
CS 760: Machine Learning
Convolutional Neural Networks

Misha Khodak

University of Wisconsin-Madison

13 October 2025

Logistics

•Midterm: October 22nd

•covers material through October 15th

•mix of short answer and derivations
•one double-sided 8.5x11 cheat sheet
•no calculators
•review in-class on October 20th

•Please complete mid-term course evaluations
•useful feedback for me to make adjustments
•should receive an email via HelioCampus

2

Outline

•Convolutional Neural Networks (CNN) Basics
•motivation, convolution operator

•CNN Components & Layers
•padding, stride, dilation, channels, pooling layers

•CNN Tasks & Architectures
• MNIST, ImageNet, LeNet, AlexNet, ResNet

Outline

•Convolutional Neural Networks (CNN) Basics
•motivation, convolution operator

•CNN Components & Layers
•padding, stride, dilation, channels, pooling layers

•CNN Tasks & Architectures
• MNIST, ImageNet, LeNet, AlexNet, ResNet

Review: Multi-layer perceptrons (MLPs)

So far we’ve been using
MLP networks, which
consist of compositions
of fully-connected layers,
so named because every
input unit is connected to
every output unit

ℎ𝐿+1 = 𝜎(𝑊ℎ𝐿 + 𝑏)

What if we have images as our inputs?

36M floats in a RGB image!

What if we have images as our inputs?

Output

Hidden layer
Input

100 neurons

~ 36M input elements x 100 = ~3.6B parameters!

Convolutions to the rescue

Convolution layers

• can process images with varying numbers of pixels

• have a parameter count that doesn’t increase with image
resolution, unlike 𝑂 𝑤ℎ or more for fully connected layers

• have computational complexity ෨𝑂(𝑤 + ℎ) rather than
𝑂 𝑤ℎ or worse for fully connected layers

• are translation equivariant, i.e. extract the same feature
from a translation of the image

Background: Convolution Operation

•Given array 𝑢𝑡 and 𝑤𝑡, their convolution is a function 𝑠𝑡

•Written as 𝑠 = 𝑢 ∗ 𝑤 or 𝑠𝑡 = 𝑢 ∗ 𝑤 𝑡

•When 𝑢𝑡 or 𝑤𝑡 is not defined, assumed to be 0

𝑠𝑡 = ෍

𝑎=−∞

+∞

𝑢𝑎𝑤𝑡−𝑎

Background: Convolution Operation

•Example:

a b c d e f

x y z

xa + yb + zc

𝑤 = [z, y, x]
𝑢 = [a, b, c, d, e, f]

Background: Convolution Operation

•Example:

a b c d e f

x y z

xb+yc+zd

𝑤 = [z, y, x]
𝑢 = [a, b, c, d, e, f]

Background: Convolution Operation

•Example:

a b c d e f

x y z

xc+yd+ze

𝑤 = [z, y, x]
𝑢 = [a, b, c, d, e, f]

Background: Convolution Operation

•Example:

a b c d e f

x y z

xd+ye+zf

𝑤 = [z, y, x]
𝑢 = [a, b, c, d, e, f]

Background: Convolution Operation

•Stride: # of positions we move per step

a b c d e f

x y z

xa + yb + zc

a b c d e f

x y z

xc+yd+ze

Stride = 2

Background: Convolution Operation

•Matrix version:

a b c d

e f g h

i j k l

w x

y z

wa + bx +
ey + fz

a b c d

e f g h

i j k l

w x

y z

bw + cx +
fy + gz

wa + bx +
ey + fzInput

Kernel/Filter

Feature Map

2-D Convolutions

Example:

Vincent Dumoulin

Convolution Operation

neuralnetworksanddeeplearning.com

•All the units used the same set of weights (kernel)

•The units detect the same “feature” but at different locations

Kernels: Examples

Edge
Detection

Sharpen

Gaussian
Blur

(Wikipedia)

Convolution Layers

•Notation:
•X: nh x nw input matrix
•W: kh x kw kernel matrix
•b : bias (a scalar)

•As usual W, b are learnable parameters

Convolutional Neural Networks

Convolutional networks: neural networks that use convolution
in place of general matrix multiplication in at least one layer

•default approach for image tasks

•still used even in modern Transformer alternatives

CNNs: Advantages

•Fully connected layer: m x n edges and parameters

•Convolutional layer: ≤ m x k edges, k parameters

Break & Quiz

Q: If the input size is NxN and the kernel/filter size is KxK, what is the size of the
output matrix after performing convolution? Assume N>K, no padding, and stride
(how much we move the kernel each time) = 1.

1. (N - K + 1) x (N - K + 1)

2. (N - K) x (N - K)

3. (N - K - 1) x (N - K - 1)

4. None of the above

1. (N - K + 1) x (N - K + 1)

2. (N - K) x (N - K)

3. (N - K - 1) x (N - K - 1)

4. None of the above

● when sliding to the right,
we have N-K+1 positions

● similar when sliding
downwards

Q: If the input size is NxN and the kernel/filter size is KxK, what is the size of the
output matrix after performing convolution? Assume N>K, no padding, and stride
(how much we move the kernel each time) = 1.

Outline

•Convolutional Neural Networks (CNN) Basics
•motivation, convolution operator

•CNN Components & Layers
•padding, stride, dilation, channels, pooling layers

•CNN Tasks & Architectures
• MNIST, ImageNet, LeNet, AlexNet, ResNet

Convolutional Layers: Padding

Padding adds rows/columns around input

Convolutional Layers: Padding

Padding adds rows/columns around input

Why?

1. Keeps edge information

2. Preserves sizes / allows deep networks
• i.e. for a 32x32 input image, 5x5 kernel, after

1 layer, get 28x28, after 7 layers, only 4x4

3. Can combine different filter sizes

Convolutional Layers: Padding

•Padding ph rows and pw columns, output shape is

(nh-kh+ph+1) x (nw-kw+pw+1)

•Common choice is ph = kh-1 and pw=kw-1

•Odd kh: pad ph/2 on both sides

•Even kh: pad ceil(ph/2) on top, floor(ph/2) on bottom

Convolutional Layers: Stride

Stride: #rows / #columns per slide

•On the right is a 3x3 kernel with
row stride = column stride = 2

Convolutional Layers: Stride

•Given stride sh for the height and stride sw for the width,
the output shape is

⌊(nh-kh+ph+sh)/sh⌋ x ⌊(nw-kw+pw+sw)/sw⌋

•Set ph = kh-1, pw = kw-1, then get

⌊(nh+sh-1)/sh⌋ x ⌊(nw+sw-1)/sw⌋

Convolutional Layers: Dilated kernels

Dilation rate: sets gaps between
kernel elements

•on the right is a 3x3 kernel with
dilation rate 2

•a 𝑘 × 𝑘 kernel with dilation rate 𝑑
is effectively a 𝑑 𝑘 − 1 + 1 ×
(𝑑 𝑘 − 1 + 1) kernel with the
extra elements set to zero

Convolutional Layers: Channels

Color images are multi-channel, e.g. RGB:

Convolutional Layers: Channels

How to integrate multiple channels?

•Have a kernel for each channel 𝑖,
then sum results over 𝑐𝑖 channels

Convolutional Layers: Channels

•We can also have multiple output channels 𝑐𝑜
•have a kernel for each of 𝑐𝑖 × 𝑐𝑜 pairs 𝑖, 𝑜 of

input channel 𝑖 and output channel 𝑜
•output channel 𝑜 gets the sum over 𝑖 = 1, … , 𝑐𝑖

over the applications of the kernels 𝑖, 𝑜

Convolutional Layers: Multiple Kernels

•Each kernel may recognize a particular pattern
•Gabor filters

(Olshausen & Field, 1997)

Krizhevsky et al

[From Human Brain]

[Machine Learned CNN]

Convolutional Layers: Summary

Properties
•Input: volume ci x nh x nw (channels x height x width)
•Hyperparameters: # of kernels / filters co, size kh x kw,
stride sh x sw, dilation rate d, zero padding ph x pw

•Output: volume co x mh x mw (channels x height x width)
•Parameters: kh x kw x ci per filter, total (kh x kw x ci) x co

How to pick these hyperparameters?
•trial-and-error
•hyperparameter tuning / architecture search
•often easiest to just use an off-the-shelf CNN

Other CNN Layers: Pooling

•Another type of layer

Credit: Marc’Aurelio Ranzato

Max Pooling

•Returns the maximal value
in the sliding window

•Example:
•max(0,1,3,4) = 4

Average Pooling

•Returns the average value
in the sliding window

•Example:
•avg(0,1,3,4) = 2

Avg

Other CNN Layers: Pooling

1. Pooling layers have similar padding and
stride as convolutional layers

2. No learnable parameters

3. Apply pooling for each input channel to
obtain the corresponding output channel

#output channels = #input channels

Break & Quiz

Q2-1. Suppose we want to perform convolution on a single channel
image of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2.
What is the dimension of the output?

A. 3x3

B. 7x7

C. 5x5

D. 2x2

7

7

Q2-1. Suppose we want to perform convolution on a single channel
image of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2.
What is the dimension of the output?

A. 3x3

B. 7x7

C. 5x5

D. 2x2

7

7

Q2-2. Suppose we want to perform 2x2 average pooling on the
following single channel feature map of size 4x4 (no padding), and
stride = 2. What is the output?

A.

B.

C.

D.

12 20 30 0

20 12 2 0

0 70 5 2

8 2 90 3

20 30

70 90

16 8

20 25

20 30

20 25

12 2

70 5

Q2-2. Suppose we want to perform 2x2 average pooling on the
following single channel feature map of size 4x4 (no padding), and
stride = 2. What is the output?

A.

B.

C.

D.

20 30

70 90

16 8

20 25

20 30

20 25

12 2

70 5

12 20 30 0

20 12 2 0

0 70 5 2

8 2 90 3

Outline

•Convolutional Neural Networks (CNN) Basics
•motivation, convolution operator

•CNN Components & Layers
•padding, stride, dilation, channels, pooling layers

•CNN Tasks & Architectures
• MNIST, ImageNet, LeNet, AlexNet, ResNet

CNN Tasks

•Traditional tasks: handwritten digit recognition

•Dates back to the ‘70s and ‘80s
• Low-resolution images, 10 classes

CNN Tasks

•Traditional tasks: handwritten digit recognition

•Classic dataset: MNIST

•Properties:
•10 classes
•28 x 28 images
•Centered and scaled
•50,000 training data
•10,000 test data

CNN Architectures

•Traditional tasks: handwritten digit recognition

•Classic dataset: MNIST

•1989-1999: LeNet model
LeCun, Y et al. (1989). Backpropagation applied to handwritten
zip code recognition. Neural Computation

LeCun, Y.; Bottou, L.; Bengio, Y. & Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proc. IEEE

LeNet in PyTorch

•Object setup:

LeNet in PyTorch

•Forward pass:

Training a CNN

•Q: So we have a bunch of layers. How do we train?

•A: Same as before. Apply softmax at the end, use backprop.

softmax

Result:

More CNN Architectures: ImageNet Task

•Next big task/dataset: image recognition on ImageNet

•Large Scale Visual Recognition Challenge (ILSVRC) 2012-2017

•Properties:
•Thousands of classes
•Full-resolution
•14,000,000 images

•Started 2009 (Deng et al)

CNN Architectures: AlexNet

•AlexNet winning ImageNet 2012 was a paradigm shift in
computer vision

•Major advances: deeper and bigger version of LeNet

More CNN Architectures

•AlexNet vs LeNet
•Architecture comparison

LeNetAlexNet

Larger kernel size, stride for increased image
size, and more output channels.

Larger Pool Size

More Output Channels

More Convolutional Layers

FC Layers Increased Size

1000 Classes At Output

More Differences

Activations: from sigmoid to ReLU

•Deal with vanishing gradient issue

Data Augmentation

Saturating gradients

Going Further

ImageNet error rate by year; note layer count on right.

Credit: Stanford CS 231n

How to make neural networks deep

Adding too many layers leads to optimization issues:

•Vanishing gradients

•Unstable training

He et al: “Deep Residual Learning for Image Recognition”

Residual Connections

Idea: instead of transforming the input,
learn a correction of the identity

x

f(x) f(x)

x

+f(x) + x

residual
connection

ResNet Architecture

Residual or skip connections help
make learning easier

•Vastly better performance

•No additional parameters!

•Records on many benchmarks

•Have been used in many other
models, including Transformers

He et al: “Deep Residual Learning for Image Recognition”

Why “deep” learning?

Hierarchical feature
learning:

•Last layer detect
complete objects

•Middle layers detect
parts of objects

•Early layers detect
simple patterns

Seigel et al., 2016.

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Sharon Li, Fred Sala, Kirthi Kandasamy, Josiah Hanna

	Slide 1: CS 760: Machine Learning Convolutional Neural Networks
	Slide 2: Logistics
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Review: Multi-layer perceptrons (MLPs)
	Slide 6: What if we have images as our inputs?
	Slide 7: What if we have images as our inputs?
	Slide 8: Convolutions to the rescue
	Slide 9: Background: Convolution Operation
	Slide 10: Background: Convolution Operation
	Slide 11: Background: Convolution Operation
	Slide 12: Background: Convolution Operation
	Slide 13: Background: Convolution Operation
	Slide 14: Background: Convolution Operation
	Slide 15: Background: Convolution Operation
	Slide 16: 2-D Convolutions
	Slide 17: Convolution Operation
	Slide 18: Kernels: Examples
	Slide 19: Convolution Layers
	Slide 20: Convolutional Neural Networks
	Slide 21: CNNs: Advantages
	Slide 22: Break & Quiz
	Slide 23: Q: If the input size is NxN and the kernel/filter size is KxK, what is the size of the output matrix after performing convolution? Assume N>K, no padding, and stride (how much we move the kernel each time) = 1.
	Slide 24: Q: If the input size is NxN and the kernel/filter size is KxK, what is the size of the output matrix after performing convolution? Assume N>K, no padding, and stride (how much we move the kernel each time) = 1.
	Slide 25: Outline
	Slide 26: Convolutional Layers: Padding
	Slide 27: Convolutional Layers: Padding
	Slide 28: Convolutional Layers: Padding
	Slide 29: Convolutional Layers: Stride
	Slide 30: Convolutional Layers: Stride
	Slide 31: Convolutional Layers: Dilated kernels
	Slide 32: Convolutional Layers: Channels
	Slide 33: Convolutional Layers: Channels
	Slide 34: Convolutional Layers: Channels
	Slide 35: Convolutional Layers: Multiple Kernels
	Slide 36: Convolutional Layers: Summary
	Slide 37: Other CNN Layers: Pooling
	Slide 38: Max Pooling
	Slide 39: Average Pooling
	Slide 40: Other CNN Layers: Pooling
	Slide 41: Break & Quiz
	Slide 42: Q2-1. Suppose we want to perform convolution on a single channel image of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2. What is the dimension of the output?
	Slide 43: Q2-1. Suppose we want to perform convolution on a single channel image of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2. What is the dimension of the output?
	Slide 44: Q2-2. Suppose we want to perform 2x2 average pooling on the following single channel feature map of size 4x4 (no padding), and stride = 2. What is the output?
	Slide 45: Q2-2. Suppose we want to perform 2x2 average pooling on the following single channel feature map of size 4x4 (no padding), and stride = 2. What is the output?
	Slide 46: Outline
	Slide 47: CNN Tasks
	Slide 48: CNN Tasks
	Slide 49: CNN Architectures
	Slide 50: LeNet in PyTorch
	Slide 51: LeNet in PyTorch
	Slide 52: Training a CNN
	Slide 53: Result:
	Slide 54: More CNN Architectures: ImageNet Task
	Slide 55: CNN Architectures: AlexNet
	Slide 56: More CNN Architectures
	Slide 57: More Differences
	Slide 58: Going Further
	Slide 59: How to make neural networks deep
	Slide 60: Residual Connections
	Slide 61: ResNet Architecture
	Slide 62: Why “deep” learning?
	Slide 63: Thanks Everyone!

