
CS 760: Machine Learning
Midterm Review

Misha Khodak

University of Wisconsin-Madison

20 October 2025

Logistics

•Midterm: 75 min in-class October 22nd

•covers material through October 158th, focusing on
everything before neural networks (but still includes MLPs)
•mix of short answer and derivations
•one double-sided 8.5x11 cheat sheet
•no calculators
•practice midterm posted in today’s readings

•No office hours today (will still hold them tomorrow)

2

Outline

•Instance-based learning: k-NN, decision trees

•Evaluation: data splitting, metrics

•Parametric modeling: linear & logistic regression,
regularization, MLE, MAP

•Optimization: gradient descent, SGD, convergence

•Unsupervised learning: centroid clustering,
mixture models, PCA

•Neural networks: MLPs

Outline

•Instance-based learning: k-NN, decision trees

•Evaluation: data splitting, metrics

•Parametric modeling: linear & logistic regression,
regularization, MLE, MAP

•Optimization: gradient descent, SGD, convergence

•Unsupervised learning: centroid clustering,
mixture models, PCA

•Neural networks: MLPs

k-Nearest Neighbors

Training/learning: given

Prediction: for , find k most similar training points

Return plurality class

• i.e. among the k points, output most popular class.

Decision trees

Model: assign a label to inputs 𝐱 by
traversing a tree starting from the root node

• if at a leaf node, output the label

•else go to the branch of the tree
determined by the node feature index 𝑖
and the input’s corresponding feature 𝐱[𝑖]

• if categoric, determined by assigning 𝐱[𝑖]
to one of the category groupings

• if numeric, determined by whether 𝐱[𝑖]
is greater or less than a threshold

Learning: groupings, thresholds, and leaf
labels determined via greedy heuristics

thal

#_major_vessels > 0 present

normal fixed_defect

true false

present absent

Outline

•Instance-based learning: k-NN, decision trees

•Evaluation: data splitting, metrics

•Parametric modeling: linear & logistic regression,
regularization, MLE, MAP

•Unsupervised learning: centroid clustering,
mixture models, PCA

•Optimization: gradient descent, SGD, convergence

•Neural networks: MLPs

Accuracy of a Model

How can we estimate the
accuracy of a learned model?

•Typically: use a statistic ෠𝜃
that is an unbiased estimator
of 𝜃 computed over an
independent test set

𝔼 ෠𝜃 = 𝜃

labeled data set

training set test set

accuracy estimate

learned model

learning

method

Using a Test Set

• How can we estimate the accuracy of a learned model?
•When learning a model, you should pretend that you don’t

have the test data yet
• If the test-set labels influence the learned model in any way,

accuracy estimates will not be correct, as you may have
fitted to your test set.

• Don’t train on the test set!!!

Single Train/Test Split: Limitations

1. May not have enough data for sufficiently large
training/test sets
• A larger test set gives us more reliable estimate of accuracy

(i.e. a lower variance estimate)

• But… a larger training set will be more representative of
how much data we actually have for the learning process

2. A single training set cannot reveal how
sensitive accuracy is to specific training
samples.

Beyond Accuracy: Confusion Matrices

•How can we understand what types of mistakes a learned
model makes?

predicted class

actual class

task: activity recognition from video

Confusion Matrices: 2-Class Version

accuracy =
TP + TN

TP+FP+FN+TN

true positives
(TP)

true negatives
(TN)

false positives
(FP)

false negatives
(FN)

positive

negative

positive negative

predicted
class

actual class

error =1-accuracy =
FP + FN

TP+FP+FN+TN

Accuracy: Sufficient?

Accuracy may not be useful measure in cases where
• There is a large class skew
• Is 98% accuracy good when 97% of the instances are negative?

• There are differential misclassification costs – say, getting a
positive wrong costs more than getting a negative wrong
• Consider a medical domain in which a false positive results in an

extraneous test but a false negative results in a failure to treat a
disease

Other Metrics

true positive rate (recall) =
TP

actual pos
 =

TP

TP + FN

true positives
(TP)

true negatives
(TN)

false positives
(FP)

false negatives
(FN)

positive

negative

positive negative

predicted
class

actual class

false positive rate =
FP

actual neg
 =

FP

TN+ FP

Other Metrics: ROC Curves

•A Receiver Operating Characteristic (ROC) curve plots the TP-
rate vs. the FP-rate as a threshold on the confidence of an
instance being positive is varied

ideal point

1.0

1.0False positive rate

Tr
u

e
p

o
si

ti
ve

 r
at

e

Alg 1

Alg 2

expected curve for
random guessing

• increasing the threshold c
moves down along the curve

• different methods can work
better at different points

Other Metrics: Precision

recall (TP rate) =
TP

actual pos
 =

TP

TP + FN

true positives
(TP)

true negatives
(TN)

false positives
(FP)

false negatives
(FN)

positive

negative

positive negative

predicted
class

actual class

precision (positive predictive value) =
TP

predicted pos
 =

TP

TP+FP

Outline

•Instance-based learning: k-NN, decision trees

•Evaluation: data splitting, metrics

•Parametric modeling: linear & logistic regression,
regularization, MLE, MAP

•Optimization: gradient descent, SGD, convergence

•Unsupervised learning: centroid clustering,
mixture models, PCA

•Neural networks: MLPs

Linear Classification

•Let’s think probabilistically and learn

•How?
•Specify the conditional distribution
•Use MLE to derive a loss
•Run gradient descent (or related optimization algorithm)

• Leads to logistic regression

Likelihood Function

•Captures the probability of seeing some data as a function of
model parameters:

• If data is iid, we have

•Often more convenient to work with the log likelihood
• Log is a monotonic + strictly increasing function

Maximum Likelihood

•For some set of data, find the parameters that maximize the
likelihood / log-likelihood

•Example: suppose we have n samples from a Bernoulli
distribution

Then,

Maximum Likelihood: Example

•Want to maximize likelihood w.r.t. Θ

•Differentiate (use product rule) and set to 0. Get

•So: ML estimate is

ML: Conditional Likelihood

•Similar idea, but now using conditional probabilities:

• If data is iid, we have

•Now we can apply this to linear classification: yields
logistic regression.

Logistic Regression: Conditional Distribution

•Notation:

•Conditional Distribution:

Sigmoid

Logistic Regression: Loss

•Conditional MLE:

•So:

Or,

Logistic regression: Summary

•Logistic regression = sigmoid conditional distribution + MLE

•More precisely:
•Give training data iid from some distribution D,
•Train:

•Test: output label probabilities

Logistic Regression: Beyond Binary

•Let’s set, for y in 1,2,…,k

•Note: we have several weight vectors now (1 per class).

•To train, same as before (just more weight vectors).

Linear Regression: Setup

•Training/learning: given

•Find that minimizes

Loss function (how far are we)?

Hypothesis Class

Note: set x0 = 1

Linear Regression: Notation

•Matrix notation: set X to have jth row be

•And y to be the vector

•Can re-write the loss function as

Linear Regression: Fitting

•Set gradient to 0 w.r.t. the weight,

(assume 𝑿𝑻𝑿 is invertible)

Evaluation: Metrics

•MSE/RMSE (mean-square error + root version)

•MAE (mean average error)

•R-squared

High-dimensional linear regression

Data matrix 𝑋 is 𝑛 × 𝑑
•number of data points 𝑛

•number of features 𝑑

If 𝑛 > 𝑑 and X has full column rank then 𝑋⊤𝑋 is invertible

But what if 𝒅 ≫ 𝒏 ?
•e.g. a training set of 𝑛 =1K documents, each represented as a

bag-of-words vector (𝑋[𝑗,𝑖] = # 𝑡𝑖𝑚𝑒𝑠 𝑤𝑜𝑟𝑑 𝑖 𝑖𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑗)
with vocabulary size 𝑑 =10K

•now 𝑋⊤𝑋 will not be invertible

Solution: Regularization

•Same setup, new loss (Ridge regression):

•Conveniently, still has a closed form solution

•Goals:
• solves the problem of 𝑋⊤𝑋 not being invertible
• results in a 𝜃 with small norm, which is often less likely to overfit

regularization
parameter

Alternative regularization: LASSO

•Another type of regularization:

•unlike the ℓ2-norm, regularizing by the ℓ1-norm
is known to encourage a sparse 𝜃
• theoretical understanding of this phenomenon exists

under assumptions on 𝑋 and 𝑦 (compressed sensing)
• useful for both regularization and feature selection

regularization
parameter

Other things you can do with regularization

•combine ℓ1 and ℓ2 regularization (Elastic Net)

•feature selection: determine which features of
your model are important

•regularize classifiers like logistic regression
(just add a norm penalty to the MLE objective)

Probabilistic interpretation

the ordinary least squares (OLS) estimator 𝜃 = 𝑋𝑇𝑋 −1𝑋𝑇𝑦
estimator is the MLE of a Gaussian probabilistic model:

•𝑦(𝑖) ∼ 𝑁(𝜃⊤𝑥(𝑖), 𝜎2)

•assume variance 𝜎2 is known

Ridge regression and LASSO are MAP estimators of the
same probabilistic model with different priors for 𝜃

•Ridge regression: 𝜃 ∼ 𝑁(0𝑑 , 𝜏2𝐼𝑑)

•LASSO: 𝜃 ∼ Laplace(0𝑑, 𝜏)

• in both cases 𝜏 depends on 𝜎2 and 𝜆

•Let’s consider a different approach

•Need a little bit of terminology

• H is the hypothesis

• E is the evidence

Another Approach: Bayesian Inference

36

Bayesian Inference Definitions

•Terminology:

•Prior: estimate of the probability without evidence

Prior

37

Bayesian Inference Definitions

•Terminology:

•Likelihood: probability of evidence given a
hypothesis.
•Compare to the way we defined the likelihood earlier

Likelihood

38

Bayesian Inference Definitions

•Terminology:

•Posterior: probability of hypothesis given evidence.

Posterior

39

MAP Definition

•Suppose we think of the parameters as random variables
•There is a prior

•Then, can do learning as Bayesian inference
• “Evidence” is the data

•Maximum a posteriori probability (MAP) estimation

40

MAP vs ML

•What’s the difference between ML and MAP?

•the prior!

41

Outline

•Instance-based learning: k-NN, decision trees

•Evaluation: data splitting, metrics

•Parametric modeling: linear & logistic regression,
regularization, MLE, MAP

•Optimization: gradient descent, SGD, convergence

•Unsupervised learning: centroid clustering,
mixture models, PCA

•Neural networks: MLPs

Optimization in ML

in supervised learning, we

•have a training dataset of 𝑥 𝑖 , 𝑦(𝑖) pairs for 𝑖 = 1, … , 𝑛

•search a hypothesis space 𝐻 for a function ℎ that

•predicts well, i.e. ℎ 𝑥 𝑖 = 𝑦(𝑖) on most of the training data

• satisfies other constraints, e.g. simplicity so as not to overfit

Optimization in ML

often searching the hypothesis
space is an optimization problem:

•decision trees

min
ℎ 𝑥(𝑖) =𝑦(𝑖)

∀𝑖∈[𝑛]

𝑑𝑒𝑝𝑡ℎ(ℎ)

•parametric models

min
𝜃∈ℝ𝑑

෍

𝑖=1

𝑛

𝑙𝑜𝑠𝑠 ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝜃)

predicts
well

is simple

Iterative Methods: Gradient Descent

•What if there’s no closed-form solution?
•Use an iterative approach to gradually
get closer to the solution.

•Gradient descent:
•Suppose we’re computing
•Start at some

• Iteratively compute

•Stop after some # of steps
learning

rate/step size

Gradient Descent: Convergence

•Let’s analyze it. We’ll need some assumptions
• convex and differentiable objective
• has 𝐿-Lipschitz-continuous gradients

•Under these assumptions, we have the following guarantee:
• if we run 𝑇 steps of GD with fixed step size 𝛼 ≤ 1/𝐿 starting at 𝑥0,

then the 𝑇th iterate 𝑥𝑇 satisfies

minimizer

𝑓 𝑥𝑇 − 𝑓 𝑥∗ ≤
| 𝑥0 − 𝑥∗ |2

2

2𝑇𝛼

Gradient Descent: Drawbacks

•Why would we use anything but GD?

•Let’s go back to ERM.

•For GD, need to compute

•Each step: n gradient computations
• ImageNet: 106 samples… so for 100 iterations, 108 gradients

Solution: Stochastic Gradient Descent

•Simple modification to GD.

•Let’s use some notation: ERM:

•GD:

Note: this is what we’re optimizing over!
x’s are fixed samples.

Solution: Stochastic Gradient Descent

•Simple modification to GD:

•SGD:

•Here a is selected uniformly from 1,…,n (“stochastic” bit)
•Note: no sum!
• In expectation, same gradient as GD.
• In practice we often update using minibatches of data to

take advantage of (GPU) parallelism

Outline

•Instance-based learning: k-NN, decision trees

•Evaluation: data splitting, metrics

•Parametric modeling: linear & logistic regression,
regularization, MLE, MAP

•Optimization: gradient descent, SGD, convergence

•Unsupervised learning: centroid clustering,
mixture models, PCA

•Neural networks: MLPs

Clustering

Several types:

Partitional
- Centroid
- Graph-theoretic
- Spectral

Hierarchical
- Agglomerative
- Divisive

Bayesian
- Decision-based
- Nonparametric

K-Means Clustering

k-means is a type of partitional centroid-based clustering

Algorithm:

1. Randomly pick k cluster centers

K-Means Clustering: Algorithm

k-means clustering

2. Find closest center for each point

K-Means Clustering: Algorithm

k-means clustering

3. Update cluster centers by computing centroids

K-Means Clustering: Algorithm

k-means clustering

Repeat Steps 2 & 3 until convergence

K-means clustering (Lloyd’s) algorithm

Input: # clusters 𝑘, points 𝑥1, … , 𝑥𝑛

Step 1: select 𝑘 cluster centers 𝑐1, … , 𝑐𝑘

Step 2: for each point 𝑥 ∈ {𝑥1, … , 𝑥𝑛} determine its nearest cluster center:

𝑖𝑥 = argmin𝑖 𝑥 − 𝑐𝑖 2

Step 3: update cluster centers as the centroids:

𝑐𝑖 =
σ𝑥:𝑖𝑥=𝑖 𝑥

|{𝑥 ∶ 𝑖𝑥 = 𝑖}|

Repeat step 2 and 3 until the cluster centers no longer change

Questions on k-means

• What is k-means trying to optimize?

• Will k-means stop (converge)?

• Will it find a global or local optimum?

• How many clusters should we use?

• How to pick starting cluster centers?

෍

𝑥∈{𝑥1,…,𝑥𝑛}

𝑥 − 𝑐𝑖𝑥

2

Chris De Sa

Mixture Models

•Let us get back to modeling probability densities, but
unconditionally.

•Have dataset:

•One type of model: mixtures
•A function of a latent variable z
•Model:

Mixture Models: Gaussians

•Many different types of mixtures, but let us focus
on Gaussians.

•What does this mean?

•Latent variable z has some multinomial distribution,

•Then, let us make x be Gaussian conditioned on z

Mean Covariance Matrix

Gaussian Mixture Models: Likelihood

•How should we learn the parameters?

•Could try our usual way: maximum likelihood
• Log likelihood:

•Turns out to be hard to solve… inner sum leads to problems!

GMMs: Expectation Maximization

•EM :an algorithm for dealing with latent variable problems

•Iterative, alternating between two steps:
•E-step: estimate latent variable (probabilities) based on current model
•M-step: update the parameters of
•Note similarity to k-means clustering.

Jake VanderPlas

High-Dimensional Data

High-dimensions = lots of features

We’ve seen this repeatedly, but some examples:

•Document classification
•Features per document = thousands of words/unigrams,

millions of bigrams, contextual information

•Surveys - Netflix

 480189 users x 17770 movies

Dealing with Dimensionality

•PCA, Kernel PCA, ICA: Powerful unsupervised learning
techniques for extracting hidden (potentially lower
dimensional) structure from high dimensional datasets.
•Some uses:
• Visualization
•More efficient use of resources (e.g., time, memory,

communication)
•Noise removal (improving data quality)
• Further processing by machine learning algorithms

(representation transfer)

Principal Components Analysis

•Unsupervised technique for extracting variance structure
from high dimensional datasets
•also reduces dimensionality

•PCA: orthogonal projection / transformation of the data
• Into a (possibly lower dimensional) subspace
•Goal: maximize variance of the projected data

PCA: Principal Components

•Principal Components (PCs) are orthogonal directions that
capture most of the variance in the data.

•First PC – direction of greatest variability in data.
•Projection of data points along first PC discriminates data most

along any one direction

PCA: Principal Components and Projection

•How does dimensionality reduction work? From d
dimensions to r dimensions:

•Get orthogonal

•Maximizing variability
•Equivalent to minimizing reconstruction error

•Then project data onto PCs → d-dimensional
Victor Powell

PCA Dimensionality Reduction

•In high-dimensional problems, data sometimes lies near a
linear subspace, as noise introduces small variability

•Only keep data projections onto principal components with
large eigenvalues

•Can ignore the components of smaller significance.

0

5

10

15

20

25

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

V
ar

ia
n

ce
 (

%
)

similar to picking the number of clusters, can
look for a “knee” in the explained variance

Outline

•Instance-based learning: k-NN, decision trees

•Evaluation: data splitting, metrics

•Parametric modeling: linear & logistic regression,
regularization, MLE, MAP

•Optimization: gradient descent, SGD, convergence

•Unsupervised learning: centroid clustering,
mixture models, PCA

•Neural networks: MLPs

Perceptron: Simple Network

69

Perceptron: Components

[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960]

Linear Transformation + Activation Function

70

Perceptron: Representational Power

•Perceptrons can represent only linearly separable concepts

•Decision boundary given by:

x1

+ +
 + + +
 + -
 + - -
 + +
 + + -
+ + - -
 -
+ + -
 -
+ - - -

 - -

x2

71

Which Functions are Linearly Separable?

x1 x2

0 0
0 1
1 0
1 1

y

0
0
0
1

a
b
c
d

AND

a c

0 1

1

x1

x2

db

x1 x2

0 0
0 1
1 0
1 1

y

0
1
1
1

a
b
c
d

OR

b

a c

0 1

1

x1

x2

d

72

Which Functions are Linearly Separable?

x1 x2

0 0
0 1
1 0
1 1

y

0
1
1
0

a
b
c
d 0 1

1

x1

x2

b

a c

d

A multilayer perceptron
can represent XOR!

x1

x2
1

-1

1

1

1

-1

(assume activation is 𝜎 𝑥 = 1{𝑥>0})

XOR

73

Neural Network Components

… …

…
… …

…

Hidden variables ℎ1 ℎ2Input 𝑥 = ℎ0

First layer

ℎ𝐿

𝑦 = ℎ𝐿+1

Output layer

An 𝐿 + 1 -layer network

74

Hidden Layers

•Neuron takes weighted linear combination of the previous
representation layer
•Outputs one value for the next layer

…
…

ℎ𝑖 ℎ𝑖+1

75

Hidden Layers

•Outputs 𝑎 = 𝑟 𝑤𝑇𝑥 + 𝑏

•Typical activation function 𝑟
• threshold h 𝑧 = 1{𝑧≥0}

•ReLU ReLU 𝑧 = 𝑧 ⋅ 𝑡 𝑧 = max{0, 𝑧}
• sigmoid 𝜎 𝑧 = 1/ 1 + exp(−𝑧)
•hyperbolic tangent tanh 𝑧 = 2𝜎 2𝑧 − 1

•Why not linear activation functions?
•Model would be linear.

𝑎𝑥
𝑟(⋅)

76

Output Layer: Examples

•Regression: 𝑦 = 𝑤𝑇ℎ + 𝑏
• Linear units: no nonlinearity

•Multi-dimensional regression: 𝑦 = 𝑊𝑇ℎ + 𝑏
• Linear units: no nonlinearity

ℎ

𝑦

Output layer

ℎ

𝑦

Output layer

77

Output Layer: Examples

•Binary classification: 𝑦 = 𝜎(𝑤𝑇ℎ + 𝑏)
•Corresponds to using logistic regression on ℎ

•Multiclass classification:
•𝑦 = softmax 𝑧 where 𝑧 = 𝑊𝑇ℎ + 𝑏

ℎ

𝑦

Output layer

ℎ

𝑦

Output layer

𝑧

78

MLPs: Multilayer Perceptron

•Ex: 1 hidden layer, 1 output layer: depth 2

79

MLPs: Multilayer Perceptron

•Ex: 1 hidden layer, 1 output layer: depth 2

80

MLPs: Multilayer Perceptron

•Ex: 1 hidden layer, 1 output layer: depth 2

81

MLPs: Multilayer Perceptron

•Ex: 1 hidden layer, 1 output layer: depth 2

82

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov , Sharon Li, Chris Olah, Fred Sala, Tengyang Xie, Josiah Hanna, Kirthi Kandasamy

	Slide 1: CS 760: Machine Learning Midterm Review
	Slide 2: Logistics
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: k-Nearest Neighbors
	Slide 6: Decision trees
	Slide 7: Outline
	Slide 8: Accuracy of a Model
	Slide 9: Using a Test Set
	Slide 10: Single Train/Test Split: Limitations
	Slide 11: Beyond Accuracy: Confusion Matrices
	Slide 12: Confusion Matrices: 2-Class Version
	Slide 13: Accuracy: Sufficient?
	Slide 14: Other Metrics
	Slide 15: Other Metrics: ROC Curves
	Slide 16: Other Metrics: Precision
	Slide 17: Outline
	Slide 18: Linear Classification
	Slide 19: Likelihood Function
	Slide 20: Maximum Likelihood
	Slide 21: Maximum Likelihood: Example
	Slide 22: ML: Conditional Likelihood
	Slide 23: Logistic Regression: Conditional Distribution
	Slide 24: Logistic Regression: Loss
	Slide 25: Logistic regression: Summary
	Slide 26: Logistic Regression: Beyond Binary
	Slide 27: Linear Regression: Setup
	Slide 28: Linear Regression: Notation
	Slide 29: Linear Regression: Fitting
	Slide 30: Evaluation: Metrics
	Slide 31: High-dimensional linear regression
	Slide 32: Solution: Regularization
	Slide 33: Alternative regularization: LASSO
	Slide 34: Other things you can do with regularization
	Slide 35: Probabilistic interpretation
	Slide 36: Another Approach: Bayesian Inference
	Slide 37: Bayesian Inference Definitions
	Slide 38: Bayesian Inference Definitions
	Slide 39: Bayesian Inference Definitions
	Slide 40: MAP Definition
	Slide 41: MAP vs ML
	Slide 42: Outline
	Slide 43: Optimization in ML
	Slide 44: Optimization in ML
	Slide 45: Iterative Methods: Gradient Descent
	Slide 46: Gradient Descent: Convergence
	Slide 47: Gradient Descent: Drawbacks
	Slide 48: Solution: Stochastic Gradient Descent
	Slide 49: Solution: Stochastic Gradient Descent
	Slide 50: Outline
	Slide 51: Clustering
	Slide 52: K-Means Clustering
	Slide 53: K-Means Clustering: Algorithm
	Slide 54: K-Means Clustering: Algorithm
	Slide 55: K-Means Clustering: Algorithm
	Slide 56: K-means clustering (Lloyd’s) algorithm
	Slide 57: Questions on k-means
	Slide 58: Mixture Models
	Slide 59: Mixture Models: Gaussians
	Slide 60: Gaussian Mixture Models: Likelihood
	Slide 61: GMMs: Expectation Maximization
	Slide 62: High-Dimensional Data
	Slide 63: Dealing with Dimensionality
	Slide 64: Principal Components Analysis
	Slide 65: PCA: Principal Components
	Slide 66: PCA: Principal Components and Projection
	Slide 67: PCA Dimensionality Reduction
	Slide 68: Outline
	Slide 69: Perceptron: Simple Network
	Slide 70: Perceptron: Components
	Slide 71: Perceptron: Representational Power
	Slide 72: Which Functions are Linearly Separable?
	Slide 73: Which Functions are Linearly Separable?
	Slide 74: Neural Network Components
	Slide 75: Hidden Layers
	Slide 76: Hidden Layers
	Slide 77: Output Layer: Examples
	Slide 78: Output Layer: Examples
	Slide 79: MLPs: Multilayer Perceptron
	Slide 80: MLPs: Multilayer Perceptron
	Slide 81: MLPs: Multilayer Perceptron
	Slide 82: MLPs: Multilayer Perceptron
	Slide 83: Thanks Everyone!

