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Logistics

Midterm: October 22nd

covers material through October 15t
*mix of short answer and derivations
*one double-sided 8.5x11 cheat sheet
*no calculators

*review in-class on October 20t

*Please complete mid-term course evaluations
cuseful feedback for me to make adjustments
*should receive an email via HelioCampus



Outline

*Convolutional Neural Networks (CNN) Basics
*motivation, convolution operator

*CNN Components & Layers
*padding, stride, dilation, channels, pooling layers

*CNN Tasks & Architectures
* MNIST, ImageNet, LeNet, AlexNet, ResNet



Outline

*Convolutional Neural Networks (CNN) Basics
*motivation, convolution operator



Review: Multi-layer perceptrons (MLPs)

So far we’ve been using
MLP networks, which
consist of compositions
of fully-connected layers,
so hamed because every
input unit is connected to
every output unit
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What if we have images as our inputs?

36M floats in a RGB image!



What if we have images as our inputs?

Input
Hidden layer

100 neurons

Output
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~ 36M input elements x 100 = ~3.6B parameters!



Convolutions to the rescue

Convolution layers

can process images with varying numbers of pixels

have a parameter count that doesn’t increase with image
resolution, unlike O(wh) or more for fully connected layers

have computational complexity O(w + h) rather than
O(wh) or worse for fully connected layers

are translation equivariant, i.e. extract the same feature
from a translation of the image



Background: Convolution Operation

*Given array u; and wy, their convolution is a function s;
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*Writtenass = (u*xw) or s; = (ux*w);
*When u; or w; is not defined, assumed to be 0
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Background: Convolution Operation

*Example:

w =[z,y, X]
u=I[a, b,cd,e,f]

xa+yb+zc
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Background: Convolution Operation

*Example:

w =[z,y, X]
u=I[a, b,cd,e,f]

xb+yc+zd

i wi




Background: Convolution Operation

*Example:

w =[z,y, X]
u=I[a, b,cd,e,f]

xc+yd+ze
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Background: Convolution Operation

*Example:

w =[z,y, X]
u=I[a, b,cd,e,f]

xd+ye+zf

i




Background: Convolution Operation

*Stride: # of positions we move per step

xa+yb+zc

—T

Stride =2

xc+yd+ze
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Background: Convolution Operation

* Matrix version: Kernel/Filter

s

wa+bx+ bw+cx+
ey+fz fy+gz

Feature Map



2-D Convolutions

Example:
Input Kernel Output
01] 2
0| 1 19| 25
31415 * —_
2|3 37 | 43

Vincent Dumoulin

OxXx0+1x1+3%X2+4%x3=19,
IX0+2%X14+4%x2+5%x3=25,
3IX0+4Xx1+6%X2+7%X3 =37,
4x0+5x1+7%X2+8X%X3=43.



Convolution Operation

*All the units used the same set of weights (kernel)
*The units detect the same “feature” but at different locations

input neurons input neuron S

9998Qeaian 0000000 0C first hidden layer 8000QeaL il 000000000 first hidden layer
e S 00000 =
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00000~ 80850

neuralnetworksanddeeplearning.com



Kernels: Examples

(Wikipedia)

Edge
Detection

Sharpen

Gaussian
Blur



Convolution Layers

*Notation:
*X: n, X n, input matrix
* W: k, x k, kernel matrix
b : bias (a scalar)

*As usual W, b are learnable parameters

19

25

37

43




Convolutional Neural Networks

Convolutional networks: neural networks that use convolution
in place of general matrix multiplication in at least one layer

. convolution pooling full
convolution

pooling
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CNNs: Advantages

*Fully connected layer: m x n edges and parameters

n input nodes

*Convolutional layer: £ m x k edges, k parameters

0 o ° moutputnodes

k kernel size

ojogogogor™






Q: If the input size is NxN and the kernel/filter size is KxK, what is the size of the
output matrix after performing convolution? Assume N>K, no padding, and stride
(how much we move the kernel each time) = 1.

1. (N-K+1)x(N-K+1)
2. (N-K)x(N-K)
3. (N-K-1)x(N-K-1)

4. None of the above



Q: If the input size is NxN and the kernel/filter size is KxK, what is the size of the
output matrix after performing convolution? Assume N>K, no padding, and stride
(how much we move the kernel each time) = 1.

1. (N-K+1)x(N-K+1) _ « Whensliding to the right,

2. (N-K)x(N-K) we have N-K+1 positions

« similar when sliding

3. (N-K-1)x(N-K-1) downwards

4. None of the above



Outline

*CNN Components & Layers
*padding, stride, dilation, channels, pooling layers



Convolutional Layers: Padding

Padding adds rows/columns around input

Input Kernel Output
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Convolutional Layers: Padding

Padding adds rows/columns around input
Why?

1. Keeps edge information

2. Preserves sizes / allows deep networks

j.e. for a 32x32 input image, 5x5 kernel, after
1 layer, get 28x28, after 7 layers, only 4x4

3. Can combine different filter sizes



Convolutional Layers: Padding

*Padding p, rows and p , columns, output shape is

(n,-k,+p,+1) x (n -k, +p,+1)

*Common choice is p, = k,-1 and p =k, -1
*Odd k,: pad p,/2 on both sides

*Even k,: pad ceil(p,/2) on top, floor(p,/2) on bottom



Convolutional Layers: Stride

Stride: #rows / #columns per slide

*On the right is a 3x3 kernel with
row stride = column stride = 2




Convolutional Layers: Stride

*Given stride s, for the height and stride s, for the width,
the output shape is

l(nh_kh+ph+sh)/shj X l(nw_kw+pw+sw)/swj

*Set p, = k-1, p,, = k-1, then get

|(n,+s.-1)/s, | x |(n,+s,-1)/s,,]



Convolutional Layers: Dilated kernels

Dilation rate: sets gaps between
kernel elements

*on the right is a 3x3 kernel with
dilation rate 2

*a k X k kernel with dilation rate d
is effectivelya (d(k —1) + 1) X
(d(k — 1) + 1) kernel with the
extra elements set to zero




Convolutional Layers: Channels

Color images are multi-channel, e.g. RGB:




Convolutional Layers: Channels

How to integrate multiple channels?

Have a kernel for each channel i,
then sum results over ¢; channels

X:¢Xn,Xn,

W ¢ Xk, Xk, Y=in;;*wi::
Y:mhxmw =0



Convolutional Layers: Channels

*We can also have multiple output channels ¢,

* have a kernel for each of ¢; X ¢, pairs (i, 0) of
input channel i and output channel o

* output channel o gets the sumoveri =1, ..., ¢;
over the applications of the kernels (i, 0)

X:¢;Xn,Xn,
W:c Xc; Xk Xk, Y = X*W

Y:c, Xm,Xm,

*9



Convolutional Layers: Multiple Kernels

*Each kernel may recognize a particular pattern

R « - l - I -

Krizhevsky et al

_ [Machine Learned CNN]
(Olshausen & Field, 1997)

[From Human Brain]



Convolutional Layers: Summary

Properties
*Input: volume ¢;x n, x n, (channels x height x width)

*Hyperparameters: # of kernels / filters c,, size k, x k,,,
stride s, x s, dilation rate d, zero padding p, x p,,

*Output: volume ¢, x m, x m ,(channels x height x width)
*Parameters: k, x k,, x ¢; per filter, total (k, x k, x c;)) x c,

How to pick these hyperparameters?
*trial-and-error

*hyperparameter tuning / architecture search
eoften easiest to just use an off-the-shelf CNN



Other CNN Layers: Pooling

* Another type of layer

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.

Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to
the exact location of the eye?

60 61
Ranzaton Ranzaton

Credit: Marc’Aurelio Ranzato



Max Pooling

*Returns the maximal value
in the sliding window

*Example:
*max(0,1,3,4) =4

Input
O 1] 2

2 X 2 Max 419
31415 Pool

ooling 718
6| 7|8




Average Pooling

*Returns the average value
in the sliding window

*Example:
*avg(0,1,3,4) =2

Input
0O11] 2
2X2 Avg
3141° Pooling
6|7 |8




Other CNN Layers: Pooling

1. Pooling layers have similar padding and
stride as convolutional layers

2. No learnable parameters

3. Apply pooling for each input channel to
obtain the corresponding output channel

#output channels = #input channels







Q2-1. Suppose we want to perform convolution on a single channel
image of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2.
What is the dimension of the output?

A. 3x3

B. /x7/

C. 5x5

D. 2x2




Q2-1. Suppose we want to perform convolution on a single channel
image of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2.
What is the dimension of the output?

A.3x3 4

B. /x7/

C. 5x5

D. 2x2

[(ny, — Ky, + pp + sp)/sp] X |(ny, — ky, + Py, + 5,)/5,, ]



Q2-2. Suppose we want to perform 2x2 average pooling on the
following single channel feature map of size 4x4 (no padding), and
stride = 2. What is the output?

1212030 0
20130 2012121 0
A.  170]90
ol70] 5|2
16] 8 81219 | 3
B. [20]25
20|30
C.
20125
D |12]2
701 5




Q2-2. Suppose we want to perform 2x2 average pooling on the
following single channel feature map of size 4x4 (no padding), and
stride = 2. What is the output?

1212030 0
20130 2012121 0
A [0]90 ol70] 5|2
16] 8 81219 | 3
B. [0[s| <(u—

2030
C.
2025
D |[12]2
70| 5




Outline

*CNN Tasks & Architectures
* MNIST, ImageNet, LeNet, AlexNet, ResNet



CNN Tasks

*Traditional tasks: handwritten digit recognition

*Dates back to the ‘70s and ‘80s
* Low-resolution images, 10 classes
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CNN Tasks

*Traditional tasks: handwritten digit recognition

e Classic dataset: MNIST
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* 10 classes

*28 X 28 images

* Centered and scaled
* 50,000 training data
* 10,000 test data

*Properties:




CNN Architectures

*Traditional tasks: handwritten digit recognition
*Classic dataset: MNIST
° 1989_1999 LeNet mOdel zip code recognition. Neural Computation

LeCun, Y et al. (1989). Backpropagation applied to handwritten

LeCun, Y.; Bottou, L.; Bengio, Y. & Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proc. IEEE
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LeNet in PyTorch

*Object setup:

def __init_ (self):
super{LeNet5, self)._ init_ ()
# Convolution (In LeNet-5, 32x32 images are given as input. Hence padding of 2 is done below)
self.convl = torch.nn.ConvZd(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2, bias=True)
# Max-pooling
self.max_pool_1 = torch.nn.MaxPool2d(kernel_size=2)
# Convolution
self.conv2 = torch.nn.ConvZd(in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=8, bias=True)
# Max=pooling
self.max_pool_2 = torch.nn.MaxPool2d(kernel_size=2)
# Fully connected layer

self.fcl = torch.nn.Linear(16%5%5, 120) # convert matrix with 16%5%5 (= 48@) features to a matrix of 120 features (columns)
self.fc2 = torch.nn.Linear(128, 84) # convert matrix with 120 features to a matrix of 84 features (columns)
self.fc3 = torch.nn.Linear(84, 18) # convert matrix with 84 features to a matrix of 18 features (columns)



LeNet in PyTorch

def forward(self, x):

o FOrwa rd paSS' # convolve, then perform RelLU non-=Linearity

* x = torch.nn.functional.relu({self.convl(x))
¥ max-pooling with 2x2 grid
¥ = self.max_pool_1(x)
# convolve, then perform RelLlU non-=Llinearity
X = torch.nn.functional.relu(self.conv2(x))
# max-pooling with 2x2 grid
¥ = self.max_pool_2(x)
# first flatten 'max_pool 2 out' to contaln 16#5+5 columns
# read through https://stackoverflow.com/a/42482819/7551231
X = X.view(-1, 16%5%5)
# FC=1, then perform RelLl non-=Linearity
x = torch.nn.functional.relu(self.fcl(x))
# FC=2, then perform RelLl non-=linearity
¥ = torch.nn.functional.relu({self.fc2(x))
# FC=3
x = self.fc3(x)

return x



Training a CNN

*Q: So we have a bunch of layers. How do we train?
*A: Same as before. Apply softmax at the end, use backprop.

¥

00000000000 |

softmax
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More CNN Architectures: ImageNet Task

*Next big task/dataset: image recognition on ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) 2012-2017

*Properties:
e Thousands of classes

* Full-resolution
* 14,000,000 images

Started 2009 (Deng et al)
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CNN Architectures: AlexNet

*AlexNet winning ImageNet 2012 was a paradigm shift in
computer vision
* Major advances: deeper and bigger version of LeNet

227 3
CONV Overlapping Overlapping
11x11, Max POOL CONV Max POOL CONV
stride=4, 96 3x3, 95 5x5,pad=2 3x3, 256 3x3,pad=1
96 kernels stride=2 256 kernels stride=2 384 kernels
r::'_::::lr'l r'__ — - . .
: , L (27+2%2-5)/1 27-3)/2 +1 (13+2*1-3)/1
11! i: EEET-HJM +1 |58 (_:}.25%33.-2 +1 P "11 =27 T L1:; : = 111 =13 :
:'"ﬂ“'l”l - - 27 27 13 e
55 13
227
Overlapping
84 CONV CONV Max POOL
3x3,pad=1 3x3pad=1  geq 3x3, 256 O
384 kernels 256 kernels stride=2
(13+2"1-3)1 (13+2*1-3)11 (13-3)/2 +1 FC FC :
=1 +1 =13 =6
# 13 5
1318 13 9216 1000
13 13 Softmax

4096 4096



More CNN Architectures

*AlexNet vs LeNet
* Architecture compar'wn/

1000 Classes At Output
FC Layers Increased Size

More Convolutional Layers

More Output Channels

>
1

Larger Pool Size

Larger kernel size, stride for increased image /
size, and more output channels.

Dense (1000)

{

Dense (4096)

t

Dense (4096)

[ )

3x3 MaxPool, stride 2

Dense (10)

Dense (84)

Dense (120)

t

2x2 AvgPool, stride 2

t

5x5 Conv (16)

t

2x2 AvgPool, stride 2

t

5x5 Conv (6), pad 2

t
3x3 Conv (384), pad 1
t
3x3 Conv (384), pad 1
t
3x3 Conv (384), pad 1
t
3x3 MaxPooling, stride 2
t
5x5 Conv (256), pad 2
t
3x3 MaxPool, stride 2
i
11x11 Conv (96), stride 4
t

t

image (3x224x224)

image (32x32)

AlexNet

LeNet




More Differences )

U'(E:] — +lc .
Activations: from sigmoid to RelU l \

*Deal with vanishing gradient issue

sigmoid

Saturating gradients

Data Augmentation




Going Further

ImageNet error rate by year; note layer count on right.

30 282
152 layers
25
A
20
16.4
b
11.7 119 layers| |22 layers
10
7.3 87/
2010 2011 2012 2013 2014 2014 2015
Linetal Sanchez &  Krizhevsky etal  Zeiler & Simonyan & Szegedy et al He et al
Perronnin (AlexNet) Fergus  Zisserman (VGG) (GooglLeNet) (ResNet)

Credit: Stanford CS 231n



How to make neural networks deep

Adding too many layers leads to optimization issues:
*Vanishing gradients
*Unstable training

20
)
X .
< 9 56-layer
b= =1
2 =
5l S if 20-layer
= - 3
= S6-layer =
5 5
m =
s 20-layer
v i 1 2 3 4 5 ;I “[J ; E ; 4 ; 4:1
iter. (led) iter. (1ed)

He et al: “Deep Residual Learning for Image Recognition”



Residual Connections

Idea: instead of transforming the input,
learn a correction of the identity

A f(X) + X

fx) ftx)

xX—>

x—>



ResNet Architecture

Residual or skip connections help
make Iea rning eaSier VGG-19 34-layer plain 34-layer residual

image image image

ey | dacomsr |
sizar 334 3x3 conv, 64

*Vastly better performance | e ]

utput i
p: 112 %
. - Y
* No additional parameters! LT
poal, 2 poal, /2
output
shee: 56 l 3x3 conv, 256 ] [ 3x3 conv, 64 |

* Records on many benchmarks i
EETICE

*Have been used in many other e

3x3 conv, b4

models, including Transformers dr CEmmr

autput

shee: 28 3 conv, 512 33 conv, 128

He et al: “Deep Residual Learning for Image Recognition”




Why “deep” learning?

Face

Hierarchical feature

Jonkiol IeMmMEAN ==
earning: AN eby ——a
PEUENn o=
*Last layer detect Hel el =5
complete objects
EE#Q=4=§ A D
o \i S IlREN CE_ St iem!
I\/Ilddleflayée_rs detect AR o e g
partS O O JeCtS .\\ .rw;"u ’ - ul-:- .
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simple patterns O e
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Seigel et al., 2016.



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Sharon Li, Fred Sala, Kirthi Kandasamy, Josiah Hanna
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