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Announcements

•Homework 3 due November 5th

•Reminder: no class November 26th



Outline

•Language Models & NLP
•RNNs, word embeddings, attention

•Transformer Model
•Properties, architecture breakdown

•Transformer-based Models
•  BERT, GPTs, Foundation Models
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•One way to encode words: one-hot vectors
•Want something smarter…

Distributional semantics: account for relationships

•Representations should be close/similar to other words that 
appear in a similar context

Dense vectors:

AKA word embeddings

Language Models: Word Embeddings



Training Word Embeddings

Many approaches (very popular 2010-present)
•Word2vec: a famous approach

•Write out a likelihood

Our word vectors (weights)

All positions

Windows of length 2a



Training Word Embeddings

Word2vec likelihood

•Expression for the probability:

•𝜃𝑤,𝑜: occurrence vector for word 𝑤
•𝜃𝑤,𝑐: context vector for word 𝑤

𝑃(𝑤′|𝑤, 𝜃) =
exp((𝜃𝑤′,𝑜)

⊤𝜃𝑤,𝑐)

∑𝑣∈𝑉exp((𝜃𝑣,𝑜)
⊤𝜃𝑤,𝑐)



Language Models: RNN Review

•Classical RNN model / Encoder-Decoder variant:
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Chris Olah

Language Models: LSTM Review

•RNN: can write structure as:

•Long Short-Term Memory: deals with problem. Cell:



Language Models: Attention

•One challenge: dealing with the hidden state
•Everything gets compressed there
•Might lose information

•Solution: attention mechanism
•  Similar to residual connections in ResNets!



Language Models: Putting it All Together

•Before 2017: best language models
•Use encoder/decoder architectures based on RNNs 
•Use word embeddings for word representations
•Use attention mechanisms
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Transformers: Idea

•Initial goal for an architecture: encoder-decoder
•Get rid of recurrence
•Replace with self-attention

Vaswani et al. ‘17



Transformers: Architecture

•Sequence-sequence model with stacked encoders/decoders:
•For example, for French-English translation:

Excellent resource: https://jalammar.github.io/illustrated-transformer/



Transformers: Architecture

•Sequence-sequence model with stacked encoders/decoders:
•What’s inside each encoder/decoder unit?



Transformers: Inside an Encoder

•Let’s take a look at the encoder. Two components:
•1. Self-attention layer
•2. Feedforward nets



Transformers: Self-Attention

•Self-attention is the key layer in a transformer stack
•Get 3 vectors for each embedding: Query, Key, Value



Transformers: Self-Attention

•Self-attention is the key layer 
in a transformer stack
• Illustration. Recall the three 

vectors for each embedding: 
Query, Key, Value

•The sum values are the outputs 
of the self-attention layer 

•Send these to feedforward NNs

•Highly parallelizable!



Transformers: Multi-Headed Attention

•We can do this multiple times in parallel
•Called multiple heads
•Need to combine the resulting output sums



Transformers: Attention Visualization

•Attention tells us where to focus the information
• Illustration for a sentence:



Transformers: Positional Encodings

•One thing we haven’t discussed: the order of the 
symbols/elements in the sequence
•Add a vector containing a special positional formula’s embedding



Transformers: More Tricks

•Recall a big innovation for ResNets: residual connections
•And also layer normalizations
•Apply to our encoder layers



Transformers: Decoder

•  Similar to encoders (see blog post for more details).

•  E.g. Generating a translation



Transformers: Putting it All Together

•What does the full architecture look like?
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Transformer-Based Models: BERT

•  Semi-supervised learning + Transformers

•Semi-supervised learning to learn embeddings in encoder



BERT: Concepts

•What makes BERT work? A bunch of ideas:
•1. Use the Transformer architecture 
•2. Pre-training on corpora using pretext tasks

• Then fine-tune for a particular task

•3. Scale: BERT-Large has 340 million parameters

Results: Devlin et al, BERT: Pre-training of Deep Bidirectional 
Transformers for Language Understanding



BERT: Training

•BERT is trained on a simple tasks on a huge amount of data:
•Recall our pretext tasks in self-supervised learning
•Masked word prediction:



BERT: Classification

•Then, fine-tune on a particular task
•Example: binary classification, spam VS not spam



GPT Series of Models

•GPT: Generative Pre-trained Transformer
•Also built on top of transformer model architecture
•Essentially the decoder part only 

•Goal: generate text (possibly from a prompt)

•Scale: huge!
•GPT-3: 175 billion parameters



Codex

•Codex: a variant of GPT-3 based on source code
•Outputs code. Ex: show primes

Russell Foltz-Smith



DALL-E

•Create images from text
•Prompt: “an armchair in the shape of an avocado. . . .”

•Note: several online demos. Try it yourself!

https://openai.com/blog/dall-e/

https://huggingface.co/stabilityai/stable-diffusion-3.5-large



Foundation Models

•Many more large scale models
•Not just focused on text

Bommasani et al, “On the Opportunities and Risks of Foundation Models”



Conclusion

•“Foundation” models based on transformers and beyond
•Huge, expensive to train, challenging in various ways… but
•Remarkably powerful for a vast number of tasks.
•AGI??

Bommasani et al, “On the Opportunities and Risks of Foundation Models”



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, Jay Alammar, Fred Sala, Kirthi Kandasamy, Tengyang Xie
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