CS 760: Machine Learning
Midterm Review

Misha Khodak

University of Wisconsin-Madison

20 October 2025

Logistics

Midterm: 75 min in-class October 22n¢

*covers material through October 458, focusing on
everything before neural networks (but still includes MLPs)

*mix of short answer and derivations

*one double-sided 8.5x11 cheat sheet

*no calculators

epractice midterm posted in today’s readings

*No office hours today (will still hold them tomorrow)

Outline

*Instance-based learning: k-NN, decision trees
*Evaluation: data splitting, metrics

*Parametric modeling: linear & logistic regression,
regularization, MLE, MAP

*Optimization: gradient descent, SGD, convergence

*Unsupervised learning: centroid clustering,
mixture models, PCA

*Neural networks: MLPs

Outline

*Instance-based learning: k-NN, decision trees

k-Nearest Neighbors

Training/learning: given

{(xzW), gy W) (2@ 4@ o (2(m) (M)}

Prediction: for &, find k most similar training points
Return plurality class k

j = argmax » 1(y=y")

*i.e. among the k points, output most popular class.

Decision trees

Model: assign a label to inputs X by
traversing a tree starting from the root node

*if at a leaf node, output the label

*else go to the branch of the tree
determined by the node feature index i

and the input’s corresponding feature X[i]
* if categoric, determined by assigning X;;
to one of the category groupings
*if numeric, determined by whether X(i]
is greater or less than a threshold

Learning: groupings, thresholds, and leaf
labels determined via greedy heuristics

normal

thal

major_vessels >0

present

V\

fixed_defect

absent

Outline

*Evaluation: data splitting, metrics

Accuracy of a Model

How can we estimate the labeled data set
accuracy of a learned model? 1
. . . A training set test set

*Typically: use a statistic 0 °

that is an unbiased estimator 1 l

of 8 computed over an - N learned model

independent test set learning

P method | ==
_ y,
E[6] =6

accuracy estimate

Using a Test Set

* How can we estimate the accuracy of a learned model?

* When learning a model, you should pretend that you don’t
have the test data yet

* If the test-set labels influence the learned model in any way,
accuracy estimates will not be correct, as you may have
fitted to your test set.

e Don’t train on the test set!!!

Single Train/Test Split: Limitations

1. May not have enough data for sufficiently large
training/test sets

* Alarger test set gives us more reliable estimate of accuracy
(i.e. a lower variance estimate)

* But... a larger training set will be more representative of
how much data we actually have for the learning process

2. A single training set cannot reveal how
sensitive accuracy is to specific training
samples.

Beyond Accuracy: Confusion Matrices

*How can we understand what types of mistakes a learned

model makes?

actual class

task: activity recognition from video

bend (v 0 0
jackr 0 0
jump 0 0
piump 0 0
run - 0 0
sidef 0 0
skipf 0 0
walk - { 0 T
wavellF 0 0 0 0 0 0 0 0 33 4
vave2lr 0 0 0 0 0 0 0 0 0
belnd jalck jurlnp pgu'mp n:n szée slélp w;IK wa;e‘: wave2

predicted class

Confusion Matrices: 2-Class Version

actual class

A
a8 ~~

positive negative

(
positive true positives false positives
(TP) (FP)
predicted <
class

negative false negatives true negatives
(FN) (TN)

\

TP + TN
TP +FP+FN+TN

FP + FN
TP+ FP+ FN+TN

accuracy =

error =1—accuracy =

Accuracy: Sufficient?

Accuracy may not be useful measure in cases where

* There is a large class skew
* |s 98% accuracy good when 97% of the instances are negative?

* There are differential misclassification costs — say, getting a
positive wrong costs more than getting a negative wrong

* Consider a medical domain in which a false positive results in an
extraneous test but a false negative results in a failure to treat a
disease

Other Metrics

actual class
A
-~ =~
positive negative
r o, .
positive true positives false positives
(TP) (FP)
predicted <
class nesative false negatives true negatives
; (FN) (TN)
\.
TP TP

true positive rate (recall) = =

actual pos TP +FN

.. FP FP
false positive rate = —

actual neg TN +FP

Other Metrics: ROC Curves

* A Receiver Operating Characteristic (ROC) curve plots the TP-
rate vs. the FP-rate as a threshold on the confidence of an
instance being positive is varied

ideal point * increasing the threshold c
/ moves down along the curve
10t Alg 1
g 10 * different methods can work
© . .
o better at different points
£ Alg2 .~
8 ‘ expected curve for
g random guessmg
|_

1.

Ov

False positive rate

Other Metrics: Precision

actual class
A
-~ —~
positive negative
f
positive true positives false positives
(TP) (FP)
predicted <
class nesative false negatives true negatives
5 (FN) (TN)
\.
TP TP
recall (TP rate) = —

actual pos TP +FN

- » _ TP TP
precision (positive predictive value) = =

predicted pos TP +FP

Outline

*Parametric modeling: linear & logistic regression,
regularization, MLE, MAP

Linear Classification

*Let’s think probabilistically and learn Py (y|x)

*How?
* Specify the conditional distribution P@ (y|x)
* Use MLE to derive a loss
* Run gradient descent (or related optimization algorithm)

sig(t)

’—sig(t):#‘ 1.0
* Leads to logistic regression f_

0.2

Likelihood Function

e Captures the probability of seeing some data as a function of
model parameters:

L(0; X) = Py(X)
* |f data is iid, we have L(@;X) — Hpe(ajj)
J

*Often more convenient to work with the log likelihood
* Log is a monotonic + strictly increasing function

Maximum Likelihood

*For some set of data, find the parameters that maximize the
likelihood / log-likelihood

) = arg max L(0; X)
*Example: suppose we have n samples from a Bernoulli
distribution 9 =1
PQ(X = LU) = {
1—60 =0

Then, n

Maximum Likelihood: Example

\Want to maximize likelihood w.r.t. ©

L(0; X) = ﬁP(X =z;,) =01 -6)"F

Differentiate (use product rule) and set to 0. Get
"1 —-0)""""1(h—nh) =0
h

*S0o: ML estimate is é —
n

ML: Conditional Likelihood

*Similar idea, but now using conditional probabilities:
L(0;Y,X) = po(Y|X)

e |If data is iid, we have

L(6;Y, X) Hpg (y]x;)

* Now we can apply this to linear cIaSS|f|cat|on. yields
logistic regression.

Logistic Regression: Conditional Distribution
B 1 ~ exp(#)
 14exp(—z) 1+exp(z)

*Notation: 0 (2)

I

Sigmoid

e Conditional Distribution:

1
Py(y = 1|z) = (8" z) = 1 + exp(—60Tz)

Logistic Regression: Loss

*Conditional MLE:
log likelihood(é’\x(i), y(i)) = log P@(y(i) \az(i))

*So: . . 1 — (D)1 ()
min £(fp) = min —— ;bgPe(y)

Or,
1 - 1 '
min — — Z loga(HTx@) - Z log(1 —O'(HTQS(Z)))

0 n < .
y(’b)zl y(z):O

Logistic regression: Summary

Logistic regression = sigmoid conditional distribution + MLE

* More precisely:
* Give training data iid from some distribution D,

* Train: . . 1 ik ; ;
min £(fp) = min —— ;log Py(y |z

* Test: output label probabilities

1
Po(y = 1|z) = 0(0" 2) = 1 + exp(—0Tx)

Logistic Regression: Beyond Binary

eLet’s set, foryin1,2,...,k
exp((0°)" x)

Pyly = 1|lx) =
=) SF_ exp((09)T)

*Note: we have several weight vectors now (1 per class).
*To train, same as before (just more weight vectors).

1 N
TR o P O e
min n; og Py(y'"]x'")

Linear Regression: Setup
*Training/learning: given

{(zW),yW) (2@ y@)), o (2™ y(m))}

oFind fo(z) = 6" 2z =>"._,0;x; that minimizes

T Note: set x, = 1

Hypothesis Class € f@ Z (9 (3) (3))2
1 N— _/
] ~

Loss function (how far are we)?

Linear Regression: Notation

*Matrix notation: set X to have jth row be (m(j))T

* And y to be the vector [y(l), O 7y(n)]T

*Can re-write the loss function as

() = — (o) — y)? = X0~y

j=1

Linear Regression: Fitting

*Set gradient to 0 w.r.t. the weight,

Ve(fs) = V|1 X0 |3 = 0

— V[(X0—y)" (X0 —y)] =0

— V[0 X' X0 200 X y+y' y] =0
— 2X1 X6 —-2X1y =0

— 0= (X"X) "' X"y (assumex7Xisinvertible)

Evaluation: Metrics

*MSE/RMSE (mean-square error + root version)
* MAE (mean average error)

*R-squared

High-dimensional linear regression

Data matrix X isn X d
* number of data points n
e number of features d

If n > d and X has full column rank then X" X is invertible

But whatifd > n?

*e.g. a training set of n =1K documents, each represented as a
bag-of-words vector (X} ;; = # times word i is in document j)

with vocabulary size d =10K
enow X ' X will not be invertible

Solution: Regularization

*Same setup, new loss (Ridge regression):

(o) =+ 3 (fo(a) —y @) + (&
j=1

regularization

* Conveniently, still has a closed form solution
parameter

0= (X"X+) 'X"y

* Goals:
* solves the problem of X T X not being invertible
results in a 8 with small norm, which is often less likely to overfit

Alternative regularization: LASSO

* Another type of regularization:
1 | |
((fo) ==> (fo(x)) —y)* + A|6]I,
n -
J=1 \

regularization

. o parameter
* unlike the £,-norm, regularizing by the £;-norm

is known to encourage a sparse 6

* theoretical understanding of this phenomenon exists
under assumptions on X and y (compressed sensing)

 useful for both regularization and feature selection

Other things you can do with regularization

ecombine 1 and ¥, regularization (Elastic Net)

efeature selection: determine which features of
yvour model are important

*regularize classifiers like logistic regression
(just add a norm penalty to the MLE objective)

Probabilistic interpretation

the ordinary least squares (OLS) estimator 8 = (XTX)~1xTy
estimator is the MLE of a Gaussian probabilistic model:

oy(i) ~ N(QTx(i)’ 0'2)
eassume variance g? is known

Ridge regression and LASSO are MAP estimators of the
same probabilistic model with different priors for 6

*Ridge regression: 8 ~ N(04, 7%1;)
*LASSO: 8 ~ Laplace(0g4, 7)
*in both cases T depends on g% and 1

Another Approach: Bayesian Inference

*Let’s consider a different approach
*Need a little bit of terminology

P(E|H)P(H)
P(E)

P(H|E) =

* His the hypothesis
£ is the evidence

Bayesian Inference Definitions

*Terminology:

E‘H)P(H) < Prior
P(E)

p|E) =

*Prior: estimate of the probability without evidence

Bayesian Inference Definitions

*Terminology:

Likelihood

-~
P(E|H)P(H)

P(HIE) = ——p

Likelihood: probability of evidence given a
hypothesis.
Compare to the way we defined the likelihood earlier

Bayesian Inference Definitions

*Terminology:

E|H)P(H)
P(E)

p(|E) = 2
1

Posterior

*Posterior: probability of hypothesis given evidence.

MAP Definition

*Suppose we think of the parameters as random variables
*There is a prior P(Q)

*Then, can do learning as Bayesian inference

* “Evidence” is the data P(X‘Q)P(@)

POIY) = =55

* Maximum a posteriori probability (MAP) estimation

MAP _ (4)
0 arg mgxgp(w 0)p(6)

MAP vs ML

\What’s the difference between ML and MAP?

MLE _ (i)
0 arg max 71:[1 p(z'"|0)

MAP _ (3)
0 arg max | | p(a'"[0)p(6)

i=1
*the prior!

Outline

*Optimization: gradient descent, SGD, convergence

Optimization in ML
in supervised learning, we
*have a training dataset of (x(i),y(i)) pairsfori=1,..,n

esearch a hypothesis space H for a function h that

- predicts well, i.e. A(xY) = y® on most of the training data

* satisfies other constraints, e.g. simplicity so as not to overfit

Optimization in ML

often searching the hypothesis
space is an optimization problem:

edecision trees
min _depth(h)

h(x®)=y®
vie[n]\\
predicts

, is simple
*parametric models well /

n
grelliRr}i Z lOSS(hg (x(i)), y(i)) + penalty(0)
g

Iterative Methods: Gradient Descent

\What if there’s no closed-form solution?

*Use an iterative approach to gradually
get closer to the solution.

*Gradient descent:
e Suppose we’re computing min g(@)

» Start at some () 0

* Iteratively compute 9t+1 = 0, — an(Ht)

* Stop after some # of steps \
learning

rate/step size

Gradient Descent: Convergence

*Let’s analyze it. We'll need some assumptions
e convex and differentiable objective
* has L-Lipschitz-continuous gradients

*Under these assumptions, we have the following guarantee:

*if we run T steps of GD with fixed step size @« < 1/L starting at x,
then the T'th iterate x; satisfies

||XO—X*||%
2T«

flxr) —f(x¥) <

/

minimizer

Gradient Descent: Drawbacks

*Why would we use anything but GD?

*Let’s go back to ERM. arg min — {(h (i), (2)
et’s go back to heHnZ y)

*For GD, need to compute Vf(h(ﬂl’(i), y(i))

* Each step: n gradient computations
*ImageNet: 10° samples... so for 100 iterations, 10 gradients

Solution: Stochastic Gradient Descent

*Simple modification to GD.
eLet’s use some notation: ERM:

argmm—Z@ (9), y)

Note: this is what we’re optimizing over!
x’s are fixed samples.

8% ik . .
6D O =0 — - ng(f(et;x(z)),y(z))

Solution: Stochastic Gradient Descent

*Simple modification to GD:

em_et——Zw (6y; 2D, 5)

1—=1

*SGD: Orin = 0r — aNVL(f(Oy; :E(a)), y(a))

*Here a is selected uniformly from 1,...,n (“stochastic” bit)
* Note: no sum!
* In expectation, same gradient as GD.

* In practice we often update using minibatches of data to
take advantage of (GPU) parallelism

Outline

*Unsupervised learning: centroid clustering,
mixture models, PCA

Clustering

Several types:

-

-

4)

Partitional . . .
Centroid Hierarchical Bayesian
. - Agglomerative - Decision-based
- Graph-theoretic o :
- Divisive - Nonparametric
- Spectral
k-Means Clusters . Iris Species
++ %o o ++ %o
+4r * ° +,¢ * °
x 'i-:t-l-'+ O%OQ)O +1.|-rH ' X x%)ocbo
Ft 4 o ®) e x xO_ O
X e 28 @@cooo‘% Wy 4 x%x%o&‘?m%%
x% o9 06 © o "ggiﬁggﬂﬁ X ©
% o c?g o x XX o
(o] QS) [} o] " ?
g 8 oooo Cluster 1 + o OxIris setosa +
* o Cluster2 X 1 ./ x Iris versicolor X
1_:1:__7_—_____ Cluster3Q ./ ____lIrisvirginica (@)

K-Means Clustering

k-means is a type of partitional centroid-based clustering
Algorithm:
1. Randomly pick k cluster centers

® : ® Y
° : o o
®

K-Means Clustering: Algorithm

k-means clustering
2. Find closest center for each point

@)
© o 0o
@, e
O OO O
@, o @,
@,

K-Means Clustering: Algorithm

k-means clustering
3. Update cluster centers by computing centroids

@)
T ° * g -
@, e
O O O
O O

K-Means Clustering: Algorithm

k-means clustering
Repeat Steps 2 & 3 until convergence

O
o e
O @)
O " '
O
O
O

K-means clustering (LIloyd’s) algorithm

Input: # clusters k, points x4, ..., Xp,

Step 1: select k cluster centers ¢y, ..., C

Step 2: for each point x € {x4, ..., x,,} determine its nearest cluster center:
i = argmin;||x — ¢l

Step 3: update cluster centers as the centroids:
Zx:ix=i X

|{X Pl = l}l

Ci =

Repeat step 2 and 3 until the cluster centers no longer change

Questions on k-means
What is k-means trying to optimize? Z Hx _ CixHZ
Will k-means stop (converge)?
Will it find a global or local optimum?

How many clusters should we use?

How to pick starting cluster centers?

Chris De Sa

Mixture Models

et us get back to modeling probability densities, but
unconditionally.

*Have dataset: {(x(l), 35'(2), == ,.’L'(n)}

*One type of model: mixtures
* A function of a latent variable z

* Model:
p(x'V]2)p(z V)

Mixture Models: Gaussians

* Many different types of mixtures, but let us focus
on Gaussians.

*What does this mean? k
*Latent variable z has some multinomial distribution, > ¢ =1

2(1) ~ Multinomial(¢)

*Then, let us make x be Gaussian conditioned on z

v |z = j) ~ N(uj, 3;)

Mean Covariance Matrix

Gaussian Mixture Models: Likelihood

*How should we learn the parameters? ¢, u;, 23,

*Could try our usual way: maximum likelihood
* Log likelihood:

ENT> Zlog Z p(@D 2 1, 2)p(2;)

=1 z()—

* Turns out to be hard to solve... inner sum leads to problems!

GMMs: Expectation Maximization

*EM :an algorithm for dealing with latent variable problems

*lterative, alternating between two steps:

* E-step: estimate latent variable (probabilities) based on current model
* M-step: update the parameters of p(.’E‘Z)
* Note similarity to k-means clustering.

v Random Initialization _;* E-Step g‘ E-Step %‘ E-Step : ” Final Clustering
- & > L
o, L4 LA -
- . ‘\x- ‘o
¥ . M-S am. M-S
;?‘ ' tep Q‘ tep @0

@‘ o

@ Q ; @ * %

ol

Jake VanderPlas

High-Dimensional Data

High-dimensions = lots of features
We've seen this repeatedly, but some examples:

 Document classification

* Features per document = thousands of words/unigrams,
millions of bigrams, contextual information

*Surveys - Netflix

480189 users x 17770 movies

movie 1 | movie 2 | movie 3 | movie 4 | movie 5 | movie 6

Tom 5 ? 7 1 3 ?
George 7 7 3 1 2 5
Susan 4 3 1 ? 5 1
Beth 4 3 7 2 4 2

Dealing with Dimensionality

*PCA, Kernel PCA, ICA: Powerful unsupervised learning
techniques for extracting hidden (potentially lower
dimensional) structure from high dimensional datasets.

eSome uses:
* VVisualization

* More efficient use of resources (e.g., time, memory,
communication)

* Noise removal (improving data quality)

* Further processing by machine learning algorithms
(representation transfer)

original data space

PCA

Principal Components Analysis

*Unsupervised technique for extracting variance structure
from high dimensional datasets
* also reduces dimensionality

*PCA: orthogonal projection / transformation of the data

*Into a (possibly lower dimensional) subspace

* Goal: maximize variance of the projected data

PCA: Principal Components

*Principal Components (PCs) are orthogonal directions that
capture most of the variance in the data.

* First PC — direction of greatest variability in data.

* Projection of data points along first PC discriminates data most
along any one direction

PCA: Principal Components and Projection

*How does dimensionality reduction work? From d
dimensions to r dimensions:

*Get orthogonal V1, V9,...,U, € Rd

* Maximizing variability
* Equivalent to minimizing reconstruction error

*Then project data onto PCs - d-dimensional

Victor Powell

PCA Dimensionality Reduction

*In high-dimensional problems, data sometimes lies near a
linear subspace, as noise introduces small variability

*Only keep data projections onto principal components with
large eigenvalues

*Can ignore the components of smaller significance.

25 A

20 -

similar to picking the number of clusters, can
/ look for a “knee” in the explained variance

RN
(6]
1

Variance (%)

RN
o
1

)]
1

) [

PC1 PC2 PC3 P PC5 Ccé PC7 PC8 PC9 PC10

o

Outline

*Neural networks: MLPs

Perceptron: Simple Network

Input
X1
4% Y2 \
Y ’é \'A‘ Output
I

7)1 whz >0
10 otherwise

Perceptron: Components

Input
X
qg‘?\ x2 W
Y{_ 4 \A’ Output
_,Vup / A 1 wa Z O
o J(x) = |
./ @ 0 otherwise
d
w! x o(a) = 1 a=0 j(z) = o(w)

0 otherwise

Linear Transformation + Activation Function

[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960] 70

Perceptron: Representational Power

*Perceptrons can represent only linearly separable concepts

(@) 1 wlax>0

x _

q 0 otherwise
*Decision boundary given by: / Pd

Which Functions are Linearly Separable?

AND
X; X, y g
1 d]
a 00 0 \
b 01 0
C 10 0 P
d 11 1 0 1 x,
OR
X, X y g
1 %2 .]
a 00 0
b 01 1
C 10 1]
d 11 1

Which Functions are Linearly Separable?

XOR
X
X1 X Y .
a 00 0
b 01 1
C 10 1
d 11 0 0

A multilayer perceptron
can represent XOR!

(assume activation is (x) = 1ix>0y)

73

Neural Network Components

An (L + 1)-layer network

First layer

A
[\

4
@

Input x = h® Hidden variables h'

h2

Output layer

Hidden Layers

*Neuron takes weighted linear combination of the previous
representation layer
* Qutputs one value for the next layer

hi hi+1

Hidden Layers

*Outputs a = r(w'x + b) 0

*Typical activation function r

*threshold h(z) = 1(,-¢y

*RelU ReLU(z) = z - t(z) = max{0, z}
*sigmoid (z) = 1/(1 + exp(—2)) /

* hyperbolic tangent tanh(z) = 20(2z) — 1

*Why not linear activation functions?
* Model would be linear.

Output Layer: Examples

*Regression: y = w'h + b
e Linear units: no nonlinearity

* Multi-dimensional regression: vy = W h + b
* Linear units: no nonlinearity

Output layer Output layer

\ \
| [|

- 90009 |

Output Layer: Examples

*Binary classification: y = o(w'h + b)
* Corresponds to using logistic regression on h

* Multiclass classification:
*y = softmax(z) wherez =W'h+b

Output layer Output layer
I I

| [

- 90009 |

MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2

Hidden layer
3 neurons
Input d
1 — (1)
w(h hy = o() xw + b))
1

x € R4 (1)
Wis

%%

MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2

Hidden layer
3 heurons
Input
X1 (1) .
R
X € R h2 i O'(2 .xiwz(il) —+ bz)

W, :

MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2

Hidden layer

3 neurons
Input

131

D
1
=1

MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2

Hidden layer
m=3 neurons

Input d L o
Sigmoid activation
_ (1)
hy = o Z xw + b)) e
X1 =1 Output
x € R? (1) Wy c
x2]

©

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov , Sharon Li, Chris Olah, Fred Sala, Tengyang Xie, Josiah Hanna, Kirthi Kandasamy

	Slide 1: CS 760: Machine Learning Midterm Review
	Slide 2: Logistics
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: k-Nearest Neighbors
	Slide 6: Decision trees
	Slide 7: Outline
	Slide 8: Accuracy of a Model
	Slide 9: Using a Test Set
	Slide 10: Single Train/Test Split: Limitations
	Slide 11: Beyond Accuracy: Confusion Matrices
	Slide 12: Confusion Matrices: 2-Class Version
	Slide 13: Accuracy: Sufficient?
	Slide 14: Other Metrics
	Slide 15: Other Metrics: ROC Curves
	Slide 16: Other Metrics: Precision
	Slide 17: Outline
	Slide 18: Linear Classification
	Slide 19: Likelihood Function
	Slide 20: Maximum Likelihood
	Slide 21: Maximum Likelihood: Example
	Slide 22: ML: Conditional Likelihood
	Slide 23: Logistic Regression: Conditional Distribution
	Slide 24: Logistic Regression: Loss
	Slide 25: Logistic regression: Summary
	Slide 26: Logistic Regression: Beyond Binary
	Slide 27: Linear Regression: Setup
	Slide 28: Linear Regression: Notation
	Slide 29: Linear Regression: Fitting
	Slide 30: Evaluation: Metrics
	Slide 31: High-dimensional linear regression
	Slide 32: Solution: Regularization
	Slide 33: Alternative regularization: LASSO
	Slide 34: Other things you can do with regularization
	Slide 35: Probabilistic interpretation
	Slide 36: Another Approach: Bayesian Inference
	Slide 37: Bayesian Inference Definitions
	Slide 38: Bayesian Inference Definitions
	Slide 39: Bayesian Inference Definitions
	Slide 40: MAP Definition
	Slide 41: MAP vs ML
	Slide 42: Outline
	Slide 43: Optimization in ML
	Slide 44: Optimization in ML
	Slide 45: Iterative Methods: Gradient Descent
	Slide 46: Gradient Descent: Convergence
	Slide 47: Gradient Descent: Drawbacks
	Slide 48: Solution: Stochastic Gradient Descent
	Slide 49: Solution: Stochastic Gradient Descent
	Slide 50: Outline
	Slide 51: Clustering
	Slide 52: K-Means Clustering
	Slide 53: K-Means Clustering: Algorithm
	Slide 54: K-Means Clustering: Algorithm
	Slide 55: K-Means Clustering: Algorithm
	Slide 56: K-means clustering (Lloyd’s) algorithm
	Slide 57: Questions on k-means
	Slide 58: Mixture Models
	Slide 59: Mixture Models: Gaussians
	Slide 60: Gaussian Mixture Models: Likelihood
	Slide 61: GMMs: Expectation Maximization
	Slide 62: High-Dimensional Data
	Slide 63: Dealing with Dimensionality
	Slide 64: Principal Components Analysis
	Slide 65: PCA: Principal Components
	Slide 66: PCA: Principal Components and Projection
	Slide 67: PCA Dimensionality Reduction
	Slide 68: Outline
	Slide 69: Perceptron: Simple Network
	Slide 70: Perceptron: Components
	Slide 71: Perceptron: Representational Power
	Slide 72: Which Functions are Linearly Separable?
	Slide 73: Which Functions are Linearly Separable?
	Slide 74: Neural Network Components
	Slide 75: Hidden Layers
	Slide 76: Hidden Layers
	Slide 77: Output Layer: Examples
	Slide 78: Output Layer: Examples
	Slide 79: MLPs: Multilayer Perceptron
	Slide 80: MLPs: Multilayer Perceptron
	Slide 81: MLPs: Multilayer Perceptron
	Slide 82: MLPs: Multilayer Perceptron
	Slide 83: Thanks Everyone!

