>

CS 760: Machine Learning
Language Models

Misha Khodak

University of Wisconsin-Madison
27 October 2025

- qﬁ.g‘(.:.:".y,-.w. ..‘.; vt

A

Announcements

eHomework 3 due November 5t"

eReminder: no class November 26t"

Outline

Language Models & NLP
*RNNs, word embeddings, attention

*Transformer Model
*Properties, architecture breakdown

*Transformer-based Models
 BERT, GPTs, Foundation Models

Outline

Language Models & NLP
*RNNs, word embeddings, attention

Language Models: Word Embeddings

*One way to encode words: one-hot vectors
* Want something smarter...

Distributional semantics: account for relationships

*Representations should be close/similar to other words that
appear in a similar context

Dense vectors:

dog=[0.13 0.87 —0.23 046 087 —031]"
cat = [0.07 1.03 —043 —021 111 —0.34]"

AKA word embeddings

Training Word Embeddings

Many approaches (very popular 2010-present)
*Word2vec: a famous approach
*Write out a likelihood

Wlndows of length 2a

T
H P(wij|we, 0)

—a<j<a

/

Our word vectors (weights)

All positions

Training Word Embeddings

*Expression for the probability:

exp((8,y 5) " Ow,c)
Zvevexp ((Hv,o)T Hw,c)

*0, o: occurrence vector for word w
*0,, ¢: context vector for word w

P(w'|lw,0) =

Language Models: RNN Review

*Classical RNN model / Encoder-Decoder variant:

Encoder

“Y ﬁ

o1 0 (t) ot+D) /

AN

Decoder

Language Models: LSTM Review

*RNN: can write structure as:

& ® 6

,ﬁ t - Ay ¥

=t

| o]

&)) &)

*Long Short-Term Memory: deals with problem. Cell:

& ®)

o [TEAL A]

é CID (g!) Chris Olah

Language Models: Attention

*One challenge: dealing with the hidden state
* Everything gets compressed there
* Might lose information

*Solution: attention mechanism
e Similar to residual connections in ResNets!

(a) Vanilla Encoder Decoder Architecture (b) Attention Mechanism

Language Models: Putting it All Together

*Before 2017: best language models
* Use encoder/decoder architectures based on RNNs
* Use word embeddings for word representations
e Use attention mechanisms

(a) Vanilla Encoder Decoder Architecture (b) Attention Mechanism

Outline

*Transformer Model
*Properties, architecture breakdown

Transformers: Idea

*Initial goal for an architecture: encoder-decoder
* Get rid of recurrence
* Replace with self-attention

Add & Norm

Feed
Forward
4 1 N\ | Add & Norm g
Add & N -
w Multi-Head
Feed Aftention

Forward ») B
-
N Add &lNo(m
M i

Add & Norm
Multi-Head Muiti-Head

Attention Attention

t S S
(S — J . _J)
P tional Posi
E Iing ®_69 GD—@ Enc

Vaswani et al. ‘17

Transformers: Architecture

*Sequence-sequence model with stacked encoders/decoders:
* For example, for French-English translation:

am a student

r 3

¢ ; - Q)
(ENCODER » DECODER
v . >
4 4
) s
(ENCODER DECODER
J \ J
4 4
™) - N\
[ENCODER DECODER
J . 7
4 4
A ' ™
(ENCODER DECODER
J \, J
4 [
™\ 4 A
(ENCODER DECODER
J . J
4 [)
B '
[ENCODER DECODER]
J .
§ y,

Excellent resource: https://jalammar.github.io/illustrated-transformer/

Transformers: Architecture

*Sequence-sequence model with stacked encoders/decoders:
* What’s inside each encoder/decoder unit?

4 ™\
Feed Forward
1. - J
A
(N 4 N\
Feed Forward Encoder-Decoder Attention
. J \)
4 pr— &
4 N 4 N
Self-Attention Self-Attention
k _J _ J

t t

Transformers: Inside an Encoder

*Let’s take a look at the encoder. Two components:
* 1. Self-attention layer
* 2. Feedforward nets

b t
.
Feed Forward Feed Forwar d
Neural Network Neural Network
‘ .
t t
[Self-Attention j
t i

Transformers: Self-Attention

*Self-attention is the key layer in a transformer stack
* Get 3 vectors for each embedding: Query, , Value

Input

Embedding [T T T] [T T 1]
Queries L1 1] [T 1]
Keys [:I:I:] ::I:]:]

Values [][][] :j:j:]

Transformers: Self-Attention

*Self-attention is the key layer ~ mpu
in a transformer stack Embedding

* |[lustration. Recall the three
vectors for each embedding:
Query, , Value

Queries
Keys
Values

Score

* The sum values are the outputs

of the self-attention layer Divide by 8 (+

Softmax

e Send these to feedforward NNs

Softmax
X

* Highly parallelizable!

Sum

'n";_

)

[L[]

L[[]

Transformers: Multi-Headed Attention

*We can do this multiple times in parallel
* Called multiple heads
* Need to combine the resulting output sums

ATTENTION HEAD #0

S

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained
jointly with the model

ATTENTION HEAD #1 X

3) The result would be the matrix that captures information
from all the attention heads. We can send this forward to the FFNN

Transformers: Attention Visualization

e Attention tells us where to focus the information
e [llustration for a sentence:

Layer. 5 § Attention:| Input - Input

o
The_ The_
animal_ animal_
didn_ didn_
t_ | 98
Cross_ Cross_
the_ the_
street_ street_
because_ because_
it_ > it
was_ was_
too_ too_
tire tire
d d

Transformers: Positional Encodings

*One thing we haven’t discussed: the order of the
symbols/elements in the sequence
* Add a vector containing a special positional formula’s embedding

(ENCODER #1)
A A A

(ENCODER #0)
A A A

\

EMBEDDING
WITH TIME
SIGNAL

POSITIONAL
ENCODING

+ + +
EMBEDDINGS | | I [1 | I

INPUT

Transformers: More Tricks

*Recall a big innovation for ResNets: residual connections
* And also layer normalizations
* Apply to our encoder layers

4 4
. +(Add & Normalize)
: 4 4
. (Feed Forward) (Feed Forward)
R —— A-----ccccccccnnnnn- A
,»(Add & Normalize)
; R 1

E (Self-Attention)

POSITIONAL
ENCODING

x+ [x2 [

Thinking Machines

Transformers: Decoder

 Similar to encoders (see blog post for more details).
* E.g. Generating a translation

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

Decoding time step: 1 2 3(4)5 6 OUTPUT | am a student
4)
V (Linear + Softmax)
[ENCODERS] [DECODERS]
\ J
¢ 4 4 *
LTI [LTT] (ITT] IH[II\III\JIII
LITT] LIITT] LITT1] LLTT) 1) 11
Je SUis étudiant PREVIOUS am a

INPUT

OUTPUTS

Transformers: Putting it All Together

\WWhat does the full architecture look like?

ENCODER #2

= 4
L* C Feed Forward) C Feed Forward) ’(Encoder-Decoder Attention
Y [——— P —— g | | Semmesees fescccsscsanesancans L

EN
~
~

"~
~

- .
s S - & &
o 1L i i

Thinking Machines

Outline

*Transformer-based Models
 BERT, GPTs, Foundation Models

Transformer-Based Models: BERT

* Semi-supervised learning + Transformers
*Semi-supervised learning to learn embeddings in encoder

1 - Semi-supervised training on large amounts 2 - training on a specific task with a
of text (books, wikipedia..etc). labeled dataset.
odel is trained on a certain task that enables it to grasp Supervised Learning Step
patterns in language. By the end of the training process
BERT has language-processing abilities capable of empowering
many models we later need jild and trainina s vised way 75% Span
Classifier
Semi-supervised Learning Step 25% Not Spam
Model:
Model: ' (pre-trained

O BERT n step #1) O_ BERT

i

Dataset:

Buy these pills Spam
WIKIPEDIA :
D freie Enzyblapadic Dataset: Win cash prizes Spam
. . Predict the masked word Dear Mr. Atreides, please find attached.. Mot Spam
Objective: A Al A A
(langauge modeling)

BERT: Concepts

*\What makes BERT work? A bunch of ideas:

* 1. Use the Transformer architecture
* 2. Pre-training on corpora using pretext tasks

* Then fine-tune for a particular task

3. Scale: BERT-Large has 340 million parameters

System MNLI-(m/mm) QQP QNLI SST-2 ColLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1
BERTgAsE 84.6/83.4 71.2 90.5 935 52.1 85.8 88.9 66.4 79.6
BERT 1 ArGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Results: Devlin et al, BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding

BERT: Training

*BERT is trained on a simple tasks on a huge amount of data:
* Recall our pretext tasks in self-supervised learning
* Masked word prediction:

Use the output of the L

y e Possible classes: ol
[nasked\Nords;joanon All English words B |mprovisation
to predict the masked word)

0% Z vzZZyva
[FFNN + Softmax]
BERT
Randomly mask
15% of tokens
[CLS) [MASK]

Input

BERT: Classification

*Then, fine-tune on a particular task
* Example: binary classification, spam VS not spam

85% Spam

15% Not Spam

[Classifier]

BERT

1 2 3 4 *se 512

GPT Series of Models

*GPT: Generative Pre-trained Transformer
* Also built on top of transformer model architecture
* Essentially the decoder part only

*Goal: generate text (possibly from a prompt)

*Scale: huge!
* GPT-3: 175 billion parameters

Codex

 Codex: a variant of GPT-3 based on source code
* Qutputs code. Ex: show primes

@OpenAI [Bota | Playground ocumentatior xamples Ea T 0 codegen-beta

Test
Count: 42
Primes: 2,3,5,7, 11, 13,17, 19, 23, 29, 31, 37, 41

Graph: 4, 6, 10, 14,22, 26, 34, 38, 46, 58, 62, 74, 82, e rereRtaRt O gL

test.innerHTML = t';
.body.appendChild(test);

1 count i

ir countDiv = .createElement('div');

countDiv. innerHTML = 'Count + count;
.body.appendChild(countDiv);

var interval = (function() {
count++;
countDiv. innerHTML = int: + count;
if (count == 42) {
(interval);
primeDiv = .createElement(’ |H

primeDiv.innerHTML = 'Pr ime ;
.body.appendChild(primeDiv);
sr primes = [];
(var i = 2; i < count; i++) {
f (isPrime(i)) {
primes.push(i);
primeDiv.innerHTML += i + ', ';
}
}
primeDiv.innerHTML += H
primeDiv.innerHTML += ‘Grag H
.body.appendChild(primeDiv);

(i =0; i < primes.length; i++) {

primeDiv.innerHTML += primes[i] * 2 + ', ';

}

}
h);

" (n) {

r(var i=2; 1i<n; i++) {
(n% i==0){

Russell Foltz-Smith

DALL-E

*Create images from text
* Prompt: “an armchair in the shape of an avocado. . ..

As &

https://openai.com/blog/dall-e/

”

* Note: several online demos. Try it yourself!

https://huggingface.co/stabilityai/stable-diffusion-3.5-large

Foundation Models

*Many more large scale models
* Not just focused on text

Tasks

Question D |
Answering ° ==

S . Sentiment
¥ ., . Analysis

€

Data
&
v i ~
Text | l
L) & r
"‘ (’ %= Information - ,)
{ Images -eA) ' Extraction N
’ p ¢ - Adaptation
Speech AN\ alroining Foundation - [
=)
/ 4 Model & Captioning \‘ |
~ Structured \\‘
“* Data
Object
3D Signals & %A./ . Recognition

Instruction

%y Following ...

Bommasani et al, “On the Opportunities and Risks of Foundation Models”

Conclusion

*“Foundation” models based on transformers and beyond

* Huge, expensive to train, challenging in various ways... but
* Remarkably powerful for a vast number of tasks.

* AGI??

2. Capabilities
1 O
— » 4
Language Vision Reasonin g Int t Philosophy
3. Applications
‘ ¥
Healthcare Law Education

Bommasani et al, “On the Opportunities and Risks of Foundation Models”

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Jay Alammar, Fred Sala, Kirthi Kandasamy, Tengyang Xie

	Slide 1: CS 760: Machine Learning Language Models
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Language Models: Word Embeddings
	Slide 6: Training Word Embeddings
	Slide 7: Training Word Embeddings
	Slide 8: Language Models: RNN Review
	Slide 9: Language Models: LSTM Review
	Slide 10: Language Models: Attention
	Slide 11: Language Models: Putting it All Together
	Slide 12: Outline
	Slide 13: Transformers: Idea
	Slide 14: Transformers: Architecture
	Slide 15: Transformers: Architecture
	Slide 16: Transformers: Inside an Encoder
	Slide 17: Transformers: Self-Attention
	Slide 18: Transformers: Self-Attention
	Slide 19: Transformers: Multi-Headed Attention
	Slide 20: Transformers: Attention Visualization
	Slide 21: Transformers: Positional Encodings
	Slide 22: Transformers: More Tricks
	Slide 23: Transformers: Decoder
	Slide 24: Transformers: Putting it All Together
	Slide 25: Outline
	Slide 26: Transformer-Based Models: BERT
	Slide 27: BERT: Concepts
	Slide 28: BERT: Training
	Slide 29: BERT: Classification
	Slide 30: GPT Series of Models
	Slide 31: Codex
	Slide 32: DALL-E
	Slide 33: Foundation Models
	Slide 34: Conclusion
	Slide 35: Thanks Everyone!

