>

CS 760: Machine Learning
Generative Models

Misha Khodak

University of Wisconsin-Madison
29 October 2025

- qﬁ.g‘(.:.:".y,-.w. ..‘.; vt

A




Outline

*Intro to Generative Models
*Histograms, Parametrizing Distributions

*Flow-based Models
*Transformations, training, sampling

*Generative Adversarial Networks (GANS)
*Generators, discriminators, training, examples

Diffusion Models



Outline

*Intro to Generative Models
*Histograms, Parametrizing Distributions



Generative Models

*Goal: learn an underlying process for (unlabeled) data.

*Recall generative vs discriminative modeling from Naive
Bayes lecture.



Applications: Generate Images

*Old idea---tremendous growth

*Historical evolution:

Q&0
O FrND -
N = QO ™
M~
RN OP
W
N EMNT - QO

= \I"NNOF-3 N o
NN NP
JHyVUKIFTLA NP o
QoY >>LI N o
QIO N -
FJIYNITVONA
oW QOO KNS
FIEV,TPDONL
YN N EUND SN

2013: Kingma & Welling

2006: Hinton et al



Applications: Generate Images

* More recently, GAN models: 2014
* Goodfellow et al




Applications: Generate Images

*More recently, GAN models
* StyleGAN, Karras, Laine, Aila, 2018

>



Applications: Generate Images

*Today, Diffusion Models: DALL-E 3, Stable Diffusion 3.5
L TR FIA )7

A - . 3 3 A
N\ AN e V .
\ P ? W \ i
% - 2
e
> vy
G - v g) A .
» - w o »
" « ;
A
*r _
= PN

Prompt: ~*~aesthetic~*~ #boho #fashion, full-body 30-something woman laying on microfloral grass, candid pose, overlay reads
Stable Diffusion 3.5, cheerful cursive typography font.



Applications: Generate Images/Video

*GANSs can also generate video
* Plus transfer:

CycleGAN: Zhu, Park, Isola & Efros, 2017



Applications: Generate Video

*GANSs can also generate video (DVD-GAN, Clark et al)

* RN \ ) O -2
"B e T L1
v L) A
. + 9 ~ - Ay
A . Y

3 ™




Applications: Generate Video

 Diffusion model can generate long videos up to a minute long
with high visual quality.

[OpenAl Sora]



Additional Applications

Compress data
* Can often do better than fixed methods like JPEG
* Similar to nonlinear dimensionality reduction

*Obtain good representations
* Then can fine-tune for particular tasks
* Unlabeled data is cheap, labeled data is not.



Goal: Learn a Distribution

*Want to estimate p,,, from samples

:U(l),az(Z), . ,a’;(”) ~ Ddata(T)

*Desired abilities:
* Inference: compute p(x) for some x
* Sampling: obtain a sample from p(x)



Goal: Learn a Distribution

*Want to estimate p,,, from samples

(1) (2)

’ ,,“’a’;(n) diata(m)

*One way: build a histogram:

*Bin data space into k groups.
* Estimate p,, p,, ..., Py

Probability

* Count times bin i appears in dataset

002

0.01 A

0.00 -

0.06 1

0.05 1

*Train this model:

0.03 +

160




Histograms: Inference & Samples

*Inference: check our estimate of p.

*Sampling: straightforward, select bin i with probability p;,
then select uniformly from bin i.

*But ...
* inefficient in high dimensions



Parametrizing Distributions

*Don’t store each probability, store pgy(x)

*One approach: likelihood-based
* We know how to train with maximum likelihood

1 .
in — — 1 (%)
arg min —— Z og po(x'*’)

1=1



Parametrizing Distributions

*One approach: likelihood-based
* We know how to train with maximum likelihood

* Then, train with SGD

* Just need to make some choices for pgy(x)
* For example, recall Gaussian mixture models.

* But many types of data have more complex underlying
distributions.



Parametrizing Distributions: Autoregressive models

*e.g. recurrent neural networks, transformers.

'

L
i



Outline

*Flow-based Models
*Transformations, training, sampling



Flow Models
*One way to specify pg(x)

*Use a latent variable z with a “simple” (e.g Gaussian)
distribution.

*Then use a “complex” transformation, x = fg5(2).



Flow Models

* We will need to compute the inverse transformation and
take its derivative as well (for training).

* So compose multiple “simple” transformations

= fo,(fo,. (- f6.(2)))
2= fo (fo. (- fp (2)))



Flow Models

*Transform a simple distribution to a complex one via a chain
of invertible transformations (the “flow”)

OO O
=X

7 ~
Vd /7 \

Vs ’ \
/ / \
1 1 I} \
; A ; l M , l ‘/\,\P—\/\I
\ I \ I \ I
\ I — / \ I ’[ \ I »
\ / \ / \ /
\ 4 \ 7/ N\ /
\\ ,/ \\ ,/ \\ ,/

Zy ~ po(Zo) Z; ~ pz’(zz’) ZK ™~ pK(ZK)

image from Lilian Weng



Flow Models: How to sample?

*Sample from z (the latent variable)---has a simple distribution
that lets us do it: Gaussian, uniform, etc.

*Then run the sample z through the flow to get a sample x

f1(zo) fi(Zi—1) fi+1(2;)

/// A \\\ /// A \\\ Vs \
/ \ / \ / \
1 \ 1 \ 1 \
' /\ ‘ | J\/\ ‘ | ‘/\/\P’\/\ ‘
\ e II x »/' | _

s I
\ / \ / \ /
/ 7

N\
' 4 4

~ - .- - N —-—

Zg ~ po(zo) Z; ~ pi(zi) Zg ~ PK(ZK)



Flow Models: How to train?

*Relationship between p,(x) and p.(z) (densities of x and z),

given that © = fy(2)?

pﬂ:(x) — pz(fe_l(.’L‘))

[change of variables]

0f, ' (z)

ozx

.

Determinant of
Jacobian matrix



Flow Models: Training

. . 0
mgxglog(pm(ww;e)) = max (Z log (p-(f; ' (27))) + log L

—— r !

Y Latent variable Determinant of

I\{IaXI.mum version Jacobian matrix
Likelihood




Flows: Example

*Inverse flow to a Gaussian (right)

Inverse Flow

1.0 A 15
o 0.8 10 - 3000 1
*Before training: .| 5+
O_
0.4 A &
0.2 - ~10 -
0.0 A I . : —15 - l . .
) 0 2 -2 0 2
1.0 4 7.5
50 - 2500 A
0.8 - '
25 2000 A
Nt . 0.6 -
* After training: oo
R 2.5 1000 -
0.2 1 50 500 -
0.0 ~ ; [ . 75 . . ! 04
-2 0 2 -2 0 2 -2 0 2

image from UC Berkeley: Deep Unsupervised Training



Flows: Transformations

\What kind of f transformations should we use?

*Many choices:
o Affine: f(x) = A1(x - b)
* Elementwise: f(x,, ..., x4) = (f(x4), ..., f(xy))
*Splines

*Desirable properties:

* Invertible
e Differentiable



Outline

*Generative Adversarial Networks (GANS)
*Generators, discriminators, training, examples



GANSs: Generative Adversarial Networks

*So far we’ve been modeling the density...

* What if we just want to get high-quality
samples?

*GANSs do this.
* Think of art forgery

e Left: original
* Right: forged version
* Two-player game:
* Generator wants to pass off the
discriminator as an original

* Discriminator wants to distinguish
forgery from original




GANSs: Basic Setup

*Let’s set up networks that implement this idea:
* Discriminator network
* Generator network

Real or Fake

¢

Discriminator Network

Fake Images | Real Images
(from generator) | ' - .- (from training set)

Generator Network

Random noise

*

=

image from Stanford CS231n / Emily Denton



GAN Training: Discriminator

*How to train these networks? Two sets of parameters to
learn: B, (discriminator) and 6, (generator)

*Let’s fix the generator. What should the discriminator do?
* Distinguish fake and real data: binary classification.
* Use the cross-entropy loss, we get

I%&X Eprdata log D9d (I‘) + EZNP(Z) log(l o ng (GQQ (Z)))
1 T

Real data, want Fake data, want
to classify 1 to classify 0



GAN Training: Generator & Discriminator

*How to train these networks? Two sets of parameters to
learn: B, (discriminator) and 6, (generator)

*This makes the discriminator better, but also want to make
the generator more capable of fooling it:
* Minimax game! Train jointly.

r%in max L mpanta 108 Do, (T) + E,op(z) log(1l — Dy, (Gg, (2)))
g d
I I

Real data, want Fake data, want
to classify 1 to classify 0



GAN Training: Alternating Training

*So we have an optimization goal:

I%in I%&X 4”CUdia,ta ]-Og DQd (ZU) _|_ {"ZNp(Z) ]'Og(l o DQd(GQQ (Z)))

*Alternate training:
* Gradient ascent: fix generator, make the discriminator better:

I%&X EQUdiata lOg ng ('CC) + EZNP(Z) log(l o ng (GQQ (Z)))

* Gradient descent: fix discriminator, make the generator better

min B,z log(1 — Do, (Ge, (2)))



GAN Training: Issues

*Training often not stable

*Many tricks to help with this:
* Replace the generator training with

I%?X e log(Dy, (GGQ (2)))

* Better gradient shape
* Choose number of alternating steps carefully

*Can still be challenging.



GAN Architectures

*Discriminator: image classification, use a CNN

*What should generator look like
* Input: noise vector z.
e OQutput: an image (i.e. a 3-channel x width x height volume)
e Similar to a reversed CNN pattern...

Stride 2

CONV 2

Generator @

image from Radford et al ‘16



GANSs: Example

*Output of a GAN after 5 epochs of training:

image from Radford et al ‘16



Outline

Diffusion Models



Diffusion Models (optional)

*Learning to generate by denoising

*Denoising diffusion models consist of two processes:
* Forward diffusion process that gradually adds noise to input
* Reverse denoising process that learns to generate data by denoising

Forward diffusion process (fixed)

Data Noise

Reverse denoising process (generative)



Diffusion Models (optional)

*The formal definition of the forward process in T steps:

Forward diffusion process (fixed)

Data

/4
q(xe|xi—1) = N(xe; V1 — Bixe_1, BI) = q(x17|X0) = H(](Xt|xt—1) (joint)




Diffusion Models (optional)

e Diffusion Kernel

Forward diffusion process (fixed)

Data Noise

Define a; = H(l —Bs) = q(xexg) = N(x¢; Vagxg, (1 — ay)I))  (Diffusion Kernel)

=]

Forsampling: x; = /ay xg+ /(1 — &) ¢  where € ~ N(0,1)

B¢ values schedule (i.e., the noise schedule) is designed such that v — 0 and ¢(x7|xg) &~ N (x7;0,1))



Diffusion Models (optional)

*What happens to a distribution in the forward diffusion?

So far, we discussed the diffusion kernel ¢(x¢|x) but what about q(x¢)?

Diffused Data Distributions

Data Noise
ox) = [ abxoxidxo= [ axo)atalxo)dsg
e —— R t
Diffused Joint Input Diffusion
data dist. dist. data dist. kernel
The diffusion kernel is Gaussian convolution. Q(XO) Q(Xl) Q(Xz) Q(X3) Q(XT)

We can sample x; ~ ¢(x¢) by first sampling X0 ~ ¢(x() and then sampling X; ~ q(x¢|xg) (i.e., ancestral sampling).



Diffusion Models (optional)

*Generative Learning by Denoising

Recall, that the diffusion parameters are designed such that ¢(x7) ~ N (x7;0,1))

Diffused Data Distributions

Generation:
Sample x7 ~ N (x7;0,1)

Iteratively sample x;_1 ~ q(x¢_1|x¢) % X
g y % X %

X
True Denoising Dist.

q(xp) q(xy) q(x,) q(x3) q(xr)
L S W W W S

. axlx)  alxilx)  alxelxs)  alxslx)  q(xpalxe)
In general, q(x;_1|x¢) o< g(x¢_1)q(x¢|xs_1) is intractable.

Can we approximate q(x;_1|x;)? Yes, we can use a Normal distribution if 3; is small in each forward diffusion step.



Diffusion Models (optional)

*Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:

Reverse denoising process (generative)

<€

Data Noise

p(x7) = N(x7;0,I) _
=  po(x0.7) = px7) | | PO(}¢—1]%1t)
po(x¢_1)%t) = N(x¢_1; g(xt, ), o3 1) 251;[1
%/_/

Trainable network
(U-net, Denoising Autoencoder)



R O o ot Bt

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,

Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan
Ho, Aravind Srinivas, Ruigi Gao, Tengyang Xie



	Slide 1: CS 760: Machine Learning Generative Models
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Generative Models
	Slide 5: Applications: Generate Images
	Slide 6: Applications: Generate Images
	Slide 7: Applications: Generate Images
	Slide 8: Applications: Generate Images
	Slide 9: Applications: Generate Images/Video
	Slide 10: Applications: Generate Video
	Slide 11: Applications: Generate Video
	Slide 12: Additional Applications
	Slide 13: Goal: Learn a Distribution
	Slide 14: Goal: Learn a Distribution
	Slide 15: Histograms: Inference & Samples
	Slide 16: Parametrizing Distributions
	Slide 17: Parametrizing Distributions
	Slide 18: Parametrizing Distributions: Autoregressive models
	Slide 19: Outline
	Slide 20: Flow Models
	Slide 21: Flow Models
	Slide 22: Flow Models
	Slide 23: Flow Models: How to sample?
	Slide 24: Flow Models: How to train?
	Slide 25: Flow Models: Training
	Slide 26: Flows: Example
	Slide 27: Flows: Transformations
	Slide 28: Outline
	Slide 29: GANs: Generative Adversarial Networks
	Slide 30: GANs: Basic Setup
	Slide 31: GAN Training: Discriminator
	Slide 32: GAN Training: Generator & Discriminator
	Slide 33: GAN Training: Alternating Training
	Slide 34: GAN Training: Issues
	Slide 35: GAN Architectures
	Slide 36: GANs: Example
	Slide 37: Outline
	Slide 38: Diffusion Models (optional)
	Slide 39: Diffusion Models (optional)
	Slide 40: Diffusion Models (optional)
	Slide 41: Diffusion Models (optional)
	Slide 42: Diffusion Models (optional)
	Slide 43: Diffusion Models (optional)
	Slide 44: Thanks Everyone!

