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Announcements

•Logistics: 
•Midterm graded, regrades due Wednesday
•HW 2 graded, regrades due Thursday
•HW 3 due Wednesday

•Class roadmap:
•3 lectures on classical learning theory and kernels
•2 lectures on the modern science of learning
•2 lectures on data-efficient learning
•Thanksgiving break
•online and reinforcement learning



Outline

•Basic error decomposition
•goals of learning theory, different decompositions

•Bias-variance tradeoff
•  definition, intuition, sample complexity bounds
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Why learning theory?

Formal analysis of algorithms is important in all areas of CS:
•Example: binary search has time complexity 𝑂(log 𝑛)

•Example: running gradient descent on a smooth and convex function 
yields an 𝜀-suboptimal point in 𝑂 1/𝜀  iterations

We desire a rigorous understanding of algorithms to
•be able to predict how an algorithm will work on new problems
•understand when a problem is inherently hard (lower bounds)
•understand when a problem can be learned efficiently (time, 
space, training set size)

•provide guarantees on performance under certain conditions



Learning Theory

•One basic approach: try to understand how the performance 
of a learned model depends on
•the difficulty and amount of data
•the complexity of the model class
•the training procedure

•Error decomposition breaks down the total error of a model 
into different errors coming from each of these components



Error decomposition

Suppose we have a hypothesis class 
𝐻 of candidate prediction functions

Let 𝑒𝑟𝑟(ℎ) be the expected error of 
hypothesis ℎ on the test distribution, 
also known as the risk

We can try to understand why the 
error of the hypothesis ෠ℎ returned by 
a learning algorithm is larger than 
that of the optimal classifier ℎ∗ by 
decomposing the error

ℎ∗

෠ℎ

Hypothesis class 𝐻



Error decomposition

•ℎ∗: the optimal function 
(Bayes classifier)

•ℎ𝑜𝑝𝑡: the optimal hypothesis 
on the data distribution

• ෠ℎ𝑜𝑝𝑡: the optimal hypothesis 
on the training data

• ෠ℎ: the hypothesis found by 
the learning algorithm

ℎ∗

ℎ𝑜𝑝𝑡

෠ℎ𝑜𝑝𝑡

෠ℎ

Hypothesis class 𝐻



Error decomposition

𝑒𝑟𝑟 ෠ℎ −  𝑒𝑟𝑟 ℎ∗

 = 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡) − 𝑒𝑟𝑟 ℎ∗

 + 𝑒𝑟𝑟(෠ℎ𝑜𝑝𝑡) − 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡)

     + 𝑒𝑟𝑟 ෠ℎ  − 𝑒𝑟𝑟(෠ℎ𝑜𝑝𝑡)

ℎ∗

ℎ𝑜𝑝𝑡

෠ℎ𝑜𝑝𝑡

෠ℎ

Hypothesis class 𝐻
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due to finite data

Approximation error due to 
problem modeling (our choice 

of hypothesis class)



Error decomposition

𝑒𝑟𝑟 ෠ℎ −  𝑒𝑟𝑟 ℎ∗

 = 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡) − 𝑒𝑟𝑟 ℎ∗

 + 𝑒𝑟𝑟(෠ℎ𝑜𝑝𝑡) − 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡)

     + 𝑒𝑟𝑟 ෠ℎ  − 𝑒𝑟𝑟(෠ℎ𝑜𝑝𝑡) Optimization error due 
to imperfect optimization

Estimation error 
due to finite data

highly data-dependent and so difficult to control 
mathematically without strong assumptions

important but addressed by optimization theory, 
and in-practice we often get zero training error 

(assume ෠ℎ = ෠ℎ𝑜𝑝𝑡)

primary concern of (statistical) 
learning theory

Approximation error due to 
problem modeling (our choice 

of hypothesis class)



Bounding estimation error

𝑒𝑟𝑟(෠ℎ) −  𝑒𝑟𝑟(ℎ𝑜𝑝𝑡)

 = 𝑒𝑟𝑟(෠ℎ) − ෞ𝑒𝑟𝑟 (෠ℎ𝑜𝑝𝑡)

                     + ෞ𝑒𝑟𝑟 (෠ℎ𝑜𝑝𝑡) − 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡)

 ≤ 𝑒𝑟𝑟(෠ℎ) − ෞ𝑒𝑟𝑟 (෠ℎ𝑜𝑝𝑡)

                   + ෞ𝑒𝑟𝑟 (ℎ𝑜𝑝𝑡) − 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡)

    ≤ 2 sup
ℎ∈𝐻

|𝑒𝑟𝑟(ℎ) − ෞ𝑒𝑟𝑟(ℎ)|
depends on hypothesis space and 

data, not learning algorithm

empirical risk



Another error decomposition

𝑒𝑟𝑟 ෠ℎ = ෞ𝑒𝑟𝑟 ෠ℎ + 𝑒𝑟𝑟 ෠ℎ − ෞ𝑒𝑟𝑟 ෠ℎ  

                     

 ≤ ෞ𝑒𝑟𝑟 ෠ℎ + sup
ℎ∈𝐻

|𝑒𝑟𝑟(ℎ) − ෞ𝑒𝑟𝑟(ℎ)|                             

• We can compute the training error ෞ𝑒𝑟𝑟 ෠ℎ : if it is small, 
then a small generalization gap implies small test error

• How do we bound the generalization gap?

generalization gap

same quantity 
as before



Bounding the generalization gap

Have: 𝑒𝑟𝑟 ෠ℎ ≤ ෞ𝑒𝑟𝑟 ෠ℎ + sup
ℎ∈𝐻

|𝑒𝑟𝑟(ℎ) − ෞ𝑒𝑟𝑟(ℎ)|

The supremum characterizes the capacity of the hypothesis class 𝐻 to 
overfit the training data. 

Learning theory tries to bound it by some function of the number of 
training examples and a measure of how “big” the hypothesis class is. 

e.g. next class:  sup
ℎ∈𝐻

|𝑒𝑟𝑟(ℎ) − ෞ𝑒𝑟𝑟(ℎ)| ≤ ෨𝑂
VC−dimension 𝐻

#training examples
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Yet another decomposition

The bias-variance decomposition separates the expected risk 
of a model training procedure (learning algorithm) into 

•bias: expected error of the learned model

•variance: sensitivity of the algorithm to the training set

• irreducible error: inherent noisiness of the problem

Statistical way of understanding the tradeoff between 
approximation error (bias) and estimation error (variance)



Setup

Consider the task of learning a regression model given a 
training set 𝐷 = (𝑥(1), 𝑦(1)), . . . , (𝑥(𝑛), 𝑦(𝑛)) ⊂ 𝑋 × 𝑌 

Assume data is generated by the model  𝑦 = 𝑓 𝑥 + 𝜀 , where 
𝜀 is a random variable with mean zero and variance 𝜎2.

We use 𝐷 to train a model መ𝑓: 𝑋 ↦ 𝑌

What is the expected MSE of መ𝑓 at a fixed point 𝑥 ∈ 𝑋?



Goal

Define the MSE at a fixed point 𝑥 ∈ 𝑋 as

𝑒𝑟𝑟𝑥
መ𝑓 = 𝔼𝑦|𝑥

መ𝑓 𝑥 − 𝑦
2

Related to the risk 𝑒𝑟𝑟 but at a fixed input point rather than 
w.r.t. a joint distribution over (𝑥, 𝑦) pairs:

𝑒𝑟𝑟 መ𝑓 = 𝔼(𝑥,𝑦)
መ𝑓 𝑥 − 𝑦

2

Interested in expected MSE w.r.t. the randomness of drawing D:

𝔼𝐷 𝑒𝑟𝑟𝑥
መ𝑓 = 𝔼𝐷𝔼𝑦|𝑥

መ𝑓 𝑥 − 𝑦
2



Separating out the irreducible error

𝔼 መ𝑓 𝑥 − 𝑦
2

= 𝔼 መ𝑓 𝑥 − 𝑓 𝑥 − 𝜀
2

= 𝔼 መ𝑓 𝑥 − 𝑓(𝑥)
2

+ 2𝔼 መ𝑓 𝑥 − 𝑓(𝑥) 𝜀 + 𝔼[𝜀2]

= 𝔼 መ𝑓 𝑥 − 𝑓(𝑥)
2

 +  0 + 𝜎2

irreducible error(squared) bias + variance



Deriving the bias-variance decomposition

𝔼 መ𝑓 𝑥 − 𝑓(𝑥)
2

= 𝔼 መ𝑓 𝑥 − 𝔼 መ𝑓 𝑥 + 𝔼 መ𝑓 𝑥 − 𝑓(𝑥)
2

= 𝔼 መ𝑓 𝑥 − 𝔼 መ𝑓 𝑥
2

    + 𝔼 መ𝑓 𝑥 − 𝑓 𝑥
2

    +2𝔼 መ𝑓 𝑥 − 𝔼 መ𝑓 𝑥 𝔼 መ𝑓 𝑥 − 𝑓 𝑥

squared bias

variance

= 𝔼 መ𝑓 𝑥 2 − 𝔼 መ𝑓 𝑥 2 + 𝔼 መ𝑓 𝑥 𝔼 𝑓 𝑥 − 𝔼 መ𝑓 𝑥 𝔼 𝑓 𝑥 = 0



What have we derived?

𝔼𝐷 𝑒𝑟𝑟𝑥
መ𝑓 = 𝔼𝐷𝔼𝑦|𝑥

መ𝑓 𝑥 − 𝑦
2

= 𝔼𝐷
መ𝑓 𝑥 − 𝑓 𝑥

2
+ 𝔼𝐷

መ𝑓 𝑥 − 𝔼𝐷
መ𝑓 𝑥

2
+ 𝜎2

irreducible 
errorbias: how far away is 

the average prediction 
from the true function?

variance: how different is 
the prediction on average 
across different samples 
of the dataset? 



Understanding bias: 𝔼𝐷
መ𝑓 𝑥 − 𝑓 𝑥  

Large if መ𝑓 𝑥  is far away from 𝑓 𝑥  across different draws of 
the dataset 𝐷 

Indicates that the learning algorithm does not fit the data 
well, i.e. is underfitting

Can be caused by:

•an inflexible model class, e.g. fitting a nonlinear 𝑓 with a 
hypothesis class of linear models

•poor optimization, i.e. not minimizing the training error



Understanding variance: 𝔼𝐷
መ𝑓 𝑥 − 𝔼𝐷

መ𝑓 𝑥
2

Large if the prediction varies መ𝑓 𝑥  significantly across different 
random draws of the dataset 𝐷

Indicates that the learning algorithm may be overfitting

Can be caused by using a high-capacity model that can adapt 
to random noise rather than the true signal 𝑓



Example: Polynomial Interpolation 

•1st order polynomial has high bias, low variance 

•50th order polynomial has low bias, high variance 

•4th order polynomial represents a good trade-off



The bias-variance tradeoff

The B-V decomposition models 
predictive error as having two 
controllable components

•more expressive learners reduce 
bias but increase variance

• typically depicted via a capacity 
vs. error plot suggesting an 
optimal capacity

• can be extended beyond 
regression to classification



Break & Quiz



True or False: increasing the number of neighbors (k) in k-NN 
will typically increase the bias and reduce the variance 

Answer: True



True or False: increasing the regularization strength in LASSO 
will typically increase the bias and reduce the variance

Answer: True



True or False: adding degree 2 polynomial features to a linear 
model will typically increase the bias and reduce the variance

Answer: False



Caveats

•There is not always a strict tradeoff: with ensemble methods we can 
often reduce bias and/or variance without increasing the other term

•Neural networks (and even simpler models) sometimes yield a 
double descent phenomenon, where error goes down, then up, 
then down again as model capacity increases

Wikipedia



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, Fred Sala
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