
CS 760: Machine Learning
Language Models

Misha Khodak

University of Wisconsin-Madison

27 October 2025

Announcements

•Homework 3 due November 5th

•Reminder: no class November 26th

Outline

•Language Models & NLP
•RNNs, word embeddings, attention

•Transformer Model
•Properties, architecture breakdown

•Transformer-based Models
• BERT, GPTs, Foundation Models

Outline

•Language Models & NLP
•RNNs, word embeddings, attention

•Transformer Model
•Properties, architecture breakdown

•Transformer-based Models
• BERT, GPTs, Foundation Models

•One way to encode words: one-hot vectors
•Want something smarter…

Distributional semantics: account for relationships

•Representations should be close/similar to other words that
appear in a similar context

Dense vectors:

AKA word embeddings

Language Models: Word Embeddings

Training Word Embeddings

Many approaches (very popular 2010-present)
•Word2vec: a famous approach

•Write out a likelihood

Our word vectors (weights)

All positions

Windows of length 2a

Training Word Embeddings

Word2vec likelihood

•Expression for the probability:

•𝜃𝑤,𝑜: occurrence vector for word 𝑤
•𝜃𝑤,𝑐: context vector for word 𝑤

𝑃(𝑤′|𝑤, 𝜃) =
exp((𝜃𝑤′,𝑜)

⊤𝜃𝑤,𝑐)

∑𝑣∈𝑉exp((𝜃𝑣,𝑜)
⊤𝜃𝑤,𝑐)

Language Models: RNN Review

•Classical RNN model / Encoder-Decoder variant:

𝑠(𝑡−1) 𝑠(𝑡) 𝑠(𝑡+1)

𝑥(𝑡−1) 𝑥(𝑡) 𝑥(𝑡+1)

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑜(𝑡−1) 𝑜(𝑡) 𝑜(𝑡+1)

𝑉 𝑉 𝑉

𝐿(𝑡−1) 𝐿(𝑡) 𝐿(𝑡+1)

𝑦(𝑡−1) 𝑦(𝑡) 𝑦(𝑡+1) 𝑠(𝜏−1) 𝑠(𝜏)𝑠(1)

𝑥(𝜏−1) 𝑥(𝜏)𝑥(1)

𝑠(0) …

Encoder

memory

ℎ(1)

Decoder

𝑦(1)

ℎ(2) ℎ(𝑇−1)

𝑦(𝑇−1)

ℎ(𝑇)

𝑦(𝑇)

Chris Olah

Language Models: LSTM Review

•RNN: can write structure as:

•Long Short-Term Memory: deals with problem. Cell:

Language Models: Attention

•One challenge: dealing with the hidden state
•Everything gets compressed there
•Might lose information

•Solution: attention mechanism
• Similar to residual connections in ResNets!

Language Models: Putting it All Together

•Before 2017: best language models
•Use encoder/decoder architectures based on RNNs
•Use word embeddings for word representations
•Use attention mechanisms

Outline

•Language Models & NLP
•k-gram models, RNN review, word embeddings, attention

•Transformer Model
•Properties, architecture breakdown

•Transformer-based Models
• BERT, GPTs, Foundation Models

Transformers: Idea

•Initial goal for an architecture: encoder-decoder
•Get rid of recurrence
•Replace with self-attention

Vaswani et al. ‘17

Transformers: Architecture

•Sequence-sequence model with stacked encoders/decoders:
•For example, for French-English translation:

Excellent resource: https://jalammar.github.io/illustrated-transformer/

Transformers: Architecture

•Sequence-sequence model with stacked encoders/decoders:
•What’s inside each encoder/decoder unit?

Transformers: Inside an Encoder

•Let’s take a look at the encoder. Two components:
•1. Self-attention layer
•2. Feedforward nets

Transformers: Self-Attention

•Self-attention is the key layer in a transformer stack
•Get 3 vectors for each embedding: Query, Key, Value

Transformers: Self-Attention

•Self-attention is the key layer
in a transformer stack
• Illustration. Recall the three

vectors for each embedding:
Query, Key, Value

•The sum values are the outputs
of the self-attention layer

•Send these to feedforward NNs

•Highly parallelizable!

Transformers: Multi-Headed Attention

•We can do this multiple times in parallel
•Called multiple heads
•Need to combine the resulting output sums

Transformers: Attention Visualization

•Attention tells us where to focus the information
• Illustration for a sentence:

Transformers: Positional Encodings

•One thing we haven’t discussed: the order of the
symbols/elements in the sequence
•Add a vector containing a special positional formula’s embedding

Transformers: More Tricks

•Recall a big innovation for ResNets: residual connections
•And also layer normalizations
•Apply to our encoder layers

Transformers: Decoder

• Similar to encoders (see blog post for more details).

• E.g. Generating a translation

Transformers: Putting it All Together

•What does the full architecture look like?

Outline

•Language Models & NLP
•k-gram models, RNN review, word embeddings, attention

•Transformer Model
•Properties, architecture breakdown

•Transformer-based Models
• BERT, GPTs, Foundation Models

Transformer-Based Models: BERT

• Semi-supervised learning + Transformers

•Semi-supervised learning to learn embeddings in encoder

BERT: Concepts

•What makes BERT work? A bunch of ideas:
•1. Use the Transformer architecture
•2. Pre-training on corpora using pretext tasks

• Then fine-tune for a particular task

•3. Scale: BERT-Large has 340 million parameters

Results: Devlin et al, BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding

BERT: Training

•BERT is trained on a simple tasks on a huge amount of data:
•Recall our pretext tasks in self-supervised learning
•Masked word prediction:

BERT: Classification

•Then, fine-tune on a particular task
•Example: binary classification, spam VS not spam

GPT Series of Models

•GPT: Generative Pre-trained Transformer
•Also built on top of transformer model architecture
•Essentially the decoder part only

•Goal: generate text (possibly from a prompt)

•Scale: huge!
•GPT-3: 175 billion parameters

Codex

•Codex: a variant of GPT-3 based on source code
•Outputs code. Ex: show primes

Russell Foltz-Smith

DALL-E

•Create images from text
•Prompt: “an armchair in the shape of an avocado. . . .”

•Note: several online demos. Try it yourself!

https://openai.com/blog/dall-e/

https://huggingface.co/stabilityai/stable-diffusion-3.5-large

Foundation Models

•Many more large scale models
•Not just focused on text

Bommasani et al, “On the Opportunities and Risks of Foundation Models”

Conclusion

•“Foundation” models based on transformers and beyond
•Huge, expensive to train, challenging in various ways… but
•Remarkably powerful for a vast number of tasks.
•AGI??

Bommasani et al, “On the Opportunities and Risks of Foundation Models”

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Jay Alammar, Fred Sala, Kirthi Kandasamy, Tengyang Xie

	Slide 1: CS 760: Machine Learning Language Models
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Language Models: Word Embeddings
	Slide 6: Training Word Embeddings
	Slide 7: Training Word Embeddings
	Slide 8: Language Models: RNN Review
	Slide 9: Language Models: LSTM Review
	Slide 10: Language Models: Attention
	Slide 11: Language Models: Putting it All Together
	Slide 12: Outline
	Slide 13: Transformers: Idea
	Slide 14: Transformers: Architecture
	Slide 15: Transformers: Architecture
	Slide 16: Transformers: Inside an Encoder
	Slide 17: Transformers: Self-Attention
	Slide 18: Transformers: Self-Attention
	Slide 19: Transformers: Multi-Headed Attention
	Slide 20: Transformers: Attention Visualization
	Slide 21: Transformers: Positional Encodings
	Slide 22: Transformers: More Tricks
	Slide 23: Transformers: Decoder
	Slide 24: Transformers: Putting it All Together
	Slide 25: Outline
	Slide 26: Transformer-Based Models: BERT
	Slide 27: BERT: Concepts
	Slide 28: BERT: Training
	Slide 29: BERT: Classification
	Slide 30: GPT Series of Models
	Slide 31: Codex
	Slide 32: DALL-E
	Slide 33: Foundation Models
	Slide 34: Conclusion
	Slide 35: Thanks Everyone!

