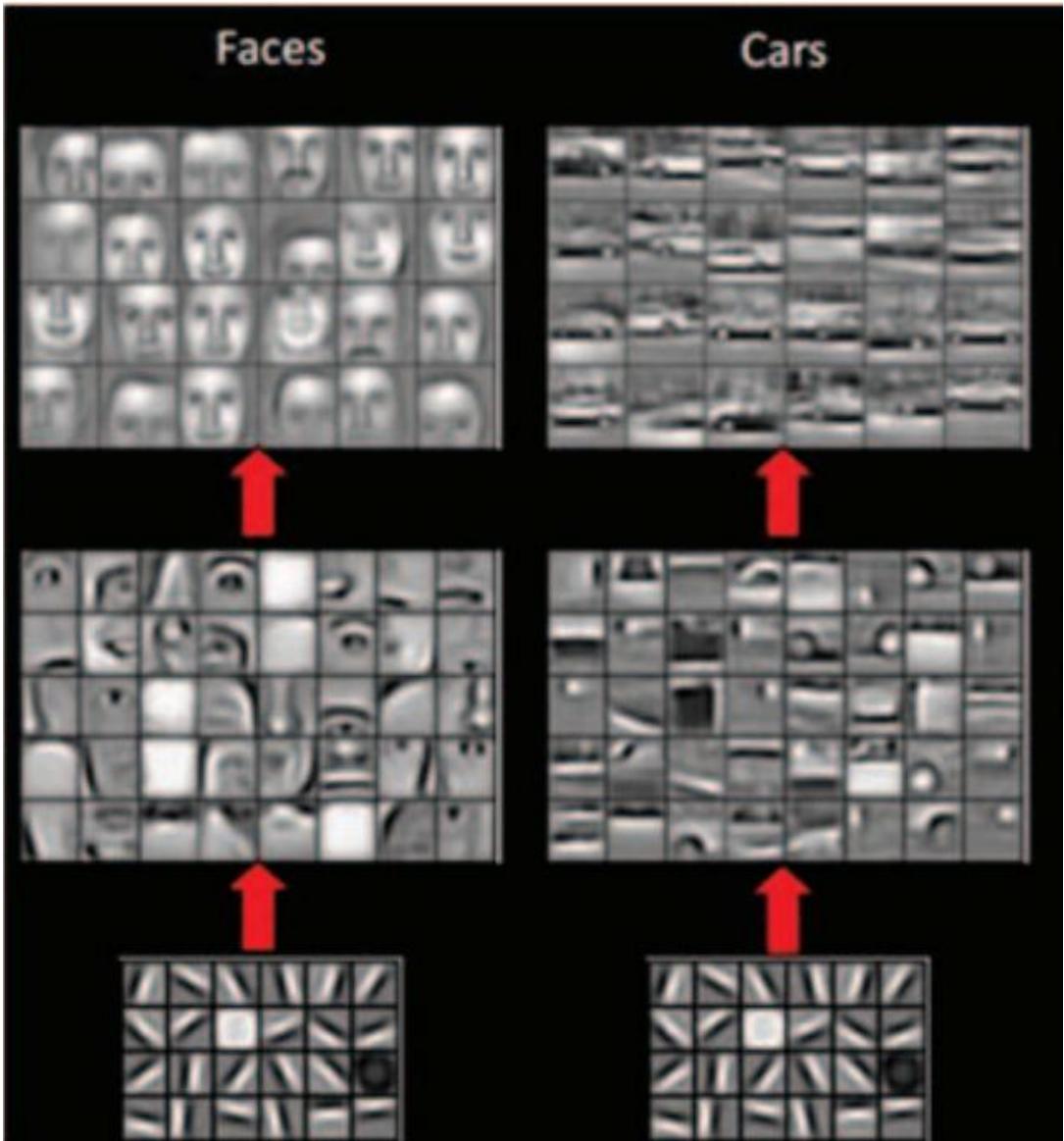


He et al: "Deep Residual Learning for Image Recognition"

Why “deep” learning?

Hierarchical feature learning:

- Last layer detect complete objects
- Middle layers detect parts of objects
- Early layers detect simple patterns



Seigel et al., 2016.

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Sharon Li, Fred Sala, Kirthi Kandasamy, Josiah Hanna