

CS 760: Machine Learning **Recurrent Neural Networks**

Misha Khodak

University of Wisconsin-Madison

15 October 2025

Logistics

- Midterm: 75 min in-class October 22nd
 - covers material through October 15th, focusing on everything **before** neural networks
 - mix of short answer and derivations
 - one double-sided 8.5x11 cheat sheet
 - no calculators
 - review in-class on October 20th (slides posted)
- Homework 3 posted after class, due in **three weeks**
- Monday lecture will end 5-10 min early and Monday office hours cancelled that day (will still hold them on Tuesday)

Outline

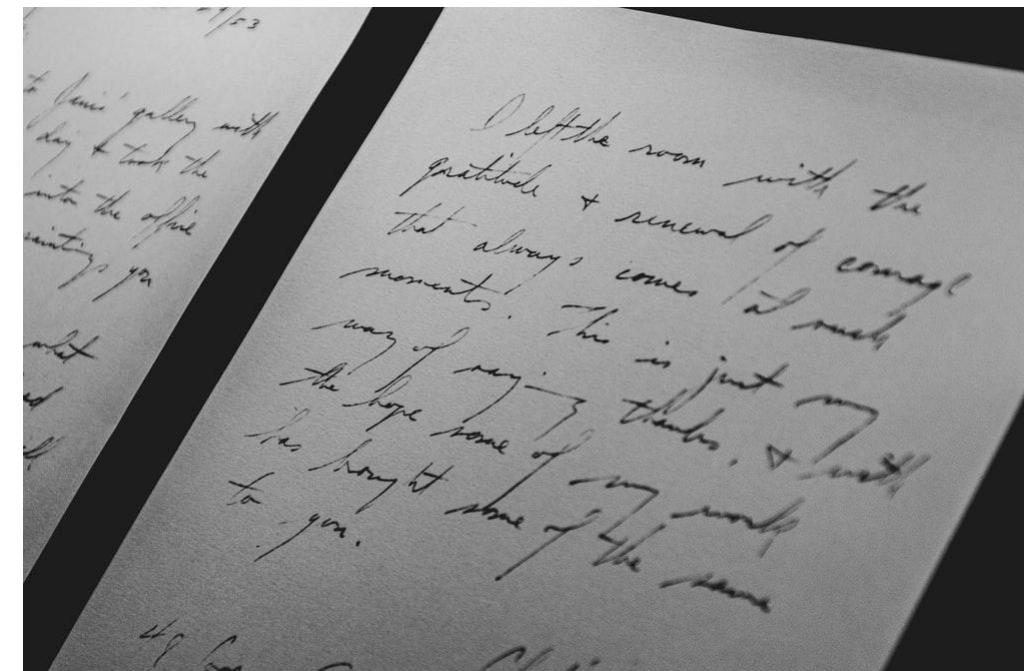
- **RNN basics**
 - sequential tasks, hidden state, vanilla RNN
- **RNN variants + LSTMs**
 - RNN training, variants, LSTM cells
- **Practical training**
 - data pipelines, initialization, hyperparameter tuning

Outline

- **RNN basics**
 - sequential tasks, hidden state, vanilla RNN
- **RNN variants + LSTMs**
 - RNN training, variants, LSTM cells
- **Practical training**
 - data pipelines, initialization, hyperparameter tuning

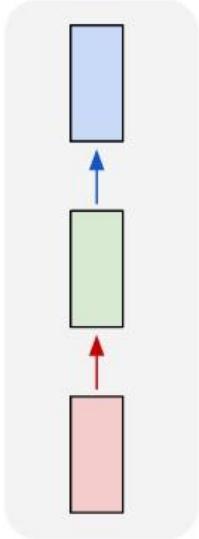
So Far...

- Our models take **one input** object to **one output** object
 - Fixed-dimensional input vector
- What about sequential data?
 - i.e. language!
 - also, video, many other data
- What should our models do?



Tasks We Can Handle?

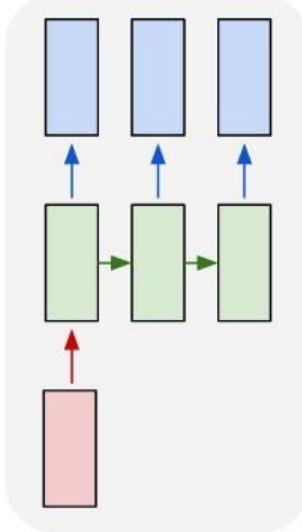
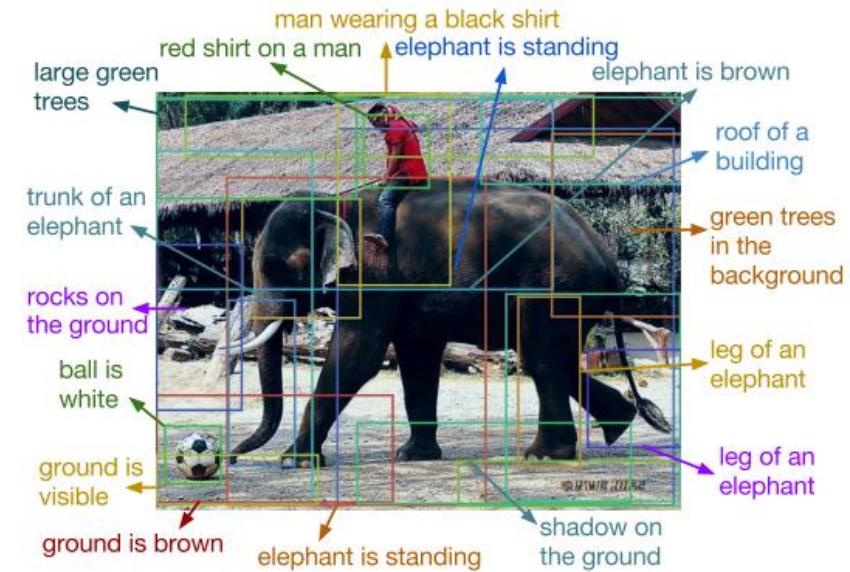
one to one



- Our standard model so far. One fixed input type, one output
 - Image classification
 - Doc classification (when represented as a fixed-dimensional vector)

Tasks We Can Handle?

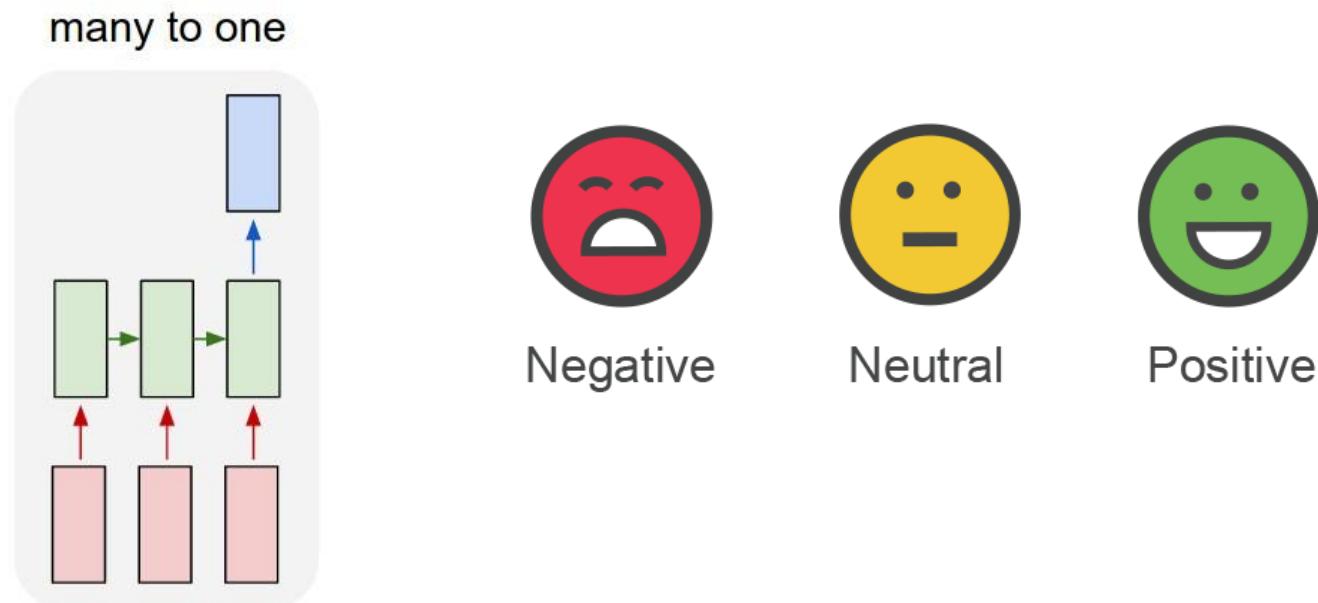
one to many



“DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, Johnson, Karpathy, Li

- One input, but sequence at the output
 - Ex: image captioning.
 - Input: one image
 - Output: sequence of words

Tasks We Can Handle?



- Sequence input, one output
 - Ex: sentiment analysis.
 - Input is a sentence (represented as a fixed-dimensional vector)
 - Output is one of {positive, neutral, negative}

Tasks We Can Handle?

Economic growth has slowed down in recent years .

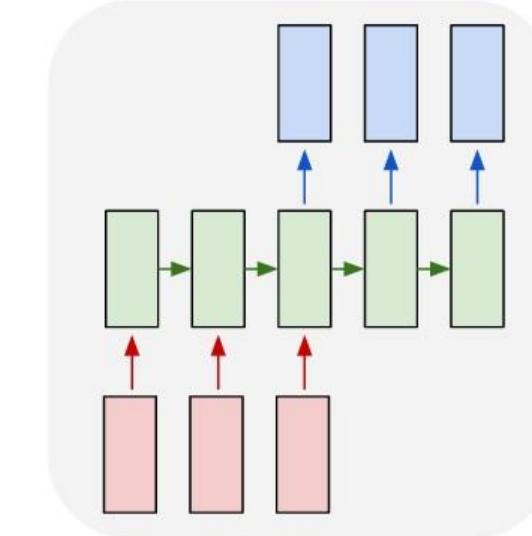
Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .

Economic growth has slowed down in recent years .

La croissance économique s' est ralentie ces dernières années .

devblogs.nvidia.com

many to many

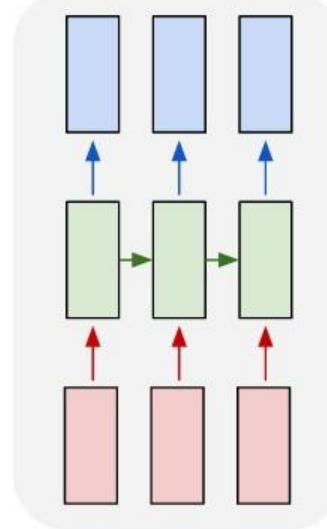


- Sequence input, sequence output

- Ex: machine translation. Translate from language A to language B

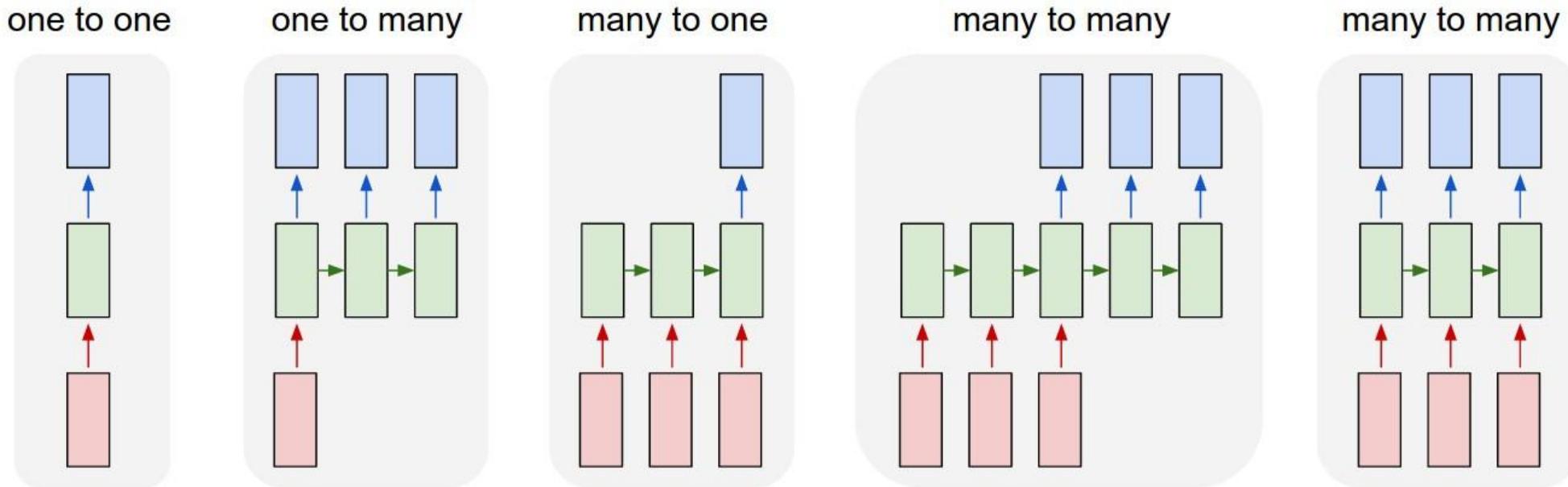
Tasks We Can Handle?

many to many



- Synchronized input and output
 - Ex: Video classification: label each frame of a video

Tasks We Can Handle?

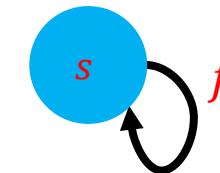
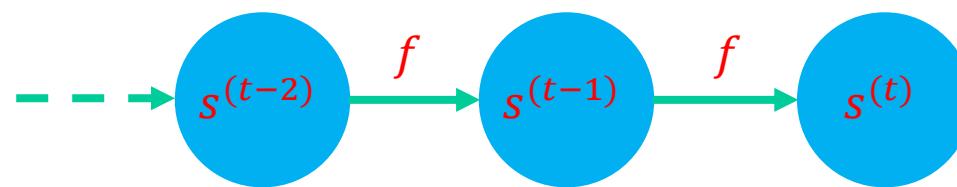


- Don't have the ability to do anything except the first so far...
 - Need a new kind of model

Modeling Sequential Data

- Simplistic model:
 - $s^{(t)}$ state at time t. Transition function f

$$s^{(t+1)} = f(s^{(t)}; \theta)$$

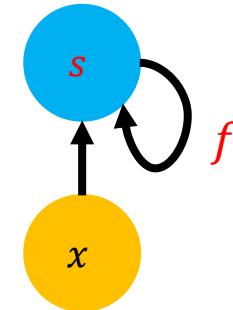
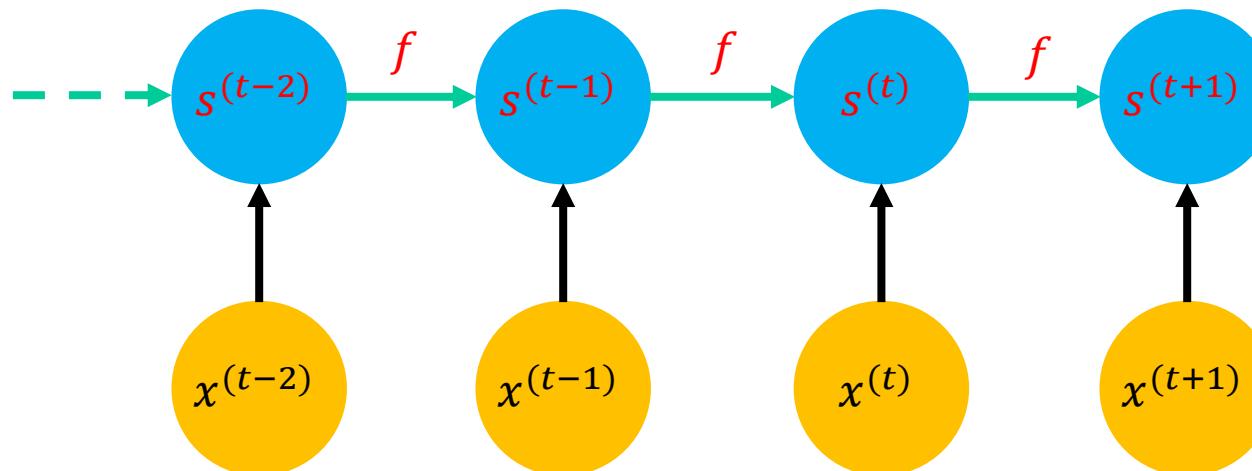


Modeling Sequential Data: External Input

- External inputs can also influence transitions

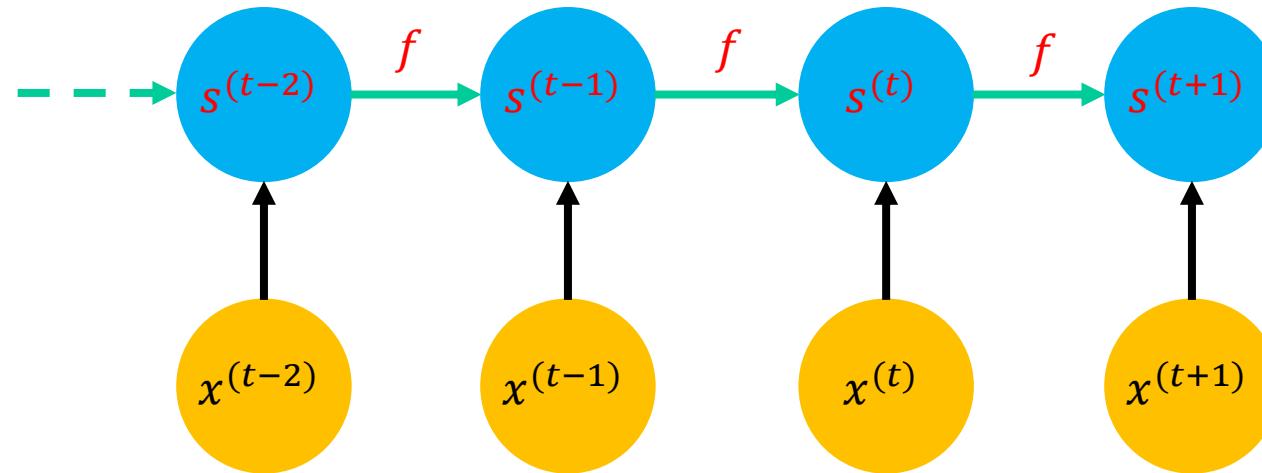
- $s^{(t)}$ state at time t. Transition function f
- $x^{(t)}$: input at time t

$$s^{(t+1)} = f(s^{(t)}, x^{(t+1)}; \theta)$$



Important: the
same f and θ for
all time steps

Recurrent Neural Networks



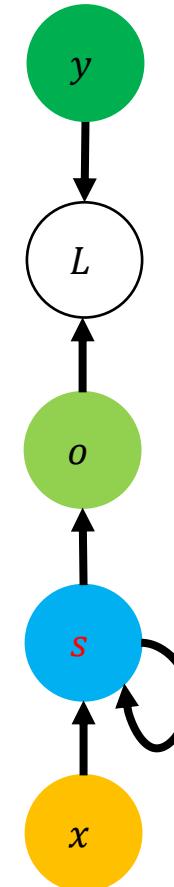
- Use the principle from the system above:
 - **Same** computational function and parameters across different time steps of the sequence
- Each time step: takes the input entry **and the previous hidden state** to compute the current hidden state and the **output** entry
- Training: loss typically computed at every time step

RNNs: Basic Components

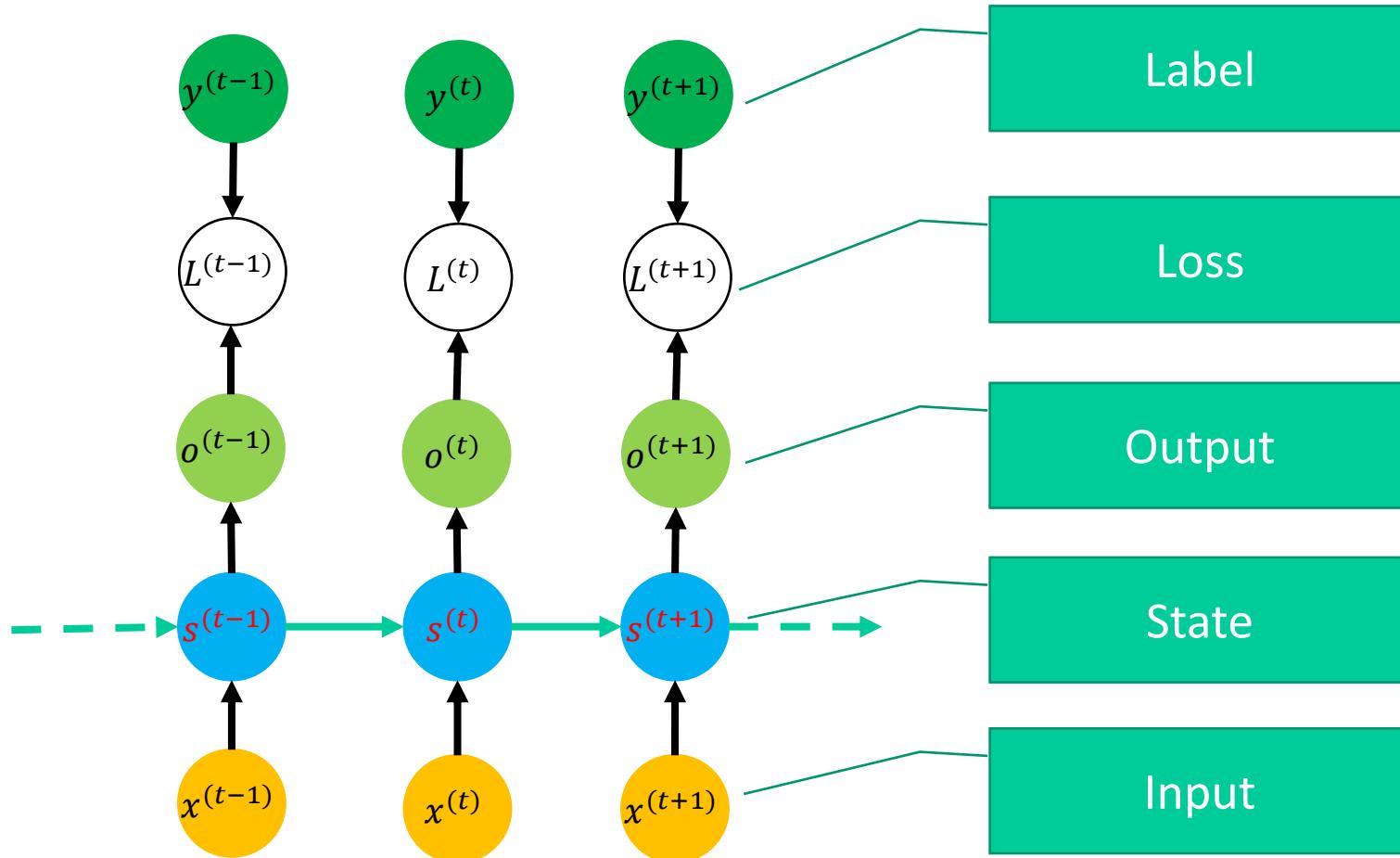
- What do we need for our new network?

- Input x
- State s
- Output o
- Labels y & Loss function L
 - Still need to train!

Recurrent: state is
plugged back into
itself

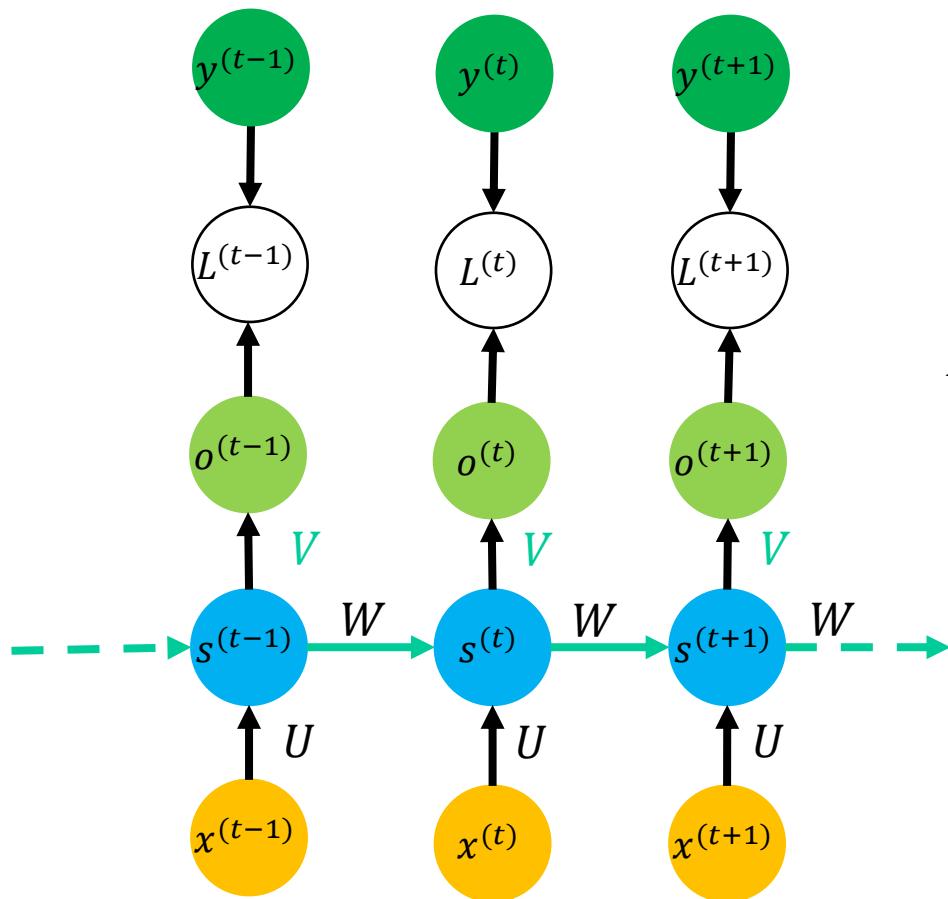


RNNs: Unrolled Graph



Simple RNNs

- Classical RNN variant:



$$\begin{aligned} a^{(t)} &= b + Ws^{(t-1)} + Ux^{(t)} \\ s^{(t)} &= \tanh(a^{(t)}) \\ o^{(t)} &= c + Vs^{(t)} \\ \hat{y}^{(t)} &= \text{softmax}(o^{(t)}) \\ L^{(t)} &= \text{CrossEntropy}(y^{(t)}, \hat{y}^{(t)}) \end{aligned}$$

Properties

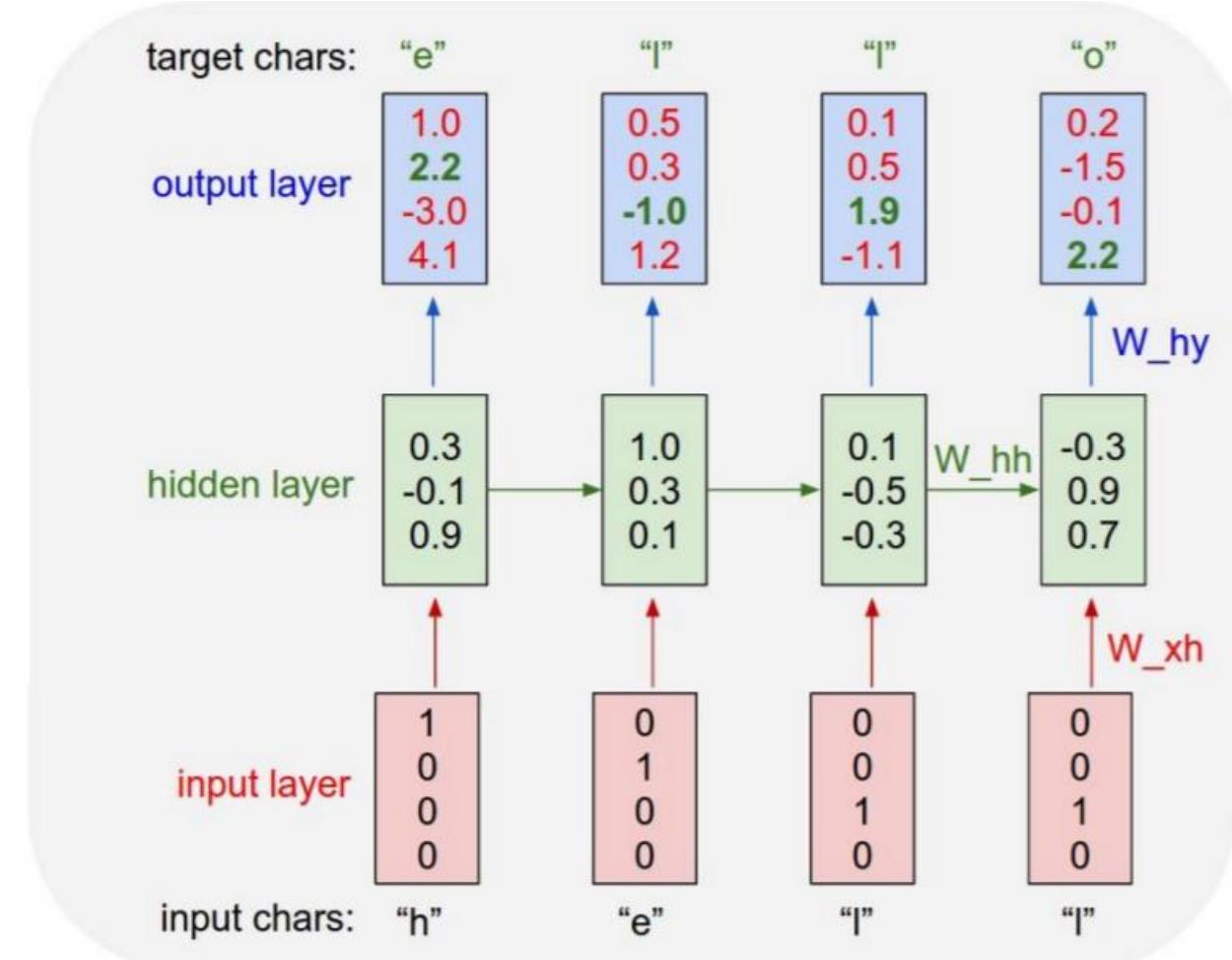
- **Hidden state:** a lossy summary of the past
- Shared functions / parameters
 - Reduce the capacity and good for **generalization**
- Uses the **knowledge** that sequential data can be processed in the same way at different time step
- Powerful (**universal**): any function computable by a Turing machine computed by such a RNN of a finite size
 - Siegelmann and Sontag (1995)

Example: Char. Level Language Model

- LM goal: predict next character:

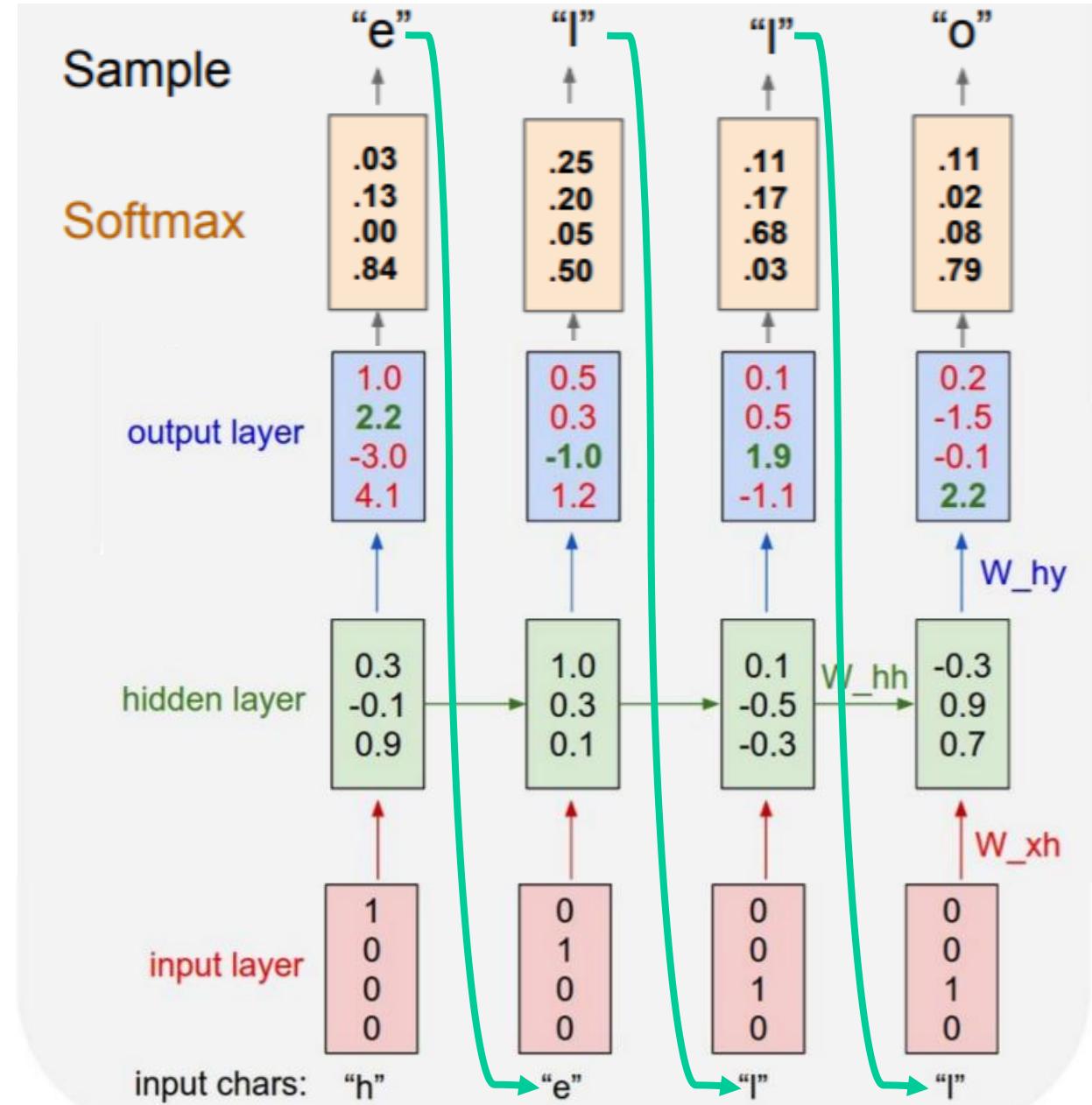
- Vocabulary
 $\{h, e, l, o\}$

- Training sequence:
“hello”



Example: Char. Level Language Model

- LM goal: predict next char
- Vocabulary
 $\{h, e, l, o\}$
- Training sequence:
“hello”
- Test time:
 - Sample chars and feed back into the model



Break & Quiz

Q: Are these statements true or false?

(A) Order matters in sequential data.

(B) A batch of sequential data always contains sequences of a same length.

1. True, True
2. True, False
3. False, True
4. False, False

Q: Are these statements true or false?

(A) Order matters in sequential data.

(B) A batch of sequential data always contains sequences of a same length.

1. True, True

2. **True, False**

3. False, True

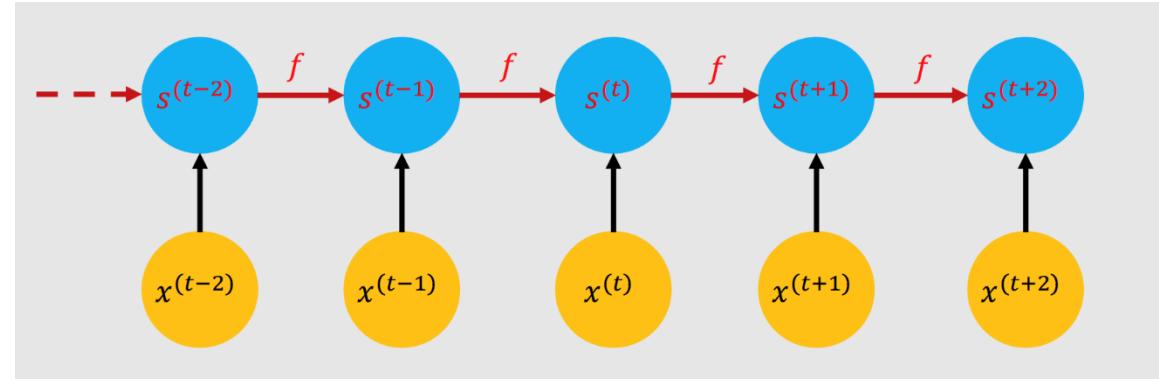
4. False, False

(A) As is shown by its name “sequential”, order matters in sequential data.

(B) A batch of sequential data can have different length, such as different sentences.

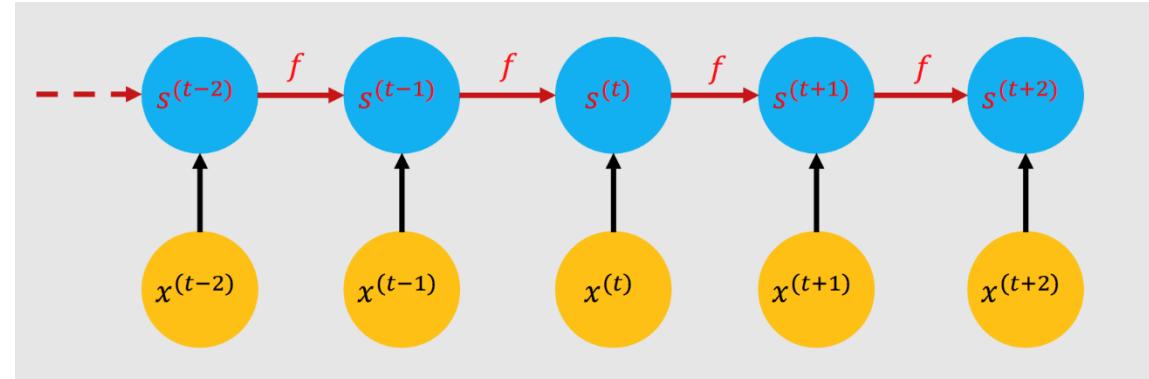
Q: Please choose the representation of $s^{(t+2)}$ in terms of $s^{(t)}, x^{(t)}, x^{(t+1)}, x^{(t+2)}$ in the following dynamic system $s^{(t+1)} = f_\theta(s^{(t)}, x^{(t+1)})$.

1. $f_\theta(s^{(t)}, x^{(t+1)})$
2. $f_\theta(s^{(t)}, x^{(t+2)})$
3. $f_\theta(f_\theta(s^{(t)}, x^{(t)}), x^{(t+1)})$
4. $f_\theta(f_\theta(s^{(t)}, x^{(t+1)}), x^{(t+2)})$



Q: Please choose the representation of $s^{(t+2)}$ in terms of $s^{(t)}, x^{(t)}, x^{(t+1)}, x^{(t+2)}$ in the following dynamic system $s^{(t+1)} = f_\theta(s^{(t)}, x^{(t+1)})$.

1. $f_\theta(s^{(t)}, x^{(t+1)})$
2. $f_\theta(s^{(t)}, x^{(t+2)})$
3. $f_\theta(f_\theta(s^{(t)}, x^{(t)}), x^{(t+1)})$
4. $f_\theta(f_\theta(s^{(t)}, x^{(t+1)}), x^{(t+2)})$



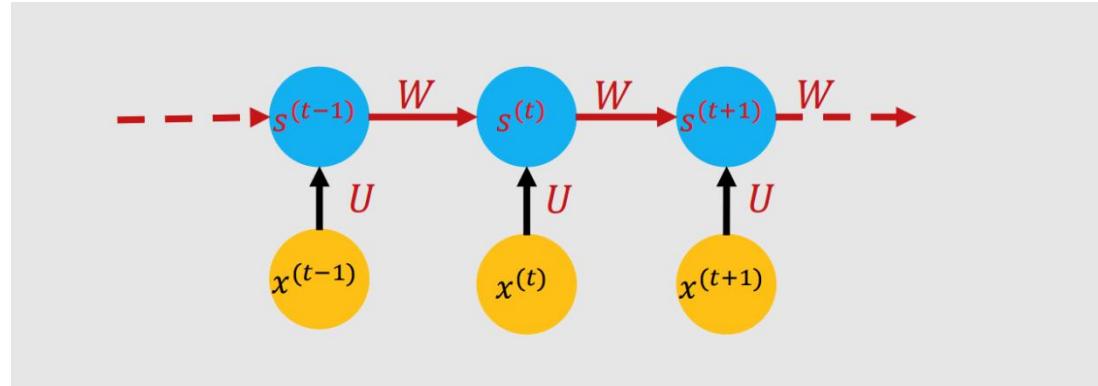
As is shown in this dynamic system, we have
 $s^{(t+2)} = f_\theta(s^{(t+1)}, x^{(t+2)}) = f_\theta(f_\theta(s^{(t)}, x^{(t+1)}), x^{(t+2)}),$
as $s^{(t+1)} = f_\theta(s^{(t)}, x^{(t+1)})$.

Q: Are these statements true or false?

(A) The hidden state $s^{(t)}$ is the linear combination of the previous hidden state $s^{(t-1)}$ and the external data $x^{(t)}$.

(B) Sharing functions and parameters in RNN leads to inherent limitation on the learning ability of the model.

1. True, True
2. True, False
3. False, True
4. False, False

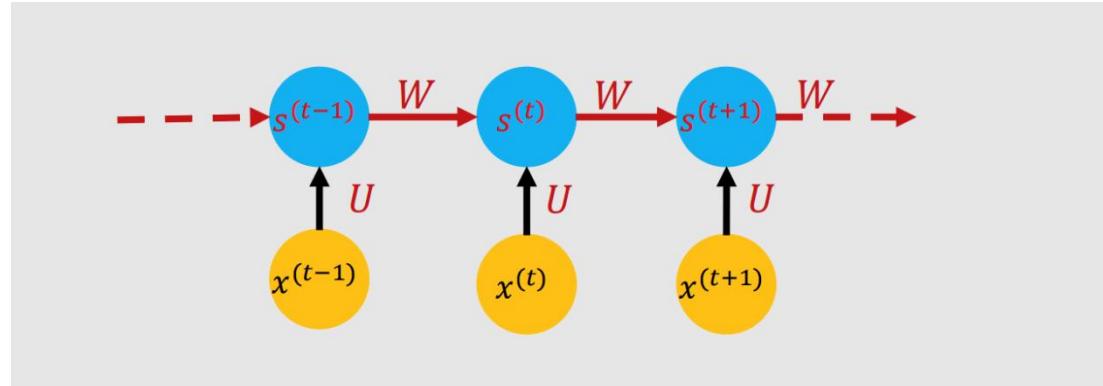


Q: Are these statements true or false?

(A) The hidden state $s^{(t)}$ is the linear combination of the previous hidden state $s^{(t-1)}$ and the external data $x^{(t)}$.

(B) Sharing functions and parameters in RNN leads to inherent limitation on the learning ability of the model.

1. True, True
2. True, False
3. False, True
4. **False, False**



(A) We need to use an activation function to compute the hidden states, so it's not linear.

(B) As is shown in the lecture, such RNN of a finite size can be universal.

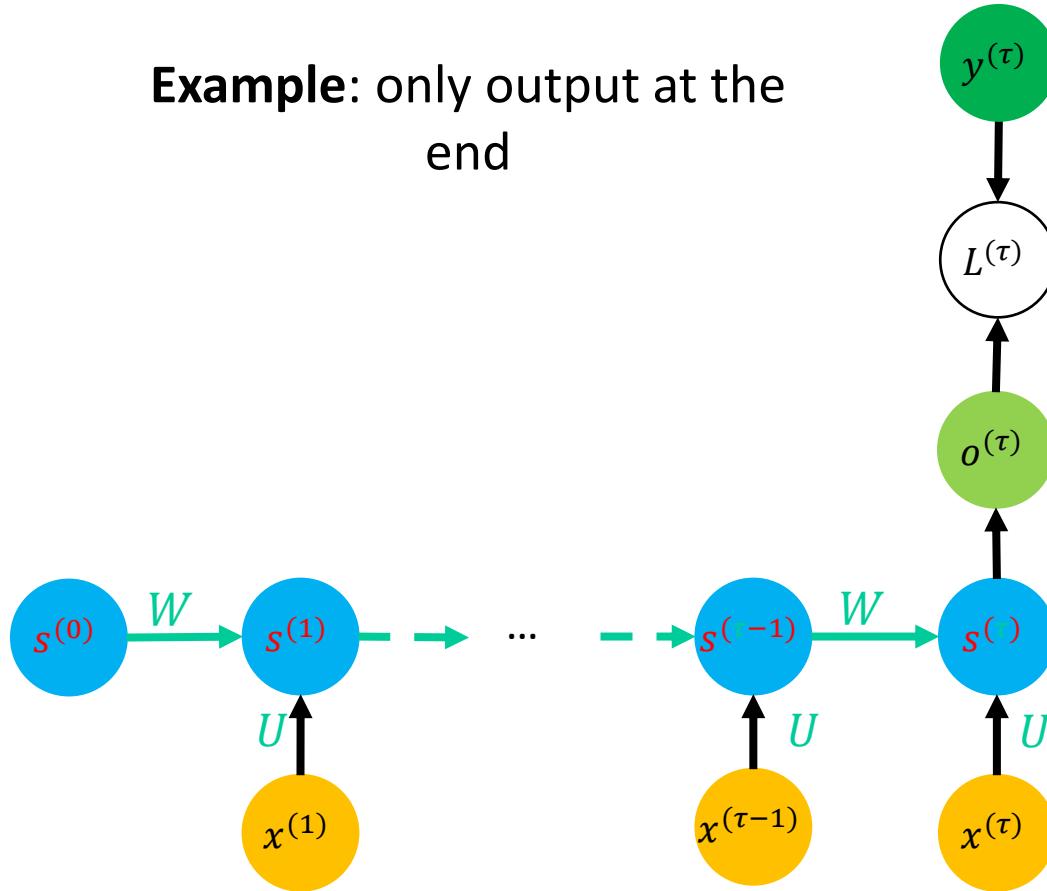
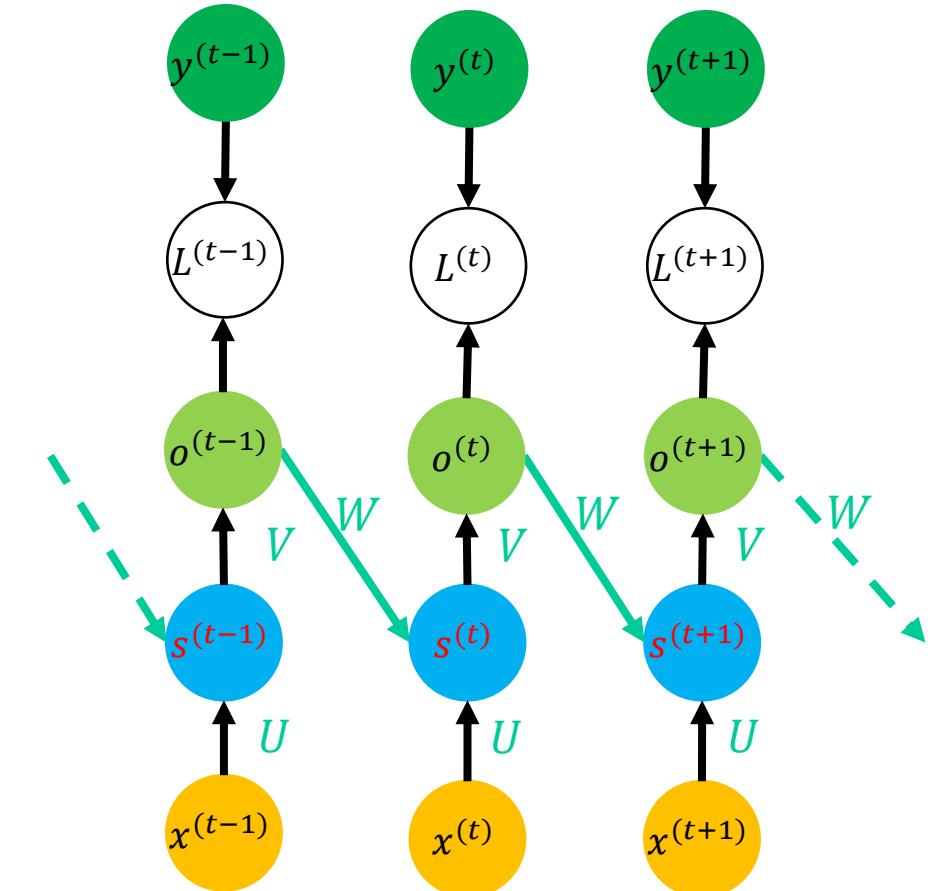
Outline

- **RNN basics**
 - sequential tasks, hidden state, vanilla RNN
- **RNN variants + LSTMs**
 - RNN training, variants, LSTM cells
- **Practical training**
 - data pipelines, initialization, hyperparameter tuning

RNN Variants

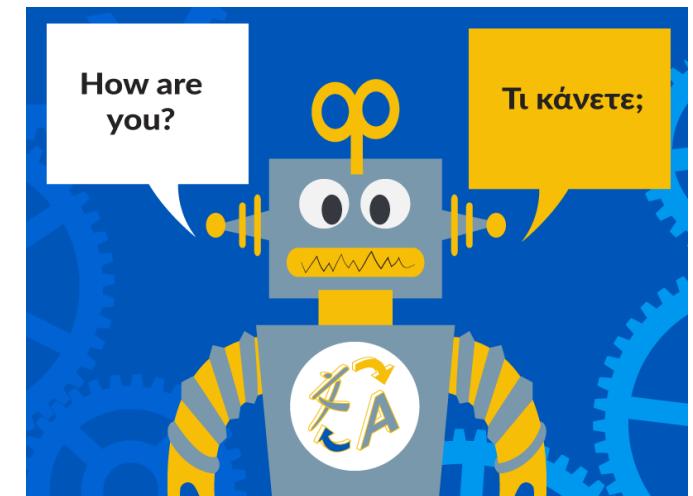
Example: use the output at the previous step

Example: only output at the end

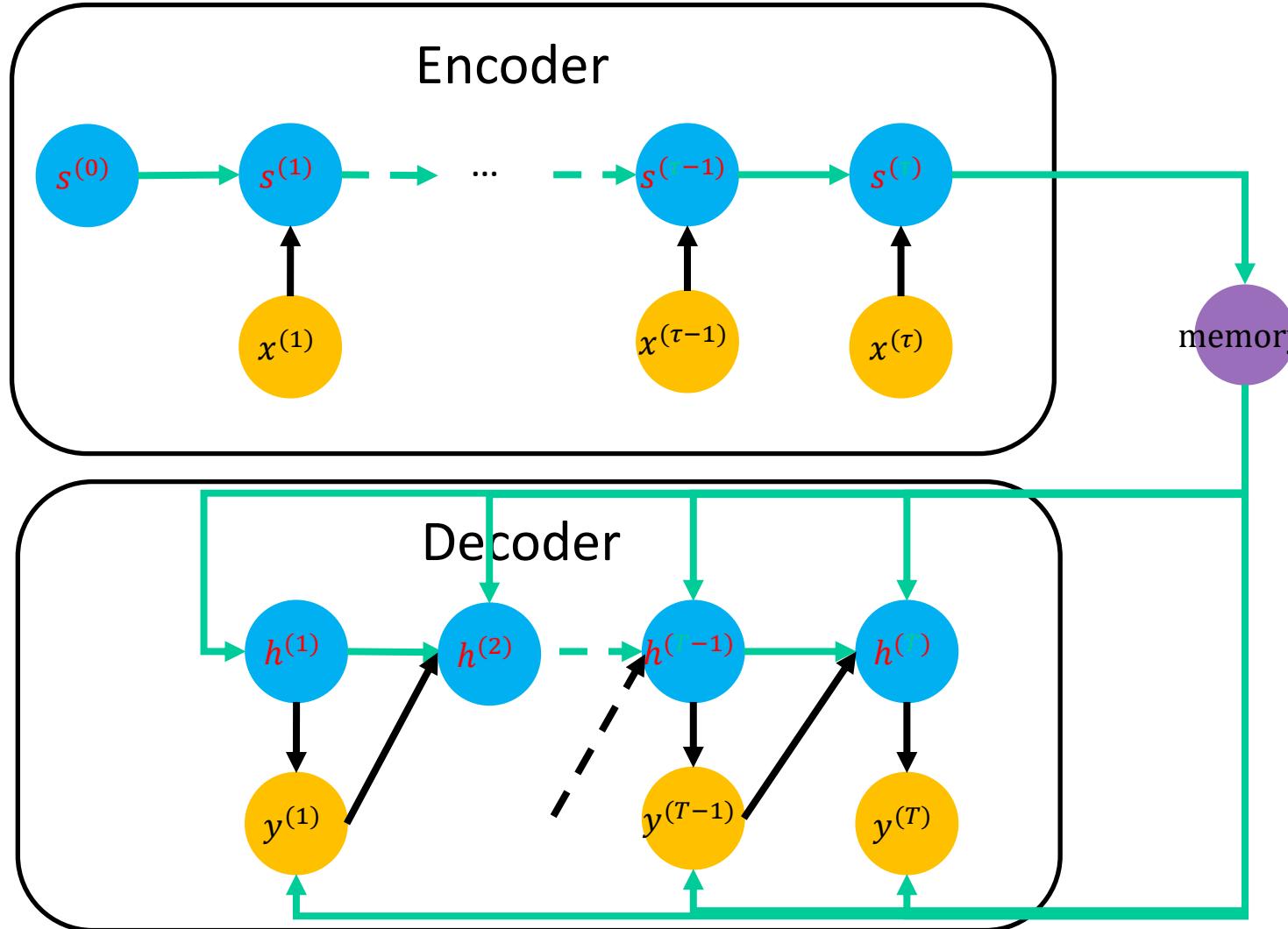


RNN Variants: Encoder/Decoder

- RNNs:
 - can map a sequence to one vector
 - or to sequences of same length
- What about mapping sequence to sequence of different length?
 - Ex: speech recognition, machine translation, question answering, etc.

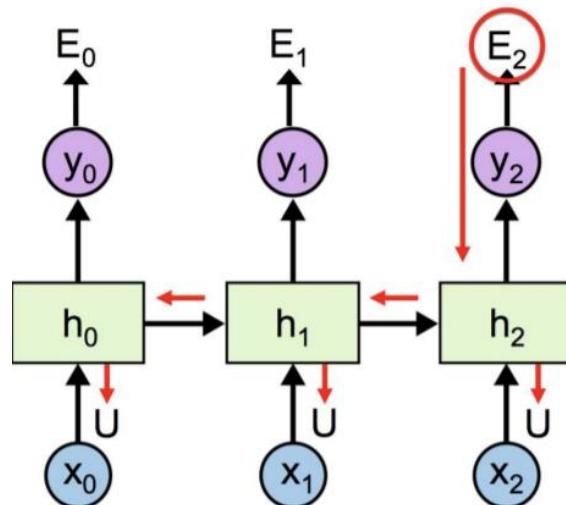


RNN Variants: Encoder/Decoder



Training RNNs

- How: Backpropagation Through Time
 - Idea: unfold the computational graph, and use backpropagation
- Conceptually: first compute the gradients of **the internal nodes**, then compute the gradients of **the parameters**



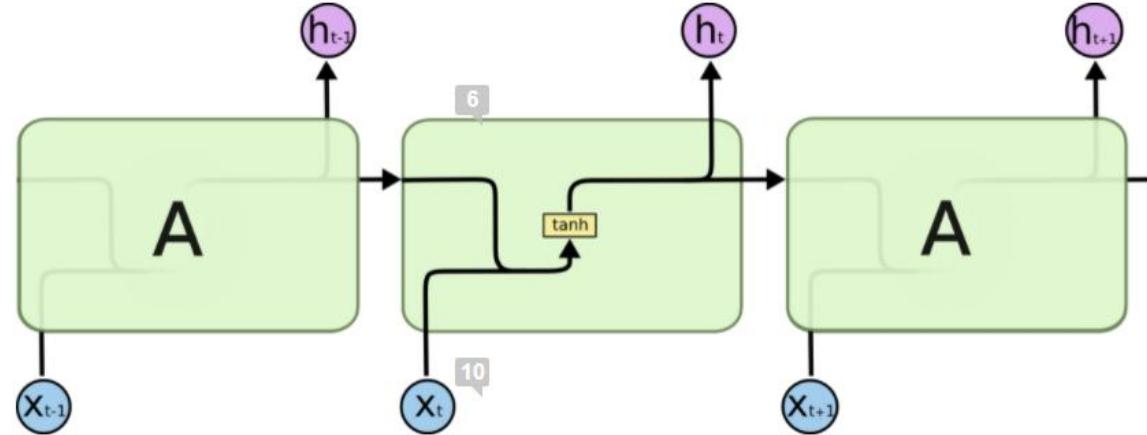
$$\frac{\partial E_2}{\partial U} = \frac{\partial E_2}{\partial h_2} \left(x_2^T + \frac{\partial h_2}{\partial h_1} \left(x_1^T + \frac{\partial h_1}{\partial h_0} x_0^T \right) \right)$$

RNN Problems

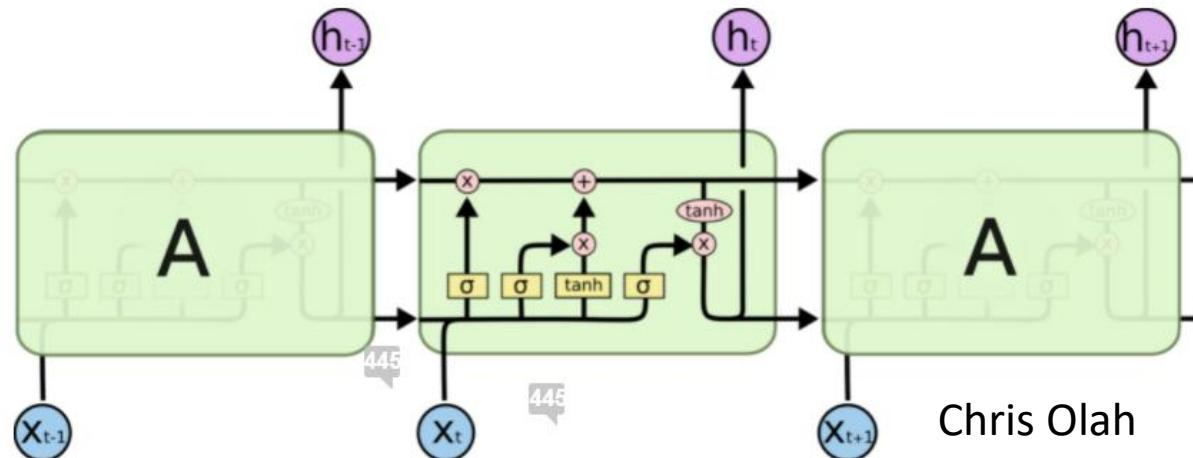
- What happens to gradients in backprop w. many layers?
 - In an RNN trained on long sequences (e.g. 100 time steps) the gradients can easily **explode or vanish**.
 - We can avoid this by initializing the weights very carefully.
- Even with good initial weights, very hard to detect that current target output **depends** on an input from long ago.
- RNNs have difficulty dealing with long-range dependencies.
- **Most popular solution: LSTMs**

LSTM Architecture

- RNN: can write structure as:



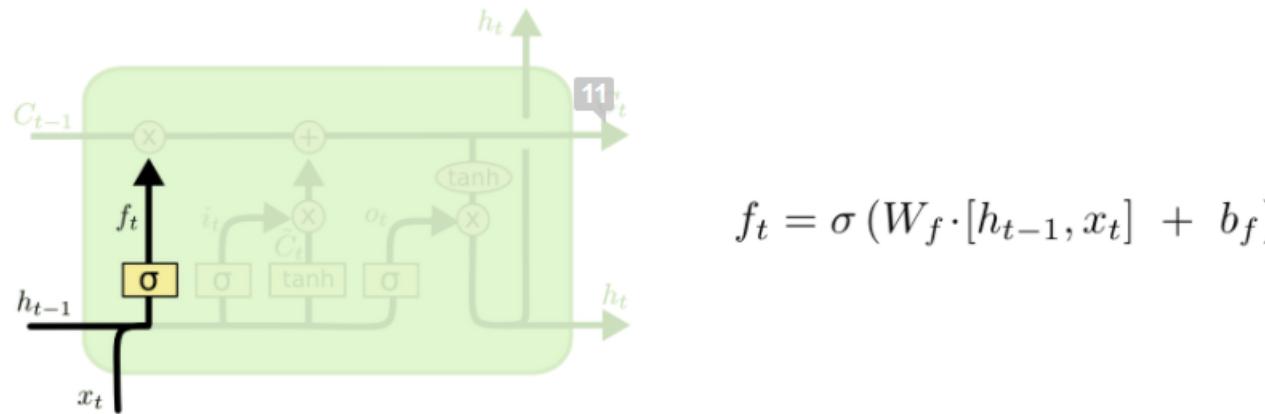
- Long Short-Term Memory:



Understanding the LSTM Cell

- Step-by-step

- Good reference: <https://colah.github.io/posts/2015-08-Understanding-LSTMs/>

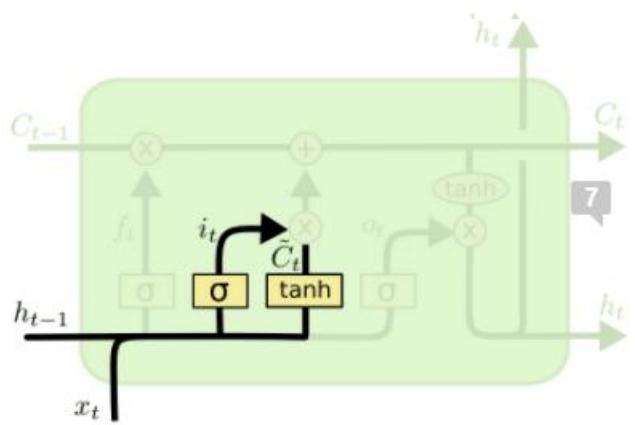


- “Forget” gate.

- Can remove all or part of any entry in cell state C
 - Note the sigmoid activation

Understanding the LSTM Cell

- Step-by-step

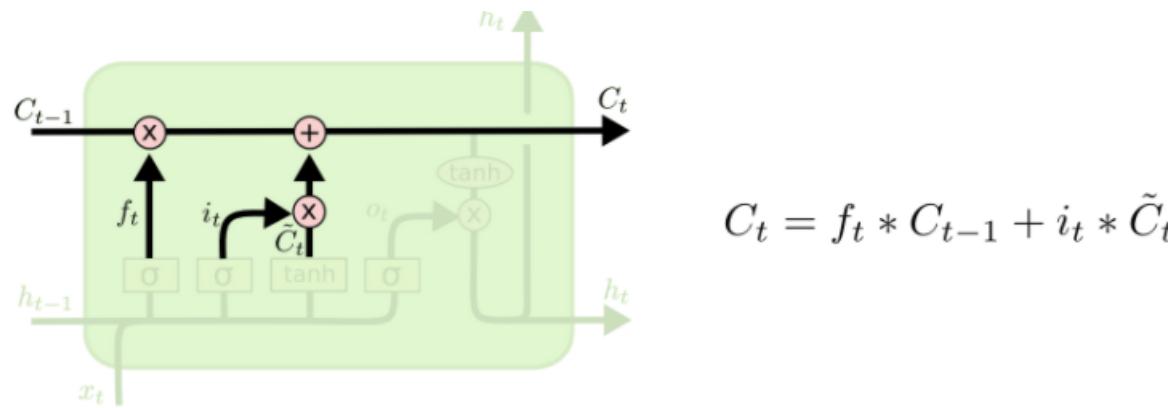


$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- **Input gate. Combine:**
 - What entries in C_{t-1} we'll update
 - Candidates for updating: \tilde{C}_t
 - Add information to cell state C_{t-1} (post-forgetting)

Understanding the LSTM Cell

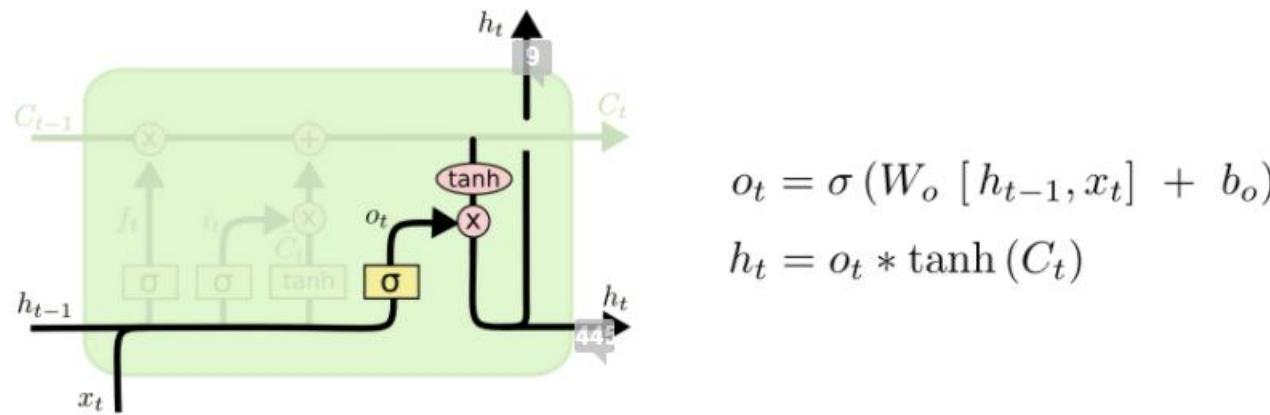
- Step-by-step



- Updating C_{t-1} to C_t
 - Forget, then
 - Add new information

Understanding the LSTM Cell

- Step-by-step



- **Output gate**
 - Combine hidden state, input as before, but also
 - Modify according to cell state C_t

Outline

- **RNN basics**

- sequential tasks, hidden state, vanilla RNN

- **RNN variants + LSTMs**

- RNN training, variants, LSTM cells

- **Practical training**

- data pipelines, initialization, hyperparameter tuning

Tips & Tricks: Initial Pipeline

First step: building a simple pipeline

- Set up data, model training, evaluation loop
- Use a fixed seed
 - Don't want to get different values each time
- Overfit on one batch
 - Goal: see that we can get zero loss, catch any bugs
- Check training loss: goes down?

Tips & Tricks: Data

- Shuffle the training data
 - In training, usually don't select random examples, but rather go through the dataset for each epoch
 - Shuffle to avoid relationships between consecutive points
- Pay attention to your data
 - Properties?

Tips & Tricks: Initialization

Usually want to pick small random values

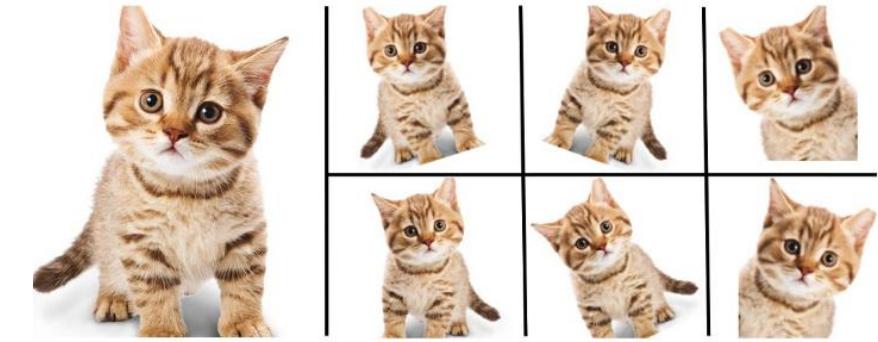
- Final layer, could use knowledge of problem.
 - Ex: if mean is u , initialize to u
- Don't want the same value: symmetry means every weights has same gradient, hard to break out of
- Multiple methods: various rules of thumb
 - Sample from a normal distribution
 - Note that #inputs affects the variance... grows as d^2 for d inputs. Can correct by dividing by $1/\sqrt{n}$

Tips & Tricks: Learning Rate Schedule

- Simple ways:
 - Constant
 - Divide by a factor ever certain number of epochs (annealing)
 - Look at validation loss and reduce on plateau
- Also simple: use an optimizer like Adam that internally tracks learning rates
 - In fact, per parameter step-size
- Lots of variations available

Tips & Tricks: Regularizing

- Best thing to do: get more data!
 - Not always possible or cheap, but start here.
- Augmentation
 - But make sure you understand the transformations
- Use other strategies: dropout, weight decay, early stopping
 - Check each strategy one-at-a-time



Enlarge your Dataset
Nanonets

Tips & Tricks: Hyperparameter Tuning

Many solutions:

- **Grid search:** pick candidate sets S_1, \dots, S_k for each hparam, search over every combination in $S_1 \times S_2 \times \dots \times S_k$
- **Random search**
- **Bayesian approaches**
- **Successive halving approaches**

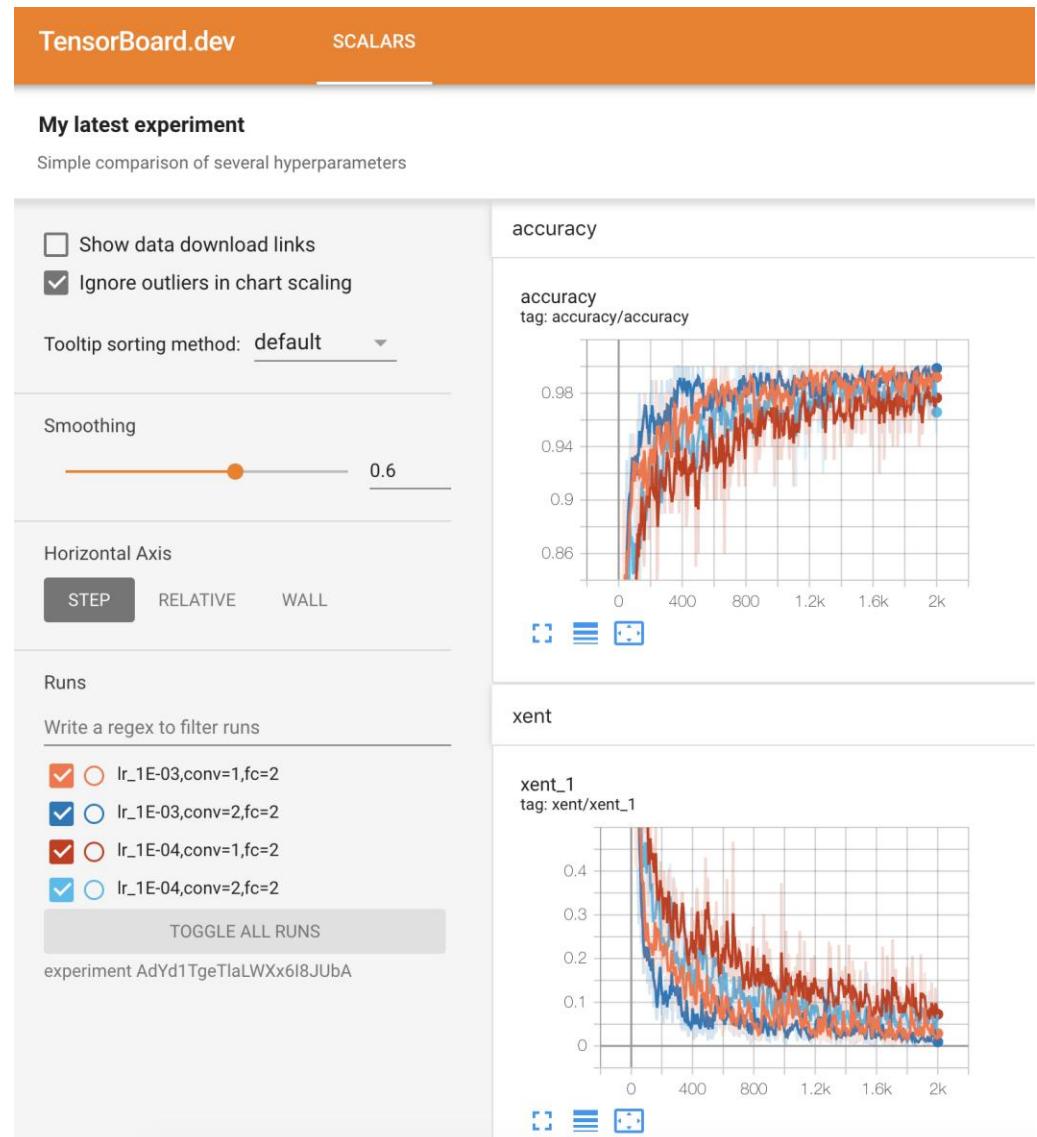
Tips & Tricks: Monitoring & Logging

- Checkpoint your models
 - Save weights regularly
- Log information from training process
 - At least keep track of train / test losses, time elapsed, current training settings. Log regularly

```
loading dataset FER2013...
building model...
WARNING:tensorflow: __init__ (from tensorflow.python.ops.init_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.initializers.variance_scaling instead with distribution=uniform to get equivalent behavior.
WARNING:tensorflow:From /home/jitendra_gtb11/.local/lib/python2.7/site-packages/tflearn/python/tflearn/layers/convolutional.py:103: Layer.__init__ (from tensorflow.python.layers.core) is deprecated and will be removed in a future version.
Instructions for updating:
keep_dims is deprecated, use keepdims instead
2018-09-27 19:49:34.298676: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
start training...
- emotions = 7
- model = B
- optimizer = 'momentum'
- learning_rate = 0.016
- learning_rate_decay = 0.864
- optimizer_params (momentum) = 0.95
- keep_prob = 0.956
- epochs = 1500
- use_landmarks = True
- use_hog + landmarks = True
- use_hog_sliding_window + landmarks = True
- use_batchnorm_after_conv = True
- use_batchnorm_after_fc = False
-----
Run id: 70MNF9
Log directory: logs/
[?25L-----
Training samples: 3436
Validation samples: 56
--
Training Step: 1 | time: 1.971s
[?2K
| Momentum | epoch: 001 | loss: 0.0000 - acc: 0.0000 -- iter: 0128/3436
[?1m[?32m1.81674[0m[0m | time: 3.367s
[?2K
| Momentum | epoch: 001 | loss: 1.81674 - acc: 0.0914 -- iter: 0256/3436
[?1m[?32m1.96555[0m[0m | time: 4.868s
[?2K
| Momentum | epoch: 001 | loss: 1.96555 - acc: 0.1700 -- iter: 0384/3436
[?1m[?32m2.20454[0m[0m | time: 6.358s
[?2K
| Momentum | epoch: 001 | loss: 2.20454 - acc: 0.1363 -- iter: 0512/3436
[?1m[?32m2.05230[0m[0m | time: 7.837s
[?2K
| Momentum | epoch: 001 | loss: 2.05230 - acc: 0.1122 -- iter: 0640/3436
[?1m[?32m1.97573[0m[0m | time: 9.321s
[?2K
```

Tips & Tricks: Monitoring & Logging

- Log information from training process
 - Use software packages
 - Also have built-in visualization
- Example: TensorBoard, WandB



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Sharon Li, Chris Olah, Fred Sala