

CS 760: Machine Learning **Generative Models**

Misha Khodak

University of Wisconsin-Madison
29 October 2025

Outline

- **Intro to Generative Models**
 - Histograms, Parametrizing Distributions
- **Flow-based Models**
 - Transformations, training, sampling
- **Generative Adversarial Networks (GANs)**
 - Generators, discriminators, training, examples
- **Diffusion Models**

Outline

- **Intro to Generative Models**
 - Histograms, Parametrizing Distributions
- **Flow-based Models**
 - Transformations, training, sampling
- **Generative Adversarial Networks (GANs)**
 - Generators, discriminators, training, examples
- **Diffusion Models**

Generative Models

- Goal: learn an underlying process for (unlabeled) data.
- Recall generative vs discriminative modeling from Naive Bayes lecture.

Applications: Generate Images

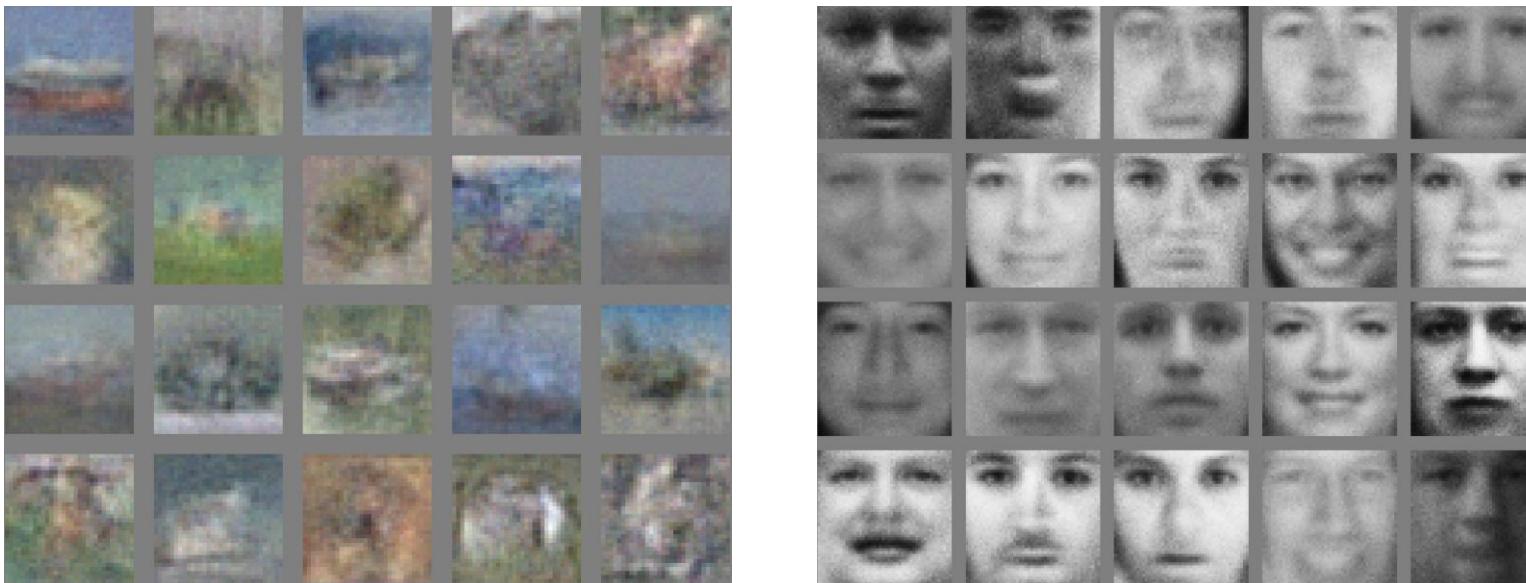
- Old idea---tremendous growth
- Historical evolution:

2006: Hinton et al

2013: Kingma & Welling

Applications: Generate Images

- More recently, GAN models: 2014
 - Goodfellow et al



Applications: Generate Images

- More recently, GAN models
 - StyleGAN, Karras, Laine, Aila, 2018

Applications: Generate Images

- Today, Diffusion Models: DALL·E 3, Stable Diffusion 3.5

Prompt: ~*~aesthetic~*~ #boho #fashion, full-body 30-something woman laying on microfloral grass, candid pose, overlay reads Stable Diffusion 3.5, cheerful cursive typography font.

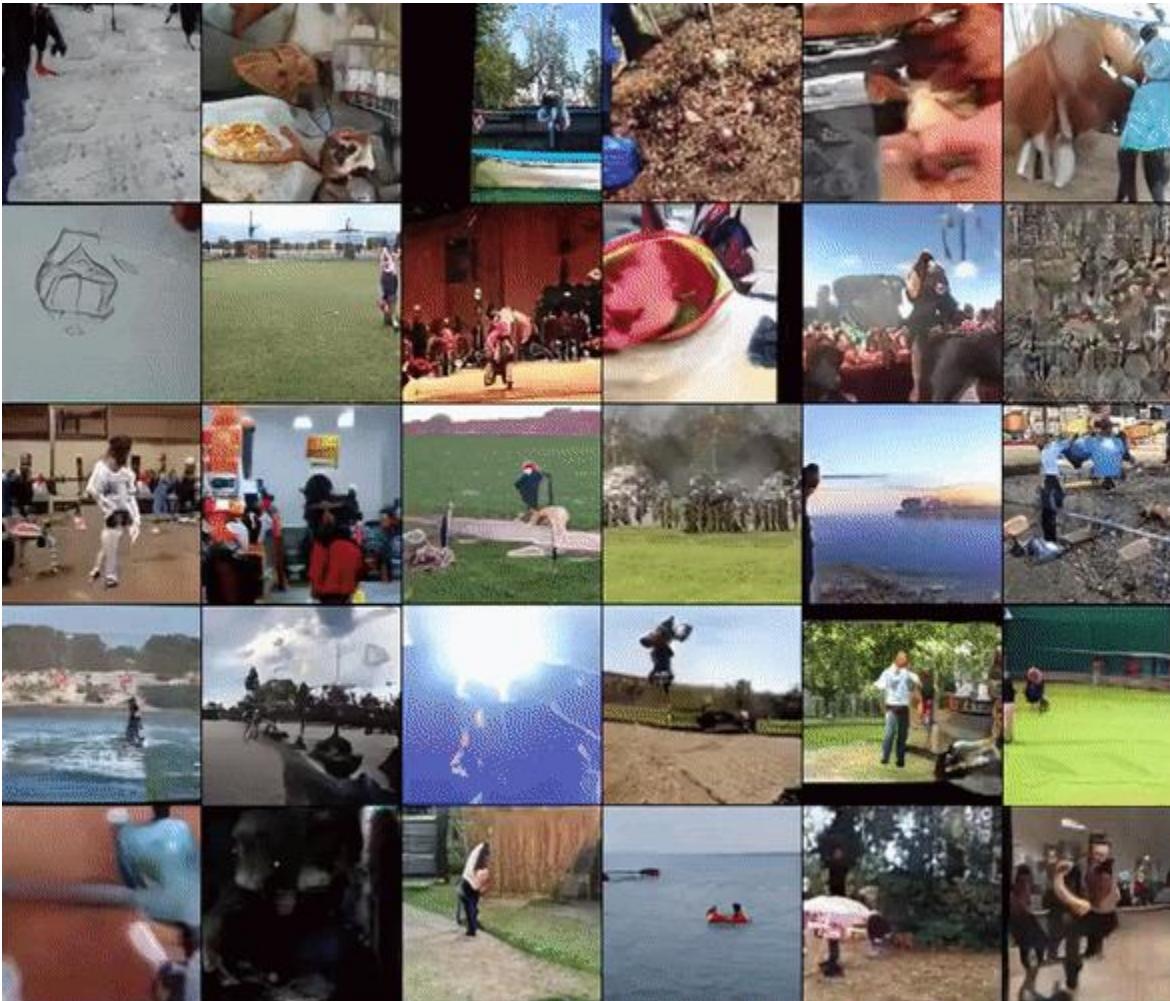
Applications: Generate Images/Video

- GANs can also generate video
 - Plus transfer:

CycleGAN: Zhu, Park, Isola & Efros, 2017

Applications: Generate Video

- GANs can also generate video (DVD-GAN, Clark et al)



Applications: Generate Video

- Diffusion model can generate long videos up to a minute long with high visual quality.

[OpenAI Sora]

Additional Applications

- **Compress data**
 - Can often do better than fixed methods like JPEG
 - Similar to nonlinear dimensionality reduction
- **Obtain good representations**
 - Then can fine-tune for particular tasks
 - Unlabeled data is cheap, labeled data is not.

Goal: Learn a Distribution

- Want to estimate p_{data} from samples

$$x^{(1)}, x^{(2)}, \dots, x^{(n)} \sim p_{\text{data}}(x)$$

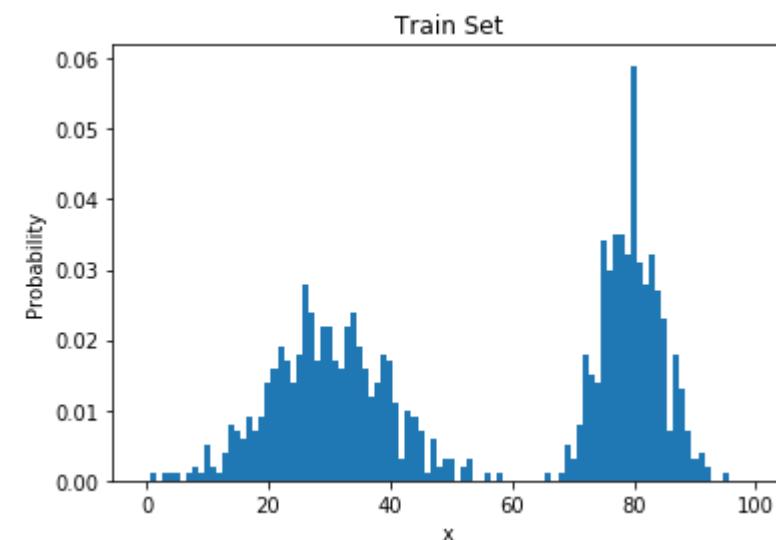
- Desired abilities:
 - **Inference**: compute $p(x)$ for some x
 - **Sampling**: obtain a sample from $p(x)$

Goal: Learn a Distribution

- Want to estimate p_{data} from samples

$$x^{(1)}, x^{(2)}, \dots, x^{(n)} \sim p_{\text{data}}(x)$$

- **One way:** build a histogram:
- Bin data space into k groups.
 - Estimate p_1, p_2, \dots, p_k
- Train this model:
 - Count times bin i appears in dataset



Histograms: Inference & Samples

- **Inference**: check our estimate of p_i
- **Sampling**: straightforward, select bin i with probability p_i , then select uniformly from bin i .
- But ...
 - inefficient in high dimensions

Parametrizing Distributions

- Don't store each probability, store $p_\theta(x)$
- One approach: likelihood-based
 - We know how to train with **maximum likelihood**

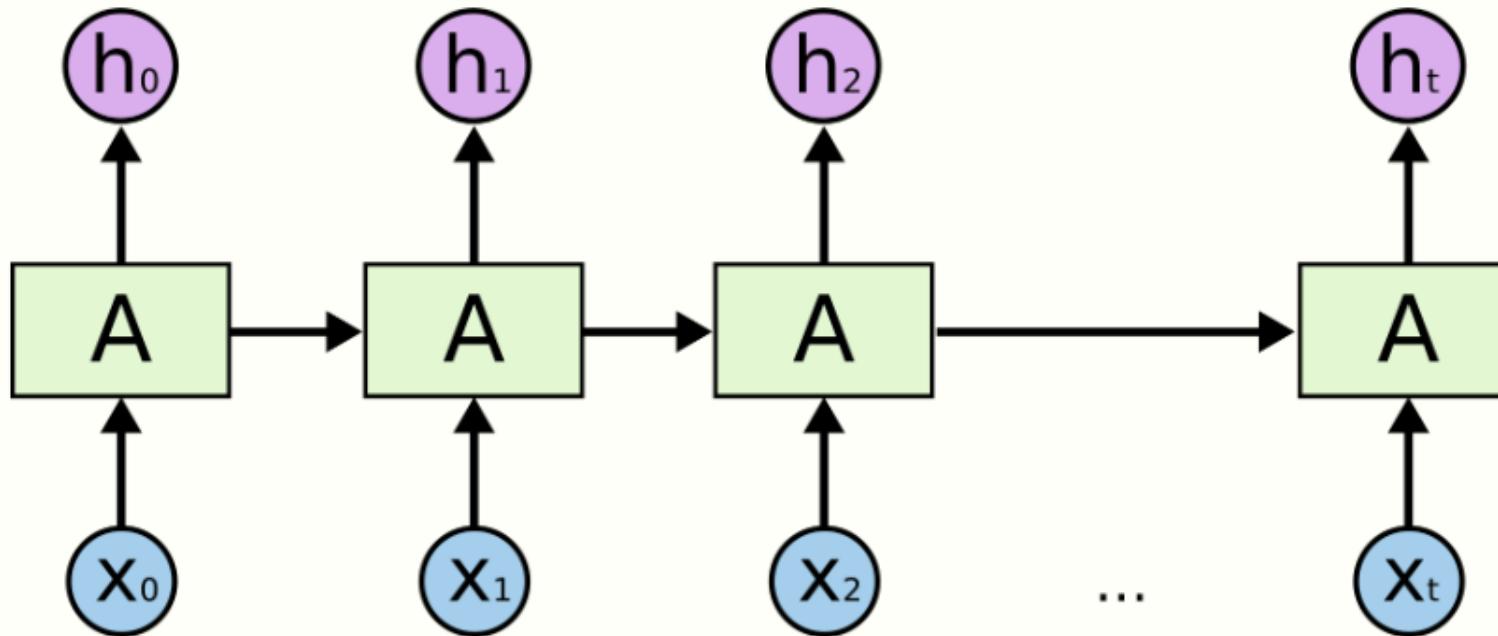
$$\arg \min_{\theta} -\frac{1}{n} \sum_{i=1}^n \log p_{\theta}(x^{(i)})$$

Parametrizing Distributions

- One approach: likelihood-based
 - We know how to train with **maximum likelihood**
 - Then, train with SGD
 - Just need to make some choices for $p_\theta(x)$
 - For example, recall Gaussian mixture models.
 - But many types of data have more complex underlying distributions.

Parametrizing Distributions: Autoregressive models

- e.g. recurrent neural networks, transformers.



Outline

- **Intro to Generative Models**
 - Histograms, Parametrizing Distributions
- **Flow-based Models**
 - Transformations, training, sampling
- **Generative Adversarial Networks (GANs)**
 - Generators, discriminators, training, examples
- **Diffusion Models**

Flow Models

- One way to specify $p_\theta(x)$
- Use a latent variable z with a “simple” (e.g Gaussian) distribution.
- Then use a “complex” transformation, $x = f_\theta(z)$.

Flow Models

- We will need to compute the inverse transformation and take its derivative as well (for training).
- So compose multiple “simple” transformations

$$x = f_{\theta_k}(f_{\theta_{k-1}}(\dots f_{\theta_1}(z)))$$

$$z = f_{\theta_1}^{-1}(f_{\theta_2}^{-1}(\dots f_{\theta_k}^{-1}(x)))$$

Flow Models

- Transform a simple distribution to a complex one via a chain of invertible transformations (the “flow”)

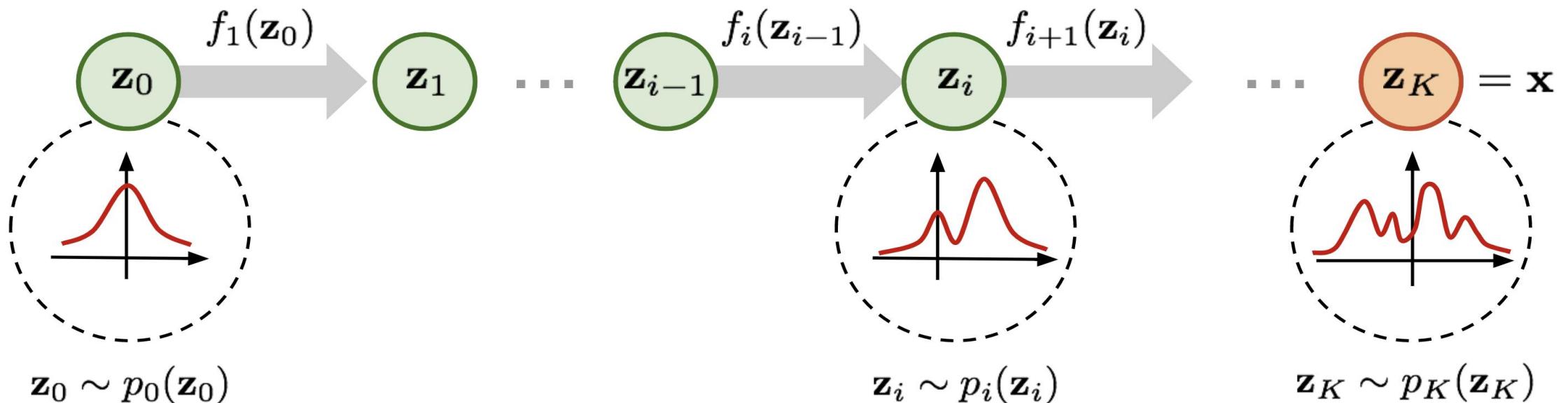
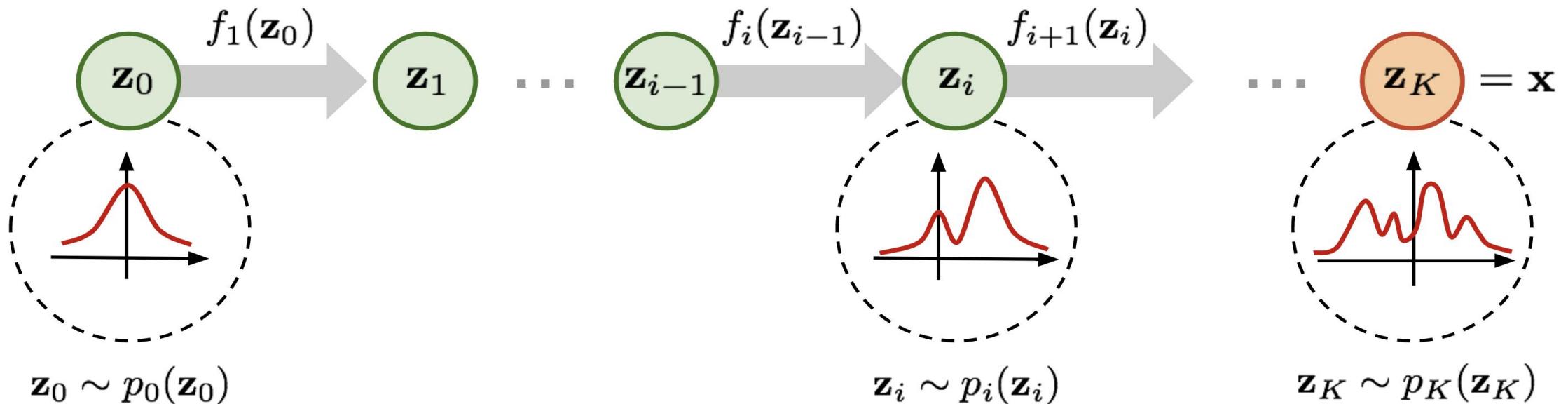


image from Lilian Weng

Flow Models: How to sample?

- Sample from z (the latent variable)---has a simple distribution that lets us do it: Gaussian, uniform, etc.
- Then run the sample z through the flow to get a sample x



Flow Models: How to train?

- Relationship between $p_x(x)$ and $p_z(z)$ (densities of x and z), given that $x = f_\theta(z)$?

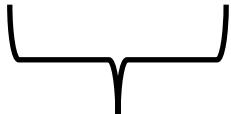
$$p_x(x) = p_z(f_\theta^{-1}(x)) \left| \frac{\partial f_\theta^{-1}(x)}{\partial x} \right|$$

[change of variables]

Determinant of Jacobian matrix

Flow Models: Training

$$\max_{\theta} \sum_i \log(p_x(x^{(i)}; \theta)) = \max_{\theta} \left(\sum_i \log(p_z(f_{\theta}^{-1}(x^{(i)}))) + \log \left| \frac{\partial f_{\theta}^{-1}(x^{(i)})}{\partial x} \right| \right)$$



Maximum Likelihood

Latent variable version

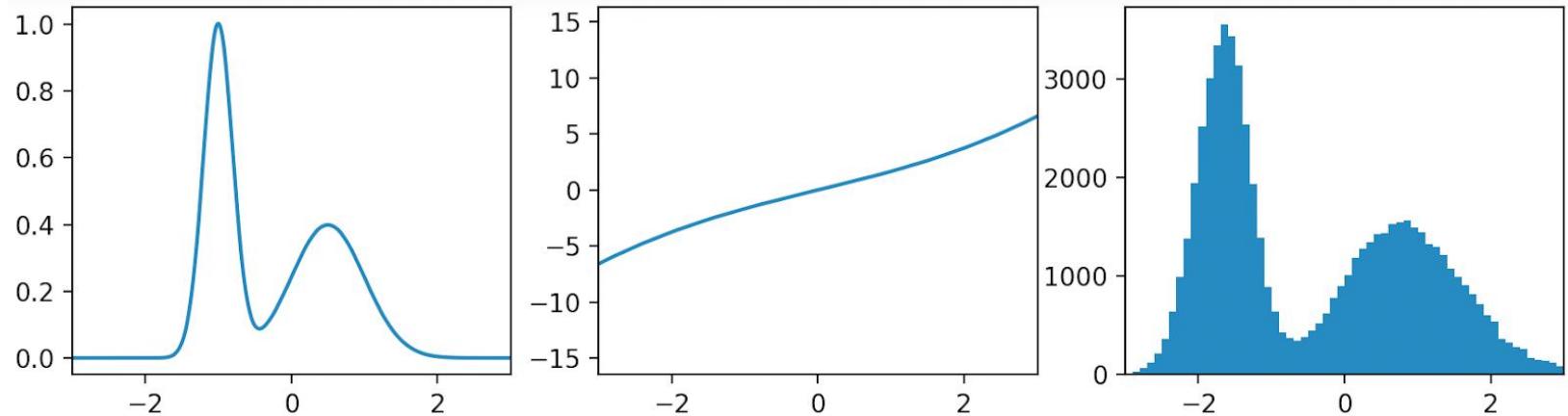
Determinant of Jacobian matrix

Flows: Example

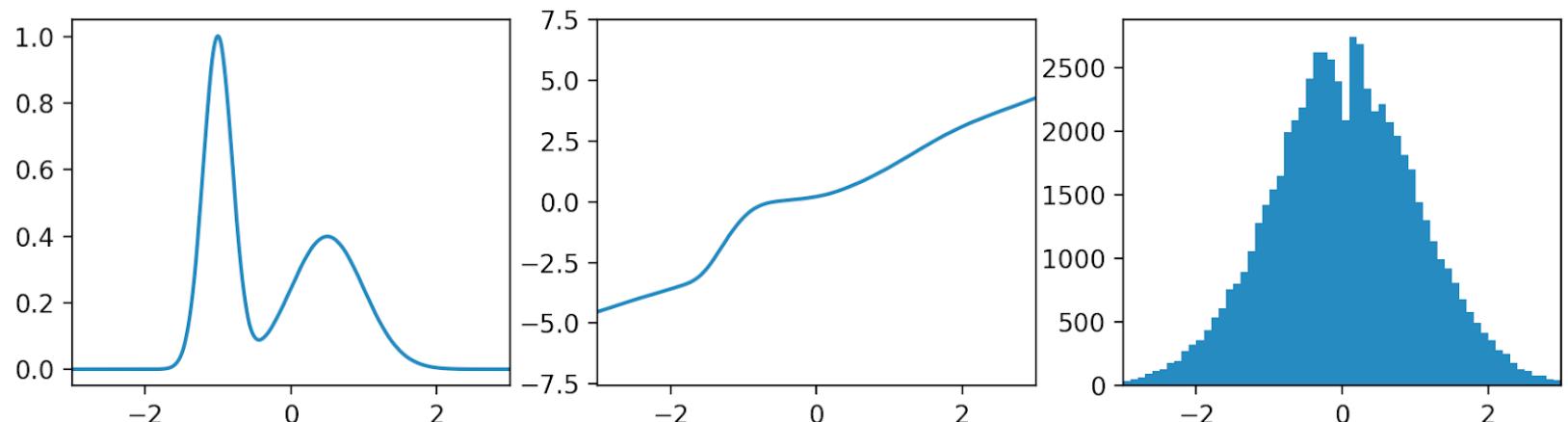
- Inverse flow to a Gaussian (right)

Inverse Flow

- Before training:



- After training:



Flows: Transformations

- What kind of f transformations should we use?
- Many choices:
 - Affine: $f(x) = A^{-1}(x - b)$
 - Elementwise: $f(x_1, \dots, x_d) = (f(x_1), \dots, f(x_d))$
 - Splines
- Desirable properties:
 - Invertible
 - Differentiable

Outline

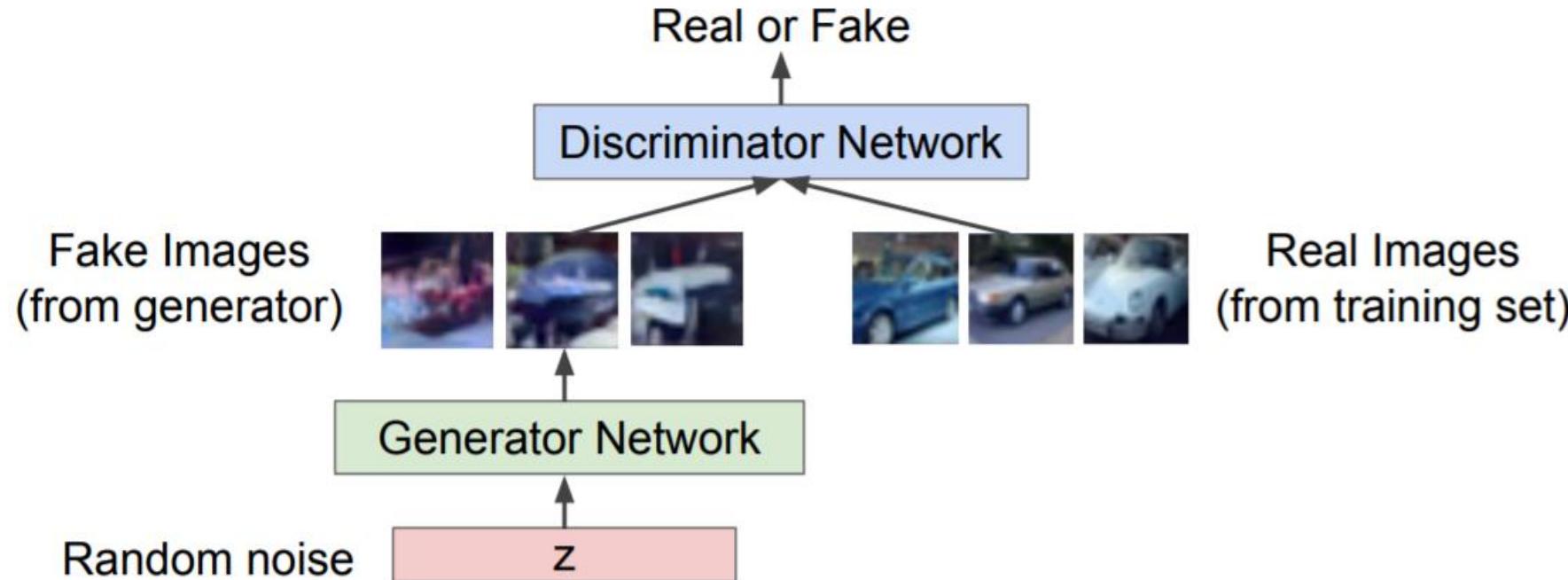
- **Intro to Generative Models**
 - Histograms, Parametrizing Distributions
- **Flow-based Models**
 - Transformations, training, sampling
- **Generative Adversarial Networks (GANs)**
 - Generators, discriminators, training, examples
- **Diffusion Models**

GANs: Generative Adversarial Networks

- So far we've been modeling the density...
 - What if we just want to get high-quality samples?
- GANs do this.
 - Think of art forgery
 - Left: original
 - Right: forged version
 - Two-player game:
 - **Generator** wants to pass off the discriminator as an original
 - **Discriminator** wants to distinguish forgery from original

GANs: Basic Setup

- Let's set up networks that implement this idea:
 - **Discriminator** network
 - **Generator** network



GAN Training: Discriminator

- How to train these networks? Two sets of parameters to learn: θ_d (discriminator) and θ_g (generator)
- Let's fix the generator. What should the discriminator do?
 - Distinguish fake and real data: binary classification.
 - Use the cross-entropy loss, we get

$$\max_{\theta_d} \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

\uparrow
**Real data, want
to classify 1**

 \uparrow
**Fake data, want
to classify 0**

GAN Training: Generator & Discriminator

- How to train these networks? Two sets of parameters to learn: θ_d (discriminator) and θ_g (generator)
- This makes the **discriminator** better, but also want to make the **generator** more capable of fooling it:
 - Minimax game! Train jointly.

$$\min_{\theta_g} \max_{\theta_d} \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

Real data, want
to classify 1

Fake data, want
to classify 0

GAN Training: Alternating Training

- So we have an optimization goal:

$$\min_{\theta_g} \max_{\theta_d} \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

- Alternate training:

- **Gradient ascent**: fix generator, make the **discriminator** better:

$$\max_{\theta_d} \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

- **Gradient descent**: fix discriminator, make the **generator** better

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

GAN Training: Issues

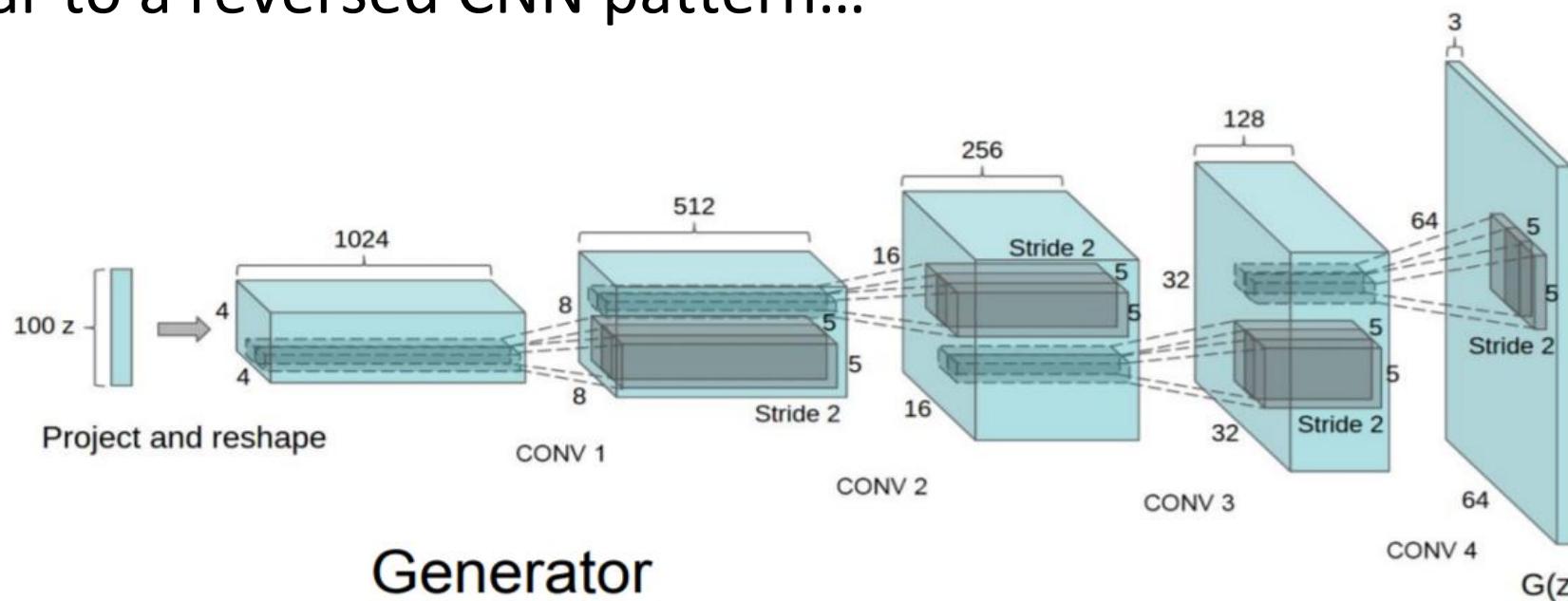
- Training often not stable
- Many tricks to help with this:
 - Replace the generator training with

$$\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))$$

- Better gradient shape
- Choose number of alternating steps carefully
- Can still be challenging.

GAN Architectures

- **Discriminator**: image classification, use a **CNN**
- What should **generator** look like
 - Input: noise vector z .
 - Output: an image (i.e. a 3-channel \times width \times height volume)
 - Similar to a reversed CNN pattern...



GANs: Example

- Output of a GAN after 5 epochs of training:

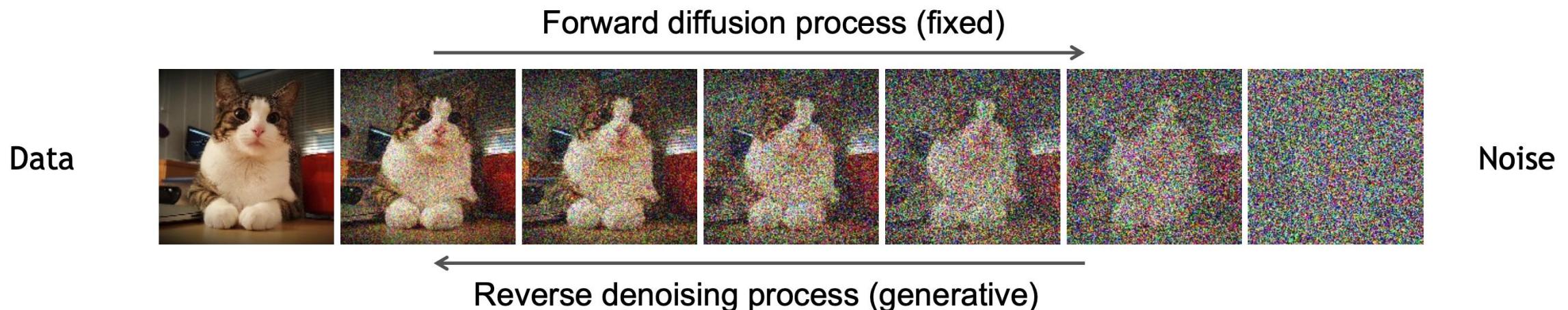
image from Radford et al '16

Outline

- **Intro to Generative Models**
 - Histograms, Parametrizing Distributions
- **Flow-based Models**
 - Transformations, training, sampling
- **Generative Adversarial Networks (GANs)**
 - Generators, discriminators, training, examples
- **Diffusion Models**

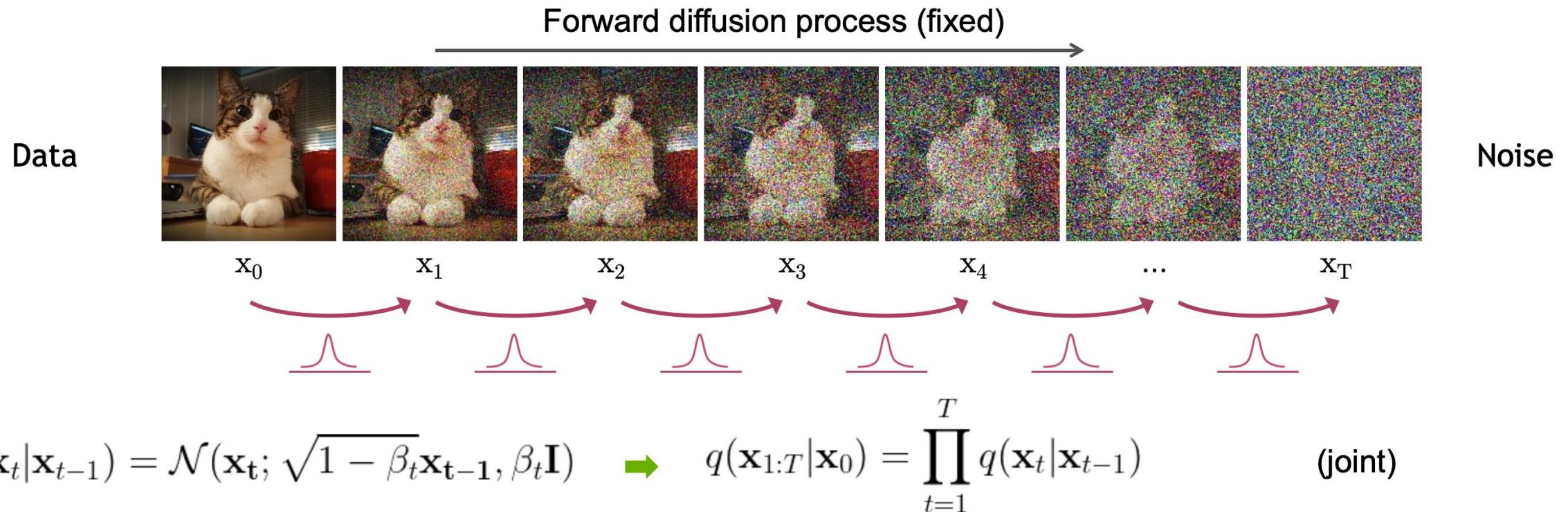
Diffusion Models (optional)

- **Learning to generate by denoising**
- Denoising diffusion models consist of two processes:
 - Forward diffusion process that gradually adds noise to input
 - Reverse denoising process that learns to generate data by denoising



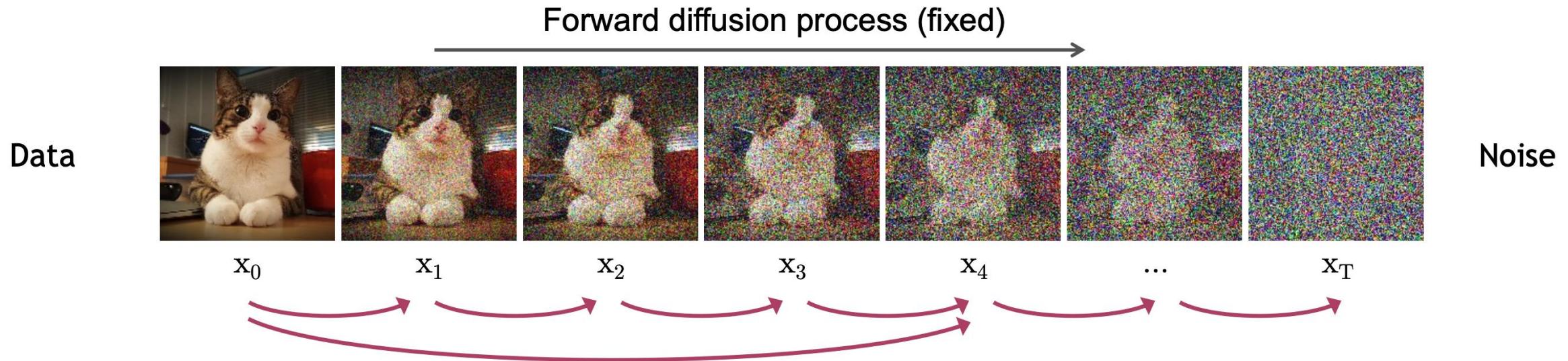
Diffusion Models (optional)

- The formal definition of the forward process in T steps:



Diffusion Models (optional)

- Diffusion Kernel



Define $\bar{\alpha}_t = \prod_{s=1}^t (1 - \beta_s)$ $q(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I})$ **(Diffusion Kernel)**

For sampling: $\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{(1 - \bar{\alpha}_t)} \boldsymbol{\epsilon}$ where $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

β_t values schedule (i.e., the noise schedule) is designed such that $\bar{\alpha}_T \rightarrow 0$ and $q(\mathbf{x}_T | \mathbf{x}_0) \approx \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$

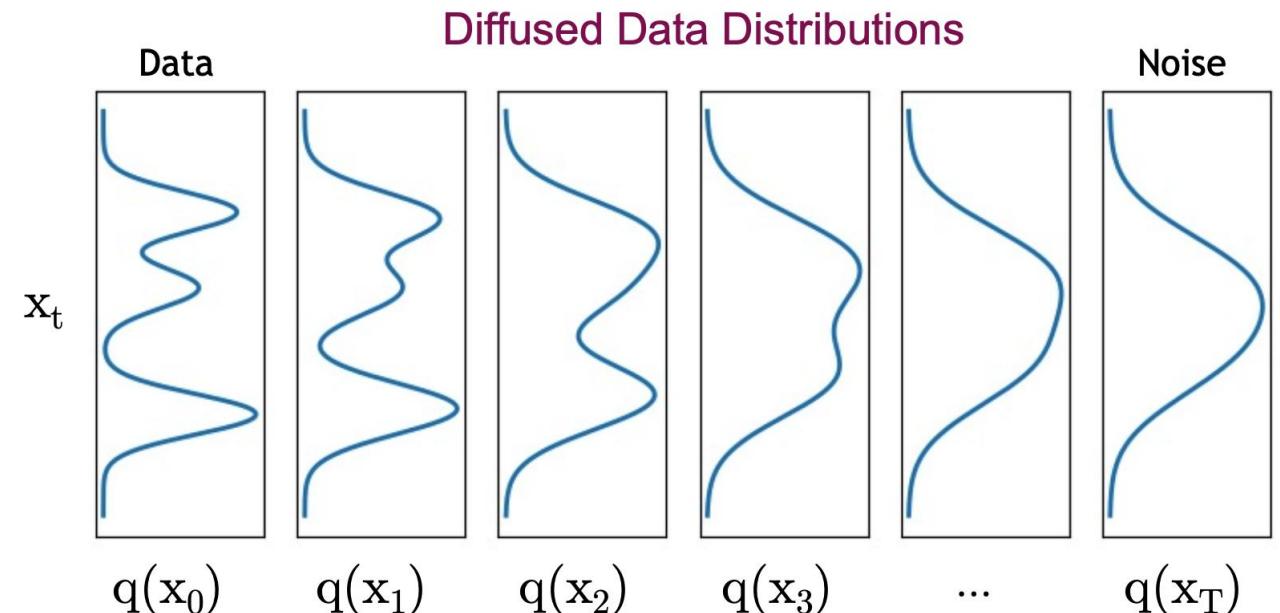
Diffusion Models (optional)

- What happens to a distribution in the forward diffusion?

So far, we discussed the diffusion kernel $q(\mathbf{x}_t|\mathbf{x}_0)$ but what about $q(\mathbf{x}_t)$?

$$q(\mathbf{x}_t) = \underbrace{\int q(\mathbf{x}_0, \mathbf{x}_t) d\mathbf{x}_0}_{\text{Diffused data dist.}} = \underbrace{\int q(\mathbf{x}_0) q(\mathbf{x}_t|\mathbf{x}_0) d\mathbf{x}_0}_{\text{Joint dist.}} = q(\mathbf{x}_0) \underbrace{\int q(\mathbf{x}_t|\mathbf{x}_0) d\mathbf{x}_0}_{\text{Input data dist.} \quad \text{Diffusion kernel}}$$

The diffusion kernel is Gaussian convolution.



We can sample $\mathbf{x}_t \sim q(\mathbf{x}_t)$ by first sampling $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ and then sampling $\mathbf{x}_t \sim q(\mathbf{x}_t|\mathbf{x}_0)$ (i.e., ancestral sampling).

Diffusion Models (optional)

- Generative Learning by Denoising

Recall, that the diffusion parameters are designed such that $q(\mathbf{x}_T) \approx \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$

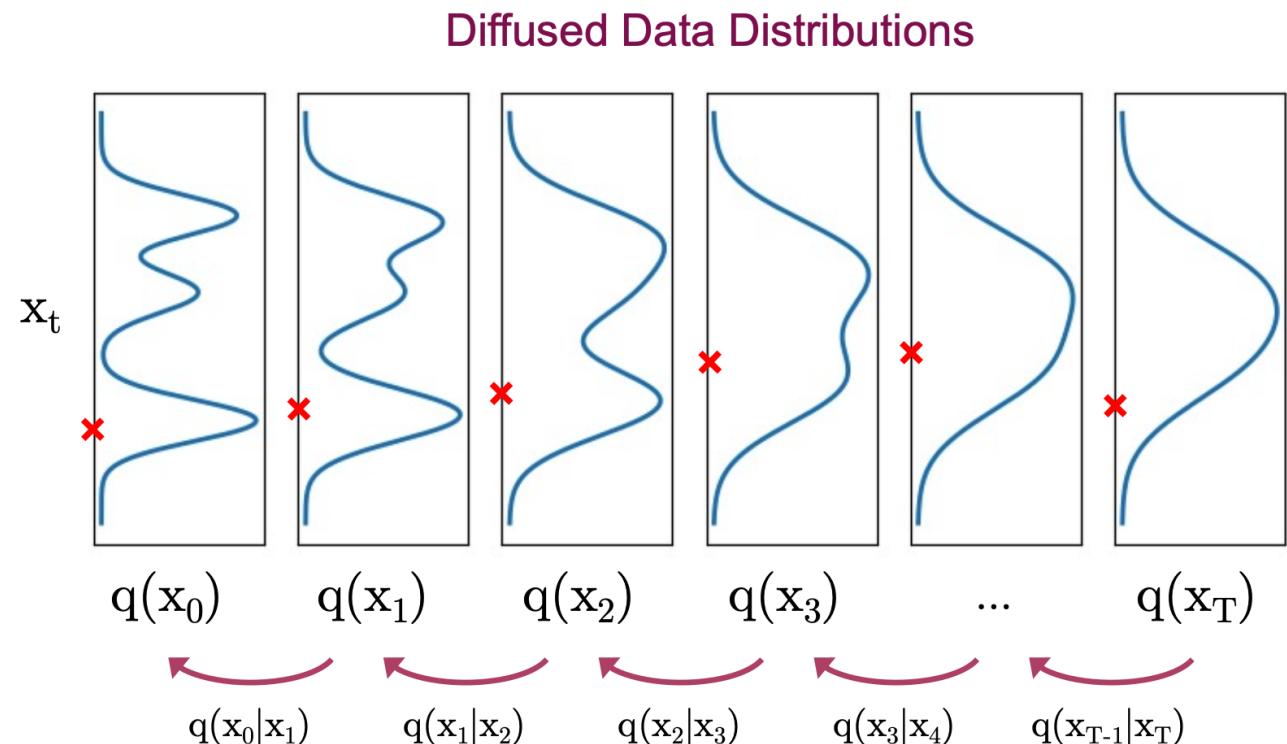
Generation:

Sample $\mathbf{x}_T \sim \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$

Iteratively sample $\mathbf{x}_{t-1} \sim \underbrace{q(\mathbf{x}_{t-1} | \mathbf{x}_t)}_{\text{True Denoising Dist.}}$

In general, $q(\mathbf{x}_{t-1} | \mathbf{x}_t) \propto q(\mathbf{x}_{t-1})q(\mathbf{x}_t | \mathbf{x}_{t-1})$ is intractable.

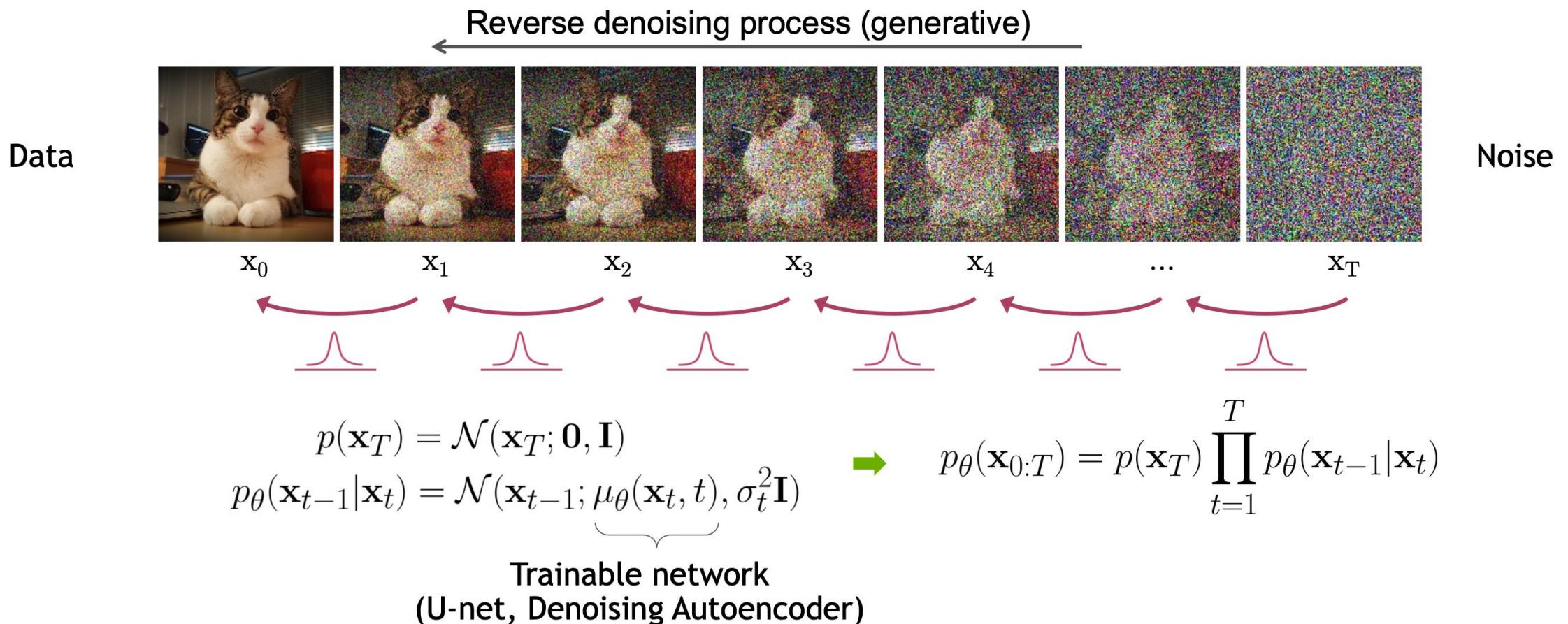
Can we approximate $q(\mathbf{x}_{t-1} | \mathbf{x}_t)$? Yes, we can use a **Normal distribution** if β_t is small in each forward diffusion step.



Diffusion Models (optional)

- Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas, Ruiqi Gao, Tengyang Xie