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Announcements

*Logistics:
* Midterm graded, regrades due Wednesday

*HW 2 graded, regrades due Thursday
*HW 3 due Wednesday

*Class roadmap:
*3 |lectures on classical learning theory and kernels
2 lectures on the modern science of learning
*2 lectures on data-efficient learning
*Thanksgiving break
*online and reinforcement learning




Outline

*Basic error decomposition
*goals of learning theory, different decompositions

*Bias-variance tradeoff
* definition, intuition, sample complexity bounds
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Why learning theory?

Formal analysis of algorithms is important in all areas of CS:
*Example: binary search has time complexity O(log n)

*Example: running gradient descent on a smooth and convex function
yields an e-suboptimal point in O(1/¢) iterations

We desire a rigorous understanding of algorithms to
*be able to predict how an algorithm will work on new problems
*understand when a problem is inherently hard (lower bounds)

*understand when a problem can be learned efficiently (time,
space, training set size)

*provide guarantees on performance under certain conditions



Learning Theory

*One basic approach: try to understand how the performance
of a learned model depends on

*the difficulty and amount of data
*the complexity of the model class
*the training procedure

*Error decomposition breaks down the total error of a model
into different errors coming from each of these components



Error decomposition

Suppose we have a hypothesis class
H of candidate prediction functions

h*
Let err(h) be the expected error of

hypothesis h on the test distribution,
also known as the risk

=)

We can try to understand why the
error of the hypothesis h returned by
a learning algorithm is larger than
that of the optimal classifier h™ by
decomposing the error

Hypothesis class H



Error decomposition

*h": the optimal function
(Bayes classifier)

*hype: the optimal hypothesis
on the data distribution

N

* hype: the optimal hypothesis
on the training data

* h: the hypothesis found by
the learning algorithm

h*

Hypothesis class H



Error decomposition
err(ﬁ) — err(h™)

= err(hype) —err(h”)

+ err(ﬁopt) —err(hope)

+ er'r(fz) — err(fzopt)

Hypothesis class H



Error decomposition
er‘r(ﬁ) — err(h™)

= err(hyy) — err(h’)

+ err(ﬁopt) —err(hope)

+ err(ﬁ) — err(fzopt)

)
)

)

Approximation error due to
problem modeling (our choice
of hypothesis class)

Estimation error
due to finite data

Optimization error due
to imperfect optimization



Error decomposition
er‘r(ﬁ) — err(h™)

highly data-dependent and so difficult to control
mathematically without strong assumptions

primary concern of (statistical)
learning theory

important but addressed by optimization theory,
and in-practice we often get zero training error

(assume h = ﬁopt)

)
)

)

Approximation error due to
problem modeling (our choice
of hypothesis class)

Estimation error
due to finite data

Optimization error due
to imperfect optimization



Bounding estimation error
err(h) — err(hopye) empirical risk
= err(h) — err (hopt)
+ €71 (hope) — err(hope)
< err(h) — err (hopt)

+ err (hope) —err(hopt)

L depends on hypothesis space and
=2 i‘ég err(h) —err(h)|  — data, not learning algorithm



Another error decomposition

er‘r(ﬁ) = e/r\r(ﬁ) + [er‘r(fz) — e/ﬁ"(ﬁ)]
generalization gap

same quantity

< 6/7”\7“(}3) + sup |err(h) — err(h)| _ as before

heH

 We can compute the training error e/r\r(fz): if it is small,
then a small generalization gap implies small test error

* How do we bound the generalization gap?



Bounding the generalization gap

Have: err(ﬁ) < e/r\r(ﬁ) + sup |err(h) — err(h)|
heH

The supremum characterizes the capacity of the hypothesis class H to
overfit the training data.

Learning theory tries to bound it by some function of the number of
training examples and a measure of how “big” the hypothesis class is.

e.g. next class: sup |err(h) —err(h)| < 0 (\/ VC—dimension(H))

heH #training examples



Outline

*Bias-variance tradeoff
* definition, intuition, sample complexity bounds



Yet another decomposition

The bias-variance decomposition separates the expected risk
of a model training procedure (learning algorithm) into

*bias: expected error of the learned model
evariance: sensitivity of the algorithm to the training set
*irreducible error: inherent noisiness of the problem

Statistical way of understanding the tradeoff between
approximation error (bias) and estimation error (variance)



Setup

Consider the task of learning a regression model given a
training set D = {(xW),yM), ..., (x,yN)l c X x ¥

Assume data is generated by the model y = f(x) + €, where
¢ is a random variable with mean zero and variance o?.

We use D to train a model f: X — Y

What is the expected MSE off at a fixed point x € X?



Goal

Define the MSE at a fixed point x € X as
errx(f) = Ky [(f(x) — 3’)2]

Related to the risk err but at a fixed input point rather than
w.r.t. a joint distribution over (x, y) pairs:

. A 2
err(f) = Exy) [(f (x) =) ]
Interested in expected MSE w.r.t. the randomness of drawing D:

Eplerr(f)] = EpEy [(F(0) - ¥)°]



Separating out the irreducible error

E[(f(0) - y)]

=E|(f0) — f() —¢)']

= E|(f(0) — £(0)"| + 2E[(f () — () e] + E[e2)
=E|(f(x) - f(x))Z: + 0 + g2

\ l ‘
Y

(squared) bias + variance irreducible error




Deriving the bias-variance decomposition

E[(f00) - ()]

=E[(f(0) - E[f@)] + E[f )] - £()]

_E[(f0) - B[f@))Y] e verince
+(E[f@)] - () ¢mmmm squared bias
+2E[(F0) — E[f0)]) (E[f ()] - F)|

- J/

= E[f()?] = E[f ()?] + E[f )]E[f ()] = E[f ()]E[f(x)] = 0




What have we derived?

Eplern(£)] = EoEypx | (f(0) — ¥)°]
= (Eo[f)] - F(®)) +Ep [(fG0) - Ep[f])*] + o

\§ J g J \
Y Y . .
irreducible
bias: how far away is variance: how different is error

the average prediction  the prediction on average
from the true function? across different samples
of the dataset?



Understanding bias: *D[f(x)] — f(x)

Large if f (x) is far away from f(x) across different draws of
the dataset D

Indicates that the learning algorithm does not fit the data
well, i.e. is underfitting

Can be caused by:

*an inflexible model class, e.g. fitting a nonlinear f with a
hypothesis class of linear models

*poor optimization, i.e. not minimizing the training error



Understanding variance: *D(f(x) — *D[f(x)])z

Large if the prediction varies f(x) significantly across different
random draws of the dataset D

Indicates that the learning algorithm may be overfitting

Can be caused by using a high-capacity model that can adapt
to random noise rather than the true signal f



Example: Polynomial Interpolation

*1st order polynomial has high bias, low variance
*50th order polynomial has low bias, high variance
*4th order polynomial represents a good trade-off




The bias-variance tradeoff

The B-V decomposition models
predictive error as having two
controllable components

* more expressive learners reduce
bias but increase variance

* typically depicted via a capacity
vs. error plot suggesting an
optimal capacity

*can be extended beyond
regression to classification

hias

underfitting
zone

Error

generalization

overfitting
zone

variance

optimal capacity






True or False: increasing the number of neighbors (k) in k-NN
will typically increase the bias and reduce the variance

Answer: True



True or False: increasing the regularization strength in LASSO
will typically increase the bias and reduce the variance

Answer: True



True or False: adding degree 2 polynomial features to a linear
model will typically increase the bias and reduce the variance

Answer: False



Caveats

* There is not always a strict tradeoff: with ensemble methods we can
often reduce bias and/or variance without increasing the other term

* Neural networks (and even simpler models) sometimes yield a
double descent phenomenon, where error goes down, then up,
then down again as model capacity increases

1.5

1.0
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Training Error (!
Test Error (£

Interpolation
k" I hreshold

Parameters/Data

Wikipedia



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Fred Sala
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