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*Logistics:
*HW 4 out today
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*VC-dimension
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Recall: Generalization error decomposition

Last time, we were interested in the quantity

err(h) = err(h) + |err(h)—err(h)]
trueTrisk empiriTcaI risk | ! ’
(test error) (training error) generalization gap

If the generalization gap is small and our learning algorithm is
empirical risk minimization then the true risk is also small

Today: a framework for bounding the generalization error and
gap in terms of the number of samples



PAC Learning: Setup

*input space X (images, documents, feature vectors in R?, ...)

*output space Y = {0,1}
* just binary classification in this class
» extendable to regression / multi-class classification

*hypothesis class H
*set of functions f: X — Y that the learning algorithm can output



PAC Learning: Data

Input space X

*concept class C —
* set of labeling functionsc: X » Y — -
* represents set of possible true celC
labeling functions L

 example: circles in R?

* NOT (always) the same thing as the
hypothesis class H

eideally H o C

e data distribution D over X XY - —

* unknown

eget m samples (x;,y;),i =1,..,m
i.i.d. from D
*y; = c(x;) forsomec € C



PAC Learning: Goal

Use the training data to approximate the
unknown target concept ¢ € C using a
hypothesis h € H

Evaluate using true risk
err(h)
= Py.pth(x) # c(x)}
= Eltnyzc(o)

But we only have access to the

Input space X

empirical risk éerr(h) = %Z’{'L 1{h(x)¢c(x)}

Thus any approximation must be probabilistic




PAC Learning: Definition

PAC = Probably Approximately Correct

A concept class C is PAC-learnable if there exists a learning algorithm
that takes any dataset S of size m and outputs a hypothesis h¢: X » Y

that for any &,0 > 0 has the property
probably
Psﬁr(hs) <et=1-96
\

Y
approximately

J

so longasm = poly(3,5



PAC Learning: Definition

In words: C is PAC-learnable if
*there is a learning algorithm and
* a polynomial function poly: (0,1)% » Z. such that

*the probability the algorithm outputs a model that is wrong on
more than &-fraction of samples from D is at most 9, so long as

*the number of samples m is = poly(1/¢,1/6)
The polynomial function is called the sample complexity

Compare to computational complexity: a problem is tractable
(i.e. in P) if there exists a polynomial time algorithm to solve it



Consistent case

Suppose there exists a consistent learning algorithm:
*always returns hs with empirical risk err(hg) = 0
*for example: empirical risk minimizationon H D C

Then C is PAC-learnable with sample complexity —log il

In other words, given m samples, with probability = 1 — 9,

1 H
err(hg) = err(hg) — err(hg) < Elog%l



Consistent case: Example

For example, suppose we have n-dimensional binary data that is
perfectly classified by a depth 2 decision tree:

*|H| = # of pairs X # of leaf labelings = (’2‘) X 24= 16(721)

* If we want success probability = 0.99 and error rate < 0.05 then

1 o lén(n —1) X
m 2005\ %8 2% 0.01

elfn = 100 then we m = 318 samples suffices. /\ /\




Inconsistent case

Want to drop the consistency requirement err(hg) = 0

Inconsistent case guarantee:

w.p.>1—96,err(h) <err(h) + \/—logw VheH

equadratically worse error than consistent case

*uniform convergence bounds holds simultaneously for all h



PAC learning so far...

Formalizes learning task while allowing for imperfect learning due to
randomness / approximation (parameterized via § and &)

Can also define efficient PAC learnability by requiring the learning algorithm
to take polynomial-time compute

Shows how many samples are needed to learn over a finite hypothesis class

What if the hypothesis space is infinite? Can we still learn?

* linear models

_ 1 2H
* neural networks err(h) < err(h) + |—log——
. \J 2m o)




Outline

*VC-dimension
* motivation, definition, other complexity measures



Infinite hypothesis classes

Most practical learning algorithms operate over infinite
hypothesis classes

Basic PAC results give infinite sample complexity for |H| = oo
Need a different way to quantify the capacity of the class

The Vapnik-Chervonenkis (VC) dimension does this by
measuring how easy it is for function in H to fit arbitrary labels



Getting started: Shattering

Hypothesis space H shatters a set of points S = {xq, ..., x;} € X
if for every possible labeling {y4, ..., Vx} € {0,1} of S there exists
a function h € H such that produces that labeling, i.e.

h(x1) = yq, ..., h(x) = vy

Demonstrates that H is expressive enough to make arbitrary
distinctions between these a set of k points.



Shattering example: Lines in 2D

Hypotheses: H = {sign(w;x; + wyx, + b): wy,w,, b € R}
Set of points: S = {(0,0), (1,0), (0,1)}

23 possible labelings: .
+(0,0,0) .
*(0,0,1) AN
*(0,1,0)
*(0,1,1)
*(1,0,0)

'(1,0,1) ® *>— —

(0,0) (1,0)

*(1,1,0)
*(1,1,1)



VC dimension

The VC dimension of a hypothesis class H is the size of the
largest set of points in X that can be shattered by H

Two step procedure to show VC(H) = d:

1. find a set of points S € X of size |S| = d that is shattered by H
*i.e. find d points that can be labeled arbitrarily by functions h € H
* easier step: only need to find one set of shattered points, NOT all

2. show that no set of d + 1 points can be shattered



VC dimension example: Lines in 2D

Already demonstrated a set of three points that is shattered
by H,soVC(H) > 3

Is there a set of four points shattered by H?

— 7 r
e —
h P -

Case 1: collinear points Case 2: one point Case 3: quadrilateral

inside convex hull

No! Thus VC(H) < 4,andso VC(H) = 3



What does the VC-dimension get us?

If H has VC dimension d and we draw m samples i.i.d. from D
then with probability at least 1 — 6 the following is true for all
h € H:

Zdl em 1l 1
\Jmogd '\JmogS

err(h) < err(h) 4

VC-dimension roughly takes the place of log |H| as a measure
of the capacity of the hypothesis class.



VC dimensions of other classes

Linear classifiers in R%: d + 1
Finite hypothesis spaces: < log |H|

L-layer ReLU networks with W weights: O(W L log W)



Implications of VC-dimension

Bound suggests roughly m =~ d = VC(H) examples suffice to
start getting meaningful generalization

Zd1 em 1l 1
Vmogd '\Jmogc?

err(h) < err(h) 4

*sometimes okay for linear models over sufficiently large data

evacuous for modern deep nets (CNNs with millions of
weights do well on CIFAR-10, a dataset with <100K examples)



Other measures of hypothesis class capacity

Rademacher complexity: how easily do functions
h € H fit random labels?

Covering number: how many functions h € H are
needed so that the rest are close to one of them?



Achievements of learning theory

PAC theory provides a way of thinking about the relationship
between learning performance, sample size, and model capacity

*works for any data distribution
ecapacity measures can be computed for most classes of interest

*many extensions to noisy labels, hypothesis classes that do not
contain the target concept, etc.

*bounds generalization error in interpretable ways



Caveats

Drawbacks of most PAC guarantees:
*do not adapt to easy data (worst-case)
*does not consider the effect of optimization

ecapacity measures might be misleading for modern deep nets



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Fred Sala, Josiah Hanna
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